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Abstract

Gene Regulatory Networks are powerful models for describing the mechanisms and dynamics inside a
cell. These networks are generally large in dimension and seldom yield analytical formulations. It was shown
that studying the conditional expectations between dimensions (vertices or species) of a network could lead
to drastic dimension reduction. These conditional expectations were classically given by solving equations
of motions derived from the Chemical Master Equation. In this paper we deviate from this convention and
take an Algebraic approach instead. That is, we explore the consequences of conditional expectations being
described by a polynomial function. There are two main results in this work. Firstly: if the conditional
expectation can be described by a polynomial function, then coefficients of this polynomial function can be
reconstructed using the classical moments. And secondly: there are dimensions in Gene Regulatory Networks
which inherently have conditional expectations with algebraic forms. We demonstrate through examples,
that the theory derived in this work can be used to develop new and effective numerical schemes for forward
simulation and parameter inference. The algebraic line of investigation of conditional expectations has
considerable scope to be applied to many different aspects of Gene Regulatory Networks; this paper serves
as a preliminary commentary in this direction.

Keywords: Markov Chains, Chemical Master Equation, Dimension Reduction.

1 Introduction

An average human being is made up of 37 trillion cells, each of these cells belongs to one of a hundred different
phenotypes, and each of the phenotypes has differentiated from a single zygote. Each cell has an identical copy
of DNA tracing back to that first zygote. Nevertheless, it performs its specialised function meticulously by
using only specific segments of the DNA. It is natural to assume that a change in phenotype is permanent; that
some physical change occurs which fixes the state of the cell to its purpose—a hammer doesn’t turn into a screw
driver. This intuition is true in human engineered systems, but far from reality in emergent complex systems
like the cell. A cell is constantly active, at any moment several genes are being activated and deactivated
resulting in what appears as a fixed phenotype on long time scales. These interactions/dynamics inside a
cell can be described through the framework of networks (directed graphs), where the vertices of the network
represent molecular structures such as genes, RN A, and proteins, and the edges represent reaction channels
which describe the interactions between the respective vertices [42, 17, 22, 25]. These networks are referred to
as Gene Regulatory Networks (GRNs). Every cell’s cellular process can be described by a GRN; where a certain
group of genes perform a function for the cell through transcription, translation, and regulation. One example is
the Circadian rhythm in mammals, where the internal cellular clock is maintained by two genes activating and
deactivating each other to produce a sinusoidal profile in mCRY and mPER protein concentrations through
time [4, 41]. Another example is the lactose digestion in bacteria, where a single lactose molecule binds to
the repressor protein near the lactase gene and frees the promotor region, which then starts the production of
lactase needed for digesting the lactose [8]. Modelling a cellular process as a network helps in understanding its
underlying mechanisms, which in turn can aid in predicting its behaviour.

Mathematically speaking, studying a GRN entails studying the various paths which can be traversed on
that network. It was shown experimentally in the early 90s, that the internal processes of the cell are inherently
stochastic [5, 35]. Hence, every path over the network is possible and each path has a probability of being realised.



Biological processes inherently have many interacting genes and molecules involved in complex interaction
schemes, hence, investigating all possible paths over such networks is a real mathematical challenge. The class
of GRNs which can be studied analytically is very small [19, 12]. In the majority of cases, numerical schemes
have to be applied to study GRNs. These numerical schemes are covered under two overarching principles:
time scale separation and volume size expansion. The idea behind time scale separation is that if there are
sub-networks which are traversed faster than the rest of the network, these sub-networks can be reduced, which
in turn would lead to a smaller network to study [30, 13, 11, 2, 6, 1, 26, 20, 29] . The second principle is that of
volume size expansion, where in essence, the rate at which one traverses the network is adjusted such that the
rate of traversing between any two connected vertices is of the same order. This in turn reduces the influence of
stochasticity, which leads to an overall deterministic behaviour in the network [41, 32, 40, 7, 39, 29]. Both these
principles are highly effective at reducing the computational complexity of many GRNs. However, they do not
cover the whole range of dynamics, in particular, they have difficulties in accurately capturing GRNs which have
cycles inside them [9, 15]. Cycles in GRNs imply that the system never reaches some particular steady state,
rather it is in a permanent transient state through time. There are no fixed time scales or fixed volume sizes
in such dynamic behaviour, these assumptions have to be updated in each phase of the cycle. Hence, a larger
framework is needed, which encompasses the GRNs currently studied via the principles of time scale separation
and volume size expansion, and further extends to include GRNs with cyclical dynamics.

In this paper, we formulate a new algebraic conditional expectation framework for studying GRNs. That
is, we explore the consequences of conditional expectations being described by a polynomial function. We will
begin by motivating the essentialness of conditional expectations for dimension reduction in the context of
complex high dimensional GRNs. We then introduce the principle of algebraic conditional expectation forms,
we will begin with the linear case to build intuition and then extend it to the general polynomial case. Then
we will prove that the algebraic forms naturally arise in GRNs. We finish the paper by demonstrating how the
properties of algebraic conditional expectations can be utilised to build new numerical schemes for studying
GRNS.

2 Mathematical Background

In this section, we will introduce the key processes and notations which are to be used in this paper. We begin
by defining a Kurtz process, a jump Markov process, which is commonly used for modelling GRNs. As the study
is focused on investigating conditional expectations, we present the necessary assumptions to guarantee their
existence and computability. After formulating the underlying assumptions, we will introduce the Dimension
Reduction framework, and introduce a new algebraic perspective on the topic.

2.1 Kurtz Process

Let Si,...,Sn, be population counts of Ny different species which can interact with each other. ' A reaction
channel is a transformation of a set of species into another. Mathematically, a reaction channel (R) is described
by the following mapping;:

N N,
Ri=3 xi"§ — ) xS,
i=1 =1

where Xz:n/ % are the number of species i which are entering and exiting the reaction channel respectively. The

stoichiometry of the reaction channel (R) is the vector describing the net change in population after the reaction

channel has fired. We denote this by

vr = (X" — M.

The propensity/intensity at which a reaction channel fires is given by the function:

N
S8 = cr ][] ( jn ) , (2.1)
i=1 v

where cp is a single event rate and the round brackets are the binomial coefficients. Functions in the form of fg
are referred to as mass action propensities [10]. That is, the rate of firing of a reaction channel is proportional
to the product of the populations of the species involved in starting the reaction. This formalism emerged
from thermodynamical description of the probability of molecules colliding and forming new molecules. We

IThe terms species, dimensions, and vertices originate from different fields of study but refer to the same concept. Hence, we
interchange between the terms to match the context.



are interested in systems with Ny € N species undergoing N, € N reactions via mass action propensities. The
stochastic process of such a system can be modelled by:

Z(t )+ ZP (/ fi(z ds> vj, with Z(t) € NJ", (2.2)

where P is an inhomogeneous Poisson process [24]. As a shorthand, processes of the form (2.2) are referred to
as a Kurtz processes.

The probability of observing Z(t) in a state z € © € NJ'* at time ¢ € [0,00) is described by the Chemical
Master Equation,

= 7Z: NT
INZZBD S fyla— )2 =2~ v530) — fy(2) p(Z = 1), (2:3)
j=1

For each reaction indexed by j € {1,..., N, }, we denote the corresponding propensity functions by f; : & — R™;
and its stoichiometric vectors by v; € ZNs . For simplicity of notation, we write the right-hand side of equation
(2.3) as a shift minus an identity operator:

Nr.

ap” =38 - 1) £(2) pla: 1), (2.4)

j=1

[

where S is the shift operator of the j'" reaction. We define p; to be the vector (p(Z = z;t)),cq, and dp;/dt as
the vector (0 p(Z = z;t)/0t)zcq. The solution of the CME (2.3) is found by solving the initial value problem:

dp, _ A
Dy, t>0, 25
{poegl( )? t207 ( )
where A is an infinitesimal generator [42, 23, 37] with the properties:
Apr <0,A5, >0 for k+#1 and ZA’“J =0,
1
for all k,1 € {1,...,|Q|}. Solving the system of equations in (2.5) gives the full joint probability distribution of

the system at a time point. Kurtz processes which yield analytical solutions to the equations in (2.5) are a small
class [19]. In most common cases, numerical schemes have to be considered. We now introduce the necessary
assumptions for guaranteeing the existence and computability of the solution of (2.5).

Assumption 2.1. We assume the following:
1. the state space is finite, |Q| < co.
2. the operator et is honest [3].
3. the joint probability is non-negative over the state space, p(Z = -; t) > 0, at all time points t.

Assumption (1) and (2) guarantee that the probabilities of interest do exist and are computable. Assumption
(3) is crucial for applying Bayes’ Theorem—the critical tool for conditional probability—to help formulate and
compute conditional moments.

2.2 Dimension Reduction

Any method which solves the CME (2.5) with less equations than |{2| is technically a dimension reduction
method. Within dimension reduction, we want to focus on a particular subclass of methods, that is, methods
which reduce dimension by partitioning the species into two groups, a stochastic group and a deterministic
group, and study their dynamics separately [21, 14, 27, 18, 16, 13, 20, 39, 41]. This class of methods is referred
to as hybrid methods. In essence, the stochastic process Z(t) is split into two sub-processes:

Z(1) = (X(1). Y (1). (2.6)

A hybrid method achieves dimension reduction by evolving X (¢) stochastically coupled with the statistics of
Y (t). With the splitting in (2.6) in mind, we now derive the general decomposition of a hybrid method for the
CME. It is important to note that when we refer to a species as “deterministic,” we do not model these species



deterministically, but we are rather referring to their statistics; which evolve deterministically (e.g. expectation,
variance, or higher moments).

Let NY denote the number of species Y that are described deterministically, and NX the number of species
X described stochastically. Then the total number of species, Ny = NY + NX | is equal to the sum of the two
parts. Corresponding to (2.6), the state z is written as a tuple:

X Y
z = (z,y), WheI‘exEN(])VS , yENéVS.

Similarly, the stoichiometric vector of the j*™ reaction is written as a tuple vj = (v5,p5), where v; is the
restriction of v; on the stochastically considered species and p; on the deterministic. The state space of the
X
stochastically considered species is called the hybrid state space, and is denoted by Qx C N(J)v ¢ . Similarly, Qy C
Y
Név ¢ | is the state space restricted to only deterministically considered species. The mass action propensities,
(2.1), naturally split into the product structure:

fi(z) = gj(@) h;(y), Vz € €, (2.7)

for non-negative functions g; and h;. The above splitting of species, stoichiometry and propensities is referred
to as the hybrid framework. Given there exists a solution to the CME (2.3) at a given time ¢ > 0 and the
solution is non-zero on the state space—using Bayes’ theorem—there exists a marginal probability distribution,

p(X = 7t) : QX — [07 1];
and a family of conditional probability distributions,
{pY =-| X =x;t) : Qy = [0,1] for v € Qx},

such that,
p(z;t) = p(X =z;t) p(Y =y | X = x;51). (2.8)

Furthermore, by the law of conservation of probability, the marginal and conditional probability distributions
satisfy:

Ip(X = ;1) N 0pY =y | X =x3t)
;Tzo and Vo € Qx : zy: 51 =0. (2.9)
A hybrid method tries to reconstruct the marginal distribution p(X = -;t), using the statistics of the

conditional distribution p(Y = -| X = -;t). The equations of motion for p(X = -;t) are derived by substituting
(2.8) and (2.9) into the CME and performing some simple algebra. We now derive the time derivatives of the
marginal distribution and the conditional expectation.

Firstly, for the time derivative of the marginal distribution of X (¢), we sum the CME (2.4) over all the states
y. The derivative with respect to time of the product form in (2.8) is:

hp(Z=zt)=p(Y =y | X =2;t) Oy p(X = x;t) + p(X = 25t) Oy p(Y =y | X = m;1).

Then, summing the above expression over y and applying the second condition in (2.9), gives 9 p(X = z;t) =
>, 0¢ p(Z = z;t). By substituting (2.3) in the left-hand side term and then expanding, we will have derived the
time derivative of the marginal distribution p(X = -;¢):

Op(X = x;t) :Zap(Z:z;t)

ot - ot
N,
= ZZ(S} — 1) gj(z) hi(y) p(X = ;) p(Y =y | X = z;¢),
N
= ,Z(Sj D) D hi)p(Y =y | X =z;t)| g;(z) p(X = 1), (2.10)

()

We have derived the formula of the time derivative of the marginal distribution in the form of the CME. Firstly,
we should observe that the propensity of the deterministically considered species, the function preceding the
probability term (%), has become time dependent. For z € Qx, if we denote Y,.(¢) as the process distributed

according to the conditional distribution, p(Y = - | X = z;t), then the term (x) in (2.10)-by definition—is the
expectation of the propensity of the conditional process Y, (t);
> hi)p(Y =y | X = 51) = E[hy (Y (1)) (2.11)
Y



Hence, (2.10) can be rewritten as

ap( = x;t) ol
OPX 0 S (S~ 1) Elhy (Yo 0)] 0y() p(X = :0) (212)
= _,_/

()

In this form, it is clear that to study or evolve the sub-processes of a high-dimensional process, conditional
moments are needed. If these were known a priori, then any sub-process could be studied independently to the
full process. This highlights the importance of conditional moments in the process of dimension reduction. The
key principle behind every hybrid method is to harness the conditional expectation structure. To understand
how the conditional moments are computed, let us consider the following equation for the conditional expectation
given by the Method of Conditional Moments (the derivation for the equations can be found in [18, 14]):

a(E[Yw(t))]é(X =zit) _ ; [Zy: hity)p(Y =y | X =z — Vjﬂf)] i gi(x —vi) p(X = x —v;;t)

Bl (Ya—u; (0)]

> yhiw)p(Y =y | sz—Vj;t)} gi(z —v;) p(X =z — v;;1)

ElYa; (1) g (Yo ()]

- [thg‘(y) p(Y =y|X= w;t)] g5 (@) p(X = 3t) | . (2.13)

E[Yi (£) hj (Vi (£))]

The above equation solves for the conditional expectation. The first thing to notice is that the time derivative
on the left-hand side contains the marginal probability, and a large time scale separation between the conditional
expectation and the marginal distribution would be needed to uncouple these terms in the derivative. Secondly,
if h; is a polynomial of degree greater than zero, then there are higher order conditional moments in the
square brackets on the right-hand side. Computing these would lead to solving an infinite system of non-linear
differential equations, which is clearly not feasible. Hence, approximations like moment truncation and moment
closures have to be applied to make (2.13) computable [21, 20, 14]. In summary, while conditional expectations
are critical for dimension reduction, computing conditional expectations is computationally challenging and
highly non-trivial.

Let us return to (2.12). Here is where we wish to deviate slightly from convention. Instead of writing down
the derivatives of the conditional moments, as done in (2.13), and imposing closures and truncations, we want
to pursue a more algebraic approach. We begin by asking the following questions:

e What dynamics would be observed if the conditional moments (x) had a polynomial form?

e If the conditional expectation structure between two dimensions was a linear function, could the equations
of motion for the slope and the intercept be derived?

e Do certain reactions or stoichiometries of GRNs guarantee that the conditional moments are embedded
in some curve/manifold?

Giving a rigorous answer to the latter question is out of the scope of this work, but we begin by exploring the
preliminary question: “If we were to consider some polynomial ansatz for the conditional moments, then which
structures and properties would emerge?”

3 Algebraic Conditional Expectation

In this section we will study the relationship between conditional moments and classical moments 2. Firstly, we
will investigate the consequences of the conditional expectation having a linear algebraic form. After gaining
intuition from the linear case, we will extend the results to a generalised polynomial form. That is, we will prove
that the coefficients of a polynomial which describes the conditional moments can be computed by solving a

2In our context the results can be reformulated to be raw moments, factorial moments, or central moments .For this reason we
say classical moments to encompass it all.



linear system of equations containing the joint and marginal moments of the random variables. Furthermore,
we show that the existence of an algebraic conditional expectation inherently guarantees moment closure.

The notation from §2.2 is carried through and used in the rest of this section. In this section, the interest
is strictly on processes at a fixed time point. Hence, the time variable is omitted from the notation. We

X Y

quickly recall that X,Y are random variables over their respective state spaces: Q1x C N(I)V s and Qy C Névs .
X

We assume that the random variables, Y conditioned on z, for all z € Qx C Névs exist. These random

Y
variables are denoted as Yy, for z € Qx C Névs . Henceforth, whenever we refer to “conditional expectation”
or “conditional moments”, the conditional variable is the dimension Y and the conditioning variable is the
dimension X.

Remark 3.1. To be rigorous, since the state space Qx is not continuous, the conditional expectation cannot
be a continuous function, but rather there is a smooth manifold in which the conditional expectation, E[Y,], is

embedded. For brevity we will say that the conditional expectation has the form of the manifold in which it is
embedded.

3.1 Linear Conditional Expectation

Lemma 3.1. Let a € My cnx and B € My be fized. If the expectation of Y conditioned on x € Qx has
a linear form, that is, for all x € Qx,

E[Y,] = az+ 8, (3.1)
then

1. E[Y] =aE[X] + 5,
2. cov(Y,X) = acov(X, X),
3. Elcov (Y, Ys)] = cov(Y,Y) — acov(X, X)al.

Proof. Fix a € Myy yyx and § € My «;. We will prove the three statements separately.
Statement 1: We multiply (3.1) by the marginal probability of  and then sum over all z:

EY,] = ax+p,
YEN] p(X=2) = Y (ax+B)p(X =),
€N X €N X

EY] = oaE[X]+5.

Statement 2: We begin with the definition of the covariance of X and Y,

oV, X) = Y (y—EY)) (@ - EX)T p(X = .Y =y).

e x,yely

Applying Bayes’ Theorem to the joint distribution and then collating the y related terms gives us:

= > W-EVD@-EX) pX =2)p(Y =y|X =),

z€Qx,yENy

YD W-EY)p(Y =y | X =2)| (z—E[X)" p(X = 2),

z€Qx |yeQy

then expanding the square brackets gives

= > (EY:] - E[Y]) (z — E[X])" p(X = 2).

e x

Lastly, we substitute in the linear form (3.1) for the conditional expectation and then reduce:

=Y (az+B-E[Y])(z—EX))" p(X =),

€N x

=Y [eza” —azE[X]" + p2” - BE[X]T —E[Y]2" + E[Y]E[X]"] p(X =),
€N x

= aE[XXT] - aE[X]|E[X]T,

= acov(X, X).



Statement 3: Proof in Appendix A. The idea of the proof is to substitute the linear conditional form (3.1)
into Eve’s Law and then reduce. O

Lemma 3.1-1 states that the conditional expectation form intersects the point (E[X],E[Y]). Furthermore,
Lemma 3.1-2 states that the covariance of X and Y is a scaler of the variance of X. Writing these two equations
together gives the following system of equations:

{ B 1 } { 5 } B { e } |

We notice that solving the equation above gives the formula for the gradient and the intercept of the conditional
expectation in terms of the moments:

a= m and 8 = —aE[X] + E[Y]. (3.2)

We have deduced that if the conditional expectation has a linear form, then the gradient and the intercept can
be calculated using classical moments. We will now extend this observation to the case of general polynomial
forms.

3.2 Polynomial Conditional Expectation

For brevity, we fix N, NX = 1.

Theorem 3.1. Let m € Ny with m < |Qx/|. If the expectation of Y conditioned on x € Qx has a degree m
polynomial form, that is, for all x € Qx,

E[Yx] = Km ™ + Km—1 szl +...+ KT+ Ko, (33)
then for n € Ny,
E[Y X" Z ke B[XTHM. (3.4)

Proof. Fix n € Ny, m € Ny. We prove the statement by expanding the definition of E[Y X"], then substituting
in the polynomial form and reducing.

EY X"]:= Y ya"pX ==Y =y),
z€Qx,yeNy

applying Bayes’ theorem to the joint distribution gives

= Y ya"p(Y =y|X =2) p(X =),
2EQX,yEQy

then collating the y terms reduces the expression to

=Y | D ypY=y|X=2)| 2" p(X =x),

z€Qx | yEQy

E[Ye]
substituting (3.3) for the conditional expectation gives

= Z (me’) 2" p(X = x).

z€Qx \1=0

Lastly, interchanging the summations gives:

£z

E X1+n

3



Corollary 3.1. Let
® R I= (H/i);iOa S Rm—&-lxl

= [E[Xiﬂ]]i,j € Miyt1xm—+1

(1]

[ ]
o 1= (E[Y X))y € Rinyix1

If = is invertible, then

k=2"1pu (3.5)
Furthermore, if 2 is invertible and [27 11 m11 # 0, then
m—1 .
]E[Y Xm] = (Kim — Z [571]171'_;'_1 ]E[Y Xq) /[Eil]l,m_;,_l. (36)
i=0

Proof. The linear system of equations in (3.5) arises by simply iterating the term E[Y X™], as defined in (3.4),
forn=0,...,m:

E[X™ EX™Y ... ... EX] 1 Fom E[Y]
Ex™+]  E[X™] ... ... E[X?} E[X] Fom—1 E[Y X]
E[X?"] E[X?"-1] ... ... E[X™] E[X™] Ko E[Y X™]

Since = is invertible, it follows that coefficients in (3.3) can be computed by evaluating 2~ .

The second statement can be proved by taking the dot product of the first row of Z~! and p and rearranging
to make E[Y X™] the subject. We see that if k,, = 0, then E[Y X™] has a natural moment closure.

O
Definition 3.1. Let n$|X(x) denote the m™ degree polynomial approzimation of E[Y,] : Qx — R, where
v x (x) = Z Ki (3.7
i=0

with the coefficients k;, for i =0,...,m, defined in (3.5).

Remark 3.2. The idea of fitting polynomial structures to stochastic data was originally investigated by the
data driven sciences; where functions were fitted to high dimensional point clouds to unravel the dynamics
which generated that data set [31, 28]. In the data science framework, polynomial approxzimation—which we
formulated in Def. 3.1—is equivalent to a polynomial regression. That is, if the moments were replaced with
empirical moments of a dataset, the m'" degree polynomial approzimation reduces to the m* degree polynomial
Tegression.

Example 3.1. So far, the hypotheses in the statements above have bequn with “If the conditional expectation
has the form...” A natural question that arises is if Kurtz processes can even satisfy this part of the hypotheses.
To give some intuition into this question, let us consider the following three simple mRN A translation models:

(Model 1) X <0 Y <0,
(Model 2) X 50 X5Y+X Y =0,
(Model 3) X o0 2X Y +2X Y = 0.

All three models contain two species, X and Y. In the first model, both species are produced via a constant
propensity function and decay via a linear propensity function, with their respective rate constants. The two
species do not interact with each other. The second model is a simple mRN A translation model. In this model,
X is produced and decayed as in Model 1. Species Y on the other hand, is produced by species X wvia an
autocatalytic reaction. That is, X produces Y and preserves its population in the process. The third model
extends on the second model, with the autocatalytic reaction needing two X s to perform the reaction. The model
parameter can be found in Appendixz B. We start all the models with an initial population of (0,0) and compute
the stationary distribution using the Optimal Finite State Projection method. The left column plots in Fig. 1
show the stationary distribution of these three models, respectively. In the right column of Fig. 1, we plot their
conditional expectations. We can see that these models exhibit algebraic conditional expectation forms.



In summary, Theorem 3.1 states that if the conditional expectation has a polynomial form, then the co-
efficients of this polynomial form can be computed using the classical moments. In essence, we have reduced
the information of the conditional moments to the classical moments. Furthermore, Corollary 3.1 shows that
if the coefficient of the lead term of the polynomial is small, then natural moment closures arise. In §5, we
will develop some simple numerical schemes—as a proof of concept—which exploit these results. Before starting
with applications, we need to explore and study the switching behaviour, which is inherent in all GRNs, more
rigorously.

4 Switching Behaviour

We define a switch to be a random variable which has only two states in its state space. Naturally, we interpret
the two states as “on” and “off”. The biological dynamics of a gene are accurately modelled as a switch, hence,
all GRNs inherently contain switches. When genes are activated (transcription), they start producing some
particles (RNAs/proteins), depending on which tier the GRN is modelling. It was shown that this switching
behaviour of the genes is inherently stochastic and furthermore, induces multi-modal behaviour [12, 39]. In
this section, we want to unravel the consequences of the switching behaviour using the conditional expectation
forms derived earlier. We will construct the simplest possible GRN, a network containing one switch and one
particle type, with non-zero covariance. We then derive the forms of the conditional expectation of particles
from the perspective of the switch and vice versa. We also show that the derived results extend to all GRNs,
as a general GRN can be decomposed into blocks of this simple switch-particles network.

Definition 4.1. We define S to be a random variable over the state space Qg := {0,1}. Intuitively we refer
to S as a “switch” and write 0 as off and 1 as on. We define Y to be a random variable over the state space
Qy C Ng. Since samples of Y are non-negative integers, we refer to Y as “particles”. We couple these two
random variables by imposing that cov(S,Y) # 0. Furthermore, Assumptions 2.1 hold for the joint distribution
of S and Y.

4.1 A Switch’s perspective
Lemma 4.1. Let S be a switch and Y be particles as in Def. j.1. Then the following statements hold:
1. E[S] = p(S = on)
2. cov(S, S) = E[S] — E[S]?
3. E[SY] = E[Yon] p(S = on)
4 cov(Y, 8) = (E[Yon] — E[Y]) p(S = om)
5. E[S?Y] = E[SY]

Proof. We will prove the statements in order.
Statement 1:

E[S] = 0p(S=off)+1 p(S=on),
= p(S=on).
Statement 2:
cov(S, S) := (0 —E[S])? p(S = off) + (1 — E[S])? p(S = on),

= E[S]” (1 - p(S = on)) + (1 — 2E[S] + E[S]*) p(S = on),
= E[S]* — E[S]? p(S = on) + p(S = on) — 2E[S] p(S = on) + E[S]? p(S = on),
= E[S]® - E[S]® + E[S] — 2E[S]* +E[S]?,
= E[S] - E[$]*.
Statement 3:
E[SY] := Z OxyxplY =y, S=off)y+ 1 xy x p(Y =y,S = on),
yeQy
= > yp(Y =y,S=on),
yeQy
= Y yp(Y =y|S=on)p(S=on),
yeEQy

= E[Yon] p(S = on).



Statement 4:
cov(Y,S) := E[SY] — E[S]|E[Y],
applying statement & and 1 reduces the right-hand side terms to:

= E[Yon] p(§ = on) — E[Y]p(S = on),
= (E[Yon] = E[Y]) p(S = on).

Statement 5: Since S = S?, the value of E[S?Y] is the same as E[SY]. O
Theorem 4.1. Let S be a switch and Y be particles as in Def. .1, then
cov(Y, S)
ElY,q] = ————FE ElY],
Yor) = ~ S ELS] + EY]
cov(Y,S)

E[Yon] = (1 -E[S]) + E[Y].

cov(S,S)
Proof. We first prove the conditional expectation of the particles given the switch is off. We begin by rearranging
the definition E[Y] := E[Yon] p(S = on)+E[Yog] p(S = off), and then reduce using the statements of Lemma 4.1:
“E[Yon] p(S = on) + E[Y]

El¥or] = p(S = off)

Rearraging Lemma 4.1-4 for E[Y,,] and substituting it in gives:
—(cov(Y,S)/ p(S = on) + E[Y]) p(S = on) + E[Y]

(1 —E[S]) ’
_ —cov(Y,8) —E[Y] p(S = on) + E[Y]
(1-E[S]) ’

_—cov(¥,S) | (1-E[S)E[Y]
1-ES) ' (1-ES)

multiplying the top and bottom by E[S] and applying Lemma 4.1-2 gives us

~ cov(Y,S)
= (5.5 E[S] + E[Y].

Now we prove the conditional expectation of the particles given the switch is on. We begin by rearranging
Lemma 4.1-4 and reducing;:
cov(Y, S) + E[S|E[Y]
E[S] ’

E[Yon] =

multiplying top and bottom by 1 — E[S] gives us
cov(Y, ) (1 — E[S])

= + E[Y],
BB )
then substituting Lemma 4.1-2 into the denominator gives us
cov(Y, S)
= ——"-(1-E[S]) +E[Y].
55 (1= EiS) +El

If we compare the components of the conditional expectation of the switch to the coefficients of the linear
conditional expectation form, (3.2), we see that the conditional expectation of particles with respect to a switch
has a linear form. O

Theorem 4.1 states that the gradient of the line which intersects the points (off, E[Yog]) and (on, E[Ysy,]) is
given by cov(Y,.S)/cov(S, S). By extending this further with the observations on linear conditional expectation
forms in Lemma 3.1, we can show that the line which goes through (off, E[Yog]) and (on,E[Ysn]) also goes
through (E[S],E[Y]) (see Fig. 2A). Hence, if any three out of the four terms: E[S], E[Y], E[Yog], and E[Yon]
are known, then the fourth term—which is unknown—can be reconstructed using Theorem 4.1.

Remark 4.1. We have only given results for a single switch case. Nevertheless, these results can be extended to
multiple switch cases since the multiple switch problem can be reformulated into coupled single switch problems
by increasing the number of dimensions (see Fig. 2B).
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4.2 A particle’s perspective
Theorem 4.2. Let S be a switch and Y be particles as in Def. 4.1. Then for all y € Qy,

p(Y =y | S = on)E[S]
p(Y =y |S=on)E[S]+p(Y =y | S = off) (1 - E[5])

E[Sy] =

Furthermore, let yx € Qy, then
p(Y =yx| S =o0n)=pY =yx|S=off) if and only if E[S,.] = E[S].
Proof. We can prove the first statement using Bayes’ theorem.

E[Sy] :=0xp(S=off | Y =y)+1xp(S=on|Y =y)
_ p(S=onY =y)
p(Y=y)

applying Bayes’ Theorem to the numerator and denominator gives us

_ p(Y =y| S =on) p(S = on)
p(Y =y|[S=on)p(S=on)+pY =y|S=off) p(S = off)’

then simply substituting p(S = off) = 1 — E[S] gives us

_ p(Y =y | S =on)E[S]
p(Y =y |S=o0n)E[S]+ p(Y =y | S = off) (1 - E[I]).

The conditional expectation form of the switch conditioned on the particles seems to take a hyperbolic form.
We now prove the second statement.
Case: (—) Let p(Y = yx | S = on) = p(Y = yx | S = off). We begin with the result of the previous
statement and then reduce:
p(Y =y« | S = on)E[S]
p(Y =yx | S =on)E[S]+ p(Y =yx | S = off) (1 —E[S])’
p(Y =yx| S = on)E[S]
p(Y =y* | S =on)E[S] + p(Y =y | S = on) (1 - E[S])’
_p(Y =ys | S =on)E[S]
- Y =yx[S=on) ’
= E[S].

E[Sy.] =

Case: (+) Let E[S,.] = E[S].

p(Y = yx | S = on) E[S]

E[Sy.] = p(Y =yx | S =on)E[S] + p(Y = yx | S = off) (1 — E[S])’

dividing both sides by E[S] gives

p(Y =yx | S =on)

L= S = [S=on) B8]+ (Y =+ | S = off) (1 —E[S])’

flipping the fraction and then multiplying top and bottom by the denominator gives
p(Y =y | S = on) =p(Y =y« | § = on) E[S] + p(Y =y | § = off) (1 — E[S)).
Finally, collating the like terms reduces the expression to
0=(1-E[S]) (p(Y =yx | S =off) — p(Y = y* | S = on)).

Since E[S] cannot be one, we can conclude that p(Y = yx | S = off) = p(Y = y* | S = on). This completes the
proof in both directions. O
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Corollary 4.1. If the conditional probabilities p(Y = y | S = on) and p(Y = y | S = off) are Poisson
distributed, then
XYM ELS
E[Sy] — (6 1) [ ] " )
(e P AXD)ME[S] + (e=*2/M X)) ™ (1 — E[S])

* = ()\2 — 1) 1
AN log(A1) — log(X2)’
where A1 1= E[Y,,] and Ao := E[Yoq].

Idea of Proof. The statement is proved by substituting the corresponding formulas of the Poisson distribution
into Theorem 4.2 and then reducing. O

From Theorem 4.2, it is clear that the conditional expectation of the switch with respect to particles takes
a hyperbolic form. In the case where the conditional probabilities are Poisson distributed, the conditional
expectation takes the shape of a sigmoid function (see Fig. 3). Furthermore, like in the case of the conditional
expectation of the particles with respect to the switch, if three out of four terms: p(Y = y | S = on),
p(Y =y | S =off), E[S,], and E[S] are known, then the fourth term can be reconstructed using Theorem 4.2.

In this section, we have proven some fundamental results regarding the conditional expectation forms from
the perspective of the switch and that of the particles. We have shown that there is an inherent algebraic
structure in a switch-particle coupled system. To gain further intuition into the theorems given in this section,
we now introduce some simple numerical schemes which use these theorems. We will apply those schemes to
some toy models to see how the conditional expectation forms behave.

5 Application

In the previous two sections we pursued a theoretical exploration in which we derived the relationship between
classical moments and conditional expectations. From our theoretical results, a natural question arises: “Can
the insights from §3 and §4 be used to help improve existing numerical methods used for simulating GRNs?”
Answering such a question rigorously is beyond the scope of this work. However, as a preliminary step, we
propose a new numerical solver which we call ACFE-Ansatz; and a probability distribution reconstruction method
based purely on moments, which we refer to as A CE-Reconstruction. We will introduce these methods and apply
them to some simple examples. It is important to state that the aim is not to perform a comparative study,
but rather to study examples which use the theorems derived in this paper, and through these examples gain
further intuition into the structures between dimensions in GRNs.

5.1 ACE-Ansatz

We propose a new hybrid scheme which exploits the property that polynomial conditional expectation forms
can be derived from classical moments. In essence, our new method is analogous to the Method of Conditional
Moments (MCM), with an alternative method for deriving the conditional expectations. That is, in the MCM,
the equations of motion of the conditional expectations are derived from the CME (§2.2), whereas in our
new method, we will propose a polynomial ansatz for the derivation of the conditional expectations. Then,
utilising Theorem 3.1, we will simply solve for the corresponding classical moments. We refer to this method as
the Algebraic Conditional Expectation Ansatz method (ACE-Ansatz), which we will now compute on the well
studied Simple Gene Switch model [12].

5.1.1 A Simple Gene Switch Model

The model describes a system which consists of a gene interacting with a well mixed pool of mRNA and
proteins. At any point in time only the following three variables of the system can be observed: the state of the
gene, the population counts of mRN A, and the population counts of proteins. We denote this as the processes
X(t) := (G(t), M(t), A(t)), where

e G(t) has a binary state space {on, off}, describing the state of the gene at time ¢,
e M (t) has a positive integer state space, describing the counts of mRN A at time ¢,

e A(t) has a positive integer state space, describing the counts of proteins at time ¢.

12



# Reaction Coeflicient | Stoichiometry | Description

1 off % on Ton = 0.1 (1,0,0) Basal activation

2 on 2%, off Tot = 0.05 (—=1,0,0) Basal inactivation

3 on %% on + mRNA k1 =10.0 (0,1,0) Transcription

4 mRNA 2% v =1.0 (0,—1,0) mRNA degradation
5 | mRNA 22 mRNA + protein ko =4.0 (0,0,1) Translation

6 protein 5 () 2 =0.5 (0,0,-1) Protein degradation
7 off + Protein —° on Ton = 0.015 (1,0,-1) Promoter activation

Table 1: Simple Gene Switch model reactions, propensities and stoichiometries. The system is initialised at
G(0) = off, M(0) =8, and A(0) = 80.

The system can undergo seven reactions which alter its state (see Table 1). Verbosely, reactions one and two
describe the background basal switching of the gene in the system. Reaction three describes the transcription
process, where the gene in the “on” state starts producing mRNA. Reaction five describes the translation
process, where the mRN A is translated to produce a protein. Reaction four and six describe the degradation
of the mRN A and proteins respectively. Reaction seven describes the activation of the promotor region of the
gene by the protein.

5.1.2 Linear ACE-Ansatz Approximation

We will use Theorem 3.1 to perform dimension reduction on the simple gene switch model. In previous literature,
where the simple gene switch model was introduced for dimension reduction, the authors demonstrated that
the marginal distribution of the gene and the proteins could be well approximated by numerous dimension
reduction schemes [29, 39, 12, 14]. We will keep the same setting as in the previous literature to help contrast
the application of our theorems. We will first derive the derivative of the marginal distribution of genes and
proteins. Then, as in (2.10), we will highlight the conditional expectation terms needed to solve for the marginal
distribution. We then apply a linear form ansatz to the conditional expectations. We know from §3.1, that the
coefficients of the linear form are given by the first and second moments. Hence, we will derive the equations
for the moments up to degree two and then close the higher order terms.

We begin by deriving the derivative of the marginal distribution of G and A with respect to time. The steps
from the CME to the marginal distribution are given in Appendix C. For a fixed a € Q4, the following two
equations describe the marginal distributions for the states off and on, respectively:

dp(G = off, A = a;t)
dt

= Tot p(G = on, A = a;t) (5.1)
+ ko E[Mog,a—1(t)] p(G =off, A =0a —1;t)
—_———

()
+72(a+1) p(G=off, A=a+1;t)

Ton + k2 E[Mog,q(t)] +(v2 + Ton) @ | p(G = off, A = a; 1),
—_———
(*)

dp(G =on, A =a;t)
dt

= Ton P(G = off, A = a; 1) (5.2)
+ ko E[Mon,a—1(t)] (G =o0n, A =a— 1;t)
—_———

()
+72(a+1) p(G=o0nA=a+1;t)
+ 7on (@+ 1) p(G = off, A=a+ 1;t)

Toff + k2 E[Mon,o(t)] + 120 | p(G =on, A = qa;1).
—_——
(%)

We see in the equations above that to solve for the marginal distribution, the terms marked by (x), that is,
the expectation of the mRN A counts conditioned on the protein count a and the gene state on or off, need

13



to be estimated. We approximate the conditional expectation by a linear conditional expectation form from
Lemma 3.1. That is, for g € {off : 0,on : 1} and a € Z,, with

cov(G(t), M(#))  cov(A(t), M (1)) (COV(G(t),G(t)) COV(G(t),A(t)))_l
(%) () cov(G(t), A(t)) cov(A(t), A )

we approximate,

saoi=a (2] (854 ]) -

The terms cov(G(t), A(t)), cov(G(t), G(t)), cov(A(t), A(t)), E[A(t)], and E[G(¢)], can be computed using the
marginal distribution p(G = -, A = -;t). We note that after substituting the conditional expectation by a linear
form in (5.3), all the terms we solve for in this section become approximations. However, for brevity we keep
the same notation. A formal notational derivation is given in Appendix D. We now estimate the terms marked
by (), their time derivatives were derived using [9, Lemma 2.1] or [33, Equation 11]:

BIION _ 1, ElG() — M) (5.4)
ABEMQN _ ., (“BIG M)~ EM)) — o EIC M) + FyEG() (5.5)
— 1 E[GM(®)] + 7on | E[M A(t)] — w
e
ABEAC] — by BIG AW)] ~ (0 +92) EIM A)] + ks E[DM (1) (5.6)
— %on | E[M A(t)] — ]E[G(Jifj(tﬂ
%j(t” = ki (2E[G M) +E[G®)]) +m (—2E[M?(t)] + E[M (1)) - (5.7)

To close the equations above, an estimate for the term E[G M A(t)], (x * %), is needed. Hence, we construct a
closure using the equations already known:

E[GM A(t)] = Z am p(G =on, M =m,A=a;t),
a,meZy

= Z am p(M =m|G =on, A =a;t) p(G=on,A=aq;t),

a,meZ

Z Zmp(M:m\Gzon,A:a;t) a p(G =on, A =a;t),

a€Zy \MEZy

= > E[Mona(t)] a p(G = on, A = a;t). (5.8)
aCle (5
Equations (5.1) to (5.8) form a closed system of equations. Since the ansatz was linear, we refer to the
approximation found by solving these equations as a Linear ACE-Ansatz approximation. Note that approxima-
tions with a higher degree ansatz can also be constructed by simply increasing the number of moment equations.
We will compare the quality of the Linear ACE-Ansatz approximation to the approximation constructed by the
MCM method described in [14]. The joint distribution of the simple switch model can be solved using the Opti-
mal Finite State Projection method (OFSP) . We will use the OFSP approximation as a reference distribution
for comparing both approximation methods. We see in Fig. 4B-D, that the ACE-Ansatz’s marginal distribution
approximation is fairly accurate in capturing the shape and bi-modality of the reference distribution. The MCM

3The PyME implementation of the OFSP method and the MCM were used in this work [36, 38]. It must noted that the MCM
module in PyME is not optimised for speed. All code was run on an Intel i7 2.5GHz with 16GB of RAM.
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method captures the bi-modalitiy but does not capture the shape of the marginal distribution in the on state.
The linear ACE-Ansatz only used five equations to estimate the conditional expectations, whereas in the MCM,
277 equations were needed (see Table 2). Even though using more equations did not provide gains in the quality
of the marginal distribution approximation, we see in Fig. 4A-C, that the MCM approximates the expectation
of mRN A and genes better than the ACE-Ansatz. Nevertheless, utilising the structure of a polynomial ansatz,
we were able to construct an approximation which was nearly as accurate as that of the MCM; using only five
equations.

Method | Num Equations | Error in Dist. | Error in Moments | Comp Time
ACE 344-5 0.0396 (0.014,0.134,1.135) 4 sec
MCM 277277 0.526 (0.005,0.043,0.267) 156 sec
OFSP 398760 - - 62 sec

Table 2: Performance comparison between the ACE-Ansatz and the MCM at ¢t = 10. The error in distribution
is the ¢; error between the respective approximation and the OFSP solution. The error in moments is the ¢;
error between the respective moment approximation and the OFSP solution’s moments. The entries in every
line show errors in the approximation of the species (G, M, A), respectively.

In summary, different polynomial ansétze can be used to approximate the conditional expectation structures
between dimensions. As an example, we performed dimension reduction using the linear ansatz. By applying
Theorem 3.1, we could observe that the equations of motion needed to solve for the conditional expectation
are simply the classical moment equations. A future research direction could be to investigate whether the
structures we see in the polynomial forms can be extended to general basis functions, like radial basis functions,
wavelets, etc.

5.2 ACE-Reconstruction

In the previous section, we demonstrated that the ACE-Ansatz could be used to accurately approximate the
marginal distributions. We were able to demonstrate that the linear polynomial forms were sufficient approx-
imations of the conditional expectations. This leads to the next question: “Can the ACE-Ansatz be used to
estimate the conditional variance? If so, can both the conditional expectation and the conditional variance be
used to reconstruct/approximate the conditional probability?” While this question warrants its own paper, we
will give some preliminary insights using the theorems already established in this paper.

In this subsection, we will reconstruct two 2D distributions, both mono-modal with non-zero covariance,
only using the marginal distribution and moments of the joint distribution.

5.2.1 Linear ACE-Reconstruction

Let us consider the distribution in Fig. 5A. We see that the distribution is mono-modal and has non-zero
covariance. We continue referring to the dimension which is conditioned on as X and to the dimension being
conditioned as Y. We see in Fig. 5B, that E[Y,] has a linear form, and Fig. 5C shows that E[Y,?] has a quadratic
form. We first compute the linear and quadratic polynomial approximations for E[Y,] and E[Y;?], respectively
(see Def. 3.1). We begin by solving for the coefficients of the linear approximation of the conditional expectation,

Moments of X Moments of Y | Moments of mixed X and Y
E[X] =33.25 E[Y] = 94.26 E[XY] = 3203.24
E[X?] = 1133.69 E[Y?] =9211.15 | E[XY?] = 318830.26
E[X?] = 39573.27 E[X?Y?] = 1129342.88
E[X4] = 1412921.52

Table 3: Moments of the distribution in Fig. 5A.

Ty |x (€) = K112 + Ko,

where the coefficients are found by solving
]E[X} 1 o K11 _ E[Y]
E[X?] E[X] k1o | | EIXY] |’
Substituting in the terms from Table 3 and solving the above linear system of equations gives that: k17 = 2.343

and k19 = 16.462. For the expectation of Y2 conditioned on X, we can use the same machinery. Let us now
consider a quadratic algebraic form approximation:

2 2
Ny2)x (T) = Ko2 &° + K21 T + Koo,
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where the coefficients are found by solving

E[X?] E[X] 1 K2 E[Y?]
E[X3] E[X? E[X] |e| ta | =]| E[XY?
E[X4] E[X%] E[X? K20 E[X2Y?]

Substituting in the terms from Table 3 and solving the above linear system of equations gives: k9o = 5.210, ko1 =
99.111 and k19 = 9.251. We have just derived an algebraic form for the first and second conditional moments.
Hence, for each = € Qx, we have approximations of the first two moments of conditional probability p(Y =
-] X = z). Now, we want to fit a distribution which approximates the conditional probability. To do this, we
use the method of Mazimal Entropy, which fits a distribution to some prescribed set of moments, such that the
fitted distribution has maximal entropy among all candidate distributions with matching moments. (for further
reading on the Maximal Entropy method please see [34]). In our case, we wish to fit only the first two moments.
We denote the fitting as follows:

p(Y =y |X = 2) = T(ny x (@), 72 x (@) (Y = ). (5.9)

Then the approximation of the joint distribution using the conditional moment approximations is given by

~ 0y x (@), 32 x (2) (Y =) p(X = 2).

If we compare the true joint distribution to the ACE-Reconstruction distribution (see Fig. 6), we see that
the covariance structure and the range of probabilities are similar in both cases. In Fig. 6C, we see that
the ACE-Reconstruction has maximal error near the mode of the distribution and it captures the tails of the
distribution well. For comparison, we also fitted a Gaussian distribution to the mean and covariance of the
original distribution * (see Fig. 6C). We can see that the Gaussian also captures the covariance structure and the
probability range well. However, in contrast to the ACE-Reconstruction, the Gaussian reconstruction captures
the mode of the original distribution well and loses accuracy in the tails. We see in Table 4, that for this
example, the gain in computational accuracy of the ACE-Reconstruction over a Gaussian reconstruction does
not merit the increased computational effort of the ACE-Reconstruction over the Gaussian reconstruction.

(X =2,Y =y) (5.10)

Method | Number of Moments | Error in Distribution
ACE 9 0.0497
Gaussian 5 0.0787

Table 4: Comparison between ACE-Reconstruction and Gaussian reconstruction. Error in distribution refers
to the ¢; error between the respective reconstruction and the true distribution.

5.2.2 Higher Degree ACE-Reconstruction

We saw in the simple linear case that ACE could capture the distribution very accurately. However, a simple
Gaussian reconstruction was also comparably accurate and significantly cheaper computationally. Now we will
consider a slightly more complex example. The distribution in Fig. 7A commonly occurs when the system’s
dynamics moves its distribution into the edge of the state space. In this particular case, the distribution was
taken from an SIR model, at a time point where nearly all susceptible individuals are converted into infected
individuals (see Appendix E for system parameters). We follow similar steps as in the linear example case,
but extend a bit further by constructing a cubic polynomial- and a quartic polynomial approximation of the
conditional moments. We start by writing down the moments which are necessary to approximate the conditional
expectations. For a quartic polynomial form, moments up to degree eight are needed (see Table 5).

Moments of X Moments of Y Moments of mixed X and Y
E[X] = 6.28 E[X°] = 38864736.15 | E[Y] = 131.17 E[XY] = 821.69 E[X?Y?] = 1141745.56
E[X?] = 73.09 E[X°] = 6861261393.8 | E[Y?] = 17277.97 | E[X?Y] = 8815.75 E[X3Y?] = 21874741.71
E[X?3] = 2453.18 E[X7] ~ 126.94 x 1010 E[X3Y] = 187486.58 E[X*Y?] = 843134378.72
E[X*] = 248985.45 E[X?®] ~ 240.45 x 1012 E[XY?] = 108453.02

Table 5: Moments of the distribution in Fig. TA.

We now consider cubic and quartic polynomial approximations of the first two conditional moments, respec-
tively:

lef\x(m) = k13 2% + K12 2% + K11 & + Ko, (5.11)

4A Gaussian reconstruction in this context involves computing the Gaussian distribution over the discrete state space and then
normalising to make the total mass one.
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7712/2|X(33) = kg ¥ + Koz &% + Koo & + Ko1 @ + Kao. (5.12)

The coefficients in the equations above can be found by solving the following system of equations:

EX°] E[X?] E[X] 1 K13 E[Y]
E[XY] E[X?] E[X? E[X] k12 | | E[XY]
E[X’] E[x4 EX3 EX? |°| kn |~ | EX2Y] |
E[XS] E[X®] E[X%] E[X3] K10 E[X3Y]
and
E[XY] E[X?] E[X? E[X 1 K E[Y?]
E[X’] E[X‘] E[X3 E[X?] E[X] Ka3 E[XY?]
E[X] E[X?] E[X* E[X3] E[X?] |e| ky | = | EX2Y?
E[X7] E[X®] E[X®] E[X%] E[X?] Kot E[X3Y?]
E[X%] E[X7] E[X® E[X°] E[XY] K20 E[X4Y?]

We see in Fig. 7 that the conditional moment approximations do not fit as tightly as in the previous example,
however, they do capture the right trend.

Like in the linear case, we use the Maximum Entropy method to approximate the conditional probability
using the first two conditional moment approximations given in (5.11) and (5.12),

p(Y =y |X = 2) = (05 x (2), 032 x (2)) (Y = ). (5.13)
Then the reconstruction of the joint distribution is given by
p(X =2, =y) =~ Uy x (2), 072 x (2) (Y = y) p(X = z). (5.14)

We see in Fig. 8 that the ACE-Reconstruction performs much better than the Gaussian reconstruction. This
is illustrated in Table 6, which shows that the expected error of the ACE-Reconstruction is approximately
twelve times smaller than that of the Gaussian reconstruction. In general, distributions close to boundaries are
difficult to compute, because the boundary forces the distributions to bend. This makes their approximation
computationally challenging. The ACE-Reconstruction, which didn’t give a perfect fit, nevertheless captured
some of these dynamics by approximating the underlying conditional moments. It must be noted that the
Gaussian reconstruction was done with far fewer moments than the ACE-Reconstruction, so it is not a fair
comparison to only look at the shape. Nevertheless, the aim of this example was to demonstrate that the
reconstruction of complex distribution shapes is possible; given that there is a smooth underlying manifold in
which the conditional moments are embedded.

Method | Number of Moments | Error in Distribution
ACE 16 0.0378
Gaussian 5 0.4599

Table 6: Comparison between ACE-Reconstruction and Gaussian reconstruction. Error in distribution refers
to the ¢; error between the respective reconstruction and the true distribution.

We have given some preliminary evidence that distributions can be reconstructed using the conditional
moments. However, there is much scope to improve this approach. For example, when the first and second
conditional moments are approximated separately, two independent linear systems of equations are solved.
While this is computationally simple, in many cases the positivity condition of the variance could be violated
due to fitting errors. A better strategy which fixes this problem would be to set up a non-linear system of
equations using Eve’s Law. That is, we would trade a linear system of equations for a non-linear system of
equations to preserve interpretability of the approximation.

6 Discussion

When presented with a high dimensional GRN, we are quick to reach for dimension reduction methods focused
around principles of time scale separation and volume size expansion. These methods are effective at exploiting
particular structures in the network, but are not an overarching framework to help decompose and understand
GRNs. In this paper, we introduced an algebraic framework to describe the relationship between species
in a general Kurtz process, and showed that conditional expectations are the key to understanding these
relationships. We then proved that if the conditional expectation has an algebraic form, then the form can be
inferred from the classical moments. In short, conditional expectations decompose the dimensional relationships,
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and the moments decompose the conditional expectations, elucidating that the moments contain all critical
information about the network. We then proved that GRNs inherently have algebraic forms between dimensions.
Hence, one can translate the theory which we have developed to any general GRN.

To show that there are potential applications for the theorems developed in this work, we touched on
two new methods: one to simulate/evolve GRNs using a polynomial conditional expectation ansatz; and one
to reconstruct complex distribution shapes using conditional moments. Both cases gave positive preliminary
results in favour of developing new numerical schemes using an algebraic conditional expectation ansatz.

This algebraic line of investigation can be extended into many aspects of GRNs. For example, we could
investigate mappings which project the network onto a domain which yields lower degree conditional expectation
forms (like the concept of linearisation in numerics). Conditional expectation could also be applied in model
selection, where similarity metrics can be designed using the algebraic forms of the conditional expectations
between dimensions.

In summary, conditional expectations are critical for understanding and decomposing GRNs. We proved
that the algebraic perspective is a robust and intuitive framework for studying such networks. Future research
down this line of thought is imperative.
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A  Proofs

Proof of Lemma 3.1-3. We substitute the conditional expectation form into Eve’s law (Law of Total Variance)
and then reduce.

Eve’s Law states that
cov(Y,Y) = E[cov(Yy, Yo)] + cov(E[Y,], E[Y,]).

Verbosely, the total variation of Y is the sum of the expectation of the conditional variances and the variance
of the conditional expectation. We begin by reducing the covariance of the conditional expectations:

cov(EY,LEY]) = > (B[] — E[Y]) (B[] - E[Y])" | p(X =),

TEQx

substituting the linear conditional expectation form and the expanding gives us

= 3 [0z +B—EY) @z + 8 -EY)] p(X =2),

€N x
=> [(aa:+E[Y]_QE[X]_E[Y])(QHE[Y]_aE[X]_E[Y])T} p(X =),
€N X
= Z [(aa:—aE[X]) (am—a]E[X])T} p(X = z),
TeEQx
= Y o |@—EX]) (@ —EX])"] " p(X = 2),
TEQx
=a lz (xE[X])(xE[X])Tp(X:v)] a’,
TN X

substituting the definition of a covariance gives

=acov(X, X)al.
Substituting this term above into Eve’s law gives us that,

E[cov(Y,, Y:)] = cov(Y,Y) — acov(X, X) a®.

B Parameters of the three models

# ‘ Reaction ‘ Coefficient ‘ Stoichiometry ‘ Description
1| 05X | ¢ =500 (1,0) Birth of X
2| X &0 | =10 (—1,0) Death of X
31 02%Y | e3=200 (0,1) Birth of Y
41 Y50 | cs=10 (0,-1) Death of Y

Table 7: Model 1 system parameters

# ‘ Reaction ‘ Coefficient ‘ Stoichiometry ‘ Description
1 (RN c1 =10.0 (1,0) Birth of X
2 X 20 ca = 1.0 (—1,0) Death of X
3| X3BY+X | e3=40 (0,1) Autocatalytic production of Y using X
4 Y 50 cy =0.5 (0,-1) Death of Y

Table 8: Model 2 system parameters
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# ‘ Reaction ‘ Coeflicient ‘ Stoichiometry ‘ Description
1 0 X c1 =50.0 (1,0) Birth of X
2 X 20 cz = 0.01 (—1,0) Death of X
312X B Y +4+2X c3 =04 (0,1) Autocatalytic production of Y using two X
4 Y 50 cy = 1.0 (0,-1) Death of Y

Table 9: Model 3 system parameters

C Simple Gene Switch Derivations

C.1 Chemical Master Equation

dp(G =off, M = m, A = a; t)

= Tof (G =on, M = m, A = a;t)
dt

+ 71 (m+1)p(G=offf M =m+ 1, A =a;t)

+ romp(G=o0ff, M =m,A=a—1;t)

+ y2(a+1)p(G=0off, M =m,A=a-+1;t)

—[ron + (71 + K2) m + (v2 + Ton) a] p(G = off, M = m, A = a; t).

dp(G =on, M =m, A =a;t)

= tonp(G=off, M = m, A =a;t)

dt

+rip(G=on,M=m—1,A =a;t)

+ 1 (m+1)p(G=onM=m+1,A=ait)

+ kogmp(G=on, M =m,A=a— 1;t)

+ v (a+1)p(G=on, M =m,A =a+1;t)

+ Pon(a+1)p(G=0off, M =m, A =a+1;t)

— {og t r1+ (1 +r2)m+y2a}p(G =0n, M =m,A=a;t)

C.2 Marginal Distributions

We follow the same steps as in the generalised form (see §2.2). Deriving the CME for the marginal distribution
of the gene and the proteins involves the following two steps:

e substituting p(G=-M=-A=t)=pM=-|G=-,A=t) p(G=-,A=t),
e suming over all m € ), and then collating all conditional probability terms.

C.2.1 Step 1:

dp(G =off, M =m,A =a;t)
dt

= Toff P(M = m |G =o0n, A =a;t) p(G=o0n,A =aj;t)
+ A1 (m+1)p(M=m+1|G=off, A =a;t) p(G = off, A = a; t)
+ komp(M =m |G =offf, A =a—1;t) p(G =off, A = a — 1;t)
+ 42 (a+1)p(M =m |G =off, A=a+1;t) p(G = off, A = a + 1; 1)
—[ron + (71 + Kk2) m + (v2 + Fon) al p(M = m | G = off, A = a; 1) p(G = -, A = -1 1).

dp(G =on, M =m, A = a;t)

= Tonp(M =m|G = off, A = a;t) p(G = off, A = a; t)
dt

+ k1 p(M=m—1|G =o0on,A =a;t) p(G =on, A =a;t)
+v1(m+1)p(M=m+1|G=o0n,A=a;t) p(G=o0n,A=ajt)

+ romp(M=m|G=on,A=a—1;t) p(G=on,A=a—1;t)

+ v (a+1)p(M =m |G =o0on,A=a+1;t) p(G=o0on, A =a+1;t)

+ fon(a+1)p(M =m |G = off, A = a+ 1;t) p(G = off, A = a + 1; )

— {rom+r1+ (71 +r2)m+v2a}p(M =m|G=on, A=ajt) p(G=on,A=ait)

C.2.2 Step 2:

dp(G =off, M = m, A = a; t)

=  Tof (Zp(]\/] =m|G =on,A= a:t)) p(G =on, A =a;t)
dt ™

Elng

+ v1 (Z(m+1)p(M:m+1\G:or-r,A:a;t)) p(G = off, A = a; t)
™

+ ko (Zmp(M:wn\G:oﬁ‘,A:a—l:t))p(G:oﬂ',A:afl;t)
m

+ vz (a+1) (Zp(M:m|c:off,A:a+1;t,)> p(G = off, A = a + 1; )
m

- [ron + (Zm +ro)m p(M =m|G=off, A = a;t)> + (72 + Fon) a| P(G = off, A = ait).
m
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dp(G=on,M =m,A = a;t)
Ton

> -

S p(M =m|G =off, A = a;t)) p(G = off, A = a; t)
m dt

m

+ Ry (Zp(M='m71\G=on,A=a;t)) p(G =on, A = a;t)

m

+ 7 (Z(er )p(M =m+1|G =o0n,A= a;t)) p(G =on, A = a;t)

™m

+ ko (Z'rnp(]b{:'m\G:On,A:u.—l:t)) p(G =on,A=a—1;t)

m

+ va (a+1) <Zp(M=m\G=on,A=a+1;t)) p(G =on, A =a+1;t)

m

+ %on (a + 1) (Zp(M=m\G=ofr,A=a+1;t)> p(G = off, A = a + 1;t)
™

- {TQH“FK:{«F (Z(“fl + ko) mp(M =m |G =on, A =ajt) ) +'72a:| p(G =on, A =ajt)
™

D Formal ACE-Ansatz approximation derivation

Before we begin the derivation, it is important to discuss Assumption 2.1-3. We state that the joint distribution
needs to have non-zero probability over all of the state space through all time. We can easily violate this
condition by starting the Kurtz process with the initial probability distribution which is non-zero over only a
subset of the entire state space (e.g. a single state). However, the CME generator (2.4) has the feature that
regardless of the initial condition, in an infinitesimal time, all the states have non-zero probability. Hence,
numerically, if the processes does start at a single state, we can evolve it forward by a small time step using
OFSP, and then use this time point for the initial condition in the dimension reduction methods. In the case
of the Simple Gene Switch example in §5.1.2, we used t = 1 as the starting point for all dimension reduction
methods.

We use the following notational convention: the approximation of the probability measure p(G = g, A = a;t)
is denoted by the function w(g, a,t), furthermore, the approximation for the expectation operator E[e(t)] is
denoted by the function 74 (). Then the formal derivation of equation (5.1) to (5.8) are given by equations (D.1)
to (D.12).

w = Toﬂ-w(on, a,t) (D.l)
+ ky gy (off, a — 1,t) w(off,a — 1,1)
+v2 (a+1) w(off,a+1,t)
- (Ton + k2 g (off, a, t) + (72 + Ton) a) w(off, a,t),
W o w(off, a, ) 2)

+ k2 mag(on,a — 1,t) w(on,a — 1,t)

+ 72 (a+ 1) w(on,a+ 1,t)

+ Ton (@ + 1) w(off,a + 1,1)

— (Toﬂ‘+ kanar(on,a,t) + 2 a) w(on, a,t).

ma)(g,a,1) = a ([ ; } - [ ngg D + (D) (D.3)

dndLi(t) = ki na(t) — 1 (t). (D-4)

MGT];M = Ton (—nc M (t) =1 (1)) — Tomr 1 1 () + k1 ne(t) (D-5)
— 116 m(t) + Ton (Mar a(t) — nG ar a(t)).

‘“71\2724(’5) = kinca(t) — (v +72) nv alt) + k2 a2 (1) (D-6)

—Ton (M A(t) — 16 M a(t))
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dnar2(t)]

g =k @nem(®) +ne(t) + 1 (=2nae () + 0 (D)) - (D.7)
ne ara(t) = }; | (on, a,t) aw(on, a,t). (D.8)
=

nat) =Y a[wlon,a,t) +w(off,a,t)]. (D.9)

acZy
nax(t) = Y a® [wlon,a,t) + w(off,a,1)]. (D.10)

acZy
ne=(t) = na(t). (D.11)
i Lo = nomat) @ =m@na(o) ] (10 el et Do )1. (D.12)

E SIR system parameters

The initial starting population was set to (S(0) = 200, I(0) = 4). The OFSP method was configured to have
a global error of 1079, with compression performed every 10 steps where each time step was of length 0.002.
The distribution is the snapshot of the system at t = 0.15. We also omit the recovered state since the total
population is conserved, that is, S(t) + I(¢) + R(t) = 204 for all time.

# ‘ Reaction ‘ Coefficient ‘ Stoichiometry ‘ Description
1| S+T52I| ¢=03 (-1,1) Susceptible person becomes an infected person
2 I290 ca =55 (0,-1) Infected person leaves the system

Table 10: SIR system parameters
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ACE-Reconstruction and Gaussian reconstruction in the adjacent heat maps. The intensities are corresponding
to the colour bar given on the right. (Bottom row) The heat maps show the pointwise absolute difference
between the reconstructed and the original distribution, the reconstruction method is given in the column
heading. The intensities are corresponding to the colour bar on the right.
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Figure 7: A. Joint probability distribution of the SIR system (Appendix E) plotted via a contour plot. B.
The conditional expectation of the distribution in (A.) illustrated with a red crossed line (-x-) and the cubic
ACE approximation of the conditional expectation illustrated with a dashed green line (——). C. The squared
conditional expectation of the distribution in (A.) illustrated with a red crossed line (-x-) and the quartic ACE
approximation of the conditional expectation illustrated with a dashed green line (——).
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Figure 8: (Top row) Heat maps showing the original distribution to be approximated on the left, then the
ACE-Reconstruction and Gaussian reconstruction in the adjacent heat maps. The intensities are corresponding
to the colour bar given on the right. (Bottom row) The heat maps show the pointwise absolute difference
between the reconstructed and the original distribution, the reconstruction method is given in the column
heading. The intensities are corresponding to the colour bar on the right.
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