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Abstract

We consider a macroscopic (averaged) model of transport and reaction in the
porous subsurface. The model consists of PDEs for the concentrations of the
mobile (dissolved) species and of ODEs for the immobile (mineral) species. For
the reactions we assume the kinetic mass action law. The constant activity of the
mineral species leads to set-valued rate functions or complementarity conditions
coupled to the PDEs and ODEs. In this paper we first prove the equivalence
of several formulations in a weak sense. Then we prove the existence and the
uniqueness of a global solution for a multi-species multi-reaction setting with
the method of a priori estimates. Besides the mineral precipitation-dissolution
reactions the model also allows for aqueous reactions, i.e., reactions among the
mobile species. Both in the mineral precipitation–dissolution rates and in the
aqueous reaction rates we consider polynomial nonlinearities of arbitrarily high
order.
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1 Introduction

Let us consider a macroscopic model of reactive transport in a porous medium that
is filled or partially filled by a fluid. We assume to have several chemical species dis-
solved in the fluid. The evolution of the concentrations of these species is described
by advection-diffusion-dispersion-reaction equations, i.e., by partial differential equa-
tions (PDEs). Besides, we assume that there are a number of minerals which are part
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EXISTENCE OF GLOBAL SOLUTION 2

of the soil matrix, i.e., of the skeleton of the porous medium. In an averaged sense,
the concentrations of these immobile mineral species are described by ordinary differ-
ential equations (ODEs). There are reactions taking place among the mobile species
and among mobile and immobile species. The latter describe the precipitation and
the dissolution of minerals. The reactions are modeled with the law of mass action,
a highly nonlinear kinetic rate law. A special difficulty arises, since the mathemati-
cal description of mineral precipitation-dissolution contains the Heaviside “function”
(see [10, 19, 20, 21]), or a complementarity condition (see [11, Sec. 4.6]), or an ODE
with a discontinuous rate function (see [2, 6]).

Models of reactive transport in porous media play an important role especially
in the computational geosciences; during many decades many numerical codes were
developed to solve reactive transport problems in porous media numerically. Ex-
tensions of these numerical models to mineral precipitation-dissolution reactions and
the related complementarity conditions can be handled well by semismooth Newton
methods [3, 13], for instance.

However, as soon as it comes to a mathematical analysis of the model equations,
the literature becomes scarcer. For mass-action reactive transport models without
immobile species, with all species dissolved in the fluid, proofs of the existence of a
global solution, i.e., a solution on arbitrarily large time intervals, can be found in
[12], based on a Lyapunov functional representing the Gibbs free energy, or in [16],
based on a maximum principle, or, even for species-dependent diffusion, in [4], or,
circumventing the question of L∞-boundedness by considering so-called renormalized
solutions, in [5]. The main challenge in these considerations is the strong nonlinearity
of the rate terms.

One direction to extend these results from the situation where all species are
mobile to a situation where some species are immobile is the consideration of sorption
reactions. For example, in [1] a pore scale model with sorption reactions at the walls
of the pores is considered; existence of a global solution is shown. However, it is well
known that such a model with smooth rates is not suited to describe the precipitation-
dissolution of minerals.

For the mineral precipitation-dissolution model we are considering here, we have
to take into account non-smooth or set-valued reactions. In the literature one can find
some works dealing with this problem. In [9] the existence for the case of one single
kinetic reaction between one mobile and one mineral species (and no other chemical
reaction) is proven. In [21] and [14] a model on the pore scale is considered, where the
precipitation-dissolution process is descibed by an ODE on the interface between pore
space and soil matrix, and a corresponding boundary condition for the mobile species.
For this model the existence of a global solution is proven, and via homogenization
techniques and two-scale convergence an existence result for the macro-scale problem
follows. However, it still covers only the case with one mineral and without any
aqueous reactions.

In [2] a macro-scale model is considered, and existence of a solution is shown by
proving convergence of a finite volume scheme. However, also this model does not
contain any aqueous reactions, i.e., reactions among the mobile species, and only one
single kinetic mineral reaction.

In this article techniques from [9], [11], and [21] will be adapted and extended



EXISTENCE OF GLOBAL SOLUTION 3

to prove the existence and uniqueness of a rather general formulation of the macro-
scale problem. Our model includes an arbitrary number of kinetic reactions among
the mobile species and an arbitrary number of kinetic mineral reactions. Comparing
our model to the existing literature, let us emphasize that the aqueous reaction rates
and the precipitation rates and the dissolution rates may contain polynomial terms
of arbitrary order. Since we go beyond the setting of one mobile and one immobile
species, the question arises which assumptions have to be posed on the stoichiometric
matrices occuring in our multi-species model. It turns out that a condition on the
stoichiometric matrix is required, but this condition is fulfilled for typical reaction
networks. In fact, at least as far as the aquatic reactions are concerned, our condition
is even milder than the typical assumption of mass conservation (conservation of
the number of atoms), which is heavily exploited e.g. in [4]. Like most models
used for numerical simulations of reactive transport in porous media, we assume a
species-independent diffusion for our analysis. Our focus lies on the handling of the
complementarity condition and in a mild condition on the stoichiometry in a multi-
species multi-reaction setting. Let us mention that we neither use a discrete scheme
nor a micro-scale model as an intermediate step on the way to establish existence of
a global solution.

This article consists of two parts. In Sec. 2 and 3 we introduce different formula-
tions of reactions with minerals and show that they are equivalent in a weak sense.
We use a simple situation of just one mineral and two dissolved species, but the con-
siderations remain valid for larger systems. From these equivalent formulation we
choose the Heaviside formulation for the second part of the paper, which consists of
Secs. 4 to 6. In Sec. 4 we present our general multi-species multi-reaction model. In
Sec. 5 we present our main result, which is the proof of existence of a solution on
arbitrarily large time intervals without ’blow ups’, i.e., the solution remains bounded
in L∞. In Sec. 6 we prove that the solution is unique.

2 Formulations of Kinetic Mineral Reactions

In this section we consider a model problem with two mobile species A, B, one im-
mobile species C, and one kinetic mineral reaction

nA+mB↔ C

with stoichiometric coefficients m,n ∈ N. Let c1, c2 be the concentrations of the
mobile species (in mole per fluid volume), θ ∈ (0, 1) the water content (water volume
per total volume), c̄ the concentration of the mineral (in mole per total mass of the
porous skeleton) and ρ the bulk density (mass of the porous skeleton per total volume)
For the three unknowns c1, c2, c̄ we get the two partial differential equations

∂t(θc1) + Lc1 = −nρ∂tc̄
∂t(θc2) + Lc2 = −mρ∂tc̄

expressing the mass balance. Here, L is a transport operator which may cover ad-
vection (with respect to a given flow field), molecular diffusion, and dispersion. We
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assume that the precipitation rate rp is given by law of mass action with so-called
ideal activity coefficients,

rp(c1, c2) = kpc
n
1 c

m
2 , (1)

and that the mineral has a so-called constant activity, i.e., the dissolution rate rd is
a constant kd independent of c̄, if the mineral is present,

rd = kd, if c̄ > 0 ,

kp, kd > 0. For the equation describing the concentration of the mineral being subject
to precipitation and dissolution, the formulation ρ∂tc̄ = θ(rp(c1, c2) − kd) is only
reasonable as long as c̄ > 0. In order to cover also the situation of a total dissolution
of the mineral in some parts of the domain there are different formulations used in
the literature:

Formulation with set-valued rate function

In [10, 19, 20, 21] a formulation with a set-valued rate function

ρ∂tc̄ = θ(rp(c1, c2)− kdw)
(2)

w ∈ H(c̄)

is used where H is the set-valued Heaviside “function”

H(u) =







{1} for u > 0
[0, 1] for u = 0
{0} for u < 0 .

(3)

Formulation with complementarity condition

Like in the equilibrium case [3, 13] it is also possible to formulate this kinetic mineral
problem as a complementarity condition (see [11, Sec. 4.6])

c̄ (ρ∂tc̄− θ(rp(c1, c2)− kd)) = 0
(4)

c̄ ≥ 0, ρ∂tc̄− θ(rp(c1, c2)− kd) ≥ 0 .

Formulation with discontinuous rate function

Formulations with discontinuous rate functions are used as well. In [6] the following
formulation with a case distinction can be found:

ρ∂tc̄ =

{
θ(rp(c1, c2)− kd) for (c̄ > 0) ∨ (rp(c1, c2)− kd > 0)

0 for (c̄ = 0) ∧ (rp(c1, c2)− kd ≤ 0)
(5)

Let us compare this with the formulation used in [2] which reads

ρ∂tc̄ = θ(F+(c1, c2)− sign+(c̄)F−(c1, c2)) (6)

with
F (c1, c2) := rp(c1, c2)− kd .
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Here we have used the following notation:

x+ := max{0, x}, x− := (−x)+,

sign(x) :=







1 for x > 0
0 for x = 0
−1 for x < 0

, sign+(x) =

{
1 for x > 0
0 for x ≤ 0 .

It holds x = x+ − x−.
The two formulations with the discontinuous rates (5) and (6) are identical for

c̄ ≥ 0. This can be seen in the following way: For t ∈ (0, T ) such that c̄(t) > 0
we have sign+(c̄(t)) = 1 and so the right-hand side of (6) becomes θF (c1(t), c2(t)).
This coincides with (5). For t ∈ (0, T ) such that c̄(t) = 0 we have sign+(c̄(t)) = 0
and so the right-hand side of (6) becomes θF+(c1(t), c2(t)), i.e., the right-hand side is
θF (c1(t), c2(t)) for F (c1(t), c2(t)) > 0 and 0 for F (c1(t), c2(t)) ≤ 0. This also coincides
with (5). For c̄ < 0 (5) is not defined.

3 Equivalence of the Different Formulations

3.1 States of equilibrium

In the following it is always assumed that rp(c1, c2) is nonnegative (e.g., by assuming
(1) and c1,2 ≥ 0).

We observe that the formulation with the set-valued rate function (2) is con-
structed in such a way that the states of equilibrium are

((rp(c1, c2) = kd) ∧ (c̄ > 0)) ∨ ((rp(c1, c2) ≤ kd) ∧ (c̄ = 0)) (7)

(see [10]). Formally the formulation with the set-valued rate function has the addi-
tional state of equilibrium ((rp(c1, c2) = 0) ∧ (c̄ < 0)).

The formulation with the complementarity condition (4) leads to the states of
equilibrium

c̄ (rp(c1, c2)− kd) = 0

c̄ ≥ 0, −(rp(c1, c2)− kd) ≥ 0 .

It is obvious that these states of equilibrium are the same as (7).
And the formulation with the discontinuous rate function (6) leads to the states

of equilibrium
F+(c1, c2)− sign+(c̄)F−(c1, c2) = 0 .

For c̄ > 0 we have sign+(c̄) = 1 and so we get F (c1, c2) = 0. With the definition
of F it follows that rp(c1, c2) = kd. For c̄ = 0 we have sign+(c̄) = 0. This yields
F+(c1, c2) = 0, which is equivalent to F (c1, c2) ≤ 0. Plugging in the definition of
F leads to rp(c1, c2) ≤ kd. So for nonnegative mineral concentration c̄ the states of
equilibrium are exactly (7). For c̄ < 0 there are the states of equilibrium rp(c1, c2) ≤
kd.
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3.2 Pointwise considerations

The different formulations for the kinetic mineral problem are not pointwise equiva-
lent. As a consequence, solutions of the formulation with the set-valued rate function
are not always solutions of the formulation with the discontinuous rate function. For
example, if travelling wave solutions of the formulation with the set-valued rate func-
tion, which are piecewise continuously differentiable with right-continuous derivative
are considered, like it is done in [19], then these solutions are not solutions to the
formulation with the discontinuous rate function.

This can be seen in the following way: A travelling wave solution is a function of
the variable η := x−at with the wave speed a > 0. Let ηd be a point of discontinuity
of ∂tc̄ with c̄(η) = 0 for η ≤ ηd and rp(ηd) < kd. Such points ηd exist in travelling
wave solutions (see [10, Sec. 3] for travelling wave solutions). Because of c̄(η) = 0
for η ≤ ηd it holds ∂tc̄(η) = 0 for η < ηd. As ∂tc̄ is continuous from the right
∂tc̄(ηd) = limηցηd

∂tc̄. This limit is not zero because we have assumed that ∂tc̄ is
discontinuous at ηd. But (5) yields ∂tc̄(ηd) = 0 because of c̄(ηd) = 0. So the travelling
wave solution of the formulations with the set-valued rate function is not a solution
of the formulation with the discontinuous rate function.

However, if we consider weak solutions we will see that the three formulations are
equivalent.

3.3 Weak solutions

We assume that the concentrations of the mobile species c1, c2 : Ω × [0, T ] are given
such that rp(c1, c2) ∈ L∞(0, T ) for x ∈ Ω. In this section we study weak solutions
of the three different formulations. A weak solution of the set-valued formulation is
(compare [2]), for a given x ∈ Ω, a pair of functions (c̄, w) ∈ H1(0, T ) × L∞(0, T )
which fulfills

∫ T

0

(ρ∂tc̄− θ(rp(c1, c2)− kdw))φ dt = 0 ∀φ ∈ H1
0 (0, T ) (8)

w ∈ H(c̄) a.e. in (0, T ) (9)

c̄(0) = c̄0 . (10)

In case of the complementarity formulation, c̄ ∈ H1(0, T ) is a weak solution if

c̄ (ρ∂tc̄− θ(rp(c1, c2)− kd)) = 0 a.e. in (0, T ) (11)

c̄ ≥ 0 in (0, T ) (12)

ρ∂tc̄− θ(rp(c1, c2)− kd) ≥ 0 a.e. in (0, T ) (13)

c̄(0) = c̄0 . (14)

And using the formulation with a discontinuous rate function, c̄ ∈ H1(0, T ) is a weak
solution if

∫ T

0

(ρ∂tc̄− θ(F+(c1, c2)− sign+(c̄)F−(c1, c2)))φ dt = 0 ∀φ ∈ H1
0 (0, T ) (15)

c̄(0) = c̄0 . (16)
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Lemma 1 A weak solution c̄ of the formulation with the set-valued rate function,
(8)-(10), is nonnegative if the initial value c̄0 is nonnegative.

Proof. Using

φ(s) =

{
−c̄−(s) for s ≤ t

0 for s > t

for t ∈ (0, T ) as test function in (8) yields
∫ t

0

ρ ∂tc̄(−c̄−) =
∫ t

0

θ (rp(c1, c2)
︸ ︷︷ ︸

≥0

−kdw)(−c̄−
︸︷︷︸

≤0

) ds ≤
∫ t

0

θkdwc̄
− .

Because of
∫ t

0

∂tc̄(−c̄−) ds =
1

2

∫ t

0

∂t(c̄
−)

2
ds =

1

2
(c̄−(t))

2 − 1

2
(c̄−(0))

2

we obtain the estimate

1

2
ρ (c̄−(t))

2 ≤
∫ t

0

θkdwc̄
− ds+

1

2
ρ (c̄−(0))

2
.

The first term on the right-hand side is zero because one of the factors w, c̄− is
zero a.e. due to (9) and the second term is zero due to the assumption that c̄0 is
nonnegative. Hence, c̄− is the zero function. That concludes the proof. �

Let us state the following well-known Lemma (for a proof, see, e.g., Lemma 7.7 in
[8], which is based on Stampacchia’s theorem).

Lemma 2 Let u ∈ H1(Ω). Then Du = 0 a.e. on every subset of Ω where u is
constant.

To prove the following two theorems we apply similar strategies as in [2, Proposi-
tion 3.4] where the equivalence of the formulation with a discontinuous rate function
to a formulation similar to a complementarity condition is shown.

Theorem 3 The formulation with the set-valued rate function, (8)-(10), and the
formulation with the complementarity condition, (11)-(14), are equivalent.

Proof. “⇐”: Let c̄ ∈ H1(0, T ) be a weak solution of the complementarity formula-
tion (11)-(14). First we define the set A := {t ∈ (0, T )| c̄(t) = 0} and its complement
Ā := {t ∈ (0, T )| c̄(t) > 0}. We set

w =

{
1
kd
rp(c1, c2) on A

1 on Ā .

Because of (12) we can split the integral in (8) in an integral over A and an integral
over Ā:
∫ T

0

(ρ∂tc̄− θ(rp(c1, c2)− kdw))φ dt

=

∫

A

(ρ∂tc̄− θ(rp(c1, c2)− rp(c1, c2)
︸ ︷︷ ︸

=0

))φ dt+

∫

Ā

(ρ∂tc̄− θ(rp(c1, c2)− kd))φ dt
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By Lemma 2, on A we have ∂tc̄ = 0 a.e. and so the first integral vanishes. Because
of the complementarity condition (11) ρ∂tc̄− θ(kpr(c1, c2)− kd) is zero a.e. on Ā and
so the second integral vanishes, too. That proves (8).

Using again that ∂tc̄ = 0 a.e. on A by Lemma 2 we obtain from (13) that

0− θ(rp(c1, c2)− kd) ≥ 0 a.e. on A

⇔ 1

kd
rp(c1, c2) ≤ 1 a.e. on A .

That proves (9).
“⇒”: Let (c̄, w) ∈ H1(0, T )×L∞(0, T ) be a weak solution of the formulation with

the set-valued rate function (8)-(10). According to Lemma 1 c̄ is nonnegative. So the
inequality (12) is valid. From (8) it follows

ρ∂tc̄− θ(rp(c1, c2)− kdw) = 0 a.e. in (0, T )
⇔ ρ∂tc̄− θ(rp(c1, c2)− kd) = θkd(1− w

︸ ︷︷ ︸

≥0

) a.e. in (0, T ) .

1− w is nonnegative a.e. due to (9). That proves (13). Furthermore we get with the
relation above

c̄ (ρ∂tc̄− θ(rp(c1, c2)− kd)) = c̄ θkd(1− w) = 0 a.e. in (0, T ) .

The product on the right-hand side is zero a.e. because c̄ is nonnegative and so one
of the factors c̄, 1− w is zero a.e. due to (9). This proves (11). �

Theorem 4 The formulation with the discontinuous rate function (15)-(16) and the
formulation with the complementarity condition (11)-(14) are equivalent.

Proof. “⇐”: Let c̄ ∈ H1(0, T ) be a weak solution of the complementarity formula-
tion (11)-(14). First we define the set A := {t ∈ (0, T )| c̄(t) = 0} and its complement
Ā := {t ∈ (0, T )| c̄(t) > 0}. It holds

F+(c1, c2)− sign+(c̄)F−(c1, c2) =

{
F+(c1, c2) on A
F (c1, c2) on Ā .

Because of (12) we can split the integral in (15) in an integral over A and an integral
over Ā:

∫ T

0

(ρ∂tc̄− θ(F+(c1, c2)− sign+(c̄)F−(c1, c2)))φ dt

=

∫

A

(ρ∂tc̄− θF+(c1, c2))φ dt+

∫

Ā

(ρ∂tc̄− θ(rp(c1, c2)− kd))φ dt (17)

Because of the complementarity condition (11), ρ∂tc̄ − θ(rp(c1, c2) − kd) is zero a.e.
in Ā and so the second integral vanishes.
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By Lemma 2 we have ∂tc̄ = 0 on A a.e. Using this it follows from (13) that

0− θF (c1, c2) ≥ 0 a.e. on A

⇔ F (c1, c2) ≤ 0 a.e. on A

⇒ F+(c1, c2) = 0 a.e. on A .

So the first integral in (17) vanishes, too. That proves (15).
“⇒”: Let c̄ be a weak solution of the formulation with the discontinuous rate

function (15)-(16). If for t ∈ (0, T ) it holds c̄(t) ≤ 0 then it follows that a.e.

ρ∂tc̄(t) = θ(F+(c1(t), c2(t))− sign+(c̄(t))
︸ ︷︷ ︸

=0

F−(c1(t), c2(t)))

= θF+(c1(t), c2(t)) ≥ 0 .

If c̄0 ≥ 0 it follows that c̄ is nonnegative. That proves (12).
Due to (15) and the definition of F we have a.e. in (0, T )

ρ∂tc̄− θ(rp(c1, c2)− kd)
= θ(F+(c1, c2)− sign+(c̄)F−(c1, c2))− θ(F+(c1, c2)− F−(c1, c2))

= θ(1− sign+(c̄)
︸ ︷︷ ︸

≥0

)F−(c1, c2)
︸ ︷︷ ︸

≥0

≥ 0 .

That proves (13). Furthermore using this identity we get

∫ T

0

c̄ (ρ∂tc̄− θ(rp(c1, c2)− kd))φ dt =
∫ T

0

c̄ θ(1− sign+(c̄))F−(c1, c2)φ dt .

One of the factors c̄, 1 − sign+(c̄) is always zero because for t ∈ (0, T ) such that
c̄(t) > 0 it holds sign+(c̄(t)) = 1. So the integral on the right-hand side vanishes.
That proves (11). �

4 A multi-species multi-reaction model

Let us consider a more general setting where we have I ∈ N mobile species Xi und
Jmob ∈ N kinetic reactions among the mobile species, as well as Jmin mineral species
Xmin,j and mineral reactions. The vector of the mobile species concentrations is
denoted by c = (c1, ..., cI)

T and the vector of the mineral species concentrations by
c̄min = (c̄1, ..., c̄Jmin

)T . From the three formulations of the precipitation-dissolution
rates which we found equivalent in Sec. 3, we choose the formulation with the Heav-
iside function. The goal is to prove the existence of a global solution. The reactions
can be expressed as

σ1,jX1 + ...+ σI,jXI ←→ σ1,jX1 + ...+ σI,jXI , j = 1, ..., Jmob, (18)

τ1,jX1+ ...+ τ I,jXI ←→ τ1,jX1+ ...+ τ I,jXI +Xmin,j , j = 1, ..., Jmin (19)
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We assume that all the stoichiometric coefficients σij , σij , τ ij , τ ij are nonnegative,
and that σijσij = 0 and τ ijτ ij = 0 for all i, j, and we set sij := σij − σij , smin,ij :=

τ ij − τ ij , Smob := (sij) ∈ R
I,Jmob , Smin := (smin,ij) ∈ R

I,Jmin . Let Ω be a bounded
domain in R

n, QT := Ω× (0, T ), ST := ∂Ω× (0, T ), with T > 0 arbitrarily large. Let
us define the spaces

W 2,1
p (QT ) = {v ∈ Lp(QT ) | ∂tv ∈ Lp(QT ),∇xv ∈ Lp(QT )

n,∇2
xv ∈ Lp(QT )

n2} ,
L(QT ) = {v ∈ L∞(QT ) | ∂tv ∈ L∞(QT )} , (20)

C(QT ) = {v ∈ C(QT ) | ∂tv ∈ C(QT )} .

We are looking for a tuple (c, c̄min,w) ∈W 2,1
p (QT )

I×L(QT )
Jmin×L∞(QT )

Jmin with

∂tc+ Lc = Smobrmob(c) + Sminrmin(c,w) on QT (21)

∂tc̄min = rmin(c,w) on QT (22)

c(·, 0) = c0 on Ω (23)

w ∈ H(c̄min) on QT (24)

c̄min(·, 0) = c̄min,0 on Ω (25)

d∂νc = β(c− c∗) on ST . (26)

In this formulation we have the linear transport operator Lui := −∇·(d∇ui)+q ·∇ui,
and (with a slight abuse of notation) Lu = (Lu1, ..., LuI); the inclusion with the
set-valued Heaviside “function” (cf. (3)) is meant componentwise wj ∈ H(c̄min,j),
j = 1, ..., Jmin, and the rates rmob for the Jmob reactions among the mobile species
according to law of mass action

rmob,j(c) = kf,j

I∏

i=1

sij<0

c
−sij
i − kb,j

I∏

i=1

sij>0

c
+sij
i , j = 1, ..., Jmob . (27)

Furthermore we have the Jmin mineral reaction rates rmin that are of the form

rmin,j(c,w) = kp,j

I∏

i=1

smin,ij<0

c
−smin,ij

i − kd,j
I∏

i=1

smin,ij>0

c
smin,ij

i wj (28)

(see some remarks on the modeling of the precipitation-dissolution rates at the end
of the section).

The problem (21)-(28) is denoted (P ). The boundary conditions include the
cases (i) flux boundary conditions (β = q · ν ≤ 0 on the inflow boundary) and (ii)
homogeneous Neumann boundary conditions (β = 0) (compare [9, (2.10)]).

To prove an a priori estimate with help of the maximum principle the following
assumption is needed:

Assumptions 5 There is a vector s⊥ ∈ R
I with only strictly positive entries which

is perpendicular to all those columns of the matrix S = (Smob|Smin) which have at
least one strictly positive entry.
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Let us discuss whether this assumption is justified and which situations are covered
by this assumption.

If a particle of every species consists of a positive number of atoms (a reasonable
assumption), then taking (s⊥)i as the number of atoms of which a particle of species
i consists yields a positive vector s⊥ which is orthogonal to all columns of Smob,
since the orthogonality represents the conservation of the number of atoms in the
reactions (18). When additionally all entries of Smin are nonpositive, i.e., in the
reaction equation (19) of each mineral reaction no mobile species are on the same side
as the mineral (i.e., τ i,j = 0), then the assumption is always fulfilled.

Note that this (i.e., every mobile particle consists of a positive number of atoms,
and the aqueous reactions conserve the number of atoms, and there is no reaction
with mineral and mobile species on the same side) is sufficient, but not necessary for
the assumption to hold: Sometimes species which are present in abundance and have
an almost constant concentration, such as, e.g., water, are taken out of the system
in order to reduce the size. A reaction OH− +H3O

+ ↔ 2H2O would be modelled
by the rate rj = kf,jc[OH−]c[H3O+] − k̃b,j with k̃b,j being the product of kb,j and
c2[H2O] (assumed to be constant). Although there is no conservation of atoms in this

model (hydroxide and oxonium react to ’nothing’ by this rate rj), the corresponding
column in Smob has only nonpositive entries (-1,-1,0) which means that Assumption 5
is still not violated. And also precipitation-dissolution reactions with non-mineral
species on the right-hand side of the reaction do not necessarily lead to a violation of
Assumption 5.

Furthermore the following assumptions on the data of the problem are needed
(compare [9, Assumption 2.2]):

Assumptions 6

1. d > δ = const > 0

2. d, ∂xk
d ∈ Cα,α/2(QT ) (k = 1, . . . , n), q ∈ Cα,α/2(QT )

n
for some α ∈ (0, 1)

3. p > (n + 2)/2, p ≥ 2, p 6= n + 2, and c0,i ∈ W
2−2/p
p (Ω); c0,i is continuously

differentiable in a neighborhood of ∂Ω (i = 1, . . . , I)

4. c̄min,0,j ∈ Cα(Ω) (j = 1, . . . , Jmin)

5. c∗i ∈W 1−1/p,(1−1/p)/2(ST ) ∩ C(ST ) (i = 1, . . . , I)

6. β ∈ C1−1/p+ǫ,(1−1/p+ǫ)/2(ST ) for some ǫ > 0, β ≤ 0

7. If p > 3: ∂νc0,i = β(·, 0)(c0,i − c∗i (·, 0)) on ∂Ω (i = 1, . . . , I)

8. ∂Ω ∈ C2+α

9. c0, c̄min,0, c
∗ ≥ 0

Discussion of the model and possible future extensions. Note that for model (P )
to be valid, in particular eq. (28), we have assumed that on the microscale the different
minerals precitipate on distinguished sites. Hence, the different mineral reactions do
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not interfere with one another in the sense that one mineral might precipitate on top
of another mineral, obstructing a possible dissolution of the latter. Let us mention
that, not so much for analysis, but at least for numerical computations, also models
which take into account a variation of the reactive surface are sometimes used. For
our analysis we do not consider a variability of the surface. However, it seems that
our analysis in the Secs. 5-6 (existence and uniqueness of solutions) could be extended
to a model with a surface factor Aj(c̄min) which is nonnegative, locally Lipschitz, and
bounded, in front of the term (28). For Aj being non-Lipschitz (e.g., at the boundary
of the positive cone (R+)Jmin , if ball-shaped mineral structures are considered instead
of flat layers), however, non-uniqueness of solutions could be expected.

5 Existence of a Global Solution

The objective of this section is to prove the existence of a global nonnegative so-
lution of problem (P ) defined in Sec. 4. To this end, let us consider a modified
problem (P+) which is identical to (P ), up to a replacement of the rate functions
rmob(c) by rmob(c

+) and the rates rmin(c, c̄min) replaced by rmin(c
+, c̄min). Addi-

tionally we define the regularized problem

∂tc+ Lc = Smobrmob(c
+) + Sminrε,min(c

+, c̄min) on QT (29)

∂tc̄min = rε,min(c
+, c̄min) on QT (30)

c(·, 0) = c0 on Ω (31)

c̄min(·, 0) = c̄min,0 on Ω (32)

d ∂νc = β (c− c∗) on ST (33)

with the regularized rate functions

rε,min,j(c
+, c̄min) = kp,j

I∏

i=1

smin,ij<0

(c+i )
−smin,ij − kd,j

I∏

i=1

smin,ij>0

(c+i )
smin,ij

Hε(c̄min,j) (34)

where Hε is the regularized Heaviside function

Hε(s) :=







1 for s ≥ ε
s/ε for 0 < s < ε
0 for s ≤ 0

with ε > 0. We are looking for solutions (c, c̄min) ∈ W 2,1
p (QT )

I × C(QT )
Jmin . This

problem is denoted by (P+
ε
).

Let us state that our solution space W 2,1
p (QT ), for p > (n + 2)/2 (compare As-

sumption 6 pt. 3), is continuously embedded in an anisotropic Hölder space. In fact,

W 2,1
p (QT ) →֒ Cα,α/2(QT ) for 0 < α ≤ 2− n+ 2

p
(35)

(e.g. [23, Thm. 1.4.1]). In particular, the compact embedding

W 2,1
p (QT ) →֒→֒ C(QT ) (36)

follows for p > (n+ 2)/2.
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5.1 Nonnegativity

Lemma 7 Let (c, c̄min) ∈ W 2,1
p (QT )

I × C(QT )
Jmin be a solution of problem (P+

ε
).

Then c is nonnegative.

Proof. Let Ω−
i = Ω−

i (t) be the support of c
−
i (·, t). Testing the i-th PDE with −c−i

and an integration by parts of the diffusion term yields

1

2
∂t

∫

Ω−

i

|c−i |2 dx+

∫

Ω−

i

(d|∇c−i |2 + q · ∇c−i c−i ) dx−
∫

∂Ω

β (c−i + c∗i )c
−
i do

= −
Jmob∑

j=1

sij

∫

Ω−

i

(

kf,j

I∏

k=1

skj<0

(c+k )
−skj − kb,j

I∏

k=1

skj>0

(c+k )
skj

)

c−i dx

−
Jmin∑

j=1

smin,ij ·

·
∫

Ω−

i

(

kp,j

I∏

k=1

smin,kj<0

(c+k )
−smin,kj − kd,j

I∏

k=1

smin,kj>0

(c+k )
smin,kj

Hε(c̄min,j)

)

c−i dx. (37)

We know that c+i ≡ 0 on the domain of integration Ω−
i . Using this we get for those j

with sij > 0 in the first sum (note that c+i is one of the factors of the second product
for these j)

−sij
∫

Ω−

i

(

kf,j

I∏

k=1

skj<0

(c+k )
−skj − kb,j

I∏

k=1

skj>0

(c+k )
skj

)

c−i dx

= −sij
∫

Ω−

i

(

kf,j

I∏

k=1

skj<0

(c+k )
−skj

)

c−i dx ≤ 0 .

Analogously we obtain for those j with sij < 0 that the term is nonpositive. In the
same way we show that the terms in the second sum in (37) is nonpositive, too. So
we get

1

2
∂t

∫

Ω−

i

|c−i |2 dx+

∫

Ω−

i

(d|∇c−i |2 + q · ∇c−i c−i ) dx ≤ 0

where also β ≤ 0 (cf. Assumption 6) was used. Using Young’s inequality it follows

1

2
∂t

∫

Ω−

i

|c−i |2 dx+

∫

Ω−

i

d|∇c−i |2 dx ≤
Q2

2δ

∫

Ω−

i

|c−i |2 dx+
δ

2

∫

Ω−

i

|∇c−i |2 dx

with Q := ‖q‖L∞(QT )n . Absorbing the term with δ/2 on the left hand side gives (note
that d > δ, see Assumptions 6 (i))

∂t

∫

Ω−

i

|c−i |2 dx+

∫

Ω−

i

d|∇c−i |2 dx ≤
Q2

δ

∫

Ω−

i

|c−i |2 dx .
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In particular,

∂t

∫

Ω−

i

|c−i |2 dx ≤
Q2

δ

∫

Ω−

i

|c−i |2 dx .

Because of the assumption that the initial values are nonnegative (Assumptions 6
(ix)) it follows that

∫

Ω−

i

|c−i |2 dx ≡ 0 for all t ≥ 0 and hence it holds ci ≥ 0 a.e. in

QT . �

Lemma 8 Let (c, c̄min) be a solution of problem (P+
ε
). Then c̄min is nonnegative.

Proof. We multiply the j-th ODE by −c̄−min,j and integrate from 0 to t to obtain

∫ t

0

∂tc̄min,j(−c̄−min,j) ds =

∫ t

0

(

kp,j

I∏

i=1

smin,ij<0

(c+i )
−smin,ij

︸ ︷︷ ︸

≥0

−kd,j
I∏

i=1

smin,ij>0

(c+i )
smin,ij

Hε(c̄min,j)

)

(−c̄−min,j
︸ ︷︷ ︸

≤0

) ds

a.e. on Ω. Because of

∫ t

0

∂tc̄min,j(−c̄−min,j) ds =
1

2

∫ t

0

∂t|c̄−min,j |
2
ds =

1

2
|c̄−min,j(·, t)|

2 − 1

2
|c̄−min,j(·, 0)|

2

we get the estimate

1

2
|c̄−min,j(·, t)|

2 ≤
∫ t

0

kd,j

I∏

i=1

S1,min,ij>0

(c+i )
S1,min,ij

Hε(c̄min,j)c̄
−
min,j ds+

1

2
|c̄−min,j(·, 0)|

2
= 0.

The first summand on the right-hand side is zero because one of the factorsHε(c̄min,j),
c̄−min,j is zero a.e. due to the definition of Hε, and the second one is zero due to the
assumption that the initial value c̄min,0,j is nonnegative (Assumptions 6 (ix)). �

Remark 9 The assertions of the previous two lemmas are also true for the problem
(P+).

Proof. Just replace ”Hε(c̄min,j)” by ”wj” in the previous two proofs. �
We want to prove the existence of a global solution of the modified and regularized

problem with help of Schaefer’s fixed point theorem (see [17] or [8, Thrm. 10.3]).

5.2 The Fixed Point Operator

We define the fixed point operator Z:

Z :W 2,1
p (QT )

I −→W 2,1
p (QT )

I

ĉ 7−→ c = Z(ĉ)
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with p > (n+ 2)/2 and c being the solution of the problem

∂tc+ Lc = Smobrmob(ĉ
+) + Sminrε,min(ĉ

+, c̄min) on QT

∂tc̄min = rε,min(ĉ
+, c̄min) on QT

c(·, 0) = c0 on Ω
c̄min(·, 0) = c̄min,0 on Ω

d∂νc = β(c− c∗) on ST .

(38)

Lemma 10 The fixed point operator Z is well-defined.

Proof. Some ideas of this proof are adapted from the argumentation in [11, page
104]. First we will show that a solution c̄min of the ODE subsystem exists and that

this solution is in C(QT )
Jmin

. From the embedding (36) the continuity of ĉ follows. So
for fixed x ∈ Ω the right-hand side rε,min(ĉ

+(x, t), c̄min) (see (34) for the definition
of rε,min) as a function of t and c̄min is continuous in t. The Lipschitz continuity of
Hε yields that rε,min(ĉ

+(x, t), c̄min) is Lipschitz continuous in c̄min with a Lipschitz
constant independent of x and t:

|rε,min,j(ĉ
+(x, t), y)− rε,min,j(ĉ

+(x, t), ỹ)|

=

∣
∣
∣
∣
∣
kd,j

I∏

i=1

smin,ij>0

(ĉ+i (x, t))
smin,ij

∣
∣
∣
∣
∣
|Hε(y)−Hε(ỹ)|

≤ CMLε|y − ỹ|

with M a bound for the C(QT )
I
-norm of ĉ, CM a constant depending on M and on

the exponents smin,i,j , and Lε the Lipschitz constant of Hε. Such a bound M < ∞
exists because of ĉ ∈ Cα,α/2(QT )

I ⊂ C(QT )
I . So the Picard-Lindelöf theorem proves

that c̄min exists on the whole interval [0, T ], i.e., c̄min(x, ·) ∈ C([0, T ])Jmin for fixed
x ∈ Ω.

To complete the proof that c̄min ∈ C(QT )
Jmin

we will show that c̄min is Hölder
continuous in x, uniformly in QT . Let y ∈ C1([0, T ]) be the solution of 1

y′ = rε,min,j(ĉ
+(x, ·), y)

y(0) = c̄min,0,j(x)

and ỹ ∈ C1([0, T ]) be the solution of

ỹ′ = rε,min,j(ĉ
+(x̃, ·), ỹ)

ỹ(0) = c̄min,0,j(x̃) .

As c̄min,0,j is Hölder continuous (see Assumptions 6 (iv)) we know that

|c̄min,0,j(x)− c̄min,0,j(x̃)| ≤ K1|x− x̃|α .
1Note that we omitted the irrelevant arguments of rε,min,j , cf. (34), for the sake of simplicity.
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Because of the Hölder continuity of ĉ we know that (remember that the product of
two functions that are Hölder continuous with exponent α is also Hölder continuous
with exponent α)

|rε,min,j(ĉ
+(x, t), y)− rε,min,j(ĉ

+(x̃, t), y)| ≤ K2|x− x̃|α ∀t ∈ [0, T ] .

With well-known results from the theory of ODEs, e.g., [22, § 12, Thrm. V],

|y(t)− ỹ(t)| ≤ max{K1,K2}
(

eLT +
1

L
(eLT − 1)

)

|x− x̃|α ∀t ∈ [0, T ]

with L = CMLε being a Lipschitz constant of rε,min(ĉ
+(x, t), ·), and therefore c̄min

is Hölder continuous in x, uniformly on QT :

|c̄min,j(x, t)− c̄min,j(x̃, t)| ≤ max{K1,K2}
(

eLT +
1

L
(eLT − 1)

)

|x− x̃|α ∀t ∈ [0, T ]

The right-hand side of the ODE subsystem rε,min(ĉ
+, c̄min) is an element of

C(QT )
Jmin

. So we obtain

c̄min ∈ C(QT )
Jmin

(cf. (20)).
Now we consider the PDE subsystem. The right-hand side of it, Smobrmob(ĉ

+) +

Sminrε,min(ĉ
+, c̄min), is an element of C(QT )

I
. It follows that the right-hand side

is an element of Lq(QT )
I
for all 1 ≤ q ≤ ∞. Using the linear parabolic theory

(compare [15, IV, 9]), we get a solution of the PDE subsystem c ∈W 2,1
p (QT )

I
. �

5.3 A Priori Estimates

Since we are going to apply Schaefer’s fixed point theorem (cf. [17], [8, Thrm. 10.3])

we have to construct a bound holding for arbitrary solutions c ∈ W 2,1
p (QT )

I
of the

equation
c = λZ(c)

with λ ∈ [0, 1]. So we have to find a bound for the solutions (c, c̄min) of

∂tc+ Lc = λ (Smobrmob(c
+) + Sminrε,min(c

+, c̄min)) on QT

∂tc̄min = rε,min(c
+, c̄min) on QT

c(·, 0) = λc0 on Ω
c̄min(·, 0) = c̄min,0 on Ω

d∂νc = β(c− λc∗) on ST .

(39)

To derive the required a priori estimate we want to use the maximum principle
(e.g. [15, I, Thm. 2.2/2.3]), which is also used in [9, Sec. 3]. In the following we
will construct an upper bound η̃ for the mobile concentrations ci with help of the
maximum principle. The function η̃ will be the solution of a PDE, and again using
the maximum principle one can show that there is a bound for the C(QT )-norm of
η̃ which only depends on the data and which is independent of the solution. As η̃
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is an upper bound for every ci we have found a bound for the C(QT )
I
-norm of c.

Then it follows from the linear parabolic theory that there is also a bound for the

W 2,1
p (QT )

I
-norm for arbitrary solutions. For applying the maximum principle it is

needed that the solution of the PDE is a classical solution. To show this the existence
theorem from [7, Chap. 5, p. 147, Cor. 2] will be used.

Let η̃ be the solution of

∂tη̃ + Lη̃ = λ
(
s⊥ · (S−

mob(−k−
b )) + s⊥ · (S−

min(−k−
d ))
)

on QT

η̃(·, 0) = λs⊥ · c0 on Ω
d∂ν η̃ = β(η̃ − λs⊥ · c∗) on ST

(40)

where S−
mob and S−

min are the submatrices of Smob and Smin, respectively, that
contain all columns with only nonpositive entries. The vectors k−

b and k−
d contain

all reaction constants kb,j and kd,j , respectively, that correspond to a column of S
with only nonpositive entries. η̃ is the solution of a parabolic PDE with constant
right-hand side. According to [7, Chap. 5, p. 147, Cor. 2] a classical solution exists.

To apply the existence theorem from [7] to the PDE subsystem of (39) we have
to show that the right-hand side is Hölder continuous in x, uniformly in QT . From
the embedding (35) we know that c is Hölder continuous. In the proof of Lemma 10
we have already shown that c̄min is Hölder continuous in x, uniformly in QT . Hence
the requirements of the existence theorem [7, Chap. 5, p. 147, Cor. 2] are fulfilled. So
we obtain that c is a classical solution of the PDE subsystem.

As next step we examine the function

u := s⊥ · c− η̃ .

By taking linear combinations of the PDEs in (39) and substracting the PDE in (40)
one can see that u is a solution of (remember that s⊥ is perpendicular to all columns
of S except of those with only nonpositive entries)

∂tu+Lu = λs⊥ ·
(
Smobrmob(c

+) + S−
mobk

−
b

+Sminrε,min(c
+, c̄min) + S−

mink
−
d

)

= λs⊥ ·
(
S−

mob(r
−
mob(c

+) + k−
b )

+S−
min(r

−
ε,min(c

+, c̄min) + k−
d )
)

on QT

u(·, 0) = 0 on Ω
d∂νu = βu on ST

(41)

where r−mob and r−ε,min contain all reaction rates rmob,j and rε,min,j , respectively,
that correspond to a column of S with only nonpositive entries. Because of this all
components of r−mob have the form, cf. (27),

r−mob,j(c
+) = kf,j

I∏

i=1

s
−

ij
<0

(c+i )
−s−

ij − kb,j

and one sees immediately that all components of the vector (r−mob(c
+) + k−

b ) are
nonnegative. Analogously, considering the components of r−ε,min one knows that the
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second product in (34) is empty. So every component of the vector (r−ε,min(c
+, c̄min)+

k−
d ) is of the form

kp,j

I∏

i=1

s
−

min,ij
<0

(c+i )
−s−

min,ij + kd,j(1−Hε(c̄min,j)) .

Because of Hε ≤ 1 it follows that all components of (r−ε,min(c
+, c̄min) + k−

d ) are

nonnegative. Furthermore by definition all components of s⊥ are positive and all
entries of S−

mob and S−
min are nonpositive. Altogether we get that the right-hand side

of the PDE for u is nonpositive. So applying the maximum principle2 (compare [15,
I, Thm. 2.2/2.3]) yields

sup
QT

u ≤ 0 .

As all components of s⊥ are positive and all mobile concentrations are nonnegative
(see Lemma 7) it follows

ci ≤
1

s⊥i
η̃ ∀i = 1, . . . , I .

Hence, maxi
1
s⊥
i

η̃ is an upper bound for the mobile concentrations.

Function η̃ is the solution of (40). Applying the maximum principle [15, I, Thm.
2.3] to it gives

sup
QT

|η̃| ≤ K1

with a constant K1 only depending on the data β, c∗, c0, s
⊥, S−

mobk
−
b , S

−
mink

−
d , d,

‖q‖C(QT )
n , T , and Ω, but obviously independent of ε. So we have found a bound for

the C(QT )
I
-norm of c for an arbitrary solution of (39). It follows that the C(QT )

I
-

norm of the right-hand side of the PDE in (39) is bounded by a constant K2 only
depending on K1, S, and the reaction constants kf,j , kb,j , kp,j , kd,j . In particular,

every Lq(QT )
I
-norm (1 ≤ q ≤ ∞) of the right-hand side is bounded independent

of the solution (c, c̄min). Then with the linear parabolic theory (compare [18, Thm.
17], [15, IV, 9]) it follows

‖c‖
W 2,1

p (QT )
I ≤ K3 (42)

with a constant K3 depending on the data, but independent of ε and the solution
(c, c̄min).

5.4 Compactness

Theorem 11 The operator Z is continuous and compact.

Proof. Let (ĉn) be a sequence bounded in W 2,1
p (QT )

I
. Due to the compact

embedding (35) there is a subsequence, again denoted by (ĉn), which is convergent in

2See Appendix A for a detailed description of the application of the maximum principle
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C(QT )
I
. Let M be a bound in C(QT )

I
. Let (cn, c̄nmin) be the sequence of solutions

of (38). We have to prove that (cn) converges in C(QT )
I . First we consider the ODE

subproblem
∂tc̄

n
min = rε,min

(
(ĉn)

+
, c̄nmin

)
on QT

c̄nmin(·, 0) = c̄min,0 on Ω

in order to show that (c̄nmin) is a Cauchy sequence in C(QT )
Jmin . To this end, let

l,m ∈ N and let y ∈ C1([0, T ]) be the solution of 3

y′ = rε,min,j

(
(ĉl)

+
(x, ·), y

)

y(0) = c̄min,0,j

and ỹ be the solution of

ỹ′ = rε,min,j

(
(ĉm)

+
(x, ·), ỹ

)

ỹ(0) = c̄min,0,j .

Let us define

r1,j(c
+) = kp,j

I∏

i=1

smin,ij<0

(c+i )
−smin,ij

, r2,j(c
+) = kd,j

I∏

i=1

smin,ij>0

(c+i )
smin,ij

.

As both functions r1,j , r2,j : R
I → R are uniformly continuous on a ball of radius M

around 0 ∈ R
I it holds

∣
∣rε,min,j

(
(ĉl)

+
(x, t), y

)
− rε,min,j

(
(ĉm)

+
(x, t), y

)∣
∣

≤
∣
∣r1,j

(
(ĉl)

+
(x, t)

)
− r1,j

(
(ĉm)

+
(x, t)

)∣
∣

+
∣
∣r2,j

(
(ĉl)

+
(x, t)

)
− r2,j

(
(ĉm)

+
(x, t)

)∣
∣ |Hε(y)|
︸ ︷︷ ︸

≤1

≤ ωr1,j (|ĉl(x, t)− ĉm(x, t)|) + ωr2,j (|ĉl(x, t)− ĉm(x, t)|)

with ωf the modulus of continuity of a function f .

The Lipschitz constant L of rε,min,j((ĉ
n)

+
(x, t), ·) is CMLε with Lε the Lipschitz

constant of Hε (see proof of Lemma 10). So we get, e.g. with [22, §12, Thrm. V], for
all t ∈ [0, T ]

|y(t)− ỹ(t)| ≤ ωr1,j (|ĉl(x, t)− ĉm(x, t)|) + ωr2,j (|ĉl(x, t)− ĉm(x, t)|)
L

(eLT − 1) .

It follows that

|c̄lmin,j(x, t)− c̄mmin,j(x, t)| ≤
ωr1,j (h) + ωr2,j (h)

L
(eLT − 1) ∀t ∈ [0, T ] , ∀x ∈ Ω

3Again we omitted the irrelevant arguments of rε,min,j , cf. (34), for the sake of simplicity.
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with h := ‖ĉl − ĉm‖
C(QT )

I . Hence, (c̄nmin) converges in C(QT )
Jmin

.

Therefore the right-hand side of the PDE system

∂tc
n + Lcn = Smobrmob((ĉ

n)
+
) + Sminrε,min((ĉ

n)
+
, c̄nmin)

converges in C(QT )
I
. In particular, the right-hand side converges in Lq(QT )

I
for all

1 ≤ q ≤ ∞. From the linear parabolic theory we know that the sequence of solutions

(cn) then converges in W 2,1
p (QT )

I
, (n+ 2)/2 < p <∞. �

Theorem 12 Problem (P+
ε
) has a nonnegative solution.

Proof. We apply Schaefer’s fixed point theorem ([17], [8, Thrm. 10.3]) to the
operator Z, using the a priori estimate (42) and Theorem 11, to obtain a solution of
(P+

ε
). For the nonnegativity we refer to the Lemmas 7, 8. �

5.5 Passing to the Limit

In order to prove the existence of a solution of problem (P ) we are going to show
that a sequence of solutions of (P+

ε
) converges (in some sense) and that the limit is

a solution of (P+) and of (P ). We state the main result:

Theorem 13 Problem (P ) has a nonnegative solution.

Proof. We are going to show that the tuple (cε, c̄ε,min,wε) with (cε, c̄ε,min) being
a solution of (P+

ε
) (cf. Theorem 12) and wε := Hε(c̄ε,min) converges (in some sense)

for εց 0 to a tuple (c, c̄min,w) ∈ W 2,1
p (QT )

I × L(QT )
Jmin × L∞(QT )

Jmin which
fulfills

∂tc+ Lc = Smobrmob(c
+) + Sminr̃min(c

+,w) on QT (43)

∂tc̄min = r̃min(c
+,w) on QT (44)

w ∈ H(c̄min) on QT (45)

c(·, 0) = c0 on Ω (46)

c̄min(·, 0) = c̄min,0 on Ω (47)

d ∂νc = β(c− c∗) on ST (48)

with

r̃min,j(c
+,w) = kp,j

I∏

i=1

smin,ij<0

(c+i )
−smin,ij − kd,j

I∏

i=1

smin,ij>0

(c+i )
smin,ij

wj .

From the a priori estimate (42) we know that theW 2,1
p (QT )

I
-norm of cε is bounded

with a bound independent of ε. From the embedding (36) we obtain that cε is also

bounded in the C(QT )
I
-norm independent of ε.
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Using the two obvious estimates

∂tc̄ε,min,j = rε,min,j(c
+, c̄ε,min)







≤ kp,j
I∏

i=1

smin,ij<0

(c+i )
−smin,ij

≥ −kd,j
I∏

i=1

smin,ij>0

(c+i )
smin,ij

we get that ∂tc̄ε,min,j is bounded in the L∞(QT )-norm. Since c̄min,0 ∈ Cα(Ω)
Jmin

,
also c̄ε,min,j is bounded in the L∞(QT )-norm independent of ε. Because of the defi-
nition of wε we have 0 ≤ wε,j ≤ 1.

By passing to a subsequence, if necessary, we see that:

cε −→ c weakly in W 2,1
p (QT )

I

cε −→ c strongly in C(QT )
I

c̄ε,min,j −→ c̄min,j weakly-star in L∞(QT ) (j = 1, . . . , Jmin)
∂tc̄ε,min,j −→ ∂tc̄min,j weakly-star in L∞(QT ) (j = 1, . . . , Jmin)

wε,j −→ wj weakly-star in L∞(QT ) (j = 1, . . . , Jmin)

By passing to the limit ε ց 0 in (29)-(33) it is obvious that the limits fulfill the
equations (43)-(48) except (45). To show that also (45) is met we adapt some ideas
of the proof of [21, Thm. 2.21]. First we introduce

c̄min,j(x, t) := lim inf
εց0

c̄ε,min,j(x, t) ≥ 0 a.e. in QT

and decompose QT = Sj,1 ∪ Sj,2, where (in the almost everywhere sense)

Sj,1 = {c̄min,j > 0} and Sj,2 = {c̄min,j = 0} .

In order to prove (45) we are going to show that c̄min,j > 0 and wj = 1 in Sj,1, while
c̄min,j = 0 and wj ∈ [0, 1] in Sj,2:

Because of c̄min,j ≥ c̄min,j it follows that c̄min,j > 0 in Sj,1. Then for (x, t) ∈ Sj,1

we choose µ > 0 sufficiently small such that c̄min,j(x, t) > 2µ > 0. So we have
c̄ε,min,j(x, t) > µ and, by definition of wε, wε(x, t) = 1 for all ε small enough. Hence
it holds w(x, t) = 1.

Now we exclude that c̄min,j > 0 in Sj,2. As c is bounded in L∞(QT )
I
we have

∫ t

0

I∏

i=1

smin,ij>0

(c+i )
smin,ij

wε,j ds→
∫ t

0

I∏

i=1

smin,ij>0

(c+i )
smin,ij

wj ds

weakly-star in L∞(QT ). It follows

lim inf
εց0

∫ t

0

I∏

i=1

smin,ij>0

(c+i )
smin,ij

wε,j ds ≤
∫ t

0

I∏

i=1

smin,ij>0

(c+i )
smin,ij

wj ds a.e. in QT .
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Using (30) and (44) that are valid a.e. in QT , and integrating in time gives a.e. in QT

c̄ε,min,j = c̄min,0,j +

∫ t

0

r̃min,j(c
+
ε ,wε) ds

= c̄min,j +

∫ t

0

r̃min,j(c
+
ε ,wε) ds−

∫ t

0

r̃min,j(c
+,w) ds

= c̄min,j +

∫ t

0

kp,j

(
I∏

i=1

smin,ij<0

(c+ε,i)
−smin,ij −

I∏

i=1

smin,ij<0

(c+i )
−smin,ij

)

ds

−
∫ t

0

kd,j

(
I∏

i=1

smin,ij>0

(c+ε,i)
smin,ij

wε,j −
I∏

i=1

smin,ij>0

(c+i )
smin,ij

wε,j

)

ds

−
∫ t

0

kd,j

(
I∏

i=1

smin,ij>0

(c+i )
smin,ij

wε,j −
I∏

i=1

smin,ij>0

(c+i )
smin,ij

wj

)

ds .

As cε converges pointwisely and wε.j is bounded in L∞(QT ) we know that the first
and the second of the three integrals converge to zero for εց 0. Hence, by considering
the above identity on Sj,2 and by taking the lim infεց0 of it we obtain

0 = c̄min,j − kd,j lim inf
εց0

∫ t

0

(
I∏

i=1

smin,ij>0

(c+i )
smin,ij

wε,j −
I∏

i=1

smin,ij>0

(c+i )
smin,ij

wj

)

ds

≥ c̄min,j a.e. in S2 ,

where we have used wε,j − wj ≤ 0 in the last step. Hence, c̄min,j = 0 in Sj,2. The
assertion 0 ≤ w ≤ 1 is valid because 0 ≤ wε ≤ 1 for all ε.

Hence, we have proven the existence of a solution of (43)-(48), i.e., of prob-
lem (P+). With Remark 9 this is also a solution of problem (P ). �

6 Uniqueness

In order to prove uniqueness of a solution of problem (P ) we proceed as follows. For
two solutions given, we first estimate the difference of the minerals in terms of the
difference of the mobile species by using the ODEs, and then, by using the PDEs,
integrated in time, we show that the difference between the mobile species can at
most increase exponentially in time, from which uniquess of the solution follows.

In this chapter we additionally assume that q, d, β do not depend on time. Then
the following theorem holds.

Theorem 14 Let (c1, c̄1,min,w1), (c2, c̄2,min,w2) ∈W 2,1
p (QT )

I×L(QT )
Jmin×L∞(QT )

Jmin

be two solutions of problem (P ). Then c1 = c2 and c̄1,min = c̄2,min holds.



EXISTENCE OF GLOBAL SOLUTION 23

Proof. From Theorem 13 we know that there is a nonnegative solution of prob-
lem (P ). So, let (c1, c̄1,min,w1) be a nonnegative solution and let us asume that
(c2, c̄2,min,w2) is any other solution. Let us consider the differences

u = c2 − c1 , v = c̄2,min − c̄1,min

and, for the sake of brevity, let us define

ρprec,j(z) = kp,j

I∏

i=1

smin,ij<0

z
−smin,ij

i , ρdiss,j(z) = kd,j

I∏

i=1

smin,ij>0

z
smin,ij

i

for z ∈ R
Jmin , j = 1, ..., Jmin (compare to (28)). We use (22) for c̄1,min and for c̄2,min

to obtain

∂tvi = ρprec,i(c2)− ρprec,i(c1)− [ρdiss,i(c2)w2,i − ρdiss,i(c1)w1,i]

= ρprec,i(c2)− ρprec,i(c1)− [ρdiss,i(c2)− ρdiss,i(c1)]w2,i

− ρdiss,i(c1)(w2,i − w1,i)

We multiply by vi and integrate over [0, t]×Ω. Then we exploit that−ρdiss,i(c1)(w2,i−
w1,i)(c̄2,min,i − c̄1,min,i) ≤ 0 (which is true because of the nonnegativity of c1 and
the monotonicity of c̄j,min,i 7→ wj,i ∈ H(c̄j,min,i), j = 1, 2). We also use that w2,i is
bounded by 1 and that c1, c2 are bounded in L∞(QT )

I which allows us to introduce a
Lipschitz constant L (depending on the L∞(QT )

I -norm of c1, c2) for the polynomials
ρprec,i, ρdiss,i. We obtain

1

2
‖vi(t)‖2 ≤ 2L

∫ t

0

‖u(s)‖‖vi(s)‖ ds

for t ∈ (0, T ], where ‖ · ‖ = ‖ · ‖L2(Ω). We sum up over i = 1, ..., Jmin and use Young’s
inequality to get

1

2
‖v(t)‖2≤ L2Jmin

∫ t

0

‖u‖2 ds+
∫ t

0

‖v‖2 ds .

From Gronwall’s inequality we obtain

‖v(t)‖2 ≤ C 2
vu

∫ t

0

‖u(s)‖2 ds (49)

for all t ∈ [0, T ] with Cvu =
√
2JminLe

T .
Now we consider the PDEs (21) for c1 and for c2 and obtain

∂tui −∇ · (d∇ui) + q · ∇ui = [Smob(rmob(c2)− rmob(c1))]i + [Smin∂tv]i .

For a given t ∈ (0, T ], we multiply by a function ϕi ∈ H1(Ω) and integrate over
[0, t]× Ω, and use integration by parts for the diffusion term:

(ui(t), ϕi) + (

∫ t

0

d∇ui(s) ds,∇ϕi)−
∫

∂Ω

∫ t

0

d∇ui(s) · ndsϕi do

=

t∫

0

([ρmob(c2(s))− ρmob(c1(s))]i, ϕi) ds+ ([Sminv(t)]i, ϕi)− (

t∫

0

q · ∇ui(s) ds, ϕi)
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where (·, ·) denotes the L2(Ω) scalar product and ρmob(c) = Smobrmob(c). For t ∈
(0, T ], let us choose ϕi := ui(t). We further exploit the boundedness of c1, c2 in
L∞(QT ), the boundary condition (26), and the assumption that q and β do not
depend on time:

‖ui(t)‖2 + (

∫ t

0

d∇ui(s) ds,∇ui(t))−
∫

∂Ω

β

∫ t

0

ui(s) ds ui(t) do

≤ L
∫ t

0

∫

Ω

|u(s)| |ui(t)| dx ds+ CS‖v(t)‖‖ui(t)‖+ ‖q ·
∫ t

0

∇ui(s) ds‖ ‖ui(t)‖

Using
∫ t

0

∫

Ω
|u(s)| |ui(t)| dx ds ≤

∫ t

0
‖u(s)‖ ‖ui(t)‖ ds ≤

√
t(
∫ t

0
‖u(s)‖2ds) 1

2 ‖ui(t)‖ and
(49), it follows that

‖ui(t)‖2 + (

∫ t

0

d∇ui(s) ds,∇ui(t))−
∫

∂Ω

β

∫ t

0

ui(s) ds ui(t) do

≤ (L
√
T + CSCvu)(

∫ t

0

‖u(s)‖2ds) 1
2 ‖ui(t)‖+ Cq ‖

∫ t

0

∇ui(s) ds‖ ‖ui(t)‖

≤ (L
√
T+CSCvu)

2

∫ t

0

‖u(s)‖2ds+ 1

2
‖ui(t)‖2 +

C2
q

δ
‖
∫ t

0

d
1
2∇ui(s) ds‖2

where we have used Young’s inequality Cab ≤ C2a2 + b2

4 on both terms in the last
step. We sum up over i and have

1

2
‖u(t)‖2 +

I∑

i=1

(

∫ t

0

d∇ui(s) ds,∇ui(t))−
∫

∂Ω

β

∫ t

0

ui(s) ds ui(t) do

≤ I(L
√
T+CSCvu)

2

∫ t

0

‖u(s)‖2ds+
C2

q

δ

I∑

i=1

‖
∫ t

0

d
1
2∇ui(s) ds‖2 .

(50)

Setting E(t) :=
∫ t

0
‖u(s)‖2ds +

∑I
i=1 ‖d

1
2

∫ t

0
∇ui(s) ds‖2 −

∫

∂Ω
β
(∫ t

0
ui(s) ds

)2

do,

the left-hand side of (50) is equal to 1
2E

′(t), and the right-hand side of (50) can be
estimated by a constant times E(t) (remember that β ≤ 0). So, the above inequality
reads

E′(t) ≤ C E(t) ,

with E(0) = 0. Hence, E(t) = 0 and finally u = 0 follows on [0, T ]. Due to (49) also
v = 0 follows. �

7 Conclusion

In this article we first proved that some formulations for precipitation-dissolution
of minerals are equivalent. Then we proved the existence of global solutions for a
macro-scale multicomponent reactive-transport model for reactions with minerals.
The model we have considered goes beyond what has been investigated in the past
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(cf. Sec. 1). Instead of one mineral and two mobile species we considered an arbi-
trary number, and besides the mineral reactions, we also allowed for reactions among
the mobile species, and, most important, the aqueous and the precipitation and the
dissolution reaction rates are allowed to have arbitrarily high polynomial order with
respect to the mobile species concentrations. The main challenges were the set-valued
shape of the dissolution rates and the high nonlinearity of all the rate terms. We
used a Lipschitz regularization and the method of a priori estimates in combination
with a maximum principle. The proof of global existence comes together with an
L∞((0,∞)× Ω)-estimate for the solution. A certain assumption on the stoichiomet-
ric matrix is required. However, we think that this is a rather mild restriction, in
particular for mass conservative reactive systems.

A Applying the Maximum Principle

In [15, I, Thm. 2.2/2.3] the boundary conditions are of the form

( n∑

i=1

bi(x, t)∂iu+ b(x, t)u
)∣
∣
∣
ST

= ψ(s, t) .

Using the boundary conditions of Section 5 we have

bi = dνi , b = −β .

One assumption of [15, I, Thm. 2.2] is b|ST
> 0, which is not fulfilled for β = 0.

In [15, I, Thm. 2.3] there is the assumption b|ST
≥ −b0 with b0 = const ≥ 0, which

is fulfilled for β = 0. However, in [15, I, Thm. 2.3] the assertion is simplified and
depends on |f | while in [15, I, Thm. 2.2] the assertion depends only on max f . The
problem is that we only know that f ≤ 0, but we do not know a lower bound for
f . So we have to look inside the proof of [15, I, Thm. 2.3]. The proof of [15, I,
Thm. 2.3] is done by applying [15, I, Thm. 2.2] to the function w(x, t) := u(x, t)ϕ(x)
with ϕ ∈ O2(Ω) (O2(Ω) is the set of all continuous functions in Ω having continuous
derivatives in Ω up to order 1, with the derivatives of order 1 having a first differential
at each point of Ω and the derivatives of order 2 being bounded in Ω) a function that
satisfies

min
Ω
ϕ(x) ≥ 1

2
, ϕ|∂Ω = 1 , −∂νϕ|∂Ω = m

where m = const > b0/δ with δ out of Assumptions 6 (i). So we get for any t1 ∈ [0, T ]

w(x, t1) ≤ inf
λ>a0

max

{

0;max
St1

ψϕeλ(t1−t)

b− bi ∂iϕ
ϕ

; eλt1 max
Ω

w(x, 0);
1

λ− a0
max
Qt1

feλ(t1−t)

}

with a0 = maxQT
(−a(x, t)) where a is the 0th order coefficient of the PDE.

Now let u be the solution of (41). Because of the boundary condition d∂νu =
βu on ST it holds ψ ≡ 0, because of the initial condition u(·, 0) = 0 on Ω it holds
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w(x, 0) = 0 for all x ∈ Ω and as there is no 0th order term in the PDE we have
a0 = 0. This yields

w(x, t1) ≤ inf
λ>0

max

{

0;
1

λ
max
Qt1

feλ(t1−t)

}

.

As the right-hand side f of the PDE for u is nonpositive it follows w(x, t1) ≤ 0.
Because of ϕ ≥ 1/2 this yields

u(x, t) ≤ 0 .

This is the assertion needed to derive the a priori estimate.
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