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Abstract

Given a finite set of points X ⊂ Rn, one may ask for polynomials p be-
longing to a subspace V , which attain given values at the points of X. We
focus on subspaces V of R[x1, . . . , xn], generated by low order monomials.
Such V were computed by the BM-algorithm, which is essentially based on
an LU-decomposition. In this paper we present a new algorithm based on
the numerical more stable QR-decomposition. If X contains only points dis-
turbed by measurement or rounding errors, the homogeneous interpolation
problem is replaced by the problem of finding (normalized) polynomials min-
imizing

∑
u∈X p(u)2. Such polynomials can be found as byproduct in the

QR-decomposition of the new algorithm.

1 Introduction

Given a set of points X := {u1, . . . , um} ⊂ Rn, and a set of data {α1, . . . , αm} ⊂
R, the multivariate polynomial interpolation problem consists in finding a
polynomial p ∈ R[x1, . . . , xn] satisfying

p(ui) = αi, i = 1, . . . ,m .

For a survey on multivariate polynomial interpolation see [7]. One major
difficulty is to find for a given finite point set X an m-dimensional subspace
V ⊂ R[x1, . . . , xn] which is unisolvent, i.e., in which there is for every data set
{α1, . . . , αm} exactly one interpolating polynomial p. We focus on arbitrarily
distributed points ui and arbitrary m. A linear algebra argument gives that
V is unisolvent if and only if V ⊕I(X) = R[x1, . . . , xn], where I(X) is the ideal
of all polynomials p solving the homogeneous interpolation problem

p(ui) = 0, i = 1, . . . ,m .

A polynomial set L := {`1, . . . , `m} is a basis of an unisolvent V if and only if
the `i+I(X) constitute a basis of the factor ring R[x1, . . . , xn]/I(X). By intro-
ducing a linear order <T among the power products (terms) xi11 · · ·xinn , one
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can have a partial order among polynomials. The BM-algorithm introduced
first in [3] is based on the idea to select in every equivalence class `i + I(X)
a least polynomial w.r.t. this partial order. It is used and refined in several
articles in Computer Algebra like [6] and [11]. In interpolation theory, this
approach has been studied by de Boor and Ron in [2]. They called their con-
cept least interpolation. Later, also Sauer pursued this approach in [14] under
the name minimal interpolation with minimal monomials.

The knowledge of I(X), the complement of V , is also of its own interest. In
the bivariate case n = 2 one needs sometimes to find a low order curve p = 0
passing through the m points ui. For n > 2 the problem might be to find one
or some algebraic surfaces pj = 0 through the given m points. In both cases
one has to determine the polynomials in the ideal I(X) up to a certain degree.
Unfortunately, in applications the problem is often that the points of X are
only approximations to certain unknown points ûi with ‖ûi − ui‖2 ≤ ε for
i = 1, . . . ,m. Hence there is possibly no low degree polynomial p vanishing
in the m points u1, . . . , um, i.e. p(ui) = 0, i = 1, . . . ,m, but a low degree
p̂ vanishing in the unknown û1, . . . , ûm. In this case methods of Computer
Algebra like [3] fail to determine p̂. On the other hand, in the least squares
method one expects that p̂ or at least a good approximation to p̂ minimizes∑m

i=1 p(ui)
2, assumed that all polynomials p under consideration are scaled

in the same way and assumed that ε is small enough. For this reason we are
interested in polynomials p such that

∑m
i=1 p(ui)

2 is small, called by several
authors ([5], [9], [15]) “almost vanishing polynomials”.

In the recent literature, the properties of the almost vanishing polynomials
have been analyzed. Among the others, in [15], using the notion of H-bases,
an algorithm is presented for computing a set of polynomials which generates
“almost” the so called approximate ideal of accuracy ε, that is the set of all
almost vanishing polynomials w.r.t. ε. In [9] an algorithm, based on the
singular value decomposition, is presented for computing the “ε-approximate
vanishing ideal”, that is the ideal generated by a given set of almost vanishing
polynomials. In [1] and [5] algorithms for computing a set of almost vanishing
polynomials are introduced, following the scheme of the BM algorithm and
explicitly using an estimation of the data error. An actual overview over the
existing literature can be found in [12]. This thesis also contains many well
described numerical programs and includes methods using singular values,
while we focus on the less expensive QR-decomposition.

In the present paper, we construct at first a unisolvent R-linear space V
following the ideas of [3] assuming that the interpolation points and the com-
putations are exact. The main tool is that we order linearly the set of terms
(power products)

T := {xi11 · · ·x
in
n | i1, . . . , in ∈ No}

by a so called admissible term order <T and consider successively (for increas-
ing terms t) the R-linear spaces spanR{τ ∈ T | τ ≤T t}. The computation
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ends when the first linear space V is found with V ⊕ I(X) = R[x1, . . . , xn].
Then an ideal basis for I(X) can be computed. If the linear order is degree
compatible, then we detect early low degree polynomials vanishing in the given
points.

Section 3 contains two algorithms for computing such unisolvent V and a
(linear) basis for it. The first one is essentially the old BM-algorithm based
on successive LU-decompositions of matrices Ak, having as rows the first k
evaluation vectors of a basis of V at X. The second one uses the more sta-
ble QR-decomposition of matrices Bk, where Bk is the transposed of Ak. In
both cases, the successive decompositions are realized by a recursive proce-
dure. The QR-decomposition allows a least squares interpretation as shown
in Section 4. We denote by Vt the subset of spanR{τ ∈ T | τ ≤T t} consisting
in all p which have in its term expansion 1 ∈ R as cofactor of t. If Mt is the
minimum of

∑m
i=1 p(ui)

2 over all p ∈ Vt, then
√
Mt is the diagonal element

corresponding to t in the upper triangular matrix R of the QR-decomposition
of Bm. If there is in Vt a polynomial p which has small values |p(ui)| then Mt

is small. Hence the size distribution on the diagonal of R indicates where to
find solutions of the homogeneous interpolation problem and basis elements
for the unisolvent R-linear space V . Section 4 ends with an upper bound for∑m

i=1 p(ui)
2 if p has zeros in ûi with ‖ui − ûi‖2 ≤ ε for i = 1, . . . ,m. We

conclude with a series of examples.

2 The basic algorithm

In this section we begin with some elementary definitions and results from
Computer Algebra. Readers who are not familiar with such techniques and
results can find more details and examples in textbooks like [4].

In the following P := R[x1, . . . , xn] denotes the polynomial ring under consid-
eration. By T we denote the set of power products (terms),

T := {xi11 · · ·x
in
n | i1, . . . , in ∈ N0} .

A linear order in T is called admissible if it satisfies

1 = x01 · · ·x0n <T t for all t ∈ T \ {1} ,
t1 <T t2 ⇒ tt1 <T tt2 for all t, t1, t2 ∈ T .

An easy consequence is t1 <T tt1 for arbitrary t, t1 ∈ T, t 6= 1. Hence if t1
divides properly t2, i.e. t2 = tt1 with t 6= 1, then t1 <T t2. Every admissible
term order is a well-order, such that minT ′ exists for every non-empty subset
T ′ of T . In the following, we fix an admissible term order <T .
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Definition 2.1 For arbitrary polynomials p ∈ P \ {0}, p =
∑m

i=1 citi with
ci ∈ R \ {0} and t1 <T t2 <T . . . <T tm, we call lt(p) := tm leading term,
lc(p) := cm leading coefficient of p, and lm(p) := cmtm leading monomial.

Definition 2.2 Let I ⊆ P be an ideal. By lt(I) we denote the set of leading
terms

lt(I) := {lt(p) | 0 6= p ∈ I} .

If F ⊂ P is a finite or infinite set, then 〈F〉 denotes the least ideal containing
F ,

〈F〉 = {
m∑
i=1

gifi | {f1, . . . , fm} ⊆ F , g1, . . . , gm ∈ P} .

If F is finite, then it is called basis of the ideal 〈F〉. The set {g1, . . . , gr} ⊂ I
is called a Gröbner basis of an ideal I, if 〈lt(I)〉 = 〈lt(g1), . . . , lt(gr)〉.

A Gröbner basis of an ideal I is also a basis of I, [4].

Definition 2.3 If I ⊂ P is an ideal, then

N := {t ∈ T | t 6∈ lt(I)}

is called normal set or set of standard monomials.

In [4], the standard monomials t ∈ N are also called basis monomials, be-
cause the set of cosets {t + I | t ∈ N} is a basis of the factor ring P/I.
In multivariate interpolation, the name lower set is used for N . In connec-
tion with border bases, e.g. in [10], the set of termsN is also called order ideal.

Definition 2.4 For X := {u1, . . . , um} ⊂ Rn the vanishing ideal I(X) is
defined by

I(X) := {p ∈ P | p(ui) = 0, i = 1, . . . ,m} .

The following Proposition holds ([4], Th. 2.10).

Proposition 2.5 I(X) is an ideal. Its normal set N satisfies |N | = |X|,
where |U | denotes the number of elements of the set U .

It is easily shown that a set N ⊆ T is the normal set of an ideal if and only if

t ∈ T, ti ∈ N , t|ti ⇒ t ∈ N , (1)

where t|ti means that t divides ti. One says that the normal set is closed
under division. An old result of Macaulay gives that for every finite subset
N ⊂ T , which is closed under division, there is a point set X such that N is
the normal set of I(X), see [13].
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Example 2.1 Let X := {(0, 0), (1, 1), (1,−1)}. If <T is the Lex-order

xiyj <T x
ky` iff i < k or i = k and j < ` ,

then I(X) ⊂ R[x, y] has as Gröbner basis G = {y3 − y, x − y2} and hence
〈lt(I(X))〉 = 〈y3, x〉 and N = {1, y, y2}. If <T is the DegLex- order,

xiyj <T x
ky` iff i+ j < k + ` or i+ j = k + ` and i < k ,

then I(X) has as Gröbner basis {y2 − x, xy − y, x2 − x}, hence N = {1, y, x}.

Proposition 2.6 Let N be the normal set of an ideal I ⊂ P. Then t∗ ∈ lt(I)
if and only if

∃ p ∈ spanR{t ∈ N | t <T t∗} : t∗ − p ∈ I.

Proof. Let t∗ ∈ lt(I). Then there is a p =
∑

i citi with ti ∈ N and ci ∈ R\{0}
such that t∗ − p ∈ I, since the cosets t+ I, t ∈ N , constitute a basis of P/I.
By construction ti 6∈ lt(I) but lt(t∗−p) ∈ lt(I). Hence t∗ = lt(t∗−p) which
implies t∗ >T ti. Conversely, if t∗ − p ∈ I where p ∈ spanR{t ∈ N | t <T t∗},
then lt(t∗ − p) = t∗ which is in lt(I) because t∗ − p ∈ I. �

The polynomial p in Proposition 2.6 is uniquely determined by t∗ ∈ lt(I)
and N . It is called normal form of t∗. For vanishing ideals the criterion in
Proposition 2.6 can be reformulated using vectors.

Proposition 2.7 Let X := {u1, . . . , um} and let N be the normal set of I(X).
Defining t(X) := (t(u1), . . . , t(um)) for t ∈ T , then t∗ ∈ lt(I(X)) holds if and
only if

t∗(X) ∈ spanR{t(X) | t ∈ N , t <T t∗} . (2)

In addition, if N := {t1, . . . , tm} with t1 <T t2 <T . . . <T tm, then

tk = min
<T

{t ∈ T | dim(spanR{t1(X), . . . , tk−1(X), t(X)}) = k} . (3)

Proof. The equivalence of t∗ ∈ lt(I(X)) and (2) holds because of Proposi-
tion 2.6 and

t∗ −
∑
i

citi ∈ I ⇔ t∗(X)−
∑
i

citi(X) = 0 .

The vectors t1(X), . . . , tm(X) are linearly independent because otherwise a
tk ∈ N belongs to lt(I(X)) by (2) contradicting N ∩ lt(I(X)) = ∅. This
together with (2) gives (3). �

If the normal set N of an ideal I is known, the minimal elements of T \ N
w.r.t. the relation a|b (a divides b) are easily determined. Let M be the
set of these minimal elements. By Dickson’s Lemma [4], M is finite. By
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construction 〈M〉 = 〈lt(I)〉 and 〈M′〉 6= 〈lt(I)〉 for every proper subset M′
of M, but 〈M′〉 = 〈lt(I)〉 for every M′ ⊂ T containing M. For instance

M̃ := { xit | t ∈ N , 1 ≤ i ≤ n } \ N

contains M and is hence also a basis of 〈lt(I)〉.
By Proposition 2.6, there is for every t ∈ T \ N a p in spanN such that
t − p ∈ I. Hence {t − p ∈ I | t ∈ M, p ∈ spanN} and also {t − p ∈ I |
t ∈ M̃, p ∈ spanN} are Gröbner bases. The first one is a so called reduced
Gröbner basis, the latter a border basis.
Criterion (2) allows to decide by methods of linear algebra that t∗ ∈ lt(I(X))
or its negation t∗ ∈ N holds true, once all elements t ∈ N with t <T t∗ are
known. Since we consider the terms t∗ in increasing order, we do not need
to test a term t ∈ lt(I(X)), which is a proper multiple of an element of M,
because the latter is considered earlier. Therefore we deal in the following
only with the finite sets N and M. Then criterion (2) reduces to the test
t∗ ∈M or its negation t∗ ∈ N . This is the central idea for the BM-algorithm,
which is in the basic version as follows.

Basic BM-algorithm
Input: X := {u1, . . . , um} ⊂ Rn.
Output: The normal set N and the setM of minimal terms in lt(I(X)) w.r.t.

the relation a|b.

Calculation:
N := {1}; M := { }; L := {x1, . . . , xn};
while L 6= { } do

t∗ := min<T L;
L := L \ {t∗};
if t∗(X) 6∈ spanR{t(X) | t ∈ N} % The crucial boolean expression

then N := N ∪ {t∗};
for i = 1 to n do if no t ∈ L divides xit

∗ then L := L∪ {xit∗}
else M :=M∪ {t∗}

end if
end while ;
return N , M.

The basic BM-algorithm gives just the term setsN andM and not yet polyno-
mials. However, the knowledge of the normal set alone is sufficient for finding
an appropriate interpolation space for interpolation in X = {u1, . . . , um} ⊂
Rn. In the univariate case the situation is simple. Here, the set N is always
generated by the terms 1, x, . . . , xm−1. They span a linear space in which the
interpolation problem in the m points is uniquely soluble. In the multivariate
case, we have the following.
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Theorem 2.8 Let N be the normal set for the vanishing ideal I({u1, . . . , um})
with ui 6= uj for i 6= j. Then spanRN is unisolvent, i.e., for arbitrary
α1, . . . , αm ∈ R there exists exactly one p ∈ spanRN such that p(ui) = αi,
i = 1, . . . ,m.
Let N = {t1, . . . , tm} with t1 <T t2 <T · · · <T tm. If spanR{t′1, . . . , t′m} with
t′1 <T t

′
2 <T · · · <T t′m is also unisolvent, then ti ≤T t′i for i = 1, . . . ,m.

Proof. The m vectors t(X) ∈ Rm, t ∈ N , are linearly independent by Propo-
sition 2.7. Hence they are a basis of Rm. This is equivalent to the fact that
the interpolation problem p ∈ spanRN , p(ui) = αi, i = 1, . . . ,m, has always
a unique solution. The remaining follows by equation (3). �

Some authors require for an interpolating polynomial p that its degree is not
greater than the degree of the polynomial f which is interpolated. If the term
order <T is chosen such that lower degree terms are less w.r.t. <T , then this
requirement results from the following.

Corollary 2.9 Let N be as in Theorem 2.8 and let f ∈ P. The interpolating
polynomial p ∈ spanRN with p(ui) = f(ui), i = 1, . . . ,m, satisfies lt(p) ≤T
lt(f).

Proof. Assume that in the contrary lt(f) <T lt(p). Then lt(p−f) = lt(p).
But p − f ∈ I({u1, . . . , um}) =: I such that lt(p − f) ∈ lt(I) whereas
lt(p) ∈ N = T \ lt(I), a contradiction. �

3 The complete BM-algorithm

The complete BM-algorithm extends the basic one by computing a reduced
Gröbner basis for I(X), a basis for spanRN , and modifies the criterion t∗ 6∈ M.
We present here two variants of the complete algorithm. One is the original
one of [3] and uses implicitly an LU-decomposition. The second one is based
on a QR-decomposition.

When in the basic BM-algorithm the term t∗ is considered, then one has
already computed

{t1, . . . , ts−1} := {t ∈ N | t <T t∗} .

The decision t∗ 6∈ M, i.e., t∗ ∈ N , uses equation (2) of Proposition 2.7. If
we denote by As−1 the (s− 1)×m -matrix with rows t1(X), . . . , ts−1(X), then
As−1 has full row rank s− 1. Hence t∗ ∈ N holds iff

rank

[
As−1. . . . . . . . .

t∗(X)

]
= s .
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In the two variants of the BM-algorithm, we use the recursionAs =

[
As−1. . . . . . . . .

ts(X)

]
and transform As, or its transpose ATs respectively, to an upper triangular ma-
trix using that the corresponding upper triangular matrix for As−1, or ATs−1
respectively, is already computed.

In [3], polynomials q1, . . . , qm are constructed, which can be considered as the
multivariate analogous of the Newton polynomials n1, . . . , nm ∈ R[x] defined
by nk ∈ span{1, . . . , xk−1}, lc(nk) = 1, and nk(uν1) = . . . = nk(uνk−1

) = 0.
These polynomials were computed successively in the algorithm. When one
considers t∗ and has already found t1, . . . , ts−1 ∈ N , then q1, . . . , qs−1 are
already computed, satisfying qi ∈ spanR{t1, . . . , ti}, lc(qi) = 1, and

qi(uν1) = . . . = qi(uνi−1) = 0, qi(uνi) 6= 0 .

Then one defines q recursively starting with q(0) := t∗ and then

q(i+1) := q(i) − q(i)(uνi)

qi(uνi)
qi for i = 0, . . . , s− 1 .

q := q(s) has as representation q = t∗ +
∑s−1

i=1 `iti with some `i ∈ R and
q(uνi) = 0 for i = 1, . . . , s − 1. If q(ui) = 0 for all i = 1, . . . ,m, then
t∗ ∈ lt(I(X)) and q is an element of the reduced Gröbner basis. Other-
wise, there is an uνs ∈ U \ {ν1, . . . , νs−1} such that q(uνs) 6= 0. In this case
ts := t∗ ∈ N and qs := q.

This is in matrix notation, using qi = ti +
∑i−1

k=1 `iktk with `ik ∈ R,
1 0 . . . 0 0

`21 1
...

...
...

. . . 0 0
`s−1,1 . . . `s−1,s−2 1 0
`1 . . . `s−2 `s−1 1




t1(uν1) t1(uν2) . . . t1(uνm)
...

...
...

ts−1(uν1) ts−1(uν2) . . . ts−1(uνm)
t∗(uν1) t∗(uν2) . . . t∗(uνm)



=


q1(uν1) q1(uν2) . . . q1(uνs−1) q1(uνs) . . . q1(uνm)

0 q2(uν2) . . . q2(uνs−1) q2(uνs) . . . q2(uνm)
...

. . .
. . .

...
...

...
0 . . . 0 qs−1(uνs−1) qs−1(uνs) . . . qs−1(uνm)
0 . . . . . . 0 q(uνs) . . . q(uνm)

 .

At the end, for t∗ = tm and s = m, this identity is MAmP = Qm, where P is
the permutation matrix which permutes i-th and νi-th column, Qm an upper
triangular m × m- matrix, and M a quadratic lower diagonal matrix with
diagonal (1, 1, . . . , 1), such that M−1Qm is the LU-decomposition of AmP .

The number of floating point operations (flops), i.e. the number of floating
point additions and multiplications, for computing the unknowns `1, . . . , `s−1
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is about 2sm− s2. If m is much greater than s, the linear increase in m indi-
cates a good performance. This explains the success of the BM-algorithm in
exact arithmetic for finding a low degree polynomial in I(X). However, when
the points u1, . . . , um are only approximately known or when floating point
arithmetic is used, then the decision that all q(uνi), i = s, . . . ,m, are zero is
no more decidable and a more stable variant of the BM-algorithm should be
preferred.

The QR-decomposition applied to matrices As−1 can do the job. We prefer to
apply the QR-decomposition to ATs−1, the transpose of As−1, because we have
then a better interpretation of intermediate results. Assuming again, that the
term t∗ is under consideration in the basic BM-algorithm and we already have

{t1, . . . , ts−1} := {t ∈ N | t <T t∗} ,

we define

Bs−1 := ATs−1 =


t1(u1) t2(u1) . . . ts−1(u1)
t1(u2) t2(u2) . . . ts−1(u2)

...
...

...
t1(um) t2(um) . . . ts−1(um)

 .

Then Bs−1 has full column rank. Considering now the previously intro-
duced vectors t(X) as column vectors, Bs−1 has t1(X), . . . , ts−1(X) as columns.
And the criterion t∗ ∈ N needed in the basic BM-algorithm is equivalent

to rank[Bs−1
...t∗(X)] = s. If Bs−1 = Qs−1Rs−1 with a orthogonal matrix

Qs−1 ∈ Rm×m and an upper triangular matrix Rs−1 = (r
(s−1)
ij ) ∈ Rm×(s−1),

then

QTs−1[Bs−1
...t∗(X)] = [Rs−1

...QTs−1t
∗(X)] =



r
(s−1)
11 r

(s−1)
12 . . . r

(s−1)
1,s−1 b1

0 r
(s−1)
22 . . . r

(s−1)
2,s−1 b2

...
. . .

. . .
...

...

0 . . . 0 r
(s−1)
s−1,s−1 bs−1

0 . . . . . . 0 bs
...

...
...

0 . . . . . . 0 bm


with b = QTs−1t

∗(X). The extended matrix [Bs−1
...t∗(X)] has rank s iff the last

m− s+ 1 entries of b are not simultaneously 0. In this case, a column vector
w ∈ Rm exists, which has the first s− 1 entries equal to 0 and its remaining
entries are determined such that the vector

(I − 2

wTw
wwT )QTs−1t

∗(X)

has a positive s-th entry and the forthcoming entries at position s+ 1, . . . ,m
are 0. In matrix-vector notation, there is a Householder matrix

Hw = I − 2

wTw
wwT (Hw is symmetric and orthogonal ! )
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such that HwQ
T
s−1[Bs−1

...t∗(X)] is an upper triangular matrix Rs with full col-
umn rank. SinceQs−1Hw is orthogonal, (Qs−1Hw)Rs is the QR-decomposition

of the extended matrix Bs := [Bs−1
...t∗(X)] with ts = t∗.

If the last m − s + 1 entries of QTs−1t
∗(X) are simultaneously zero, then the

last column QTs−1t
∗(X) depends linearly on the columns of upper triangular

matrix QTs−1Bs−1 = Rs−1. Backward substitution gives the solution c :=
(c1, . . . , cs−1)

T of Rs−1c = QTs−1t
∗(X). Then the polynomial

p := t∗ −
s−1∑
i=1

citi

vanishes in the points u1, . . . , um, i.e., p ∈ I(X) with lt(p) = t∗.
Following [8], the determination of the vector w of the Householder matrix
Hw requires about 3(m−s) flops and the multiplication about 2(m−s)2 flops.
The complexity here is much higher than for the LU-decomposition. On the
other hand, the QR-decomposition is more stable and the central key in the
following least squares method.

4 The least squares method

In many applications, one is interested in a point set X̂ := {û1, . . . , ûm} ⊂ Rn,
but due to rounding or measurement errors only an approximate point set
X := {u1, . . . , um} is known. Therefore it is impossible to find the vanishing
ideal I(X̂), but only polynomials p which are very close to polynomials p̂ ∈
I(X̂). Intuitively, a polynomial p∗ is close to an element of I(X̂), if all values
p∗(ui) are close to 0. We therefore make the following definition.

Definition 4.1 Let Vt∗ := {p ∈ P | lm(p) = t∗}. We say that a polynomial
p∗ ∈ Vt∗ is a best approximation in the set Vt∗ if

m∑
j=1

p∗(uj)
2 = min


m∑
j=1

p(uj)
2
∣∣∣ p ∈ Vt∗

 .

(Note that all polynomials in Vt∗ have leading coefficient 1.)
If one adds a polynomial q with q(uj) = 0 for j = 1, . . . ,m and lt(q) <T t

∗ to
a p ∈ Vt∗ , then the square sum is unchanged,

∑m
j=1 p(uj)

2 =
∑m

j=1( p(uj) +

q(uj) )2. Also p + q ∈ Vt∗ . Therefore if {t1, . . . , ts−1} := {t ∈ N | t <T t∗},
we may omit all terms t <T t∗ with t 6∈ {t1, . . . , ts−1} and obtain a unique
p∗ ∈ span{t1, . . . , ts−1, t∗} with

m∑
j=1

p∗(uj)
2 = min


m∑
j=1

p(uj)
2
∣∣∣ p ∈ Vt∗

 . (4)
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The finding of the optimal p∗ ∈ span{t1, . . . , ts−1, t∗}∩Vt∗ is the least squares
problem

min
c∈Rs−1

‖Bs−1c− t∗(X)‖22 = ‖Bs−1c∗ − t∗(X)‖22, (5)

with column vectors c = (c1, . . . , cs−1)
T , c∗ = (c∗1, . . . , c

∗
s−1)

T ∈ Rs−1. The
vector c∗ is uniquely determined in (5) because Bs−1 has full column rank,
and so p∗ = t∗ −

∑s−1
i=1 c

∗
i ti. In the case t∗ ∈ lt(I(X)) there is a p∗ =

∑
c∗i ti

such that t∗−p∗ ∈ I(X), see Proposition 2.6. The vector c∗ = (c∗1, . . . , c
∗
s−1)

T ,
inserted in (5), shows that the minimum is 0. These results can be summarized
in the following theorem.

Theorem 4.2 The vector c∗ is the solution of the least squares problem (5)
if and only if the polynomial t∗ −

∑s−1
i=1 c

∗
i ti is a best approximation in the set

Vt∗. The minimum is 0 if and only if t∗ −
∑s−1

i=1 c
∗
i ti ∈ I(X).

The polynomial of best approximation in the set Vts is strongly connected
with the residual of the least squares problem and the QR-decomposition.

Theorem 4.3 Let ρ1 := t1(X) and, for k = 2, . . . , s, let tk 6∈ lt(I(X)), ρk
be the residual of the least squares problem minc ‖Bk−1c − tk(X)‖22 and p∗k
denote a polynomial of best approximation in the set Vtk . Let QsRs be a QR-
decomposition of Bs, i.e., Qs an orthogonal m ×m-matrix and Rs an upper
triangular matrix with positive diagonal entries. Then, for k = 1, . . . , s, we
have ρk = (p∗k(u1), . . . , p

∗
k(um))T and

i) the k-th column of Qs is 1
‖ρk‖2 ρk,

ii) the k-th diagonal element of Rs equals ‖ρk‖2, and

iii) ‖ρk‖22 =
∑m

j=1 p
∗
k(uj)

2 = min
{∑m

j=1 p(uj)
2 | p ∈ Vtk

}
.

Proof. Applying Theorem 4.2 to t∗ = tk gives p∗k = tk−
∑k−1

i=1 c
(k)
i ti where the

vector c(k) := (c
(k)
1 , . . . , c

(k)
k−1)

T satisfies minc ‖Bk−1c− tk(X)‖2 = ‖Bk−1c(k) −
tk(X)‖2. Obviously, the j-th entry of the residual ρk = tk(X) − Bk−1c(k) is

tk(uj) −
∑k−1

i=1 c
(k)
i ti(uj) = p∗k(uj), k = 2, . . . , s. For k = 1 we have t1 = 1,

p∗1 = 1, and ρ1 = (1, . . . , 1)T .
The residual ρk is perpendicular to Wk−1 := spanR{t1(X), . . . , tk−1(X)} and
tk(X) − ρk ∈ Wk−1. By an inductive argument, ρTi ρk = 0 for 1 ≤ i < k ≤ s
and Wk = spanR{ρ1, . . . , ρk} for k = 1, . . . , s. In addition, ρk 6= 0 since
tk 6∈ lt(I(X)) for k = 1, . . . , s. Therefore the matrix Qs with columns

1
‖ρk‖2 ρk, k = 1, . . . , s, is well defined and orthogonal. Since tk(X) − ρk ∈
Wk−1 = spanR{ρ1, . . . , ρk−1}, there is an upper triangular matrix Rs with
diagonal entries ‖ρ1‖2, . . . , ‖ρs‖2 such that QsRs is the QR-decomposition of
Bs. Statement iii) follows by ρk = (p∗k(u1), . . . , p

∗
k(um))T and the definition of

p∗k. �

The BM-algorithm in exact arithmetic can be thus considered as a succession
of least squares problems or as an iterative computation of QR-decompositions

11



of matrices Bs, where the choice of the next t∗ is as in the basic BM-algorithm.
In the following we also assume that all points of X are scaled such that they
are located in the unit hypercube C := {(x1, . . . , xn) ∈ Rn | −1 ≤ xi ≤ 1}.
This enables us to get informations on the size of the residuals ρk.

Theorem 4.4 Let tj ∈ T divide tk ∈ T. If all points {u1, . . . , um} are inside
C, then ‖ρk‖2 ≤ ‖ρj‖2.

Proof Let p∗j = tj −
∑j−1

i=1 c
(j)
i ti denote a polynomial of best approximation

in Vtj and let tk = τtj for a τ ∈ T . Then

‖ρk‖22 = min

{
m∑
i=1

pk(ui)
2 | pk ∈ Vtk

}
≤

m∑
i=1

(τ(ui)tj(ui)−
j−1∑
`=1

c
(j)
` τ(ui)t`(ui))

2

since
∑j−1

`=1 c
(j)
` τt` ∈ span{t1, . . . , tk−1} and hence τtj −

∑j−1
`=1 c

(j)
` τt` ∈ Vtk .

The condition ui ∈ C implies |τ(ui)| ≤ 1 for i = 1, . . . ,m. This gives

‖ρk‖22 ≤
∑m

i=1( τ(ui)tj(ui)−
∑j−1

`=1 c
(j)
` τ(ui)t`(ui) )2

=
∑m

i=1( τ(ui)|2|tj(ui)−
∑j−1

`=1 c
(j)
` t`(ui) )2

≤
∑m

i=1( tj(ui)−
∑j−1

`=1 c
(j)
` t`(ui) )2 = ‖ρj‖22 .

This was to be proved. �

If floating point arithmetic is used, then it is unrealistic to assume that a
residual ρk is 0. But even if this happens and if X is only an approximation
to X̂, the polynomial of best approximation in Vtk being then 0 in all points

of X is possibly not the best approximating polynomial to I(X̂) among all
polynomials with leading monomial tk. However, it is to be expected, that
the greater

‖ρk‖22 = min


m∑
j=1

p(uj)
2 | p ∈ Vtk

 ,

the more unlikely is tk ∈ lt(I(X̂)). Residuals are small, if in case ‖ui−ûi‖2 ≤ ε
there is a polynomial p zero in X̂ as the following result shows.

Proposition 4.5 Let p ∈ P vanish in the points of X̂ = {û1, . . . , ûm} ⊂ Rn,
and let X := {u1, . . . , um} ⊂ Rn be close to X̂, ‖ûi − ui‖2 ≤ ε, i = 1, . . . ,m.
Then

m∑
i=1

p(ui)
2 ≤ ε2(M2

1 + . . .+M2
m),

where
Mi := max{‖∇p(u)‖2 | ‖u− ui‖2 ≤ ε} .

Furthermore, M2
i = ‖∇p(ui)‖22 +O(ε).
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Proof. The mean value theorem shows the existence of τi on the line between
ui and ûi such that

p(ui) = p(ui)− p(ûi) = ∇p(τi)(ui − ûi), i = 1, . . . ,m .

Cauchy-Schwarz gives then

p(ui)
2 = ( ∇p(τi)(ui − ûi) )2 ≤ ‖∇p(τi)‖2‖ui − ûi‖22 ≤M2

i ε
2 .

The first assertion follows by summation over all i.

Furthermore, let ηi be a point such that Mi = ‖∇p(ηi)‖2 and ‖ηi − ui‖2 ≤ ε.
Since there is a constant Cik such that∣∣∣∣∣

(
∂p

∂xk
(ηi)

)2

−
(
∂p

∂xk
(ui)

)2
∣∣∣∣∣ ≤ Cik · ε

we have

M2
i = ‖∇p(ηi)‖22 =

n∑
k=1

(
∂p

∂xk
(ηi)

)2

≤
n∑
k=1

(
∂p

∂xk
(ui)

)2

+ ε

n∑
k=1

Cik

Hence M2
i equals ‖∇p(ui)‖22 up to a summand of size O(ε). �

Remark. Denoting by p(X) the vector with entry p(ui) at position i, Propo-
sition 4.5 gives that p has no zero set X̂ close to X if ‖p(X)‖22 > ε2

∑m
i=1M

2
i .

If D denotes the m × n matrix with entry ∂p
∂xk

(ui) at position (i, k), then∑m
i=1M

2
i can be estimated, up to an O(ε) summand, by the square of the

Schur (Frobenius) norm of D. In fact ‖D‖2F =
∑m

i=1 ‖∇p(ui)‖22 and so

m∑
i=1

M2
i ≈ ‖D‖2F . (6)

In the examples of Section 5, we will use ‖D‖2F instead of
∑m

i=1M
2
i . We ex-

pect that ‖p(X)‖22 > ε2‖D‖2F allows as well to predict that p has no zero set

X̂ close to X.

In [5] [Th. 3.5] a result analogous to Prop. 4.5 is shown, using a component-
wise analysis: if there exists a set X̂ = {û1, . . . , ûm} such that p(X̂) = 0 and
‖ûi − ui‖∞ < εM for each i = 1, . . . ,m then |p(X)| < vε, where the upper
bounds hold component-wise. The vector vε can be estimated apart of an
O(ε2M ) summand as follows

|vε| ≈ εM
∣∣I −B(BTB)−1BT

∣∣ n∑
k=1

∣∣∣∣ ∂p∂xk (X)

∣∣∣∣ = εM
∣∣I −B(BTB)−1BT

∣∣ |D|e (7)

with B the evaluation matrix of the terms {t ∈ N | t <τ LT (p)} at X, I the
identity matrix, and e = [1, . . . , 1]T . Computing the 2-norm of the estimation
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of |vε| we obtain an upper bound similar to formula (6) up to a factor
√
n due

to the transformation from two different norms. We have

εM
∥∥|I −B(BTB)−1BT ||D|e

∥∥
2
≤
√
nεM

∥∥|I −B(BTB)−1BT |
∥∥
2
‖|D|‖2

≤
√
nεM

∥∥I −B(BTB)−1BT
∥∥
F
‖D‖F = nεM

∥∥I −B(BTB)−1BT
∥∥
2
‖D‖F

Note that, using the singular value decomposition of B, it is possible to show
that ‖I −B(BTB)−1BT ‖2 = 1. Furthermore, if ε is the data error estimation
in formula (6), we have that ε is almost equal to

√
nεM and so

εM
∥∥|I −B(BTB)−1BT ||D|e

∥∥
2
≤ nεM ‖D‖F ≈

√
nε ‖D‖F .

We can conclude that upper bound (6) is more precise than the upper bound
obtained computing the norm of relation (7) and we suggest to use upper
bound (6) when an estimation of the norm of the data error is known while
upper bound (7) when an estimation component-wise of the error is known.

This estimation of Proposition 4.5 and Theorem 4.4 suggest to compute the
residuals ρk for increasing tk (w.r.t. <T ) in the following way. If the first
residual ρk occurs with a very small euclidean norm compared to the norm of
the residuals computed before, then this tk is the first candidate for lt(I(X)).
Since ‖ρk‖2 = ‖p∗k(X)‖2 by Theorem 4.3 iii), Proposition 4.5 shows when
the euclidean norm of ρk is not small enough. If there are several residuals
with small norm, but m residuals with a significantly greater norm, then the
corresponding m terms, say {tr1 , . . . , trm}, are candidates for the normal set.
If all points are inside the unit hypercube C, then Theorem 4.4 gives that the
set Ñ := {tr1 , . . . , trm} is closed under division. If X is close to X̂ and if only
small rounding errors occur, then it is to be expected, that Ñ is the normal
set of the ideals I(X) and I(X̂) and the polynomials of best approximation
in Vt for every t ∈ T \ Ñ can be accepted as good approximations to the
polynomials of I(X̂).

5 Examples

In this section we present two examples in which, starting from a set X of
perturbed points, the polynomials of best approximation are computed. In
order to detect if a computed polynomial p∗ admits a zero set close to X, we
apply Proposition 4.5, using the “simplified” upper bound, where

∑m
j=1M

2
j

is replaced by the (squared) Frobenius norm of D =
(
∂p
∂xk

(ui)
)

. All the com-

putations are performed using MatLab and all the coefficients are rounded.

Example 5.1 Let X̂ = {û1, . . . , ûm} ⊂ R2 be a set of exact but “unknown”
points on the unit circle x2 + y2 − 1 = 0. We consider two different cases,
varying the component-wise perturbation of the points and varying m.
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First case. Let X̂ be the “exact” set of m = 8 points, where α̂ =
√

2/2,

X̂ = {(1, 0), (0, 1), (−1, 0), (0,−1), (α̂, α̂), (−α̂, α̂), (−α̂,−α̂), (−α̂, α̂)} .

The vanishing ideal I(X) is generated by the DegLex-Gröbner basis

g1 = x2 + y2 − 1 g2 = xy3 − 0.5xy g3 = y5 − 1.5y3 + 0.5y .

Let X = {uj | j = 1, . . . , 8} be the set of points obtained perturbing all the

coordinates of the points in X̂ by component-wise errors less than 10−2:

X = {(0.9986, 0.0032), (0.7146, 0.7117), (0.0053, 1.0044), (−0.698, 0.7052),

(−0.9972, 0.0028), (−0.7155,−0.7130), (0.0063,−0.9963), (0.7149,−0.7155)} .

In this case ‖uj − ûj‖2 < 1.5 · 10−2 =: ε. In the DegLex-order, the first
eight terms are 1 < y < x < y2 < xy < x2 < y3 < xy2. Let the k-
th term be denoted by tk and let R(k, k) denote the k-th diagonal element
in the QR-decomposition of B8 = (t1(X), . . . , t8(X)). Then minc{‖Bk−1c −
tk(X)‖2} = R(k, k) where Bk−1 = (t1(X), . . . , tk−1(X)) by Theorem 4.3. The
QR-decomposition gives the following (rounded to four decimal places).

tk R(k, k)
y3 0.3438
y2 xy2 1.0008 0.4336
y xy 2.0064 1.0112
1 x x2 2.8284 2.0031 0.0312

Table 1: Terms and diagonal entries in a two-dimensional scheme each

The gap between the element R(6, 6) = 0.0312, associated to t6 = x2, and
the other seven diagonal elements suggests that p∗6, the polynomial of best

approximation in Vx2 , is close to a polynomial of I(X̂) ∩ Vx2 . The coefficients
of p∗6 are the solution of the least squares problem B5c = t6(X),

p∗6 = x2 − 0.0148xy + 0.9946y2 − 0.0070x+ 0.0035y − 1.0020 .

p∗6 is similar to g1 and satisfies the “simplified” upper bound of Proposition 4.5:∑
u∈X p

∗
6(u)2 = R(6, 6)2 ≈ 9.7495 · 10−4

< ε2
∑

u∈X ‖∇p∗6(u)‖22 ≈ 31.98 · ε2 = 7.196 · 10−3.

Now we consider the first 8 terms in the DegLex-order, omitting multiples of
x2, that is 1 < y < x < y2 < xy < y3 < xy2 < y4 (and denote them again by
t1 < . . . < t8). The diagonal elements R(k, k) of R in the QR-decomposition
of B8 = (t1(X), . . . , t8(X)) are now
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tk R(k, k)
y4 0.3538
y3 0.4961
y2 xy2 1.0008 0.5067
y xy 2.0064 1.0112
1 x 2.8284 2.0031

Table 2: Terms and diagonal entries in a two-dimensional scheme each

Since there are no large gaps between these values, we expect that {1, y, x, y2,
xy, y3, xy2, y4} is the normal set N for I(X̂). Best approximating polynomials
in Vxy3 and Vy5 resp. are

p∗9 = xy3 + 0.0034y4 + 0.0028xy2 − 0.0013y3 − 0.5061xy − 0.0033y2

+0.0015x− 0.0016y + 0.0001 ,

p∗10 = y5 − 0.0053y4 + 0.0017xy2 − 1.5067y3 + 0.0023xy + 0.0028y2

−0.0001x+ 0.5063y − 0.0015 .

The similarity to g2 and g3 is apparent.

Finally, the following table shows that the “simplified” upper bound of Propo-
sition 4.5 is not satisfied by any polynomial of best approximation p∗k corre-
sponding to tk ∈ N , since ‖p∗k(X)‖22 > ε2‖∇p∗k(X)‖22, k = 1, . . . , 8.

k ‖p∗k(X)‖22 > ε2‖∇p∗k(X)‖22
1 8 > 0
2 4.0256 > 1.8000 · 10−3

3 4.0124 > 1.8000 · 10−3

4 1.0017 > 3.6234 · 10−3

5 1.0226 > 1.8091 · 10−3

6 0.2461 > 3.0624 · 10−3

7 0.2568 > 1.2571 · 10−3

8 0.1252 > 1.8165 · 10−3

We conclude that there is no set X̂, close to X by less than ε, such that
p∗k(X̂) = 0. Hence the terms {1, y, x, y2, xy, y3, xy2, y4} form a normal set.

Second case. Let X̂ be a set of m = 40 points on the circle x2+y2−1 = 0 and
let X be a set of points obtained by perturbing the coordinates of each point
ûi ∈ X̂ by less than 10−2. Then ‖ûi−ui‖2 <

√
2‖ûi−ui‖∞ <

√
2·10−2 =: ε for

i = 1, . . . , 40. Following the same strategy and using the same notation as in
the first case, we consider the first six terms 1 < y < x < y2 < xy < x2 in the
DegLex-order. Let the k-th term be denoted by tk and let R(k, k) denote the
k-th diagonal element in the QR-decomposition of B6 = (t1(X), . . . , t6(X)).
Then minc{‖Bk−1c − tk(X)‖2} = R(k, k) where Bk−1 = (t1(X), . . . , tk−1(X))
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by Theorem 4.3. The QR-decomposition gives the following (rounded to four
decimal places).

tk R(k, k)
y2 1.8669
y xy 4.8953 2.2102
1 x x2 6.3241 3.7284 0.0620

Table 3: Terms and diagonal entries in a two-dimensional scheme each

Since the element R(6, 6) is considerably smaller than the other ones, we
expect {1, y, x, y2, xy} ⊂ N . The term x2 is the leading term of the best
approximating polynomial p∗6 ∈ Vx2 :

p∗6 = x2 − 0.0029xy + 1.0032y2 − 0.0005x+ 0.0007y − 1.0037

Polynomial p∗6 satisfies the “simplified” upper bound of Proposition 4.5, since∑
u∈X p

∗
6(u)2 ≈ 3.844 · 10−3 and

ε2
∑
u∈X
‖∇p∗6(u)‖22 = ε2

∑
(x,y)∈X

(2x− 0.0029y − 0.0005)2

+(−0.0029x+ 2.0064y + 0.0007)2 = 160.96 · ε2 ≈ 3.22 · 10−2

and so its is possible that a zero set of p∗6 close to X by less than ε exists.
Finally we consider the first 40 terms w.r.t. the DegLex term ordering omitting
the multiples of x2,

{tk | k = 1, . . . , 40} = {1, y} ∪ {xyj , yj+2 | j = 0, . . . , 18} .

Computation gives that there is no a large gap between the diagonal elements
R(k, k) of R in the QR-decomposition of B40 = (t1(X), . . . , t40(X)). For de-
tecting the elements of the normal set we apply Proposition 4.5 to each best
approximating polynomial p∗k ∈ Vtk , k = 1, . . . , 40. The generic term tk can
be added to the normal set if p∗k does not satisfy the “simplified” upper bound
of Proposition 4.5, that is if∑

u∈X
p∗k(u)2 > ε2

∑
u∈X
‖∇p∗k(u)‖22

or equivalently if

µ2k :=

∑
u∈X p

∗
k(u)2

ε2
∑

u∈X ‖∇p∗k(u)‖22
> 1 .

In the following figure we display the values µk, k = 1, . . . , 40. For k ≤ 16 the
µk are greater than 1 (represented by the horizontal line) and so the terms

{t1, . . . , t16} = {1, y} ∪ {xyj , yj+2 | j = 0, . . . , 6}

can be added to the normal set. For the terms tk, k > 16, the error ε is not
small enough to predict tk ∈ N .
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Example 5.2 The twisted cubic is the curve X̂ := {(t3, t2, t) | t ∈ R}. Its
vanishing ideal I(X̂) is generated by the DegLex-Gröbner basis

z2 − y, yz − x, y2 − xz .

The problem is here that the twisted cubic is no zero dimensional variety.
The BM-algorithm only applies to zero-dimensional varieties. But if there
are enough good approximations to points of the twisted cubic, then one
can get good approximations for the low degree polynomials in I(X̂). Let
X := {u1, . . . , u5} be the following set

X = {(−0.999912, 1.000029,−1.000039), (−0.124925, 0.249976,−0.499998),

(0.00001, 0.000062, 0.000002), (0.125025, 0.250007, 0.500063),

(1.000017, 0.99997, 1.000059)}

whose points are close to the set {û1, . . . , û5} ⊂ X̂, consisting of

{(−1, 1,−1), (−0.125, 0.25,−0.5), (0, 0, 0), (0.125, 0.25, 0.5), (1, 1, 1)}

In this case ‖uj − ûj‖2 ≤ 1.5 · 10−4 =: ε, j = 1, . . . , 5. In the DegLex-order,
the first five terms are 1 < z < y < x < z2. Let the k-th term be denoted by
tk and let R(k, k) denote the k-th diagonal element in the QR-decomposition
of B5 = (t1(X), . . . , t5(X)). Then minc{‖Bk−1c − tk(X)‖2} = R(k, k) where
Bk−1 = (t1(X), . . . , tk−1(X)) by Theorem 4.3. The QR-decomposition gives
the following (rounded to four decimal places).

tk 1 z y x z2

R(k, k) 2.2361 1.5812 0.9354 0.4744 0.0001

The terms {1, z, y, x} are inserted into N and the best approximating poly-
nomial p∗5 ∈ Vz2 , with leading term t5 = z2, is computed solving the least
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squares problem B4c = t5(X),

p∗5 = z2 − 0.00002x− 1.000126y − 0.00003z + 0.00002 .

Analogously, considering the next term t6 = yz in the DegLex-order, the
QR-decomposition of the matrix (t1(X), . . . , t4(X), t6(X)) gives the following
(rounded to four decimal places)

tk 1 z y x yz
R(k, k) 2.2361 1.5812 0.9354 0.4744 8.2 · 10−6

and so the best approximating polynomial p∗6 ∈ Vyz is computed,

p∗6 = yz − 1.0000363x+ 0.000057y − 0.000048z + 0.000016 .

The normal set can be completed adding to N the term t7 = xz chosen
following the DegLex-order, since the diagonal elements of R of the QR-
decomposition of the matrix (t1(X), . . . , t4(X), t7(X)) are

tk 1 z y x xz
R(k, k) 2.2361 1.5812 0.9354 0.4744 0.1792

The “simplified” upper bound of Proposition 4.5 shows that there is no set
of points close to X at which the best approximating polynomial p∗k ∈ Vtk ,
tk ∈ N , vanish. In fact we have that∑

u∈X
p∗k(u)2 ≥ ε2

∑
u∈X
‖∇p∗k(u)‖22 ∀ tk ∈ N

as reported in the following table

k ‖p∗k(X)‖22 > ε2‖∇p∗k(X)‖22
1 5 > 0
2 2.5002 > 1.1250 · 10−7

3 0.8750 > 1.1250 · 10−7

4 0.2251 > 1.9377 · 10−7

7 0.0321 > 2.3987 · 10−7

Let t8 = y2 be the next term in the DegLex-order; solving the linear system
(t1(X), . . . , t4(X), t7(X))c = t8(X) the coefficient vector of polynomial p8, with
leading term t8, is computed:

p8 = y2 − 0.99996xz + 1.05 · 10−4x− 2.85 · 10−5y + 1.63 · 10−5z − 3.14 · 10−9

Note that p8 is vanishing at X (apart of floating point errors). Furthermore,
the necessary condition given by Proposition 4.5 for the existence of a set of
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points close to X at which p∗5 and p∗6 vanish, is satisfied. In fact, if each M2
j is

approximated by ‖∇p∗5(uj)‖22 for p∗5 or by ‖∇p∗6(uj)‖22 for p∗6, we have∑
u∈X

p∗5(u)2 ≈ 10−8 < ε2
∑
u∈X
‖∇p∗5(u)‖22 ≈ 3.34 · 10−7 ,∑

u∈X
p∗6(u)2 ≈ 6.8 · 10−11 < ε2

∑
u∈X
‖∇p∗6(u)‖22 ≈ 2.17 · 10−7 .
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zero-dimensional polynomial ideals. Ph. D. Thesis, Rensselaer Poly-
technic Institute, New York (1990).

[12] Limbeck, J., Computation of approximate border bases and applica-
tions. PhD Thesis, University of Passau 2013.

[13] Mora, T., Solving polynomial equation systems, II. Macaulay’s
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