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1Instituto de Matemática, Universidade Federal do Rio Grande do Sul,
CEP 91509-900, Porto Alegre, RS, Brazil,

elizandro.max@ufrgs.br
2Fakultät für Mathematik, Technische Universität Chemnitz,

D-09107 Chemnitz, Germany,
uwe.schwerdtfeger@mathematik.tu-chemnitz.de

December 20, 2017

Abstract

We generalize the notion of algebraic connectivity, the second smallest eigenvalue of
the graph Laplacian matrix, by varying the norms in the Rayleigh-Ritz characterization.
The so obtained parameters are shown to be well-defined and to be the least non-zero
eigenvalues of the corresponding non-linear eigenvalue problem whenever the graph is
connected. We provide combinatorial interpretations of several non-smooth cases.
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1 Introduction

We begin with some notation. All graphs are simple and undirected without loops or multiple
edges. For a graph G = (V,E) with vertex set V the edge set E hence consists of two-element
subsets of V and we shall frequently write ij rather than {i, j} for an edge. For disjoint
subsets S, T ⊆ V define E(S) as the edges ij ∈ E spanned by S, E(S, T ) the edges with one
vertex in S and the other in T, furthermore we define n = |V |,m = |E|, e(S) = |EG(S)|,
e(S, T ) = |E(S, T )| and cutG(S) = |EG(S, V \S)|. Furthermore di, i ∈ V is the degree of vertex
i and δ(G),∆(G) denote the minimum and maximum degree, respectively. We shall drop the
subscripts if G is clear from the context. The volume of a set X ⊆ V is vol(X) =

∑
i∈X di. We

find it convenient to index vectors and matrices associated with the graph by the vertex set V
(resp. edge set E) and write therefore x = (xi,∈ V ) ∈ RV (resp. x = (xij ,∈ E) ∈ RE) rather
than x ∈ Rn (resp. x ∈ Rm). Accordingly, we denote by A ∈ RV×V the adjacency matrix
and by D ∈ RV×V the diagonal matrix of vertex degrees, incidence and gradient matrices
are considered as elements of RE×V . The incidence vector of a vertex set X is denoted by
1X ∈ RV and 1 ∈ RV denotes the all ones vector. Given an orientation i→ j on every edge
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e = ij we define a gradient matrix R ∈ RE×V by

Rei =


1, if i ∈ e and e = i→ j

−1, if i ∈ e and e = j → i

0, else.

The Laplacian matrix R>R = L = D − A of the graph, its eigenvalues and -vectors and
their applications have been widely studied and we refer the surveys [Moh91, Moh04] or the
books [BLS07, CRS09] and references therein. The smallest eigenvalue is 0, afforded by 1,
the second smallest eigenvalue λ2 is non-zero if and only if G is connected and is therefore
called the algebraic connectivity of G. By Rayleigh’s principle we have

λ2 = min
x 6=0

1>x=0

x>Lx

x>x
= min

x6=0

1>x=0

(
‖Rx‖2
‖x‖2

)2

(1.1)

In this article we investigate a family of parameters obtained by replacing the Rayleigh
quotient in this characterization by a quotient ‖Rx‖p / ‖x‖q with possibly different p, q. In
[Amg03, Amg06] eigenvalues of the discrete p-Laplacian (see Definition 2.11) are studied.

The second smallest eigenvalue λ
(p)
2 satisfies a variational characterization as above, with the

2-norms replaced by p-norms (p > 1) and a suitable constraint. This idea is applied in a
spectral clustering technique based on the p-Laplacian in [BH09] where the authors give the
following bounds (

2

∆

)p−1( i(G)

p

)p
≤ λ(p)2 ≤ 2p−1i(G), (1.2)

in terms of the isoperimetric number

i(G) = min

{
cut(S)

|S|
, S ⊆ V, 0 < |S| ≤ n

2

}
and use the corresponding eigenvectors to approximate i(G). For p = 2 equation (1.2) yields

a slightly weaker lower bound than Mohar’s [Moh89]. For p = 1 the equality λ
(p)
2 = i(G)

indeed holds, see Proposition 3.1.
The famous Motzkin-Straus Theorem serves as a motivation to also consider Rayleigh

quotients ‖Rx‖p / ‖x‖q with p 6= q. With ω(G) denoting the clique number it can be stated
as

max
x 6=0

x>Ax

‖x‖21
= 1− 1

ω(G)
.

So the ‖·‖1-adjacency spectral radius yields the clique number. Extremal problems on the
‖·‖p- adjacency-spectral radius are discussed in a recent paper [KN14].

In order to formulate a proper generalization of equation (1.1) we remark that the con-
straint 1>x = 0 is equivalent to ‖x−m1‖2 being minimal at m = 0. More generally, for any
norm ‖·‖ on Rn we have

‖x−m1‖ is minimal for m = 0⇔ 1>∂ ‖x‖ 3 0 (1.3)

where ∂ ‖x‖ denotes the subdifferential of ‖·‖ at the point x. For any two arbitrary norms
‖·‖E on RE and ‖·‖V on RV we define the Rayleigh quotient R‖·‖E ,‖·‖V (x) and the parameter
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a‖·‖E ,‖·‖V (G) by

R(x) = R‖·‖E ,‖·‖V (x) :=
‖Rx‖E
‖x‖V

and a(G) = a‖·‖E ,‖·‖V (G) = min
x 6=0

0∈1>∂‖x‖V

R‖·‖E ,‖·‖V (x).

The eigenvalue problem for R asks for (λ, x) ∈ R× (RV \ {0} with

∂ ‖·‖E (Rx) ∩ λ∂ ‖·‖V (x) 6= ∅,

in which case λ = R(x) (see the next section). If both norms are Euclidean this is the usual
eigenvalue problem. Clearly, the vector x = 1 affords the eigenvalue 0 which is the smallest
critical value of R. We will see below that any eigenvector x with λ > 0 satisfies (1.3) and
that a(G) is well-defined for any pair of norms and indeed the least non-zero eigenvalue of R
whenever G is connected.

The paper is organized as follows. In the next section we define the eigenvalue problem for
an arbitrary pair ‖·‖E and ‖·‖V and show that aG is the least non-zero eigenvalue whenever G
is connected. In the subsequent sections we consider a(G) for various pairs We shall specialize

to weighted p-norms ‖x‖ = (
∑
mix

p
i )

1/p
, mi > 0, 1 ≤ p ≤ ∞ which also cover the case of

weighted and normalized Laplacians. and write Rp,q = R‖·‖p,‖·‖q and ap,q(G)a‖·‖p,‖·‖q(G) for

short. Notice that with our notation λ
(p)
2 as considered in [Amg03, BH09] reads ap,p(G)p

2 Critical points, eigenvalues and eigenvectors

The subdifferential ∂f(x) of a locally Lipschitz function f : Rn → R is defined as in [Cla90,
Chapter 2]. We shall sometimes write ∂x to emphasize that the subdifferential is taken with
respect to x. We recall the most important facts for our purposes. If f is differentiable then
∂f(x) = {∇f(x)} (gradient) and if f is convex then

∂f(x) =
{
s ∈ Rn : ∀y ∈ Rn : f(y) ≥ f(x) + s>(y − x)

}
. (2.1)

Furthermore, for an affine function g(x) = Ax+ b with A ∈ Rn×m and b ∈ Rn and convex f
we have the chain rule

∂(f ◦ g)(x) = A>∂f(Ax+ b) (2.2)

and for f1, f2 : Rn → R locally Lipschitz with f2(x) > 0 the quotient rule

∂

(
f1
f2

)
(x) ⊆ f2(x)∂f1(x)− f1(x)∂f2(x)

f2(x)2
. (2.3)

The point x is called a critical point of f if 0 ∈ ∂f(x). If f has a local extremum at x then
x is necessarily critical. If f is convex then this is also sufficient. The following Lagrange
multiplier rule [Cla90, Theorem 6.1.1] holds in this context.

Proposition 2.1. Let f, hi, i = 1, . . . , k be locally Lipschitz. If x is an optimal solution to

min f(x) s.t. hi(x) = 0 ∀i = 1, . . . , k

then there are multipliers (φ, λ) ∈ R× Rk \ {(0, 0)} such that

0 ∈ φ∂f(x) +
k∑
i=1

λi∂hi(x).
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We are particularly interested in the cases when f is a norm in which case we use the
short hand notation

∂ ‖x‖ := ∂ ‖·‖ (x).

For a norm ‖·‖ its dual norm is defined as

‖z‖∗ = max
‖x‖=1

z>x

Furthermore we define the function

d(x) := d‖·‖(x) = min
m∈R
‖x−m1‖ . (2.4)

The function x 7→ d(x) is the distance of x to the (convex and closed) subspace spanned by
1 and therefore a convex function.

We collect some facts for later reference in the following lemma.

Lemma 2.2. Let ‖·‖ be a norm on Rn and x 6= 0 and f : Rn → R convex.

1. If f is positively homogeneous of degree p, i.e. f(λx) = λpf(x) for λ ≥ 0 and s ∈ ∂f(x)
then pf(x) = s>x and ∂f(λx) = λp−1∂f(x). In particular, if s ∈ ∂‖·‖(x) then s>x =
‖x‖ and ‖s‖∗ = 1.

2. ‖·‖∗∗ = ‖·‖ and if ‖s‖∗ = 1 = ‖x‖ then it holds that s ∈ ∂ ‖x‖ ⇔ x ∈ ∂ ‖s‖∗ .

3. ‖x−m1‖ is minimal for m = 0 if and only if 0 ∈ 1>∂ ‖x‖ .

4. For α > 0 and β ∈ R we have d(αx+ β1) = αd(x).

5. Let d(x) = ‖x−mx1‖ . Then ∂d(x) = ∂ ‖x−mx1‖ ∩ 1⊥.

Proof. For 1, compute ∂λf(λx) in two ways. The chain rule yields ∂λf(λx) = x>∂xf(λx).
On the other hand, use f(λx) = λpf(x) to get ∂λf(λx) = pλp−1f(x) and λ = 1 yields
the first equality. The equality ∂f(λx) = λp−1∂f(x) follows easily from (2.1). Finally,
we have ‖x‖ = s>x ≤ ‖x‖ ‖s‖∗ , thus ‖s‖∗ ≥ 1. For the converse inequality observe that
∀y ∈ Rn \ {0} : ‖y‖ ≥ ‖x‖+ s>(y − x) = s>y and hence ‖s‖∗ ≤ 1.
For 2, let s ∈ Rn with ‖s‖∗ = 1 and ‖x‖∗∗ = s>x and t ∈ ∂ ‖x‖ . Then ‖x‖∗∗ = s>x ≤
‖s‖∗ ‖x‖ = ‖x‖ and, by 1, ‖x‖ = t>x ≤ ‖t‖∗ ‖x‖∗∗ = ‖x‖∗∗ . Now assume that ‖s‖∗ = 1 = ‖x‖
and s ∈ ∂ ‖x‖ . Then for any t we have ‖s‖∗+x>(t− s) = ‖s‖∗−‖x‖+x>t ≤ ‖x‖ ‖t‖∗ = ‖t‖∗
and hence x ∈ ∂ ‖s‖∗ . The converse inclusion follows analogously.
Assertion 3 follows from the chain rule and convexity of m 7→ ‖x−m1‖ .
For assertion 4 let mx denote any m ∈ R for which d(x) = ‖x−mx1‖ . Clearly d(x) =
d(x+ β1). Furthermore,

d(αx) = ‖αx−mαx1‖ = α
∥∥x− α−1mαx1

∥∥ ≥ αd(x)

= α ‖x−mx1‖ = ‖αx− αmx1‖ ≥ d(αx).

For assertion 5 let s ∈ ∂d(x). Then d(x) = d(x±1) ≥ d(x)±s>1 and so s>1 = 0. Furthermore,
for any y ∈ Rn : ‖y‖ ≥ d(y) ≥ d(x)+s>(y−x) = ‖x−mx1‖+s>(y−(x−mx1)) and hence s ∈
∂ ‖x−mx1‖∩1⊥. For the converse inclusion first observe that there is s ∈ ∂ ‖x−mx1‖∩1⊥
by 3. So for any such s and any y ∈ Rn we have d(y) = ‖y −my1‖ ≥ ‖x−mx1‖ + s>(y −
x+ (mx −my)1) = d(x) + s>(y − x).

4



2.1 a(G) is well-defined and an eigenvalue

Since for c > 0 we have R(cx) = R(x) we can restrict the feasible region in the definition of
a(G) to the ‖·‖V -unit sphere and therefore define

S = {x ∈ RV : ‖x‖V = 1} and X = {x ∈ S : 0 ∈ 1>∂ ‖x‖V }.

Lemma 2.3. X is compact. In particular, a(G) = minx∈X R(x) is well defined.

Proof. We only have to prove that X is closed. Let xn → x be a convergent sequence in X
and sn ∈ ∂ ‖xn‖V with 1>sn = 0. Since ‖sn‖∗V = 1 and 1⊥ is closed there is a subsequence
snk
→ s ∈ 1⊥. Then for any y ∈ RV we have ‖y‖V ≥ ‖xnk

‖V +s>nk
(y − xnk

) and by continuity

‖y‖V ≥ ‖x‖V + s> (y − x) , hence s ∈ ∂ ‖x‖V and x ∈ X .

As in the linear case we have

Lemma 2.4. a(G) = 0⇔ G is disconnected.

Proof. Recall that kerR = span{1C : C component of G} and observe that 0 /∈ 1>∂ ‖1‖ . So,
if a(G) = 0 then there is a non-zero vector in kerR which is not a scalar multiple of 1 and hence
G is not connected. Conversely, for disconnected G choose any nonzero x̃ ∈ kerR \ span{1}
and take x = x̃+m1 with a suitable m which minimizes ‖x̃+m1‖V .

Next we define what an eigenvalue in this general setting is and show that a(G) is indeed
the least non-zero eigenvalue whenever G is connected.

Definition 2.5. We call (λ, x) ∈ R × RV an eigenpair for R consisting of an eigenvalue λ
and an eigenvector x if there is s ∈ ∂ ‖Rx‖E and t ∈ ∂ ‖x‖V such that the eigenequation
R>s = λt holds.

As in the linear case we have

Lemma 2.6. 1. If x ∈ RV \ {0} is a critical point of R, i.e. 0 ∈ ∂R(x), then x is an
eigenvector with corresponding eigenvalue λ = R(x).

2. If (λ, x) is an eigenpair then λ = R(x).

3. If (λ, x) is an eigenpair with λ 6= 0 then for the corresponding t ∈ ∂ ‖x‖V it holds that
1>t = 0, in particular 0 ∈ 1>∂ ‖x‖V .

Proof. The first statement follows from the chain and quotient rules (2.2) and (2.3) applied
to R

∂R(x) ⊆
‖x‖V R>∂ ‖Rx‖E − ‖Rx‖E ∂ ‖x‖V

‖x‖2V
.

For the second statement multiply the eigenequation from the left with x> and apply Lemma
2.2. For the third statement multiply the eigenequation by 1>.

Remark: The converse of 1 is not true in general. A counterexample is given in [CSZ15].
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Lemma 2.7. Assuming that G is connected we have

a(G) = min
d(x)=1

‖Rx‖E =

(
max
‖Rx‖E=1

d(x)

)−1
and for x ∈ X with R(x) = a(G) there are t ∈ ∂ ‖x‖V and s ∈ ∂ ‖Rx‖E with R>s = a(G)t
and a(G) is the least non-zero eigenvalue of R.

Proof. First observe that d(x) = ‖x‖V ⇔ 0 ∈ 1>∂ ‖x‖V and d(x) = 0 ⇔ x = m1 for some
m. By Lemma 2.2 item 4 we have

a(G) = min
x 6=0

0∈1>∂‖x‖V

R(x) = min
‖x‖V >0

‖x‖V =d(x)

‖Rx‖E
‖x‖V

= min
d(x)>0

‖Rx‖E
d(x)

= min
d(x)=1

‖Rx‖E .

If y with d(y) = ‖y −my1‖ = 1 is a minimizer then so is x = y−my1 ∈ X . By Proposition 2.1
a necessary condition for a minimum at x is the existence of a Lagrange multiplier λ and
subgradients s ∈ ∂ ‖Rx‖E , t ∈ ∂d(x) such that R>s− λt = 0. By Lemma 2.2 item 5 we have
that t ∈ ∂ ‖x‖ ∩ 1⊥ and multiplication by x> yields λ = a(G). Therefore we have established
that (a(G), x) is indeed an eigenpair for R. If (µ, z) is another eigenpair for R with µ > 0
and ‖z‖V = 1 then by Lemma 2.6 we have z ∈ X and thus µ = R(z) ≥ a(G).

The assertion a(G) =
(

max‖Rx‖E=1 d(x)
)−1

follows from Lemma 2.2 item 4 because G is

assumed connected and therefore ‖Rx‖E = 0⇔ x = m1⇔ d(x) = 0.

2.2 a(G) is a critical value of R

We have already remarked that an eigenvalue of R is not necessarily critical. The eigenvalue
a(G), however, is always critical. To show this we follow [HT, Cha16] and define a sequence
of critical values of R in the vein of the Rayleigh-Ritz characterisation of the k-th largest
eigenvalue of a symmetric matrix. The notion of dimension is generalized in the following
definition.

Definition 2.8. Let A ⊆ S be a closed and symmetric (A = −A) subset of S. The Kras-
noselskii genus (genus, for short) γ(A) of A is defined as

γ(A) =


0 if A = ∅,
inf{m : ∃h : A→ Rm \ {0}, h continuous and h(−u) = −h(u)},
∞ if {· · · } = ∅.

Furthermore, let Fk = {A : A ⊆ S, A = −A, γ(A) ≥ k}.

The restriction R̂ = R|S satisfies the Palais-Smale condition [Cha81, Definition 2] and
hence the following sequence is well-defined

λk = inf
A∈Fk

max
x∈A
R̂(x), k = 1, . . . , n.

We remark that inf can actually be replaced by min . In [HT, Lemma 2.3] it is shown that the
minimizing set contains a critical point x of R (0 ∈ ∂R(x)) with R(x) = λk. The proof uses
the deformation theorem [Cha81, Theorem 3.1, Remark 3.3] and and adapts to our framework
almost verbatim. We omit it and only show the following proposition.
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Proposition 2.9. For any graph G we have λ2 = a(G).

Proof. Let x ∈ X be such that R(x) = a(G) and let B = S ∩ span(1, x). Then for every
y = α1 + βx we have

R(y) =
‖αR1 + βRx‖E
‖α1 + βx‖V

=
‖Rx‖E∥∥∥αβ1 + x

∥∥∥
V

≤
‖Rx‖E
‖x‖V

= a(G).

Because γ(B) = 2 we have

a(G) = max
x∈B
R(x) ≥ min

A∈F2

max
x∈A
R(x) = λ2.

For the converse inequality, if λ2 > 0 then any normalized critical y with R(y) = λ2 is
contained in X by Lemma 2.6 and therefore λ2 = R(y) ≥ a(G). If λ2 = 0 and A with
γ(A) ≥ 2 is a minimizing set then R(y) = 0 for all y ∈ A and thus A ⊆ S∩kerR. This implies
γ(S ∩ kerR) = dim kerR ≥ γ(A) ≥ 2 and thus G is disconnected and hence a(G) = 0.

2.3 Subdifferentials of some norms

To conclude this section we list the subdifferentials and the sets X for some norms. We need
the set-valued function

sign (x) =


{1} if x > 0,

{−1} if x < 0,

[−1, 1] if x = 0.

which describes the subdifferential of |x| at x. Furthermore, for 1 < p <∞ and an index set
J (usually V or E) we define the function Φp

RJ 3 x = (xi, i ∈ J) 7→ Φp(x) =
(
sign (xi) |xi|p−1, i ∈ J

)
and for p = 1 the set-valued function

RJ 3 x 7→ Φ1(x) = {s ∈ RJ : si ∈ sign (xi) , i ∈ J} =: (sign (xi) , i ∈ J) .

We shall frequently abuse notation by identifying a singleton set with its element. For a
vector x ∈ RJ let Px, Nx and Zx denote the subsets of J on which x is positive, negative and
zero respectively, and let px, nx and zx be there respective cardinalities.

Lemma 2.10. 1. For 1 ≤ p ≤ ∞ we have ‖·‖∗p = ‖·‖q , where 1
p + 1

q = 1, in particular

‖·‖∗1 = ‖·‖∞

2. If 1 < p <∞ then ∂ ‖x‖p = ∇‖x‖p = ‖x‖1−pp Φp(x) and

Xp =

{
x : ‖x‖p = 1,

∑
i∈V

sign (xi) |xi|p−1 = 0

}

3. ∂ ‖x‖1 = Φ1(x) = {t ∈ Rn : ti ∈ sign (xi)} and X1 = {x : ‖x‖1 = 1, |px − nx| ≤ zx}

4. If ‖x‖V = ‖Dx‖1 =
∑

i∈V di|xi| then X = {x : ‖Dx‖1 = 1, |vol(Px) − vol(Nx)| ≤
vol(Zx)}.
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5. ∂ ‖x‖∞ = conv (sign (xi) ei : i ∈ V and |xi| = ‖x‖∞) and X∞ = {x ∈ RV : maxi∈V xi =
1 = −mini∈V xi}.

Proof. We only show the claims about X . For 3 observe that x ∈ X1 if and only if

0 ∈ 1>∂ ‖x‖1 = px − nx +
∑

i : xi=0

[−1, 1] = px − nx + [−zx, zx].

The proof of 4 is analogous. For 5 let ‖x‖∞ = 1 with xi = 1 and xj = −1 then s = (ei−ej)/2 ∈
∂ ‖x‖∞ is a subgradient with 1>s = 0. Conversely, if ‖x‖∞ = 1 with xi > −1 for all i ∈ V
then any subgradient has non-negative entries only and 1>s > 0.

When ‖·‖E is a (weighted) p-norm on RE the eigenequation can be reformulated in terms
of the p-Laplace operator.

Definition 2.11. Let 1 < p < ∞ and w ∈ RE be a vector of non-negative edge weights and

W = Diag(w
1/p
ij ). Define the (weighted) p-Laplace operator Lp : RV → RV by x 7→ Lp(x) =

R>WΦp(WRx), i.e. for i ∈ V

Lp(x)i =
∑

j : ij∈E
wijsign (xi − xj) |xi − xj |p−1.

Equivalently, Lp(x) = ∇Fp(x) for Fp(x) = p−1
∑

ij∈E wij |xi − xj |p = p−1 ‖Rx‖pp .

So if ‖·‖E = ‖·‖p then (λ, x) is an eigenpair for R if and only if there is a subgradient
t ∈ ∂ ‖x‖V with

Lp(x) = λp ‖x‖p−1V t (2.5)

3 The case ‖·‖E = ‖·‖1

The eigenvalues of R1,1 and R1,∞ all have a rather special form as the next proposition shows.
The results on R1,1 with the degree weighted 1-norm have been stated in [CSZ15].

Proposition 3.1. 1. If s ∈ ∂ ‖Rx‖1 then also s ∈ ∂
∥∥Rx(i)∥∥

1
for i ∈ {1,∞} where

x(1) = 1Px and x(∞) = 1Px∪Zx − 1Nx .

2. If (λ, x) is an eigenpair for R1,1 with λ 6= 0 and (without loss of generality) Px 6= ∅
then (λ, x(1)) is also an eigenpair for R1,1 and hence λ = cut(Px)/|Px|. In particular,
a1,1(G) = i(G).

3. If (λ, x) is an eigenpair for R1,∞ with λ 6= 0 then (λ, x(∞)) is also an eigenpair for R1,∞
and hence λ = 2cut(Px). In particular, a1,∞(G) = 2mincut(G).

Proof. 1. When passing from x to y ∈ {x(1), x(∞)} we have for every ij ∈ E that sij ∈
sign (xi − xj) ⊆ sign (yi − yj) and so s ∈ ∂ ‖Ry‖1 .

For the second and third assertions we consider the eigenequation R>s = λt.
For assertion 2 we have t ∈ ∂ ‖x‖1 ⊆ ∂ ‖1Px‖1 . By 1 we have that (λ,1Px) is an eigenpair and

hence λ = R1,1(1Px) = cut(Px)
|Px| . Since x ∈ X1 we have px = |Px| ≤ |V |/2 and hence λ ≥ i(G).
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Conversely, 1
|C|1C ∈ X1 for every C ⊂ V, 1 ≤ |C| ≤ |V |/2, in particular a set C which yields

i(G). So a1,1(G) ≤ i(G) follows.
For assertion 3 we can assume that x is normalized, hence x ∈ X∞ and Px 6= ∅ 6= Nx.

Furthermore we have t ∈ ∂ ‖x‖∞ ⊆ ∂
∥∥x(∞)

∥∥
∞ and thus (λ, x(∞)) is another eigenpair for

R1,∞. The rest of the discussion is analogous.

4 The case ‖·‖E = ‖·‖2

We consider the case when ‖y‖E =
(∑

e∈E wey
2
e

)1/2
=
∥∥W 1/2y

∥∥
2

with edge weights we > 0,

W = diag(we, e ∈ E) and ‖·‖V = ‖·‖ is an arbitrary norm on RV . Then we have ‖Rx‖2E =
x>Lx with a weighted Laplacian matrix L = R>WR.We give a reformulation of the minimiza-
tion problem of a(G) as a maximization problem involving the Moore-Penrose-pseudoinverse
L† of L and the resistance matrix T of G which are defined as follows. If L has eigenvalues (in
the linear algebra sense) 0 = ν1 < ν2 ≤ . . . ≤ νn and spectral decomposition L =

∑n
i=2 νixix

>
i

then L† =
∑n

i=2 ν
−1
i xix

>
i . In particular,

LL† = L†L = I − 11>/n.

The resistance distance Tij of two vertices i, j ∈ V is the quantity

Tij = L†ii + L†jj − 2L†ij = (ei − ej)>L†(ei − ej)

and we define the resistance matrix as T = (Tij , i, j ∈ V ). With L†d = diag(L†ii, i ∈ V ) we have

T = 11>L†d + L†d11
> − 2L†. (4.1)

It is well-known that this quantity defines a metric on the vertices [KR93, Gur10]. The in-
terpretation is as follows: an edge e of G is considered a w−1e -Ohm-resistor and Tij is the
total resistance between nodes i and j. The quantities KI(G) = 1

2

∑
i,j∈V Tij and KI ′(G) =

1
2

∑
i,j∈V didjTij are called the Kirchhoff index and the degree Kirchhoff index of G, recpec-

tively. The degree di of vertex i is understood as the sum of the weights of the edges incident
with the vertex i.

Theorem 4.1. With the above notations we have a(G) = µ−1/2 where

µ = max
‖s‖∗=1

1>s=0

s>L†s = −1

2
min
‖s‖∗=1

1>s=0

s>Ts

Proof. If x is a normalized eigenvector for λ = a(G) 6= 0 (hence λ =
∥∥W 1/2Rx

∥∥
2
) then the

eigenequation reads

(W 1/2R)>
W 1/2Rx∥∥W 1/2Rx

∥∥
2

= λs⇔ Lx = λ2s.

for a suitable s ∈ ∂ ‖x‖ with 1>s = 0. Upon multiplying both sides by s>L† we obtain

λ2s>L†s = s>L†Lx = s>(x+m1) = s>x+ms>1 = ‖x‖+ 0 = 1

9



for some m ∈ R. It follows that

λ−2 ≤ max
‖s‖∗=1

1>s=0

s>L†s =: µ (4.2)

For the converse inequality, observe that a necessary optimality condition for t with ‖t‖∗ = 1
and 1>t = 0 is the existence of Lagrange multipliers φ, µ and ν, (φ, µ, ν) 6= (0, 0, 0), and a
subgradient y ∈ ∂ ‖t‖∗ such that

φL†t− µy − ν1 = 0,

see Proposition 2.1. Then φ 6= 0 for if φ were 0 then multiplication by t> yields µ ‖t‖∗ = µ = 0
and hence also ν = 0. So we can assume that φ = 1. Multiplication by t> from the left gives
µ = t>L†t. Since 1>t = 0 we have LL†t = t and hence

µ−1t = Ly

Since 1 = (‖y‖∗)∗ = ‖y‖ , t ∈ ∂ ‖y‖ and 1>t = 0 we get µ−1 = y>Ly ≥ λ2 and therefore
equality holds in (4.2).

Lastly, the quadratic forms of L† and −T/2 coincide on 1⊥ by (4.1).

Corollary 4.2. 1. If ‖·‖V = ‖·‖∞ then µ in Theorem 4.1 equals 1
4 max i,j∈V

i 6=j
Tij .

2. If ‖x‖V = ‖Dx‖1 then µ in Theorem 4.1 equals

2 max

 ∑
i∈P,j∈N

didjTij +
|E| − vol(N)

dz

∑
i∈P

didzTiz +
|E| − vol(P )

dz

∑
i∈N

didzTiz

−KI ′(G)

where the maximum is taken over all partitions of the vertex set V which are of one of
the following types:

(a) V = P ∪̇N with vol(P ) = vol(N) = |E| or

(b) V = P ∪̇N ∪̇{z} with vol(P ), vol(N) < |E|.

Observe that for V = P ∪N of the first type the terms in the formula which depend on
z are zero.

3. Let ‖·‖V = ‖·‖1 . If |V | is even then µ in Theorem 4.1 equals

2 max

 ∑
i∈P,j∈N

Tij : P,N ⊆ V, P ∩N = ∅, |P | = |N | = |V |
2

−KI(G)

If |V | is odd then µ equals

2 max

 ∑
i∈P,j∈N

Tij +
1

2

∑
i∈P

Tiz +
1

2

∑
i∈N

Tiz

−KI(G)

where the maximum is taken over all partitions V = P ∪̇N ∪̇{z} with |P | = |N | = |V |−1
2 .
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Proof. Since L† is positive semidefinite and therefore s 7→ s>L†s is convex we can replace
the constraint ‖s‖∗ = 1 by ‖s‖∗ ≤ 1 in the optimization problem in Theorem 4.1 because the
maximum is taken on the boundary. In all three cases the feasible set is a convex polytope
Q and hence the convex hull of its vertices. By the convexity of the objective function the
maximum is attained at some vertex of Q.

1. Q = {s : ‖s‖∗∞ = ‖s‖1 ≤ 1, 1>s = 0}. The vertices of Q are precisely the points
(ei− ej)/2, i 6= j. For if s is a point with two non-zero entries of like sign, say si, sj > 0, then
define s± = s ± ε(ei − ej) (sj ≥ ε > 0,) ‖s±‖1 = ‖s‖1 and s = (s+ + s−)/2, hence s is not a
vertex of P.

2. Q = {s : ‖Ds‖∗1 =
∥∥D−1s∥∥∞ ≤ 1, 1>s = 0}. If s is a point with at least two entries

si, sj with |si| < di, |sj | < dj then we can write s = (s++s−)/2 as in the first part. So, if s is a
vertex then there is at most one component z with |sz| < dz and we let P = {i ∈ V : si = di}
and N = {i ∈ V : si = −di}. If V \ (P ∪ N) = ∅ then vol(P ) + vol(N) = 2|E| and from
0 = 1>s = vol(P ) − vol(N) and we get vol(P ) = |E| = vol(N), so P ∪ N is of type (a). If
V \ (P ∪N) = {z} then vol(P )+vol(N)+dz = 2|E| and from 0 = 1>s = vol(P )−vol(N)+sz
we get sz = λdz with λ = d−1z (vol(N) − vol(P )). V = P ∪̇N ∪̇{z} is of type (b), because if,
say, vol(P ) ≥ |E| then sz = vol(N)− vol(P ) = 2(|E| − vol(P ))− dz ≤ −dz, a contradiction.
Conversely, for every partition of types (a) or (b) we get a feasible vector by setting si = di
on P, si = −di on N and sz = vol(N)− vol(P ).

In either case s = D(1P − 1N + λez) = D(tP − tN ) where we let tP = 1P + |E|−vol(P )
dz

ez

and tN = 1N + |E|−vol(N)
dz

ez. Observe that tP + tN = 1. Then we have

s>L†s = −1

2
(tP − tN )>DTD(tP − tN )

= −1

2

(
(tP + tN )>DTD(tP + tN )− 4s>PDTDtN

)
= 2t>PDTDtN −KI ′(G)

which yields the desired formula.
3. The proof is very similar to the proof of 2. A vertex s is seen to be of the form

1P − 1N with P,N as in the statement. In the case when |V | is odd write s = tP − tN with
tP = 1P + ez/2 and tN = 1N + ez/2. Then s>L†s = 2t>p TtN −KI(G) yields the formula.

A result analogous to Theorem 4.1 holds for the largest eigenvalue, namely

λ−2n =

(
max
x∈X
R(x)

)−2
= min
‖s‖∗=1

1>s=0

s>L†s = −1

2
max
‖s‖∗=1

1>s=0

s>Ts

Especially when ‖·‖V = ‖·‖∞ we have that maxx∈X∞ R(x)2 = max‖x‖∞≤1 x
>Lx = 4maxcut(G)

because by convexity the maximum is attained at some vertex of S∞, i.e. some x ∈ {±1}V .
This gives the following relation between maxcut and resistance matrix.

Corollary 4.3.

min
‖s‖1=1

1>s=0

s>L†s = −1

2
max
‖s‖1=1

1>s=0

s>Ts =
1

4maxcut(G)
.
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5 The case ‖·‖V = ‖·‖∞, ‖·‖E = ‖·‖p , 1 ≤ p ≤ ∞

It turns out that the parameters ap,∞(G) = a‖·‖p,‖·‖∞(G) can be viewed as the inverse diameter
of the graph with respect to a variant of the resistance distance.

For k 6= l ∈ V define the quantities

ck,l = min

f(x) = ‖Rx‖p =

∑
ij∈E
|xi − xj |p

1/p

: x ∈ RV and xk = 1, xl = −1

 . (5.1)

These quantities are well-defined and positive because G is connected and clearly ck,l = cl,k.
The problem of determining ap,∞(G) reduces to solving the subproblems (5.1) as the following
proposition shows:

Proposition 5.1. For p < ∞ an optimal solution x to the optimization problem in 5.1
satisfies |xi| ≤ 1 and for p = ∞ there exists an optimal x with this property. In particular
ap,∞(G) = min{ck,l : k, l ∈ V, k 6= l}.

Proof. If, say, maxi∈V xi = c > 1 then consider the set C = {i ∈ V : xi > 1} and the vector y
with yi = 1 if i ∈ C and yi = xi otherwise. If ij ∈ E(C) then 0 = |yi − yj |p ≤ |xi − xj |p and
if ij ∈ E(C, V \ C) with i ∈ C, j ∈ V \ C then

|yi − yj |p = |1− xj |p < |xi − xj |p.

The set E(C, V \ C) is non-empty because G is connected and V \ C contains at least the
vertices k and l. Hence y yields a strictly smaller objective value, a contradiction. If p =∞,
then replacing x by y does not increase the objective value. The argument for minxi < −1
is similar.

Notice that we can equivalently write ck,l = min{f(x) : xk − xl = 2}. This is a convex
minimization problem, hence, for a necessary and sufficient optimality condition for x is the
existence of a multiplier λ (and s ∈ ∂ ‖Rx‖p, if p ∈ {1,∞}) such that

Lp(x) = λp
ek − el

2

(
respectively, R>s = λ

ek − el
2

)
(5.2)

For p = 2 this yields c−2k,l = 1
4(ek − el)>L†(ek − el) in accordance with Corollary 4.2. Observe

further that if we choose an optimal x with xk = 1 = −xl then (ek − el)/2 ∈ ∂ ‖x‖∞ . In
summary we have

Corollary 5.2. For k, l ∈ V, k 6= l, ck,l is an eigenvalue of Rp,∞.

Equation (5.2) is studied in [Gur10] and it turns out that the numbers ck,l can be used to
define a metric on the vertex set.

Proposition 5.3 (Theorem 1 in [Gur10]). Let 1 < p < ∞ and define ρk,l = (2/ck,l)
p and

ρk,k = 0 for k ∈ V. Then for any triplet k, l, z ∈ V we have

ρ
1/(p−1)
kl ≤ ρ1/(p−1)kz + ρ

1/(p−1)
zl

with equality if and only if z lies on any k-l-path in G. In particular, if G is a tree then

ρ
1/(p−1)
kl is the usual graph distance.

Finally, if p ≤ 2 then also ρkl ≤ ρkz + ρzl holds and for p = 2 we have that ρkl equals the
resistance distance Tk,l.
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Remark: In [Gur10] the limits of ck,l for p → 1 and p → ∞ are shown to exist and the
combinatorial interpretations given below are stated. However, the non-smooth cases p = 1
and p =∞ are not treated explicitly.

Proposition 5.4. 1. Let p = 1 and ρk,l = 2/ck,l. We have that ck,l = 2mincut(G, k, l)
where mincut(G, k, l) denotes the size of a minimum k-l-cut in G (or, equivalently,
a maximum k-l-flow). The numbers ρk,l thus define an ultrametric on V (with the
convention that mincut(G, k, k) = inf ∅ = ∞ and 1/∞ = 0), i.e. the strong triangle
inequality ρk,l ≤ max {ρk,z, ρl,z} holds for all k, l, z ∈ V.

2. Let p =∞. Then ρk,l = 2/ck,l is the length of a shortest k-l-path in G.

Proof. 1. Any y of the form y = 1X −1V \X for some vertex set X 3 k, l /∈ X yields a feasible
solution with objective value 2cut(X), so ck,l = 2/ρk,l ≤ 2mincut(G, k, l). To show that
equality holds we consider an arbitrary optimal solution y. Necessarily, there exists λ ∈ R
and s ∈ ∂ ‖Ry‖1 = (sign (yi − yj) , ij ∈ E) with R>s = λ(ek − el)/2 (compare (5.2)) and
hence λ = ck,l. Now x = 1Py∪Zy −1Ny satisfies xk−xl = 2 and we also have s ∈ ∂ ‖Rx‖1 (see
Proposition 3.1). Thus x is also optimal and ck,l = 2cut(Ny) ≤ 2mincut(G, k, l).

It remains to prove the strong triangle inequality

c−1k,l ≤ max
{
c−1k,z, c

−1
l,z

}
⇔ 1 ≤ max {ck,l/ck,z, ck,l/cl,z} .

To that end let ck,l = 2mincut(G, k, l) = 2cut(X) with k ∈ X and l ∈ V \X. If z ∈ V \X then
mincut(G, k, l) ≥ mincut(G, k, z) and ck,l/ck,z ≥ 1. Otherwise, if z ∈ X we get ck,l/cl,z ≥ 1.
2. The optimum value ck,l is positive so we can reformulate the original problem

ck,l = min
xk=1,xl=−1

max
ij∈E
|xi − xj |

= min {λ : xk = 1, xl = −1, |xi − xj | ≤ λ ∀ij ∈ E}

= max

{
1

λ
:
xk
λ

=
1

λ
,
xl
λ

= − 1

λ
,
∣∣∣xi
λ
− xj

λ

∣∣∣ ≤ 1 ∀ij ∈ E, λ > 0

}−1
= max {yk : yl = −yk, −1 ≤ yi − yj ≤ 1 ∀ij ∈ E}−1

For a ∈ V denote by lka the length of a shortest k-a-path in G. Adding the inequalities
corresponding to the edges in a shortest k-l-path shows that |yk−yl| ≤ lkl and thus yk ≤ lkl/2
by the first constraint. Equality is attained for yk = lkl/2 and ya = yk−lka for a ∈ V \{k}.

6 The case ‖·‖E = ‖·‖∞
Assuming that G is connected we write according to Lemma 2.7

a‖·‖∞,‖·‖V (G)−1 = max
‖Rx‖∞=1

d(x) = max
{
d(x) : x ∈ RV , −1 ≤ xi − xj ≤ 1 ∀ij ∈ E

}
(6.1)

where the “=” in the constraint can be replaced by “≤” by positive homogeneity of both
the constraint and the objective functions. By the invariance under translations by scalar
multiples of 1 we can reformulate (6.1) as a maximum norm graph embedding problem

a‖·‖∞,‖·‖V (G)−1 = max
{
‖x‖V : x ∈ RV , 0 ∈ 1>∂ ‖x‖V , −1 ≤ xi − xj ≤ 1 ∀ij ∈ E

}
. (6.2)
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Clearly, any optimal solution to the latter problem solves the former one; conversely, if x
solves (6.1) then x∗ = x−mx1 solves (6.2) where d(x) = ‖x∗‖V .

Given a feasible point x of (6.1) (resp. (6.2)) we define the active subgraph as Gx =
(V,Ex = {ij ∈ E : |xi − xj | = 1}). Clearly, Gx is always bipartite. It can also be chosen
connected

Proposition 6.1. 1. There is an optimal solution x to (6.1) (resp. (6.2)) for which Gx
is connected. Furthermore, x can be chosen integral. If x∗ = x−m∗1 such that d(x) =
‖x∗‖V then x∗ solves (6.2).

2. Let x be optimal with connected Gx, V=c = {i ∈ V : xi = c} and analogously V<c and
V>c. If mini∈V < c < maxi∈V and Vc 6= ∅ then Vc separates V<c and V>c.

3. If ‖·‖V = ‖·‖p with 1 < p <∞ then Gx is connected for any optimal x.

Proof. 1. Both D and the feasible region of (6.1) are invariant under translations by scalar
multiples of 1 so we can restrict D to the polytope P = {x ∈ RV : 1>x = 0, −1E ≤ Rx ≤ 1E}
without changing the optimum. By convexity of D the optimum is attained on at least one
vertex of P. Every vertex of P corresponds to a choice of |V | − 1 linearly independent rows
of R and therefore some spanning tree of G. Hence x can be chosen such that Gx contains an
active spanning tree.

2. By the constrains there cannot be an edge between V<c ⊂ {α : α ≤ c − 1} and
V>c ⊂ {α : α ≥ c+ 1}.

3. Let x be an optimal solution to (6.2) and assume that Gx is disconnected, say V =
C1∪̇C2 with E(C1, C2) ∩ Ex = ∅. Let x1 and x2 be the restrictions of x to C1 and C2,
respectively. Then ‖x‖pp = ‖x1‖pp + ‖x2‖pp and ∇‖x‖pp = pΦp(x) = p(Φp(x1) + Φp(x2)).

By the constraints we have 1>C1
Φp(x1) + 1>C2

Φp(x2) = 0 and without loss of generality we

assume that g1 := 1>C1
Φp(x1) ≥ 0 ≥ 1>C2

Φp(x2) =: g2. Recall that g1 is the derivative of
m 7→ ‖x1 +m1C1‖

p
p at m = 0, analogously for g2. Thus, if ε, δ > 0 then ‖x1 + ε1C1‖p > ‖x1‖p

and ‖x2 − δ1C2‖p > ‖x2‖p by the strict convexity of ‖·‖p . Clearly, ε and δ can be chosen in
such a way that x+ε1C−δ1D is feasible and we have a solution with a larger objective value,
a contradiction.

We now take a closer look at the 1- and 2-norm cases.

6.1 ‖·‖E = ‖·‖∞ , ‖·‖V = ‖·‖1
The maximum norm embedding problem reads (see Lemma 2.10)

maximize
∑
i∈V
|xi| s.t.


x ∈ RV ,
|px − nx| ≤ zx,
|xi − xj | ≤ 1 (ij ∈ E).

(6.3)

We have already seen that there exists an optimal x for which Gx is connected, i.e. x lives
on a lattice. Furthermore such x can be assumed integer (and must be if |V | is odd) because
if x /∈ ZV then px = nx = |V |/2 and zx = 0 and we can replace x by x − m1 where
m ∈ {maxNx,minPx}, that is, m is a median of x.

So assume that x ∈ ZV with Gx connected. Every i ∈ Px has a neighbour embedded
at xi − 1 because otherwise i could be embedded at xi + 1 without affecting feasibility and
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thereby increase the objective value, similarly for x ∈ Nx. Thus every vertex is embedded
at shortest path distance from Zx and ‖x‖1 is the sum of the graph distances of the vertices
from Zx. Recall that Zx separates Px and Nx (assuming that both are non-empty). We thus
have the following formulation as a combinatorial optimization problem

Proposition 6.2. Denote by δ(i, j) the usual shortest path graph distance, for Z ⊆ V define
δ(i, Z) = min{δ(i, z) : z ∈ Z} and δ(Z) =

∑
i∈V δ(i, Z). Then we have that

a∞,1(G)−1 = max δ(Z) s.t.


V = P ∪̇Z∪̇N,
E(P,N) = ∅,
||P | − |N || ≤ |Z|.

Notice that neither P nor N must be non-empty.

For parallelization purposes, for example in the computation of large sparse positive def-
inite systems, one seeks a small vertex separator which separates two subgraphs of approx-
imately the same size. In [PSL90] a spectral technique is devised which computes an edge
separator from a second eigenvector x of the Laplacian. An edge cut is obtained by parti-
tioning the vertices according to xi lying above or below a median of x. A vertex separator
is obtained via bipartite matching (the corresponding vertex cover).

In this regard an eigenvector corresponding to a∞,1(G) could be of interest for one may
hope that for sparse graphs the maximization of δ(Z) in Proposition 6.2 forces Z to be a
small set and thus P and N of approximately same size. It would be interesting to know
wether this intuition is justified or if a∞,1(G) is computable in polynomial time.

Similar considerations hold if we replace ‖·‖1 by the degree weighted one norm ‖x‖V =∑
i∈V di|xi|. In this case the optimization problem of Proposition 6.2 asks for a decompo-

sition V = P ∪̇Z∪̇N with E(P,N) = ∅ and vol(Z) ≥ |vol(P ) − vol(N)| such that δ(Z) =∑
i∈V diδ(i, Z) is maximized. A small volume separator Z would yield P and N of approxi-

mately equal volume.

6.2 ‖·‖E = ‖·‖∞ , ‖·‖V = ‖·‖2
In this case we have that a∞,2(G)−2 is the optimum of

maximize
∑
i∈V

x2i s.t.


x ∈ RV ,∑

i∈V xi = 0,

|xi − xj | ≤ 1 (ij ∈ E).

(6.4)

A relaxation of this problem is obtained when we allow embeddings into some arbitrary Rk
rather than the line,

maximize
∑
i∈V
‖xi‖22 s.t.


xi ∈ Rk (i ∈ V ), k ∈ N∑

i∈V xi = 0

‖xi − xj‖22 ≤ 1 (ij ∈ E)

(6.5)

Clearly whenever (6.5) admits a one dimensional optimal solution the optima of (6.5) and
(6.4) coincide. In [GHW08] (6.5) is shown to be dual problem of a semidefinite formulation of
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determining the absolute algebraic connectivity â(G) of a graph G. To explain that notion, let
Lw = R>Diag(wij , ij ∈ E)R be a weighted Laplacian matrix and λ2(Lw) its second smallest
eigenvalue. Then

â(G) = max

λ2(Lw) : wij ≥ 0,
∑
ij∈E

wij = 1

 (6.6)

The optimum of (6.5) is â(G)−1. If X = (xi, i ∈ V ) ∈ Rk×V is any optimal solution to (6.5)
then the (non-zero) rows of X are eigenvectors of any optimally weighted Laplacian of (6.6),
LwX

> = λ2(Lw)X> = â(G)X> (KKT complementarity). To summarize

Proposition 6.3. We have 1 ⇒ 2 ⇔ 3 where

1. â(G) is a simple eigenvalue of the optimally weighted Lw.

2. (6.5) admits a rank one solution.

3. The optimal values of (6.5) and (6.4) coincide, i.e.

a∞,2(G) = â(G)1/2.

The converse implication 2⇒ 1 is wrong: K1,4 is a counterexample.

7 Conclusion and outlook

We have introduced an eigenvalue problem generalizing the graph Laplacian eigenvalues and
studied the smallest non-zero eigenvalue. We looked at several non-smooth cases which yield
possibly interesting combinatorial graph parameters, for example a2,1(G) or a∞,1(G). In par-
ticular the latter raises the question if it is of use for graph partitioning when one is interested
in finding a small vertex separator which separates sets of approximately equal size.

Regarding the eigenvalue problem forR1,1 andR1,∞ it would be interesting to know which
graph cuts yield in fact eigenvectors and to study the sequence of critical values of Section 2.2
in more detail.

Another interesting question is for nodal domain theorems. In [HT] they prove such a
theorem for Rp,p. We are currently investigating how this generalizes in our setting. As a
partial result in this direction we can show that their theorem holds for Rp,q if p < q. We
don’t expect it to hold for p > q in general. Consider a∞,1(G) for the tree on 7 vertices
with edges {12, 23, 14, 45, 16, 67}. It is optimally embedded in (x1, x2, x3, x4, x5, x6, x7) =
(−1,−2,−3, 0, 1, 0, 1) and hence we have three weak nodal domains not two. Similarly,
x+ 4/71 is an eigenvector for a∞,2(G).

A similar generalization of the eigenvalue problem for the signless Laplacian Q = D + A
is straight forward: recall that for the (unsigned) incidence matrix B ∈ {0, 1}E×V we have
x>Qx = ‖Bx‖22 and hence one considers a Rayleigh quotient ‖Bx‖E / ‖x‖V . The smallest
eigenvalue b(G) = b‖·‖E ,‖·‖V (G) is much easier to handle than a(G) because criticality comes
for free. The smallest (generalized) eigenvalue is 0 if and only if G has a bipartite component.
The case where both norms are p-norms (1 ≤ p ≤ ∞) has been considered in [BS16]. We
have not considered the case of “mixed” norms yet.
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