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Abstract. Volumetry of the cartilage of the knee, as needed for the

assessment of knee osteoarthritis (KOA), is typically performed in a te-

dious and subjective process. We present an automated segmentation-

based method for the quantification of cartilage volume by employing 3D

Convolutional Neural Networks (CNNs). CNNs were trained in a super-

vised manner using magnetic resonance imaging data as well as cartilage

volumetry readings given by clinical experts for 1378 subjects. It was

shown that 3D CNNs can be employed for cartilage volumetry with an

accuracy similar to expert volumetry readings. In future, accurate au-

tomated cartilage volumetry might support both, diagnosis of KOA as

well as assessment of KOA progression via longitudinal analysis.

Keywords: Deep learning, imaging biomarker, radiomics, cartilage morphom-

etry, volume assessment

1 Introduction

Knee osteoarthritis (KOA) is a degenerative disease which causes pain and de-

creased mobility. It affects over 40 million Europeans and the costs are esti-

mated at 0.5% of the gross national product [1]. Articular cartilage is one of



the most relevant tissues involved in the disease process. It is recommended to

employ Magnetic Resonance Imaging (MRI) for assessment of cartilage degen-

eration [2]. Several biomarkers derived from MRI data such as cartilage volume,

cartilage thickness, and denuded cartilage area are used to assess the risk for

KOA development and KOA progression [3–6]. In particular, quantification of

longitudinal loss of cartilage volume shows potential for this assessment. Thus, it

is desired to apply cartilage volumetry to the data of large epidemiologic studies

such as the Osteoarthritis Initiative (OAI) [7], the Study of Health In Pomera-

nia [8], or a recently performed BMBF study [9]. This, however, requires precise

3D segmentations for at least two time points. Manual cartilage segmentation is

time-consuming, tedious, and results in large inter- and intra-observer variations,

rendering a longitudinal analysis challenging. Moreover, Graichen et al. [10] re-

ported absolute differences between cartilage volume analysis based on MRI and

the patients’ actual in vivo cartilage volume of 10.5% for the lateral tibial car-

tilage (LTC) and 11.5% for the medial tibial cartilage (MTC). The systematic

difference was 3.6% and −3.1%, respectively [10].

For supervised training of automated segmentation methods, a dataset con-

taining segmentation masks of the articular cartilage is accessible via the OAI

database. This dataset was already used in previous approaches, e.g. for training

k-nearest neighbour classification [11], 3D CNNs segmenting multiple small MRI

subvolumes [12, 13], and 3D CNNs segmenting one larger MRI subvolume [14].

However, the given segmentation masks were generated using a semi-automated

segmentation tool. For this reason, they are not sufficiently precise to train an

algorithm and to evaluate its clinical value.

In this study we trained 3D CNNs employing reliable volumetry data from

the OAI. Since no segmentation masks were provided together with these data,

we generated our own. We utilized the OAI reference segmentations to compare



our method to other approaches (cf. [11–14]). Finally, we showed that 3D CNNs

can be trained via accurate segmentation masks and volumetric readings such

that the agreement between automated cartilage volumetry and clinical experts’

volume readings is significantly improved compared to existing approaches.

2 Materials and Methods

Sagittal Double Echo Steady State MRI data of 1378 subjects from the OAI

were utilized for our study. We employed the method of Ambellan et al. [13]

for fully automated pre-segmentation of the MRI data (i.e. the tibial bone and

the tibial cartilage). 3D CNNs were trained using these automatically computed

masks and the effect of adding experts’ cartilage volume readings as an addi-

tional criterion to the loss function was evaluated for the purpose of establishing

a fully automated and accurate method to determine the volume of cartilage. Fi-

nally, the segmentation accuracy was quantified on OAI reference segmentations.

Our work yields two major contributions:

i) Training 3D CNNs using automatically computed segmentation masks. The

results outperform established methods for articular cartilage segmen-

tation.

ii) Adding an additional loss term considering the volume difference between

automated volumetry and volumetric measures given by experts. The results

of our automated method is as accurate as the experts’ volumetry.

2.1 MRI datasets

Our methods were assessed on MRI data from the OAI:

– Dataset Chondrometrics: Measures of tibial cartilage volume for 1378 sub-

jects provided by Chondrometrics (Ainring, Germany).



– Dataset Imorphics: Segmentations of tibial cartilage for 88 subjects (2 time

points: baseline and 12-months follow-up) provided by Imorphics (Manch-

ester, UK).

These two datasets do not share any common subjects. Dataset Chondrometrics

consists of a larger sample size than Dataset Imorphics and high trust can be put

into the volumetry readings performed by the clinical experts of Chondrometrics.

Unfortunately, no segmentation masks were supplied by the OAI database for

the subjects of this dataset.

2.2 Articular cartilage volumetry employing 3D CNNs

3D CNN architecture

3D U-Nets with an architecture similar to the 2D U-Nets as proposed by Ron-

neberger et al. [15] were employed (for more details see e.g. [12]). To consider

memory consumption, regions of interest (ROIs) were computed such that the

data was reduced to a dimension of 160×64×128 (anterior-posterior, superior-

inferior, lateral-medial – cf. Fig. 1). We utilized the fact that tibial cartilage is

located on the tibial plateau. Hence, a subvolume of the MRI as well as one of

the corresponding segmentation mask were extracted at the superior margin of

the segmented tibial bone for supervised training.

The employed 3D CNNs had five convolutional layers with two 3×3×3 convolu-

tions per layer and an increasing number of kernels (32, 64, 128, 256, 512). The

3×3×3 convolutions were activated by ReLUs, except for the last 1×1×1 convo-

lution in which a sigmoid function was utilized. In each layer the first convolution

was followed by 10% Dropout.



Fig. 1. Illustration of a 3D ROI (wire box). Volume rendering of segmentation masks
of tibial bone (gray), medial tibial cartilage (orange), and lateral tibial cartilage (blue).

Training and Evaluation Approaches

The quality of CNNs in the context of semantic image segmentation is often

measured as how well a segmentation result matches a gold standard, as for

instance being given by human experts. In this study, two different approaches

for such an evaluation were investigated. In a first Approach A we evaluated

the potential of 3D CNNs trained on automatic pre-segmentations. The Dice

Similarity Coefficient (DSC) was employed as a two-class loss function (class

1: MTC; class 2: LTC). We hypothesize that these CNNs are capable to learn

the semantic information provided by the training data and to generalize well

for the data of Dataset Imorphics. However, this training data was not created

by clinical experts using appropriate tools. Thus, albeit an adequate agreement

to the cartilage volume measures by Chondrometrics is desired, this cannot be

expected employing Approach A. For this reason, we further evaluated a second

Approach B, in which the volumetry information provided by Chondrometrics

is additionally taken into account during training. Hence, in Approach B, the



(a) Appr. A: MTC (b) Appr. A: LTC (c) Appr. B: MTC (d) Appr. B: LTC

Fig. 2. Bland-Altman plots for Approach A (left) and Approach B (right). Comparison
of our automated MTC and LTC volume measures vs. those provided by Chondromet-
rics.

Volume Difference (VD) was considered for MTC and LTC, respectively. The

VD is defined as

VD = 100 · C− | Y |
| Y |

, (1)

with C being the gold standard measures of MTC and LTC volume as provided

by Chondrometrics and Y being the respective automated segmentation. The

total loss function L in Approach B was given as the sum of DSC and VD:

L = DSC + αVD , (2)

where VD was weighted during training by the factor α ∈ R+ in order to equalize

the contribution of the two summands (after each epoch α was updated). Both

approaches were implemented using TensorFlow and Keras and trained using an

NVIDIA Tesla P100 GPU.

3 Experiments and results

3D CNNs were trained on Dataset Chondrometrics using the two different loss

functions as described in 2.2. For this purpose the dataset was randomly divided

into two groups and both approaches were trained in a two-fold cross-validation

setting employing the respective dataset only. As a means of data augmenta-

tion additional subvolumes were extracted at three random positions around the



cartilage (normal distribution: µ = 0 voxel, σ = 20). This procedure resulted in

2756 training images for each group of the cross-validation split.

As shown in Table I for the data of Dataset Imorphics, Approach A yielded

a segmentation accuracy of 88.02 ± 4.62 for MTC and 91.27 ± 2.33 for LTC

at baseline and 87.43 ± 4.02 and 90.78 ± 2.42 at 12-months follow-up (12m).

Moreover, Approach A resulted in a mean volume difference to the values of

Chondrometrics of 22.7% ± 13.5 for MTC and 34.0% ± 22.4 for LTC (Fig. 2).

Approach B yielded higher volume agreement on Dataset Chondrometrics with

0.3% ± 8.75 for MTC and 6.2% ± 9.4 for LTC (Fig. 2), but in Dataset Imor-

phics the segmentation accuracy decreased slightly to 82.85 ± 5.53 for MTC and

86.11 ± 4.37 for LTC at baseline and 82.27 ± 5.80 and 85.83 ± 4.30 at 12m.

In comparison, the method proposed by Dam et al. over-estimated the cartilage

volume on average by 4% for MTC and 14% for LTC compared to the measures

by Chondrometrics [11]. We confirmed the over-segmentation via the method of

Ambellan et al., where the Imorphics data acted as gold standard for training

and no volumetric loss was used. Applying the method of Ambellan et al. to

the data of Dataset Chondrometrics, the volume error was 19.0% and 27.6%

for MTC and LTC, respectively. Compared to Dam et al. and Ambellan et al.,

Approach B achieved a similar segmentation accuracy w.r.t. the DSC on Data-

set Imorphics – but yielded volumes clearly closer to the ones provided by the

clinical experts of Chondrometrics.

Complete volumetric analysis of the tibial cartilage took on average approx. 5s

per knee on a workstation with NVIDIA GTX 1080 Ti GPU.

4 Discussion and conclusion

Employing Approach A, the segmentation accuracy outperformed previous

methods as measured with the DSC for data of Dataset Imorphics. We hypoth-



Table I. Results of different methods for the automated segmentation of MTC and
LTC in Dataset Imorphics (baseline and 12-months follow-up time point).

baseline
MTC LTC

Dam et al. [11] 81.20 ± 5.50 86.60 ± 3.40
Raj et al. [14] 80.66 85.65
Tack et al. [12] 85.13 ± 10.5 90.23 ± 4.64
Ambellan et al. [13] 86.10 ± 5.33 90.40 ± 2.42
Approach B 82.85 ± 5.53 86.11 ± 4.37
Approach A 88.02 ± 4.62 91.27 ± 2.33

12m
MTC LTC

Dam et al. [11] — —
Raj et al. [14] — —
Tack et al. [12] 85.86 ± 5.03 90.20 ± 2.64
Ambellan et al. [13] 85.80 ± 5.00 89.10 ± 2.41
Approach B 82.27 ± 5.80 85.83 ± 4.30
Approach A 87.43 ± 4.02 90.78 ± 2.42

(a) Approach A (b) Approach B (c) Imorphics

Fig. 3. Coronal view of the medial compartment of OAI patient Id #9892765: Results
of Approach A (a), Approach B (b), and reference segmentation of Imorphics (c).

esize that the increase in accuracy was due to both, the full 3D character of our

CNN as well as the additional amount of training data. Although the segmen-

tation accuracy on Dataset Imorphics illustrates the validity of 3D CNNs for

the task of segmentation, over-estimation of the cartilage volume compared to

Chondrometrics is severe, hence, limiting an application for automated cartilage

analysis.



Approach B yielded a significantly higher agreement in volumetry on Data-

set Chondrometrics, with a slight decrease of the segmentation accuracy for the

data of Dataset Imorphics. As shown in Fig. 3 the specificity is slightly increased

in areas of degenerated cartilage, which is hard to differentiate from healthy tis-

sue.

In future, we will apply our accurate volumetry method for the entire OAI

database, to provide segmentation masks and volumetry data, that can be used

as a gold standard for longitudinal assessment of OA progression as well as for

the development of novel methods.
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design. Sozial-und Präventivmedizin, 46(3):186–194, 2001.

9. OVERLOAD-PrevOP: Verständnis und Prävention der Progression der primären
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