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1 Introduction
Advanced Driver Assistance Systems (ADAS) and Automated Driving (AD) functions comprise mod-
ular interacting software components that typically build upon a layered architecture, such as depicted
in Figure 1.1. The two bottom layers belong to the “classical” reactive control domain. Above these,
ADAS and AD functions realize higher-level control regimes, requiring often complex sensor process-
ing and fusion, feature extraction and maintenance of (environment) models. The components in
these layers are typically developed by different teams, using different tools for different functional
purposes. This results in a heterogeneous mixture of modeling and programming languages with
different underlying models of computation (MoC) employed for the various functional components.
Another key characteristic of ADAS/AD design is the heterogeneity with respect to the interaction
between the individual functions. While we typically find synchronized and rather linear data flows
at the lower (reactive) layers, the situation is largely different at the higher layers and across layers.
Here, we find complex interactions, including service-oriented interfaces and highly asynchronous data
flows such as for sensor fusion.
It is the heterogeneity which makes the design of ADAS/AD functions a challenging task. They are

in general functions with high criticality level, which calls for rigorous application of formal methods
that ensure the system is working properly. This in turn requires design processes where the system is
developed along well-specified requirements. Presently, we focus on the timing aspect as an important
part of safety. For example, obstacles must be detected within a certain time-frame in order to plan
and perform appropriate avoidance maneuvers. The major issues when developing such systems are
the integration of components with heterogeneous underlying MoCs and heterogeneous interaction
needs while guaranteeing the satisfaction of all requirements, and a coherent handling of timing
properties. This does not only hold for the functional design, but along the whole development
process down to the target platform, where further synchronization challenges imposed by technical
limitations need to be addressed.
In order to address those challenges, a common approach is to embed the different components into

a common semantic framework, thereby enabling analysis of the components using the same notion of

Sensor Actuator Control
Sensor /
 Actuator

Model
10 ms

Coordination/Communication

Dynamic Control
Vehicle

Dynamic
Model

100 ms

Coordination/Communication

Trajectory Segment Execution
Mission
Space
Model

1 s

Coordination/Communication

Trajectory PlanningEnvironment
Model 10 s

Figure 1.1: Layered Architecture for ADAS/AD
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time. Such framework has been developed for example in the SPEEDS project [11], which builds upon
a generic notion of components and contracts. Benefits in supporting the design process are elaborated
e.g. in [4, 2]. Addressing similar objectives, four essential design and programming paradigms
have been identified and elaborated in the MULTIC project with the German Association of the
Automotive Industry (VDA) Working Group “Software and Electronics” of the Research Association
for Automotive Technology (FAT) [3]. These paradigms, which are briefly introduced in Chapter 2,
can be instantiated in various design processes using different modeling and programming languages.
An important objective of the MULTIC project was to cast these – conceptual – paradigms into an

industrial context. To this end, the concepts have been exemplified by a case study where most of
the proposed building bricks are applied to an automated driving function, including the well-defined
proof obligations enabling safe and reliable reasoning about the design using industrially relevant
modeling- and programming languages. To this end, a simulation based method has been developed
for validation and verification of timing specifications, and has been manually implemented to perform
the corresponding steps to show its applicability.
This document presents the results of the MULTIC-Tooling project, where the previous ad-hoc

realization shall be replaced by an automated process that is based on a well-defined foundation.
This mainly concerns the automatic translation of SysML models with their timing specifications
into executable generators and monitors, which are in our case implemented in C++ code for the
inclusion in a SystemC based simulation framework. To this end, an Eclipse-based tool has been
implemented, which supports modeling and analysis according to these concepts. The tool integrates
the Papyrus modeling environment, where engineers can design systems using the modeling language
SysML, which we consider a particular instance of the compositional framework. The tool also allows
expressing timing requirements in terms of contracts. For this, a pattern-based specification language
has been defined in [3], enabling engineers to specify many relevant timing phenomena. Finally,
the tool provides analysis of such models and requirements based on the SystemC [13] simulation
framework, which allows for reasoning about valid refinement of specifications along the systems’s
decomposition, i.e., to perform virtual integration testing (VIT). To this end, the tool generates
executable SystemC code from the input model, consisting of generators and observers according to
the specified contracts. The generated code can be extended with user-defined function code, which
enables functional analysis along the timing aspect.

Structure of the Document The document consists of two parts. The first part subsumes Chap-
ter 3 – 6, and concerns the concepts and formal underpinning for the construction of executable
generators and monitors for timing specifications. The second part provides an overview on the tool
architecture, some interesting implementation details, as well as a list of test models used for the
development of the tool.
The first conceptual part discusses in detail:

1. Syntax and Semantics of the MULTIC Timing Specification Language (MTSL).

2. Definition of a class of automata suitable to provide an operational semantics for MTSL spec-
ifications.

3. A language for specifying a sub class of these automata in an implementation-oriented way.

4. Corresponding generators and monitors for the elements of MTSL.

The first topic, the definition of MTSL, builds on the definitions made in the predecessor project
MULTIC. It rephrases – with minor improvements and corrections – and extends the language ac-
cording to the shortcoming identified in the MULTIC project. These extensions mainly concern first
steps towards the definition of useful event relation functions needed for causal reaction and age
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patterns, and patterns that exploit local clocks. Compared to the previous version, the definition of
trace composition has been revised at is was broken.
For the definition of a suitable automaton class, we also rely on previous work. The class of hybrid

automata, developed by Thomas Henzinger in 1996 [7], has gained much attention since then as a
universal formalism to specify and analyze many practically relevant systems. For example, translation
schemes exist for Matlab Simulink models into hybrid automata for further exploration [1]. Also, there
is considerable amount of analysis support for this system class, as for example elaborated in [12].
Finally, hybrid automata provide the formal basis for the definition of the contract theory introduced
in the MULTIC project, able to capture all kind of variable evolutions. This document contains the
original definition of [7] with only a mild modification in order to enable considering events and other
variable evolutions in the same way.
Because the formal definition of hybrid automata is not well-suited for implementation purposes,

the third topic concerns the definition of a more implementation-oriented specification language. It
extensively borrows concepts from the programming language C++, yet makes some restrictions in
order to maintain implementability. The resulting sub-class of automata is however expressive enough
for our purposes (and many other). The fourth topic concerns the main goal of the present document,
which is the provision of an operational semantics for MTSL in terms of the intermediate language.
The second part of the document, which is related to the implementation and usage of the tool

consists of Chapter 7 – 11. It starts with a definition of so called Design Rules that impose particular
constraints on the SysML models in order to be available for translation. The following parts concern
the architecture of the frontend part of the tool, which is based on and extends the Eclipse modeling
framework. Also some implementation details about the simulation backend are given for those who
may modify it in the future. Chapter 10 and 11 are again rather for users of the tool, listing possible
errors that may occur in the tool flow, and providing insights in the test models.

How to Read the Document The document provides information for three types of audience. For
those who wish to use the tool, Chapters 7, 3 and 10 may be of interest. The former two explain
what the input for the simulation should look like, while the latter gives insight of what may went
wrong. Also the test models discussed in 11 may be useful, as they may serve as examples.
For developers of the tool and those who want to get an overview of how the tool is structured,

Chapters 8 and 9 are of interest, discussing the overall architecture and implementation details. Also
interesting details on how the simulation backend could be extended to include user-defined code is
discussed in Chapter 9.
Formal background of what is happening behind the scenes, and why the tool is doing what it

does, is discussed in Chapters 4 – 6. An overview of their content has been given above.

Additional Material The present document is complemented by a set of additional material. The
tool prototype described in this document is provided pre-installed in a virtual box appliance. The
appliance also contains the sample models described in Chapter 11. To make it easier to get started,
there are two video tutorials in German and English. The first tutorial deals with the correct SysML
modeling with focus on the Multic Design Rules (see Chapter 7) and the second video explains how
to perform a Virtual Integration Test. Finally, the Doxygen documented source code is provided.
Thus the possibility is given to adapt the prototype to the own needs or to develop it further.
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2 Prerequisites
As this document builds upon the results of the predecessor project MULTIC, the reader is assumed
to be at least partially familiar with the results reported in [3]. The focus of the MULTIC projects
is on supporting methods and approaches to the engineering challenges imposed by the increasing
complexity of functions and their interaction in today’s and future automotive software applications.
Advanced Driver Assistance Systems (ADAS) and Automated Driving (AD) comprise modular inter-
acting software components that typically build upon a layered architecture. As these components
are developed by different teams, using different tools for different functional purposes and building
upon different models of computation, an integration of all components guaranteeing the satisfaction
of all requirements is of major importance within the process of developing such systems.
System behavior typically subsumes different aspects, such as the functional aspect, timing, safety,

and others. The MULTIC projects focus on the timing aspect, and a main objective of the first project
was to elaborate on approaches that allow for capturing all relevant timing phenomena and effects
for such systems in a consistent and coherent way across all system layers and functional domains,
as well as ensuring traceability along the design process.
The project has identified four key design paradigms to support the development of future ADAS/AD,

from which two are of particular importance in order to comprehend the content of this report. The
first design paradigm is the “Compositional Semantic Framework”, which provides an architec-
tural basis for system design by introducing a generic hierarchical component model. The model is
intended to be instantiated with existing modeling languages (such as SysML) and tools by defining
how to cast the individual modeling artifacts into artifacts of the conceptual model.
The component model serves as a carrier for the other three design paradigms:

• It defines a notion of contracts as a particular kind of (assume-guarantee style) specifications.
Contracts give modeling entities and their interaction formal semantics, and enables one to
reason about verification of the individual design steps, such as decomposition, refinement and
realization.

• It supports the integration of different Models of Computation (MoC) for different parts within
one system design.

• And it supports the integration of heterogeneous MoC using different abstraction of time
through Converter Channel (CC).

The framework enables to set up design processes where systems are incrementally refined. It
provides concepts allowing to relate different viewpoints like functional modeling and the technical
realization, as well as different abstraction levels.
The second design paradigm “Timing Specifications” instantiates contract based design for the

timing aspect of the system design. It inherits timing specifications from well established frameworks
such as AUTOSAR, and defines extensions where needed in order to enable coherent reasoning about
timing within complex scenarios. The timing specifications reported in [3] are rephrased (corrected
and extended) in Chapter 3 of the present report.
A brief overview of these two paradigms and how they interact can be found in [3], Chapter 3.

The semantic framework is extensively discussed in Chapter 4 in the same report. Chapters 10 and
11 extensively discuss a running example for the application of the two paradigms.
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Because the semantic framework is not further discussed in the present report, we give a short
introduction to its key elements in the remainder of this chapter. According to the framework, we
assume systems to be built from components as depicted in Figure 2.1. Components may represent
software functions, hardware elements or any other part of a system, depending on the design context.
Components interact with their environment (such as other components) via interfaces. A component
interface consists of a set of typed ports, where the type of a port defines which values can be
observed at the port. Ports represent certain entities in the underlying (implementation) model of
the component. For Matlab/Simulink models, for example, ports may represent input and output
signals.

Port

Connector

Complex Connector

Component

Component

Figure 2.1: General Component Model

Ports of different components may be linked by connectors. We distinguish two types of connectors.
A simple connector does not take time for transporting values between the connected ports. More
precisely, a simple connector can be considered as an identification of the linked ports.
A complex connector, on the other hand, represents a physical transmission medium and imposes

latencies as well as other complex behavior. Complex connectors are in fact also components as
indicated at the bottom part of Figure 2.1. In this report, we restrict to simple connectors. Connectors
are always directed such that data flows only in one direction. Service interfaces are modeled by sets
of (combined) ports, which together realize the involved protocols.
In this framework, specifications about components are expressed in terms of contracts. Contract-

based design is a paradigm, where specifications of design components not only express what a
component is supposed to do, but also what the legal context for a component is. That means a
contract expresses assumptions about the environment of a component. Further, it states a required
behavior that must be guaranteed by the implementation of a component, provided it is used in a
context that is compliant with the assumptions about the environment specified by the contract.
Figure 2.2 depicts an example of a contract that is expressed by instances of the timing specification

language defined in [3], which is rephrased and extended this report. Both assumption and guarantee
of the contract consists of a set of instantiated specification patterns (sentences). The assumptions
(shown in the upper part of the figure, annotated with A) specify the context in which the component
is expected to be executed. The first sentence states that some imaging source provides Frame inputs
with a rate of 33ms and a jitter of 5ms. The second sentence of the assumption states that the
component gets an update of some Egopose every 10ms (and jitter of 5ms).
The guarantee of the component (annotated with G) states that we observe updates of the control

parameter LR every 5ms, and of control parameter QR every 1ms. The last two sentences of the
guarantee serve two purposes. Firstly, the Age pattern specifies that every control parameter update
refers to a concrete (and well defined) instance of the Frame input of the component. That means,
every LR event, and QR event respectively, are a reaction to at least one (well defined) Frame. Secondly,
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C=

A Frame occurs every 33ms with jitter 5ms.
Egopose occurs every 10ms with jitter 5ms.

G LR occurs every 5ms.
QR occurs every 1ms.
Age(LR,Frame) within [0, 800]ms.
Age(QR,Frame) within [0, 800]ms.

Frame LR

QREgopose

Figure 2.2: Contract Example

it states that a reaction in terms of LR and QR control data should not be later than 800ms after the
corresponding frame has been received.
Every sentence comes with a formal semantics that characterizes the corresponding behavior of the

component in terms of a language over traces. The definition of multiple sentences for the assumption
and guarantee, respectively, corresponds to the conjunction of their semantics. Because the formal
semantics of contract C = (A,G) is defined as [[C]] := A ⇒ G (where ⇒ denotes the logical
implication), we get for a contract that contains sentences A1, ..., Am and G1, ..., Gn, respectively,
[[C]] = (A1 ∧ ...∧Am)⇒ (G1 ∧ ...∧Gn). The logical operator ∧ corresponds to the composition of
the individual languages, which is defined – together with a comprehensive discussion of the individual
specification patterns – in the following chapter.
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3 Timing Specification Language
This chapter defines syntax and formal semantics for timing specification patterns defined within the
MULTIC project. The definitions employ a notion of timed traces, where variables get values in the
time domain. Timed traces are based on a notion of sampled (event) signals and thus are suitable
to specify and to recognize the meaning of the individual language constructs.
Timing specifications are defined over component interfaces, namely the ports of a component.

Any behavior in the component model is solely observable at the component ports. Because ports
are typed, every behavior observable at a port is restricted to its value domain specified by the port
type. We denote by Σp the value domain of port p. We assume the special value ⊥ to be member
of every value domain, which represents the absence of a value.
Furthermore, timing specifications considered in this report focus on event-based communication,

where ports have non-absent values only for t ∈ T ⊂ T, where T is some discrete set (i.e., is order
isomorphic to the natural numbers), and T = R≥0 is our envisioned time domain. This allows us to
represent semantics of port behavior in terms of timed traces:

Definition 1. A timed trace over port p is defined as an infinite sequence ωp = (ti, σi)i∈N, where
(ti)i∈N forms a monotonic sequence of time instances, and σi ∈ Σp are elements from the value
domain of p. We require timed traces to be non-zeno, i.e., for each t ∈ T exists (ti, σi) such that
ti ≥ t. We denote by Ωp = {ω = (ti, σi)i∈N} the set of timed traces observable at port p.

For a set P of ports, we define timed traces (ti, ~σi)i∈N over P , where ~σi = (σ1, ..., σn) ∈ Σp1 ×
...× Σpn . We denote ΩP = {ωP = (ti, ~σi)i∈N}.
We define projection ωP |q of traces over port set P to port q ∈ P , where ωP |q = (ti, σqi )i∈N if and

only if ωP = (ti, (..., σqi , ...)i)i∈N. For any set LP ⊆ ΩP , we denote LP |q = {ω ∈ Ωq | ω = ωP |q ∈
LP |q} the projection of LP to q. We extend projection to subsets P ′ ⊆ P in a canonical way, i.e.,
we define ωP |P ′ and LP |P ′ .
For sets LP1 ⊆ ΩP1 and LP2 ⊆ ΩP2 , we define their composition as LP = {ω ∈ ΩP | ω|P1 ∈

LP1 ∧ ω|P2 ∈ LP2}, where P = P1 ∪ P2. 2

Note that, while the definitions above are sound and sufficient, the languages (in terms of trace
sets) we are going to define are not well-suited for composition. This is because proper composition
often requires existence of absent values (⊥) for particular time points and ports. For example, the
trace (1, (e,⊥)), (3, (⊥, f), ... over two ports requires the existence of trace (1, e), (3,⊥), ... for the
one port and (1,⊥), (3, f), ... for the other. Because we do not want to specify languages with absent
events explicitly, we introduce a property called stuttering invariance for trace sets.

To this end, we define event projections for sets Σ′p ⊆ Σp, where events are removed from a trace
that do not belong to Σ′p:

Definition 2. Let be ω = (ti, σi)i∈N over event set Σp, and let Σ′p be a subset of Σp (Σ′p ⊆ Σp).
We define event projection φ(ω,Σ′p) = (t′i, σ′i)i∈N such that there is a monotonic sequence (ji)i∈N

of natural numbers ji where for all i holds that t′i = tji
and σ′i = σji

, and which is maximal in the
sense that for all j 6∈ (ji)i∈N and (tj , σj) holds that σj 6∈ Σ′p.
We extend projection to sets of traces accordingly: φ(L,Σ′p) = {φ(ω,Σ′p) | ω ∈ L}. 2

Note that removing events from a trace may lead to a finite sequence in general, which however is
not allowed by the event projection operation by definition.
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Definition 3. We say language LP is stuttering invariant if for all its projections to ports q ∈ P
holds that φ(LP |q,⊥) = Ω⊥ = {(ti,⊥)i∈N}, where Ω⊥ contains all traces with only absent values.
2

Every language can be transformed into a stuttering invariant language by "adding" respective
absent-value events to the traces. Formally, this can be achieved by an inverse event transformation,
which we omit here. In the following, we assume the existence of such transformation for the defined
languages if needed for composition.

3.1 Basics
In the following sections, we define timing specification languages by a pattern based approach. Spec-
ification patterns are natural language like statements that consist of fixed keywords and parameters
that are specified by the user. For each pattern, we define its syntax and semantics in terms of the
set of traces that satisfy the pattern.
The patterns are defined in terms of BNF grammar. Herein, parameters are written in slanted

font, and keywords are written in typewriter font. Sometimes, keywords are hard to recognize, in
which cases they are additionally enclosed in quotation marks like in ’keyword’. Optional parts are
enclosed in brackets, followed by a question mark, like for example [ optional part ]?. Parts that
may occur zero or more times are enclosed in brackets followed by a star, such as [ repeated part ]*.
Grammar patterns are defined by a name (non-terminal) at the left side, followed by ::, followed by
the definition. Alternatives in the definition are separated by | as for this | that.
The fundamental concept for timing specifications are events. Events, as stated above, are solely

visible at ports, and are fixed to the corresponding value domains. Though specifications normally
are attached to components, hence having a well defined context, ports are specified as follows:

Port :: PortName | ComponentName ’.’ PortName

All timing specifications refer to one or more events. The event value observed at a port may or
may not be of importance. Event specifications comply to the grammar

EventSpec :: Port | Port ’.’ EventValue

The parameter EventValue is deliberately left open. It may consist of labels as well as (complex)
values. If the event value is omitted then the corresponding EventSpec refers to any event that occurs
at the specified port.
We introduce the following notion. Given a timed trace ω = (ti, σi)i∈N and an event (ti, σi) ∈ ω,

we say it satisfies the event specification EventSpec, denoted (ti, σi) |= EventSpec, if either EventSpec
specifies a port and σi belongs to the value domain of the port except ⊥, or EventSpec specifies an
event value and σi is equal to that value.
Timing specifications may refer to event sequences or sets of events:

EventExpr :: EventSpec | ’(’ EventList ’)’ | ’{’ EventList ’}’

EventList :: EventSpec [ ’,’ EventSpec ]*

We extend the notion of satisfaction to event expressions. Given an event sequence es = (e1, ..., en),
we say (ti, σi), ..., (ti+n−1, σi+n−1) ∈ ω satisfies es if every (ti+k−1, σi+k−1), 1 ≤ k ≤ n, satisfies the
event specification ek. We say (ti, σi), ..., (ti+n−1, σi+n−1) satisfies the event set es = {e1, ..., en} if
there is a sequence (es1 , ..., esn

) such that {es1 , ..., esn
} = {e1, ..., en} which is satisfied.
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Time occurs in specifications either as (1) time point or as (2) interval:

TimeExpr :: Value Unit
Boundary :: ’[’ | ’]’
Interval :: TimeExpr | Boundary Value ’,’ Value Boundary Unit

Time units may be derived from other basic units. In order to keep the definitions simple, we omit
those specifications and stay with the usual time units:

Unit :: s | ms | us | ns

For time values, we restrict to simple numbers:

Number :: 0 .. 9 [ 0 .. 9 ]*
Value :: Number | Number ’.’ Number

3.2 Event Occurrence
For repetitive event occurrences on a particular port, we define a single simplified event pattern:

Repetition :: EventList occurs every Interval1 [ with RepetitionOptions ]?.
RepetitionOptions :: Jitter [ and Offset ]? | Offset [ and Jitter ]?
Jitter :: jitter TimeExpr
Offset :: offset Interval2

The parameter Interval1 defines minimal and maximal time periods between the occurrence of
subsequent events. The jitter defines an additional (non-deterministic) delay for the occurrence of
an event. The optional offset defines a delay for the first event occurrence. The offset is set to 0 if
omitted.

Definition 4. Semantics of the repetition pattern “EL occurs every I with jitter J and offset O.”
is defined as the set of timed traces (ti, ~σi)i∈N such that ~σi corresponds to the event list EL, ti =
ui + ji ∧ u0 ∈ [O−, O+] ∧ ui+1 − ui ∈ I ∧ ji ∈ [0, J ] where I = (P−, P+) (where ( and ) may
be closed, i.e. replaced by [ and ], respectively) is the specified interval, O = [O−, O+] is the offset
interval, and J ≥ 0 is the jitter (which is 0 if omitted). We require 0 < P−. 2

The pattern complies with the usual meaning of periodic patterns, as well as patterns with minimal
and maximal inter-arrival times.
For large jitter (more precisely for J > P−), the language definition is not quite correct because

the ti may not be monotonic ordered anymore. We correct this issue by some reordering, which
denotes a bijective function k : N → N, and where (tk(i), σk(i))i∈N defines a trace (so (tk(i))i∈N
forms a monotonic sequence again). Any such trace is part of the semantics of the pattern for which
holds tk(i) = ui + ji ∧ u0 ∈ [O−, O+] ∧ ui+1 − ui ∈ I ∧ ji ∈ [0, J ].

Figure 3.1 depicts a number of pattern instances with different parameters. The first pattern
shows a minimal instance of the pattern with a single-pointed period interval, no jitter and no offset.
Because no offset is explicated, the first event occurrence takes places at time point 0. The second
pattern add s jitter of maximum 2ms. The blue bars in the timeline show the period intervals as of
the first pattern, revealing that the jitter is "added" to the "baseline" periodic behavior. The third
pattern is instantiated with a period interval (between 5 and 7ms) as it occurs for example with
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e occurs every 5ms.

e e e e

e occurs every 5ms with jitter 2ms.

e e e e

e occurs every [5ms,7ms].

e e e e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

e occurs every [5ms,7ms] with offset [2,4]ms.

e e e e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Figure 3.1: Event Occurrence Pattern Examples

drifting clocks. Because also here no offset is defined, the first event occurs at time point 0. The
successor of every event has distance in the interval [5, 7]ms of its predecessor. The last pattern
shows the application of the offset parameter, which is in the interval [2, 4]ms. Hence, the first event
occurs somewhere in the interval (3ms in this example). Again, the distances between two successive
events is in the interval [5, 7]ms.

Sometimes one wants to specify a single event occurrence. The corresponding pattern defines an
interval, which is interpreted as relative to the startup of the system:

SingleEvent :: EventList occurs within Interval .

Definition 5. Semantics of the pattern “EL occurs within I.” is the set of timed traces (ti, ~σi)i∈N
such that ~σi corresponds to the event list EL, t0 ∈ I ∧ σ0 |= E ∧ ∀i > 0 : σi = ⊥. 2

3.3 Reaction Constraints
The reaction pattern provides for forward delay specifications:

Reaction :: whenever EventExpr occurs then EventExpr occurs within Interval
[ once ]? .

The pattern also allows definition of reactions on event sets and event sequences.

Definition 6. Semantics of the pattern “whenever es1 occurs then es2 occurs within I”, where es1
is either a sequence or set that contains k events, and es2 contains l events, respectively, is defined
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whenever e occurs then f occurs within [2,5]ms.

e
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f f ff f

whenever e occurs then f occurs within [2,5]ms once.

e

f

e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

f f ff f

whenever e occurs then (f,g) occurs within [2,5]ms.

e

g

e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

f f gf

Figure 3.2: Reaction Pattern Examples

as the set of timed traces (ti, σi)i∈N such that ∀(ti, σi)...(ti+k−1, σi+k−1) |= es1 : ∃j ≥ i + k :
(tj , σj)...(tj+l−1, σj+l−1) |= es2 ∧ tj+l−1 − ti+k−1 ∈ I. 2

Note that the interval recognized by the pattern always starts with the "detection" of the last
element of es1.
The optional once keyword forces the pattern to fail if more than one reaction occurs within the

specified time window. That is, there is exactly one j ≥ i+ k such that the corresponding sequence
satisfies es2.
Figure 3.2 depicts some examples of the reaction pattern. The top timeline shows a excerpt of

a pattern instance where event f follows event e within an interval of [2, 5]ms. Observe that the
pattern is still satisfied if multiple events f are following an event e. The middle timeline forbids
multiple instances of event f for an event e due to the keyword once. The bottom timeline shows an
instance of the pattern that recognizes an event sequence (f, g) instead of a single event.

3.4 Age Constraints
The age pattern provides for backward delay specifications:

Age :: whenever EventExpr occurs then EventExpr has occurred within

Interval [ once ]? .

Formal semantics of the age pattern corresponds to the one for the reaction pattern, except that
it points backward in time:

Definition 7. The pattern “whenever es1 occurs then es2 has occurred within I”, where es1 contains
k events and es2 contains l events, respectively, is defined as the set of timed traces (ti, vi)i∈N such
that ∀(ti, σi)...(ti+k−1, σi+k−1) |= es1 : ∃j ≤ i− l : (tj , σj)...(tj+l−1, σj+l−1) |= es2 ∧ tj − ti+k−1 ∈
I. 2
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whenever e occurs then f has occured within [2,5]ms.

e

f

e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

f f ff f

whenever e occurs then f has occured within [2,5]ms once.
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whenever e occurs then (f,g) has occured within [2,5]ms.

e

g

e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

f f gf

Figure 3.3: Age Pattern Examples

Note that the interval recognized by the pattern always starts with the "observation" of the last
element of es1.
As for reaction constraints, the optional once keyword forces the pattern to fail if more than one

matching events occurs within the specified time window. That is, there is exactly one j ≤ i− l such
that the corresponding sequence satisfies es2.
Figure 3.3 depicts some examples of the age pattern. The pattern instances in the figure are

symmetric to those of Figure 3.2.

3.5 Restricting Over- and Undersampling
Reaction and age pattern are often used in conjunction with over- or undersampling scenarios. If for
example a component receives more input values than it produces output values (undersampling),
then an age pattern may be used to characterize such behavior (indeed w/o once extension). This
kind of specification however does not allow for restricting the number of under- or oversampling
situations, which can be achieved with the restricted flavor of the reaction and age patterns:

Reaction :: whenever EventExpr occurs then EventExpr occurs within Interval
[ once ]? [ Number out of Number times ]? .

Age :: whenever EventExpr occurs then EventExpr has occurred within

Interval [ once ]? [ Number out of Number times ]? .

The part Number out of Number times specifies that the condition defined earlier for the reaction
(age) pattern may be violated for a particular fraction of occurrences. For example, the reaction
pattern “whenever e occurs then f occurs within [10, 12]ms 3 out of 5 times” specifies that event
f must follow e in the time window [10, 12]ms at least 3 times for every 5 successive occurrences
of event e. The restriction k out of n times is interpreted as a sliding window, which must hold
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whenever e occurs then f occurs within [1,2]ms 2 out of 3 times.
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whenever e occurs then f occurs within [1,2]ms 2 out of 3 times.
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Figure 3.4: Reaction Pattern with Undersampling

for any sequence of n matching occurrences of event expression es1 at least k times. The formal
definition is omitted here, as it can be derived from the specification of the reaction (age) pattern
above. It basically modifies Definition 6 (Definition 7) in that a sequence of n event patterns es1 are
assumed, for which at least k matching event patterns es2 must exist. Note, however, that these k
event patterns are not needed to differ from each other.
Figure 3.4 depicts some examples of how the restriction works. The top timeline shows an excerpt

of a trace that is satisfied by the restriction 2 out of 3 times for a reaction pattern instance. Although
the third occurence of event e is not followed by corresponding event f , it does not lead to no violation
of the pattern because at least 2 of any 3 successive occurrences are still satisfied. The situation at
the bottom timeline is different. Here, the pattern is violated because the second, third and fourth
occurrence of event e is not followed by an event f , and thus only one out of three occurrences are
satisfied.

3.6 Causal Event Relations
It is a well-known problem that timing specifications that are based on event observations have
only limited expressiveness when it comes to specifying functional relations between events. Several
approaches exist to mitigate the issue, such as [6, 8]. These approaches can be applied in rather
deterministic scenarios.Cases with complex functional relations, over- and under-sampling situations,
or where event ordering is non-deterministic, e.g., due to variable execution times in parallel execution
(multi-core) platforms call for more expressive approaches. The underlying problem can be shown by
a simple example depicted at the top timeline in Figure 3.5. It shows an excerpt of a trace that is
”observed” by a reaction pattern between input events e and output events f . The pattern is satisfied
as it matches the first (second) occurrence of event e with the first (second) occurrence of event f .
However, because of some reason (like a particular kind of event buffering or the parallel execution
of internal functions), the the first event f is in fact caused by the second event e. The relations
are indicated by dashed blue lines. Note that no non-causal specification is able to cover this aspect.
The reason for this is the fact that the specification does not consider functional dependencies. If,
for example, f is a function of e, i.e. f = f(e), the problem would disappear if this dependency is
observable. This is shown at the bottom timeline of Figure 3.5, where we assume f1 = f(e1) and
f2 = f(e2), which allows us to exploit the (functional) input/output relations. The MTSL allows the
definition of basic functional relations by expressing event values. However, more complex functional

17



whenever e occurs then f occurs within [2,8] ms
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1 2 12

Figure 3.5: Event Causality Example

relations are not (yet) supported.
The authors of [10] propose a different approach, where events can be distinguished by coloring. A

problem occurs with this approach when more than two events are related. For example, a reaction
pattern that states whenever (a,b) occurs ... would require that the coloring of the two input events
a and b are consistent, i.e., both events must have the same color in order to be recognized as
associated events.
Another approach proposed in this report goes in the same direction, but avoids such issues by the

definition of a more general concept called causal event relation. The advantage of this approach is
that it enables the definition of (arbitrary) complex causal dependencies. This is achieved by strictly
distinguishing between the definition of the actual causal relations and their realization. On the
other hand, increasing complexity of event relations increases the difficulty to make those relations
observable. In our case, observability can be reduced to the question of how events can be uniquely
identified. As said above, it could be established by assuming that related events can be colored in a
way that enables identification of the actual relation. Another way is the introduction of time stamps.
Annotating events with the time point at which they are created allows to distinguish events from
each other. We will provide two simple mechanisms allowing identification of event relations.

The formal definition of causal event relations is as follows:

Definition 8 (Causal Event Relation). Let p1 and p2 be ports, and let Ωp1,p2 be the semantics of p1
and p2. A causal event relation over p1 and p2 is a function

.(p1, p2) : (T× Σp1)→ 2T×Σp2

where for all ω ∈ Ωp1,p2 and for all event occurrences (ti, σi) ∈ ω|p1 exist (tj , σj), ..., (tk, σk) ∈ ω|p2

such that it holds .(p1, p2)((ti, σi)) = {(tj , σj), ..., (tk, σk)} and ti ≤ tj , ..., tk.

We also define a backward causal event relation as a function

/(p1, p2) : (T× Σp2)→ 2T×Σp1

where for all ω ∈ Ωp1,p2 and for all event occurrences (ti, σi) ∈ ω|p2 exist (tj , σj), ..., (tk, σk) ∈ ω|p1

such that it holds /(p1, p2)((ti, σi)) = {(tj , σj), ..., (tk, σk)} and tj , ..., tk ≤ ti. 2

Causal event relations are transitive. Given three ports p1, p2, p3, and causal event relations
.(p1, p2) and .(p2, p3), then .(p1, p3) is given by:

(tj , σj) ∈ .(p1, p2)((ti, σi)) ∧ (tk, σk) ∈ .(p2, p3)((tj , σj))⇒ (tk, σk) ∈ .(p1, p3)((ti, σi))

This property (though not surprisingly) gives means to the intuition of “additive” latencies, where we
say that response times Xms and Y ms sum up to X + Y ms.

18
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Figure 3.6: Causal Pattern Examples

Causal Reaction and Age Based on those causal event relations, we define a causal version of the
reaction pattern:

CausalReaction :: Reaction(EventSpec ’,’ EventSpec) within Interval .

Definition 9. Semantics of the pattern “Reaction(e1, e2) in I.”, where e1 refers to port p1, and
e2 refers to port p2, respectively, is defined as the set of timed traces ω ∈ Ωp1,p2 where for all
(ti, σi)i∈N ∈ ω|p1 , (ui, ρi)i∈N ∈ ω|p2 , and for all event occurrences (ti, σi) ∈ (ti, σi)i∈N such that
σi |= e1, holds .(p1, p2)((ti, σi)) 6= ∅ and

(
(uj , ρj) ∈ .(p1, p2)((ti, σi))∧ ρj |= e2

)
⇒ uj − ti ∈ I. 2

Also a causal age pattern is defined:

CausalAge :: Age(EventSpec ’,’ EventSpec) within Interval .

Definition 10. Semantics of the pattern “Age(e1, e2) in I.” is defined as the set of timed traces
ω ∈ Ωp1,p2 , where for all (ti, σi)i∈N ∈ ω|p1 , (ui, ρi)i∈N ∈ ω|p2 , and for all event occurrences (ui, ρi) ∈
(ui, ρi)i∈N such that ρi |= e2, holds /(p1, p2)((ui, ρi)) 6= ∅ and

(
(tj , σj) ∈ /(p1, p2)((ui, ρi))∧ σj |=

e1
)
⇒ ui − tj ∈ I. 2

Figure 3.6 depicts examples of the two patterns. The top timeline shows an example of the reaction
pattern. The blue lines indicate those events that are related by the definition of some causal event
relation. It is because of the relation that the pattern is violated with the second occurrence of the
event e. This is in contrast to the non-causal version of the pattern (cf. Figure 3.2). The bottom
timeline shows the application of the causal age pattern. The blue lines indicate the related events
again.

Causal Event Relation Functions The causal patterns require the existence of corresponding event
relations. That is, every reference to a function . and / is assumed to be specified in the respective
contract. This calls for a specification language for such relations. We add a specification pattern
that allows definition of such causal event relations:

CausalFuncDecl :: CausalFuncName ( Port ’,’ Port ) ’:=’ CausalRelation
CausalFuncName :: ’|>’ | ’<|’
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<|(f,e) := FIFO

e

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

e f fe f

<|(f,e) := LIFO
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<|(f,e) := ID
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e.2e.1 f.(e.1) f.(e.3)e.3 f.(e.2)

Figure 3.7: Causal Function Declaration Examples

We support two mechanisms in order to define causal event relations. The first mechanism supports
the approach taken in [8], where a number of relevant relations are pre-defined. Because however, we
define causal relations locally, only two functions remain, namely FIFO (first-in-first-out) and LIFO
(last-in-first-out). So we define two built-in relations:

CausalRelation :: FIFO | LIFO

The semantics of these functions is simple. Events that occur at the input port are sent to the
output port in FIFO (LIFO) order. Figure 3.7 depicts examples of how these functions are working.
The blue lines indicate the events that are related due to the corresponding function.
The second supported mechanism relates to the approach taken in [10] and assumes that events are

identifiable, either by time stamping or some other mechanism. To capture this, we define for port p
the function idp : T×Σp → N, which assigns an identifier to every event occurrence at that port. We
further define id-transducers, which are functions tid(p1,p2) : (T× Σp1)× (T× Σp2)→ N according
to the definition of causal event relations . and /, respectively. Based on these idp functions and
id-transducers, we define a corresponding causal event relation:

CausalRelation :: ID

It states that causally related events on the involved ports have identical id values. In other word,
(tj , σj) ∈ .(p1, p2)((ti, σi)) implies tidp1,p2((ti, σi), (tj , σj)) = idp1((ti, σi)), and for / respectively.
Note that the definition does not impose any ordering of the output/input events with respect

to the related output/input events as the function FIFO and LIFO do. Instead, it defines that those
events are related, which have the specified relation of their ids, and more precisely, have the same
id with respect to function tid.

The bottom timeline of Figure 3.7 shows an example of the ID function. The ids of occurrences
of event e are depicted by a dot followed by the value. The tid values of the events f are indicated
by the id of the corresponding e event, enclosed in parentheses.
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3.7 Local Clocks
While timing specifications adhere to some globally defined time domain by default, there are appli-
cations where specifications based on local clocks are desired. An example is runtime observation of
timing specifications, where local hardware clocks are used for the generation of time stamps. The
timing specification language supports defining and referring to local clocks in timing specifications.
Local clocks are defined by a name, such as in Clock Name, and a set of optional clock properties.

Timing specifications can refer to a local clock by the (optional) using clock Name construct. This
construct says that all timing parameters of the specification refer to the specified clock. For example,
a periodic occurrence of event E using (local) clock C instead of global time is specified as follows:

E occurs every 10 ms using clock C .

All specification patterns support this construct. Local clock definitions have the following format:

ClockDefinition :: Clock Name has [ resolution TimeExpr ]? [ skew TimeExpr ]?
[ drift Interval ]? [ maxdiff TimeExpr ]? .

The optional parts of a clock definition allow specifying some practically relevant properties, such
as resolution and drift. At least one property must be specified. The properties are defined as follows:

resolution Resolution Specifies that the clock advances in discrete steps of length
TimeExpr.

skew Skew Similar to a jitter, skew adds an uncertainty interval of
size TimeExpr to the clock. Requires presence of property
resolution, and it must hold skew < resolution. Cannot
be used in conjunction with the maxdiff property.

drift Drift Specifies slow down/speed up factors of the clock. Cannot
be used in conjunction with the maxdiff property.

maxdiff Max. difference Adds an uncertainty interval of size 2∗TimeExpr to the clock
value. Cannot be used in conjunction with the drift and
skew properties.

Semantically, there is no difference between specifications based on the global time domain and
those based on a local clock. Every local clock, say clockk, induces a corresponding time domain Tk.
Given that, semantics of a timing specification using clockk is defined by replacing time domain T
by Tk in Definition 1. 1

However, there are (at least) two important aspects to be considered when dealing with local
clocks. Firstly, while different specifications may refer the same events, they may observe different
time stamps for the occurrences of those events. Suppose the following specifications:

(C1) A: Clock clock1 has resolution 1ms.

Event E occurs every 10 ms using clock1.

G: Whenever E occurs then F occurs within 6ms using clock1.

(C2) A: Clock clock2 has resolution 10us.

Event E occurs every 10 ms using clock2.

G: ...

1This also holds for clocks with finite resolution, where the time domain is isomorphic to the natural numbers N,
because traces are non-zeno.
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Specification (C1) may not be able to detect jitters in the timing that are below the resolution of
clock1, whereas the resolution of clock2 is much higher. Hence, it may happen that (C1) is satisfied
for some observation while (C2) is violated. Depending on the specified properties of the individual
clocks, the interpretation of verification results may become a challenging task.
In order to support such interpretation, it might be desirable to know for specifications involving

local clocks corresponding specifications using a global clock. For example, for the specification

(C1) A: Clock clock1 has resolution 1ms.

Event E occurs every 10 ms using clock1.

one might be interested to know for the corresponding specification based on the global time domain

(C1’) A: Event E occurs every [L,U] ms with jitter J.

the exact values of L,U and J. There may be also application scenarios where the other direction is of
interest: Given a specification based on the global time domain, what are corresponding specifications
based on local clocks? Unfortunately, these are also challenging tasks in general, and even impossible
for many combinations of clock properties. We do, however, in the longer run plan to support
computing weakest pre-specifications in the mutually other clock domain.
The second important aspect concerns the composition of specifications that talk about different

clocks. The operation of composition in Definition 1 requires a common time domain.
A key element for both aspects is the relation between the actual values of clocks. In order to

reason about the correlation between local and global specifications, we need to know for any time
stamp tk of some local clock Tk the corresponding time stamp t of the global clock T (and vice
versa). For composition, we use such correlation in order to cast traces into a common time domain.
As specifications are defined over (infinite) sequences of event occurrences, we also reason about the
relation between sequences (tki )i∈N and (ti)i∈N, respectively, of time stamps.

Definition 11. Let Ω(Tk) be the set of all possible sequences of time stamps for clock Tk, and Ω(T)
set set of all such sequences of clock T.
The characteristic behaviour of clock Tk induces a relation between the two sets, which is expressed

as trk ⊆ Ω(Tk) × Ω(T). For every sequence πk = (tki )i∈N ∈ Ω(Tk), the relation provides all
corresponding sequences π = (ti)i∈N ∈ Ω(T) (defined by trk(πk) := {π | (πk, π) ∈ trk}). Also the
reverse holds: for every π ∈ Ω(T), trk provides all possible corresponding sequences πk ∈ Ω(Tk) of
clock Tk. 2

For the clock properties specified above, the relation trk is always well-defined. For example, the
relation for a clock with resolution resk is defined by {(πk, π) | πk = (tki )i∈N ∧ π = (ti)i∈N ∧ ∀i ∈
N : tki = b ti

resk
c · resk}. Table 3.1 provides the relations for all allowed combinations of properties.

While these relations are sufficient to perform trace composition, they provide only little support for
interpreting specifications that are based on local clocks. The issue that prevents us from expressing
correlating specifications is visualized in Figure 3.8. The bottom part shows the time line according
to the global time domain T. The top part shows the timeline of some local clock Tk. The green
bars indicate areas where some specification is satisfied, as for example some response time interval.
Suppose that for the specification based on local clock Tk, this interval is defined by [A,B]. In order
to derive a corresponding interval for a specification based on global time, we have to investigate for
every πk ∈ Ω(Tk) all corresponding π ∈ Ω(T) such that (πk, π) ∈ trk. For every πk and every time
stamps tki ∈ [A,B] from πk, we collect all corresponding time stamps ti from any π obtained from
2french for: right continuous, left limits.
3where trr ◦ trd := {(πr, π) | ∃(πr, πd) ∈ trr ∧ ∃(πd, π) ∈ trd}
4There are clock synchronization protocols that reset clocks. We, however, do not support those protocols because
of the mathematical anomalies of the involved clock relations.
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Properties trk

resolution=resk tki = b ti
resk
c · resk

drift=dk ∃d : T→ dk, d is cadlag2 in T, tki =
∫ ti

0 d(t)dt
drift=dk Clock Td for dk with relation trd and clock Tr for resk

resolution=resk with relation trr. trk = trr ◦ trd.3
skew=sk ∃s : N→ [0, sk], s(0) = 0, fs : T→ Tk s.t.

resolution=resk ∀i ∈ N : t ∈ [i · resk + s(i), (i+ 1) · resk + s(i+ 1))⇔ fs(t) = i · resk
drift=dk Clock Td for dk with relation trd and clock Ts for sk, resk
skew=sk with relation trs. trk = trs ◦ trd.

resolution=resk
maxdiff=dk ∃d : T→ [−dk, dk], d is differentiable in T except in a countable set

T ⊂ T, d is continuous4, tki = ti + d(ti)
maxdiff=dk Clock Td for dk with relation trd, and clock Tr for resk

resolution=resk with relation trr. trk = trr ◦ trd.

Table 3.1: Clock Properties and Corresponding Clock Relations

valid area of specification

A B

C D

Figure 3.8: Non-determinism prevents Mapping of Specifications with different Clock Domains

trk. With this, we can determine an interval in which all such ti are contained, in this case [C,D].
However, in general not only the number of sequences in trk for a given sequence πk is larger than
1 (which is indicated by the triangle shapes in Figure 3.8) but this holds also for the other direction.
In other words, we have in general |trk(πk)| > 1 and |trk(π)| > 1. Hence, if we perform a reverse
mapping, starting from the interval [C,D], we will typically not end up in the corresponding interval
[A,B].
A sufficient condition for obtaining equivalence between local and global specifications is that trk

can be either defined as a function trk : Ω(Tk) → Ω(T), or as a function trk : Ω(T) → Ω(Tk).
For example, this is the case for clocks with finite resolution and no other properties. However, it is
always possible to express implied specifications in any direction. An investigation of this property
would be subject to further work.

Concerning the application of local clocks, clock definitions should occur in the assumption of a
specification, because clocks are typically not controlled by the respective component. Furthermore,
although this is basically outside the definition of the specification language, clock definitions break
the locality rule of contract-based design in order to ease specification. The locality rule says that
specifications must reason solely about the interfaces of the respective component. A defined clock
however should be visible also at subcomponents of a component, such as for all functions that are
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Component
Clock A ...

Clock B ...

using A

using A

using A

using B

Figure 3.9: Definition of Clock Domains

allocated to the same ECU. Hence, we assume that clock definitions are visible at all subcomponents
of a component as well, i.e. they can be referred by a using clock construct (cf. Figure 3.9).

3.8 BNF
The following grammar summarizes the specification patterns defined in the former sections.

TimeSpec :: SingleEvent | Repetition | Reaction | Age
| CausalReaction | CausalAge | CausalFuncDecl
| ClockDefinition

SingleEvent :: EventList occurs within Interval
[ using clock Name ]? .

Repetition :: EventList occurs every Interval [ with RepetitionOptions ]?
[ using clock Name ]? .

RepetitionOptions :: Jitter [ and Offset ]? | Offset [ and Jitter ]?
Jitter :: jitter TimeExpr
Offset :: offset Interval
Reaction :: whenever EventExpr occurs then EventExpr occurs within Interval

[ once ]? [ Number out of Number times ]?
[ using clock Name ]? .

Age :: whenever EventExpr occurs then EventExpr has occurred within

Interval [ once ]? [ Number out of Number times ]?
[ using clock Name ]? .

CausalReaction :: Reaction(EventSpec ’,’ EventSpec) within Interval
[ using clock Name ]? .

CausalAge :: Age(EventSpec ’,’ EventSpec) within Interval
[ using clock Name ]? .

EventExpr :: EventSpec | ’(’ EventList ’)’ | ’{’ EventList ’}’

EventList :: EventSpec [ ’,’ EventSpec ]*
EventSpec :: Port | Port ’.’ EventValue
Port :: PortName | ComponentName ’.’ PortName
Interval :: TimeExpr | Boundary Value ’,’ Value Boundary Unit
TimeExpr :: Value Unit
Boundary :: ’[’ | ’]’
Value :: Number | Number ’.’ Number
Number :: 0 .. 9 [ 0 .. 9 ]*
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Unit :: s | ms | us | ns
CausalFuncDecl :: CausalFuncName ( Port ’,’ Port ) := CausalRelation
CausalFuncName :: ’|>’ | ’<|’
CausalRelation :: FIFO | LIFO | ID
ClockDefinition :: Clock Name has [ resolution TimeExpr ]?

[ skew TimeExpr ]? [ drift Interval ]?
[ maxdiff TimeExpr ]? .

3.9 Changes
During the MULTIC-Tooling project, some changes have been made to the MTSL w.r.t [3] in order
to eliminate issues that may occur when using the specification in practice. This section collects and
discusses these changes.

Event Specifications In the present version, the Event parameter in a number of specification
patterns has been changed to EventSpec in order to avoid confusion with the terms event and event
occurrence.

Event Lists The repetition pattern and the single event pattern have been extended to support
sending events on multiple ports simultaneously. That is, in both patterns EventSpec has been
replaced by EventList.

Event Occurrences In [3], the repetition pattern has been defined as

Repetition :: EventSpec occurs every Interval [ with jitter TimeExpr ]?

whereas the actual pattern allows the definition of an additional offset. The former definition does
not allow for specifying time instances for the initial event occurrence. The change comes with a
redefinition of the underlying semantics. In the former version, the first event occurrence was bound
to the interval [0, P+] + [0, J ], where P+ is the upper bound of the period interval and J denotes
the maximum jitter. In the actual version, the semantics bounds the first event to the interval
[O−, O+] + [0, J ] where [O−, O+] specifies the (explicitly defined) offset interval. Note that, if no
offset is specified, it is implicitly set to 0, resulting in the first event occurrence to be bound to [0, J ].
The revised version allows to “emulate” the former semantics. In order to obtain, for example, the

same event language as in the pattern “e occurs every [5,7] ms with jitter 2 ms” according to
the semantics in [3], one specifies “e occurs every [5,7] ms with jitter 2 ms and offset [0,7]ms”.

Causal Function Declarations Patterns have been added allowing for defining the causal relation
function on which the CausalReaction and CausalAge, respectively, rely. This was missing in [3].

At the same time, causal relations have been removed from the definition of EventExpr, as there is
a high potential of accidental misuse leading to semantic issues. As on the other hand CausalReaction
and CausalAge do not (yet) support event sets or event sequences, this change represents a restriction
of expressiveness.
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4 Automata – Semantic Foundation
Whereas the MULTIC timing specification language defined in Chapter 3 employs a declarative spec-
ification style and semantically notion of timed traces as a suitable tool to specify languages, the
definition of generators and monitors that adhere to such specifications calls for an operational se-
mantics. This chapter defines syntax and semantics of a class of automata that are suitable to
implement MULTIC timing specifications. It starts with the necessary definition of the semantic do-
main and its observables in terms of variables. Section 4.2 defines the automaton class. It foreshadows
future developments in that its expressiveness is generally not required for the class of specifications
considered here. It represents an instance of the well-known class of hybrid automata and thus leaves
room for later extensions.
Section 4.3 provides a formal notion of semantics for this automaton class in terms of transition

systems, for which in turn trajectories can be defined in order to explain automaton executions.
Trajectories are finally related to timed traces, which form the basic notion on which semantics of
MULTIC timing specifications is defined.
It is important to note that the definitions in this chapter remain purely mathematical, as they have

to provide the link between the operational semantics and the languages of the specification patterns
defined in Chapter 3. To keep however the notion as strong as possible to their original definitions,
we deliberately omit the concept of ports, and come back to this in Chapter 6. The chapter does
not provide examples in order to keep the presentation short. We refer the reader to [7] for a more
comprehensive discussion. Chapter 5 presents an implementation-oriented notion for such automata.

4.1 Variables, Predicates and Assignments
We assume a set V of variables. Each variable v ∈ V carries values from a particular domain
Dv. Primitive domains are N, Z and R, namely the set of natural numbers (including 0), the
integer numbers and the real numbers, respectively. Because we will use variables for event-based
communication too, variables may carry values only at particular points in time, and otherwise are
“absent”. We thus introduce the special value ⊥ and assume ⊥ ∈ Dv for such variable domains. For
a set V ⊆ V we denote DV =

⋃
v∈V Dv the domain of V .

A valuation of v is an assignment of a value from Dv. For a set V ⊆ V, we define a valuation as
a type safe function σ : V → DV , which assigns each variable v ∈ V a value in Dv. We denote ΣV
the set of all valuations over V . We extend valuations to functions whose free variables are from V
in a canonical way: For function F , we denote σ(F ) the valuation of F with respect to the valuation
of the free variables of F . For variable set V ′ ⊆ V , we define the projection of σ to the variables in
V ′, denoted σ|V ′ ∈ V ′, such that σ|V ′(v) = σ(v) for each v ∈ V ′. For two variable sets V1 and V2,
we define σ := σ1 	 σ2 such that σ|V1\V2 = σ1|V1\V2 and σ|V2 = σ2.
A predicate ψ over variable set V is defined by the grammar

ψ ::= true | c BC F | v BC F | ¬ψ1 | ψ1 ∧ ψ2 | ψ1 ∨ ψ2

where v ∈ V , c ∈ DV , BC∈ {=, <,>,≤,≥}, and F is an expression whose free variables are from
V . We denote ΨV the set of predicates over V . Semantics of predicates is standard with respect to
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a valuation σ ∈ ΣV :

(true)[σ] := true
(c BC F )[σ] := c BC σ(F )
(v BC F )[σ] := σ(v) BC σ(F )

(¬ψ1)[σ] := ¬(ψ1)[σ]
(ψ1 ∧ ψ2)[σ] := (ψ1)[σ] ∧ (ψ2)[σ]
(ψ1 ∨ ψ2)[σ] := (ψ1)[σ] ∨ (ψ2)[σ]

The definition of (v1 BC v2)[σ] is somehow sloppy, as it may be undefined, depending on the
relations available in the respective value domains, and due to type inconsistencies. We assume some
kind of well-formedness of predicates ensuring that σ(v1) BC σ(v2) is always well defined.
An assignment ξ over variable sets V and V ′ is a function ξ : ΣV → ΣV ′ . We denote ΞV,V ′ the set

of assignments over V, V ′. We again assume some kind of well-formedness ensuring that assignment
is always well defined.

4.2 Automata
In order to be as unconstrained as possible, we define a class of automata that is consistent with the
definition of hybrid automata proposed by Henzinger [7]. We made two deviations from the original
definition. Firstly, we consider direction of data flow, i.e., we distinguish input from output variables.
Secondly, we distinguish continuously evolving variables from those variables that realize event flows.
In fact, the original definition introduces a separate set of events on this behalf.

Definition 12. An automaton is a tuple M = (V,L, T, l0, σ0, inv, flow, guard, act, set) where

• V = VI]VP ]VO ⊆ V is a set of disjoint input, private, and output variables. We further define
VI = V cI ] V eI , and VO = V cO ] V eO in order to distinguish continuously evolving input/output
variables (V cI and V cO) from event variables (V eI and V eO). For convenience, we also define
V c = V cI ∪ VP ∪ V cO, and V e = V eI ∪ V eO

• L is a set of locations,

• T ⊆ L× L is a set of transitions,

• l0 ∈ L is the initial location,

• σ0 ∈ ΣVP∪VO
is the initial valuation of the private and output variables,

• inv : L → ΨV c is a labeling function that assigns an invariant predicate to every location of
the automaton,

• flow : L → ΨV c∪V̇ c is a labeling function that assigns a flow predicate to every location of
the automaton. V̇ c denotes the set of dotted variables in V c, which represent first derivatives
of those variables.

• guard : T → ΣV is a labeling function that assigns a guard predicate to every transition of the
automaton,

• act : T → ΣV e
O

is a labeling function that assigns an output action to every transition of the
automaton,
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• set : T → ΞVI∪VP ,VP∪VO
is a labeling function that assigns a variable assignment to every

transition of the automaton.

2

4.3 Semantics
Semantics of hybrid automata is defined in terms of a labeled transition systems:

Definition 13. Given automaton M = (V,L, T, l0, σ0, inv, flow, guard, act, set), its labeled transi-
tion system is SM = (Q,Q0, A,→) where

• Q ⊆ L×ΣV is a set of states and Q0 ⊆ Q is a subset of initial states, such that (l, σ) ∈ Q iff
the predicate inv(l)[σ] is true, and (l, σ) ∈ Q0 iff l = l0 and σ|VP∪VO

= σ0.

• A = ΣV e ∪ R≥0 is a label set,

• →⊆ Q×A×Q is a labeled transition relation, where
– For each e ∈ ΣV e , define (l, σ) e→ (l′, σ′) iff there is a transition t = (l, l′) ∈ T such that
guard(t)[σ 	 e|V e

I
] is true, act(t) = e|V e

O
, and σ′|VP∪VO

= set(σ|VI∪VP
	 e|V e

I
).

– For each δ ∈ R≥0, define define (l, σ) δ→ (l′, σ′) iff l = l′, and there is a differentiable
function f : [0, δ]→ ΣV such that (1) f(0) = σ and f(δ) = σ′, and (2) for all ε ∈ (0, δ),
inv(l)[f(ε)] is true as well as flow(l)[f(ε) 	 ḟ(ε)] is true, where ḟ denotes the first
derivative of f . Function f is also called a witness of the transition.

2

Note that the definitions above do not explicitly discriminate continuous and event variables. We
however assume that every witness evaluates to ⊥ for each variable in V e in the interval [0, δ]. Further
note that transition systems of hybrid automata are generally stuttering invariant. That is, for any
(l, σ) δ→ (l′, σ′) in the transition system, and δ1, δ2 ∈ R≥0 such that δ1+δ2 = δ exist (l, σ) δ1→ (l′′, σ′′)
and (l′′, σ′′) δ2→ (l′, σ′) in the transition system, too.

Trajectories and Traces The labeled transition system SM of an automatonM defines all possible
(infinite) evolutions of M . Every path through the transition system represents a valid execution of
the automaton. We denote a valid execution path a trajectory of SM . A trajectory is an infinite
sequence τ = q0

a0→ q1
a1→ ... such that (1) q0 ∈ Q0, and (2) each qi

ai→ qi+1 ∈→.

Definition 14. Given a trajectory τ = q0
a0→ q1

a1→ ..., we define

• The prefix of length n, τn = q0
a0→ ...

an−1→ qn.

• The duration of every prefix τn = q0
a0→ ...

an−1→ qn as follows:
– d(τ0) = 0

– τn+1 = τn
en→ qn+1 =⇒ d(τn+1) = d(τn)

– τn+1 = τn
δn→ qn+1 =⇒ d(τn+1) = d(τn) + δn

2
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We are also interested in abstractions of trajectories where only event variables remain visible.
To this end, we use variable valuations of event variables V e for the definition of events. Given a
valuation σ ∈ ΣV e , we identify σ with a set of events ~σ = {v | σ(v) 6= ⊥}.

A timed trace is a sequence ω = (ti, ~σi)i∈N where the ti form a monotonic, non-zeno sequence of
points in the time domain, and the ~σi form a sequence of event sets, according to Definition 1.

Definition 15. Given a trajectory τ , we say, ω is the trace of τ iff for each τi+1 = τi
ei→ qi+1 exists

(ti, ~σi) ∈ ω such that ti = d(τi) and ~σi = ~ei, and vice versa. 2

4.4 Automaton Composition
Given two automata M1 and M2, we define the semantics of their parallel composition M1||M2.
Automata interact via their input and output variables, respectively. We require that variables are
not private variables of two different automata, and the same holds for output variables. More
precisely, we require that VP1 ∩ V2 = ∅, V1 ∩ VP2 = ∅ and VO1 ∩ VO2 = ∅. Hence, composition is a
partial function.
We define composition on the transition systems of the involved automata:

Definition 16. Given S1 and S2, the product S1 ⊗ S2 is a transition system with Q = Q1 × Q2,
Q0 = Q0

1 ×Q0
2 and label set A⊗ = ΣV e

1 ∪V e
2
∪ R≥0.

We define (q1, q2) a→ (q′1, q′2) iff there are transitions q1
a1→ q′1 and q2

a2→ q′2 such that a1 = a|V e
1

and a2 = a|V e
2
.

We define (q1, q2) δ→ (q′1, q′2) iff (i) there are transitions q1
δ→ q′1 and q2

δ→ q′2, and (ii) ∀δ1, δ2 >
0 : δ1 + δ2 = δ =⇒ ∃q′′1 , q′′2 : (q1, q2) δ1→ (q′′1 , q′′2 ) δ2→ (q′1, q′2). 2

The latter part (ii) ensures that the valuation of shared variables is consistent among the involved
automata. It means that valuations σ1 ∈ ΣV1 and σ2 ∈ ΣV2 always correspond on shared variables,
i.e., v ∈ V1 ∪ V2 =⇒ σ1(v) = σ2(v). Enforcing composition to be also stuttering invariant is a
mean to achieve this important property.
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5 Intermediate Format
While the definition of automata in Chapter 4 allows for a very general class of discrete and continuous
evolutions of variables, a more implementation oriented notion of automata is desired for the definition
of concrete generators and monitors. To this end, we define a suitable subclass of the elements of
automata. We employ a kind of pseudo code for the definition to simplify the presentation. It
should be noted that any similarities of the pseudo code with the programming language C are purely
coincidental and not intended.
According to Definition 12, an automaton consists of variables, locations, transitions, and labeling

functions for state invariants and flows, as well as guards, actions and assignments for transitions. In
the following, we will provide corresponding definitions for each of these elements.

5.1 Data Types
First, we define a set of data types for the value domains of the variables of an automaton. We allow
for primitive data types with the following meaning:

• bool : {true, false}

• int : Z

• real : R

We also define computational subsets of these primitive data types:

• int8, int16, int32, int64

• uint8, uint16, uint32, uint64

• float, double

Complex data types can be defined based on the primitive types above:

• struct { int16 x; bool y; }. The elements of a struct can be accessed by specifying their
member name preceded by a dot (.).

• hash<float,uint32> where the first parameter defines the data type of the hash keys, and
the second the value data type. Elements in a hash table can be accessed by specifying a
key enclosed in square brackets (e.g. [1.2]), or by calling value(1.2). For every hash table
exist functions insert,remove and contains. Function insert adds or replaces an element in
the hash table. Function remove removes an element from the hash table. Function contains

returns a value of type bool indicating whether an element exists in the hash table.
Hash tables are iteratable (cf. Section 5.6). Iteration delivers the keys of the hash table in
arbitrary order.
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• multihash<float,uint32> where the first parameter defines the data type of the hash keys,
and the second the value data type. In contrast to hash, a multi-hash can store multiple
elements for the same key. For multi-hash tables exist functions insert,remove and count.
Function insert adds an element in the hash table. Function remove comes in two flavors.
The function remove(key) removes all elements stored for key. Calling remove(key,elem)

removes the element elem from the hash table which has been added first. Function count

returns the number of elements stored for a key, and values(key) returns the list of values
stored for the key.

• list<double>. Elements in a list are accessed by an index that is type compatible with (i.e. is a
subset of) the data type integer, enclosed in square brackets (e.g. [7]). The first index of a list
is 0. For every list exist functions length, append, prepend, removeFirst and removeLast.
Function length returns the number of elements in the list. Functions append and prepend add
elements to the end and beginning of the list, respectively.
Lists are iteratable (cf. Section 5.6. Iteration delivers the elements of the list in ascending
order.

• array<int8>[length]. Elements in an array are accessed by an index that is type compatible
with (i.e. is a subset of) the data type integer, enclosed in square brackets (e.g. [7]).
Arrays are iteratable (cf. Section 5.6. Iteration delivers the elements of the array in ascending
order.

All data types except clock can be defined as event data types:

event int16

Event data types can be further refined to be identifiable:

event id struct { x : int16; y : bool; }

Identifiable event variables provide function id, which refers to the identifier of the event occurrence.

Clocks and Timer For dealing with time, we define two particular data types, namely clock and
timer. Variables of type clock represent clocks defined in the specifications. A clock of the global
time domain is defined as follows:

clock c;

For “local” clocks, the data type comes with parameters. There are two possible parameter sets:

clock<mindrift,maxdrift,skew,resolution> c;

and

clock<maxdiff,resolution> c;

where the parameters correspond to the local clock definitions in Section 3.7. The parameter
resolution can be omitted, in which case the clock is assumed to be dense.
Variables of type timer are used to refer to clocks. A timer that refers to clock c has the same

derivate than c, as well as the same jumps of the same height. The only exception is that timers can
be reset (set to 0). The definition of a timer variable is as follows:

timer<c> t;
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5.2 Variables
Variables are defined according to the automaton specification of Definition 12 either as input, private
or output variables. In its simplest form, a variable is specified by a name and a data type, preceded
by its role:

input int16 x;

Variables of the different roles (input, private, output) can be grouped in blocks:

input:

int16 x;

...

private:

...

output:

...

Variables can be defined as event types, which carry values only at time points when they are set,
i.e., get a value assigned:

input:

event int16 x;

Event variables can be further defined to be identifiable. Identifiable event variables get a (hidden)
id element, that can be retrieved similarly to the member of a struct variable. The id element
always has the data type int32:

input:

event id double y;

private:

int32 myid;

...

myid = y.id;

The value of an identifiable event variable can be stored and retrieved:

input:

event id double y;

private:

int32 myid;

array<event id double>[7] store;

...

store[i] = y;

...

myid = store[3].id

All variables are either explicitly initialized or implicitly by a default initializer. For primitive types,
the default initializer is 0, except for the data type bool, where the default initializer is false. List and
hash tables are initially empty. An array is initialized with the default initializer for all its elements,
and the same holds for structs.
Primitive variables can be explicitly initialized while being defined:
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input:

int16 x = 7;

double y = 1.2;

bool b = true;

5.3 Locations
According to Definition 12, an automaton consists of a set L of locations. For implementation
purposes, every location is identified by a name. Further, every location gets an invariant assigned. A
location hence is defined by the name of the location, followed by a sequence of predicate statements
defining the invariant (inv) of the location:

loc1:

t <= 500;

...

Logically, the invariant statements in such sequence are interpreted as conjunction.
Every automaton must define at least its initial location. This location has the predefined name

init.
A location may contain a flow section, where the flow predicate is defined:

loc1:

// invariant

...

flow:

...

5.4 Transitions
Transitions are defined in the context of their source location. A transition is characterized by its
target location, its guard (guard), and action (act) as well as set (set) statements:

loc1:

// invariant

...

// flow

...

trans loc2:

guard:

t <= 500;

input1;

input2 == 17;

act:

output = 8;

set:

store.append(input);

...

loc2:

...
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The example above shows three event variables, namely input1,input2 and output. The statement
input1; means that the guard applies to any event value on the input1 variable. The statement
input2 == 17; means that the guard applies only to event value 17 on the input2 variable. The
statement output = 8; sets the value of the variable at the point in time where the transition is
taken. Note that variable assignments in the act section can only be applied to event variables.
Furthermore, assignments to event variables are not allowed in the set section.
Note that the distinction between act and set section is syntactic sugar in the intermediate format.

The difference between actions and assignments is defined by the port types (i.e. whether it defines an
event or not), and the respective reading and sending operations. Hence, the respective statements
are allowed in both sections.

5.5 Automata
In order to put things together, we finally define the structure of a set of automaton definitions. Every
specification may start with a set of global data type definitions, followed by a set of automaton
definitions:

typedef array<event id double>[7] eventarray;

...

automaton A1 {

// variables

input:

...

private:

eventarray store;

...

output:

...

// locations

init:

...

}

automaton A2 {

...

}

...

Data types defined by typedef start with the data type definition and end with the type name. All
defined data types can be referred in the variable sections of any automaton. Automata are defined
by the keyword automaton, followed by a name and its variable, location and transition definitions
enclosed in curly brackets.

5.6 Functions and other Extensions
In order to simplify the presentation, we will occasionally introduce additional constructs beyond those
presented above. Firstly, we make use of additional functions, for which we usually do not provide
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a mathematical definition, but which are simple enough for intuitive understanding. For example,
we make use of a function random(max), which returns a randomly generated value from the interval
[0, max] using uniform distribution.
We also introduce additional data types for internal book keeping tasks within the automata.

Normally, those data types are defined in a C++ class style. That means, functions associated with
those data types are used in the form type.func().

Furthermore, we introduce constructs for selections and iterations. The construct

cond => assignment;

executes the assigment statement only if cond evaluates to true. Note that this construct is consistent
with the formal assigment function defined in Chapter 4, as it takes valuations as arguments. The
construct can also be used for invariants and guards. Here the construct

cond1 => cond2;

expands to !cond1 || cond2.
For repetition, we introduce the foreach construct:

foreach (var,store)

{

// do something with var

}

iterates over all elements in the variable store. The semantics of iterations are defined by unrolling,
i.e., the block definition of the construct is applied to all its elements in parallel.
A more sophisticated extension is the while construct:

while (condition)

{

}

which iterates the block definition while condition evaluates to true. There is in fact no consistent
relation to the automaton semantics defined in Chapter 4 in a simple transition. It requires instead
multiple locations and transitions.
For convenience and for improving readability, we define the special invariant urgent, which is true

only in the particular moment when a location is entered. It can be used to force an automaton to
stay in a location only for a single time point. This invariant could be implemented by a distinct clock,
say urgentclock, which is reset to 0 in every transition. The corresponding invariant is urgentclock
== 0.
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6 Generators and Monitors
While Chapter 3 defines semantics of timing specifications, the notion of timed traces is not well
suited to generate or observe event streams according to these specifications. This chapter defines
semantics of MULTIC timing specifications in terms of automata, which have been introduced in
Chapter 4. For each specification pattern introduced in Chapter 3, the present chapter defines two
(sets of) automata. The first one defines a generator, which is able to produce every trace that
adheres to the specification. The second one defines a monitor that recognizes every trace that
adheres to the specification.
In order to ease the implementation of automaton specifications, the definitions will be given in the

notion of the intermediate format discussed in Chapter 5. The relation between the two definitions is
sufficiently clear so that the reader should be able to translate one representation into the other. The
relation between the automaton semantics on one hand and the trace semantics on the other hand is
not that obvious, but certainly key. We expect that the automata definitions discussed in this section
indeed reflect the intended semantics. We will provide hints and references that give reason to the
relation between the two representations. However, a comprehensive analysis is highly expensive in
labor and out of scope of the present work.

6.1 Variables, Ports and Data Types
The interested reader may have recognized a small deviation between the definition of traces in
Definition 1 and Chapter 4. Where the former defines traces based on ports, the latter refers to
variables. The procedure is intentional, because putting the definition of automata into the context
of component based design would have added an unnecessary layer of complexity to the definitions.
In the following, we overcome the deviation by identifying all input and output variables with ports.
Doing so results in convergence of the two definitions.
The notions of both variables and ports however rely on data types that define which values can

occur. Timing specifications in Chapter 3 do not provide for definition of data types as this is out of
scope of the specification language. As the automata require data types to be defined for variable and
port definitions, which do not come from the timing specifications, we introduce a common notion
of type definition. Events are specified by a port optionally followed by a value:

Event :: Port | Port ’.’ EventValue

For every port that is referred in a specification, we assume a type definition of the form typedef

event ... PortX, where PortX identifies the corresponding port. The actual data type is hereby
left open. If multiple ports are referred in a specification, the context is explicitly stated.
Events occur in two different roles, namely as input and output events. Note that these roles are

no concept of the specification itself but of the automaton semantics. The role of a particular port is
defined by the role of the automaton. For monitor automata, all ports are defined as input variables.
For generators, the role depends on the specification. For example, in the specification whenever E1

occurs then E2 occurs..., the event E1 has the role input event, and E2 has the role output event.
Because events may occur either in form of a port name, or with a dedicated event value, the

automata specifications fastly become complex and unintuitive. We ease the specification by two
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"macros". For output events, we introduce the macro hasEvent(event), which expands simply to
event if the event specification refers to a port. It expands to event == value if the specification is
of the form event.value.
Output events occur in the act sections of transition definitions in an automaton, which requires

a value for that event. If a specification defines a port only, then it adheres by definition to every
possible event value on that port. We thus introduce a built-in function selectValue(Type), which
produces randomly a value of the specified data type. For output events, we further introduce the
macro sendEvent(event), which expands to event = selectValue(Type) if the event specification
refers to a port. It expands to event = value if the specification is of the form event.value.
For causal patterns, we extend the definitions by assigning tuples of values to events, such as in

event = value,id where event gets value value and id id. We also introduce the corresponding
function sendEvent(Port,id), which ensures that the sending event has id id.

Function EventSpec Port Port.EventValue
hasEvent(Port) Port Port == EventValue

sendEvent(Port) Port = selecValue(Type) Port = EventValue

sendEvent(Port,id) Port = selecValue(Type),id Port = EventValue,id

6.2 Event Sequences and Sets
Some specification patterns reason about sequences or sets of events. According to Chapter 3, the se-
mantics of an event sequence es = (e1, ..., en), is as follows. A sequence (ti, σi), ..., (ti+n−1, σi+n−1) ∈
ω in a trace satisfies es if every (ti+k, σi+k), 0 ≤ k < n, satisfies the event specification ek. Monitors
that recognize event sequences must be able to store the portion of an event sequence it has already
detected. To this end, we introduce a suitable data type and respective functions.
The data type is an event sequence store with type name EventSequence, and can store events

of arbitrary data type. The event sequence that shall be recognized is defined by iteratively calling
the function addToExpr(). For example, in order to recognize the even sequence (Event1, Event2,

Event3), the sequence store is initialized as follows:

EventSequence store;

...

store.addToExpr(Event1);

store.addToExpr(Event2);

store.addToExpr(Event3);

Events are added to the sequence by the function addEvent(). The function

store.addEvent(e);

adds event e to the recognized event sequence. Note that the addition of the first event of the
defined event sequence clears the list. Also the addition of an event that does not match the event
sequence clears the list:

// event sequence is (a,b,a,c,d)

store.addEvent(a); // state = (a)

store.addEvent(b); // state = (a,b)

store.addEvent(a); // state = (a,b,a)

store.addEvent(c); // state = (a,b,a,c)

store.addEvent(a); // state = (a)

store.addEvent(c); // state = ()

37



In order to check for completeness of event sequences, the function complete() returns a boolean
value that states whether the stored events match the specified event sequence. The number of
events that are required to complete the expression can be obtained with function remainingEvents().
Function clear() empties the list.
For event sets, the complementary data types EventSet is introduced, which provides the same set

of functions. The addition of events however results in clearing the list only if an event is added that
was already in the list.

EventSet store;

...

// event set is {a,b,c,d}

store.addEvent(a); // state = {a}

store.addEvent(c); // state = {a,c}

store.addEvent(b); // state = {a,b,c}

store.addEvent(a); // state = {a}

store.addEvent(c); // state = {a,c}

store.addEvent(c); // state = {c}

Both data types provide two further functions. For event sequences, the function nextEvent()

delivers the next expected event. For event sets an event from the missing ones is randomly selected.
Note that once an event is selected, successive calls of the function return the same value. The
function matchEvent(e) returns whether event e can be used to extend the stored sequence (or set).

Function Semantics
addToExpr(e) Adds event e to the store as expected event for initialization.
addEvent(e) Adds event e to the store.
nextEvent() Returns the next expected event.

matchEvent(e) Returns whether e belongs to the next expected events.

6.3 Intervals
Interval parameters come in different flavors: as a single value or as an interval with either open
or closed bounds in any combination. We also introduce macros for predicates that check for lower
and upper bounds, respectively, of interval specifications. Given a clock variable clock t and an
interval I, we introduce the macros matchLB(I,t), matchUB(I,t), equalUB(I,t), greaterUB(I,t)
and geqUB(t,I). The macros expand with respect to I as follows, where L defines the lower and U

the upper bound of I:

I V ]L,U[ ]L,U] [L,U[ [L,U]

matchLB(I,t) t == V t > L t > L t >= L t >= L

matchUB(I,t) t == V t < U t <= U t < U t <= U

equalUB(I,t) t == V na. t <= U na. t <= U

greaterUB(I,t) t > V t >= U t > U t >= U t > U

geqUB(I,t) t >= V na. t >= U na. t >= U

The additional macro matchBounds(I,t) returns the conjunction of matchLB(I,t) and matchUB(I,t).
It is important to note that the function equalUB(I,t) can be used only for right-closed intervals. The
same holds for function geqUB(I,t). Hence, every automaton that uses these functions is restricted
to use it only for right-close intervals.
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6.4 Sliding Windows
The reaction and the age pattern can be specified with a ’K out of N’ construct. In order to maintain
sliding windows that keep track of satisfied and unsatisfied event expressions, we introduce the data
type Window, which takes the parameters K and N on instantiation. The data type is basically an
ordered hash table, which takes clock values as keys, and booleans as values.
Several functions are defined for the data type. Function first() returns the value of the element

with the smallest key. Function append(t,v) adds a new element with key t and value v to the
hash table. If more than N elements are in the hash table, then the element with the smallest key
is removed. Function append(t) adds a new element with key t and value false to the hash table.
The function setSat(t) sets the value with key t to true. The function isSat(t) retrieves the
value with key t. Function isSat() returns whether there are no more than N-K elements with value
false in the hash table. Function isUnsat() returns !isSat(). The function isFailed(t,I) returns
true if the function isUnsat() returns true, and for the smallest key u in the hash table holds
greaterUB(I,t-u). Function wouldBeUnsat(n) returns true if the window would be unsatisfied if n

(unsatisfied) elements would be added via append(). Finally, function wouldBeUnsat() returns the
same as wouldBeUnsat(1).

Function Semantics
first() Returns value of first element.

append(t,v) Adds (t,v) to the hash table, ensuring max. size N.
append(t) Adds (t,false) to the hash table, ensuring max. size N.
setSat(t) Sets value of element t to true.
isSat(t) Returns value of element t.
isSat() Returns whether number of elements with value false <= N-K.

isUnsat() Returns !isSat().
isFailed(t,I) Returns isUnsat() and exists element u with greaterUB(I,t-u).

wouldBeUnsat(n) Returns true if addition of n unsatisfied elements leads to isUnsat().
wouldBeUnsat() Returns wouldBeUnsat(1).

We also exploit lists and hash tables over real values for those patterns:

list<real> times

hash<real,X> timestore1

multihash<real,X> timestore1

and introduce several functions for these container types. Function matchingBoundCount(c,I,t)

returns the number of elements/keys u in the container c for which matchBounds(I,t-u) holds.
The function hasMatchingBound(c,I,t) returns true if matchingBoundCount(c,I,t) > 0. Function
hasMatchingUB(c,I,t) delivers true if for any of the elements/keys u holds matchUB(t-u,I). The
function hasEqualUB(c,I,t) delivers true if for any of the elements/keys u holds equalUB(I,t-u).
The function equalUBCount(c,I,t) returns the number of elements for which equalUB(I,t-u) holds.
Function removeMatchingBound(c,I,t) removes all values for which matchBounds(I,t-u) holds.
Function removeGreaterBounds(c,I,t) removes all values for which holds greaterUB(I,t-value).
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Function Semantics
matchingBoundCount(c,I,t) # u with matchBounds(I,t-u).
hasMatchingBound(c,I,t) Returns matchingBoundsCount(c,I,t) > 0.

hasMatchingUB(c,I,t) True if for any element/key u holds matchUB(I,t-u).
equalUBCount(c,I,t) # u with equalUB(I,t-u).

hasEqualUB(c,I,t) Returns equalUBCount(c,I,t) > 0.
geqUBCount(c,I,t) # u with geqUB(I,t-u).

removeMatchingBound(c,I,t) Removes all u with matchBounds(I,t-u).
removeGreaterBounds(c,I,t) Removes all u with greaterUB(I,t-u).

6.5 Causal Event Relations
Causal event relations are required to determine the exact behavior of the corresponding causal
reaction and age patterns (cf. Section 6.11 and Section 6.12, respectively). We expect to have a
definition of the causal event relation in a specification that contains such causal pattern. In order
to implement generators and monitors for these pattern, we introduce respective event stores LIFO,
FIFO and IDSTORE. These stores are very similar to hash tables, except that they provide access to
their elements only with respect to their intended semantics. For example, one can remove only the
most recently added element from a LIFO store. The following functions are defined for causal stores.
Function insert(t,e) adds element e to the store with time stamp t. Function hasMatch(I,t) re-

turns whether the store has a matching element. Matching means that the macro matchBounds(I,t)

returns true. Which elements are considered by hasMatch(I,t) depends on the store type. For LIFO
stores, only the most recently added element is considered, and for FIFO only at the least recently
added element, respectively. IDSTORE stores consider all elements. Function removeMatch(I,t) re-
moves the next matching element (i.e. for which matchBounds(I,t) holds). This event can be
retrieved by the function nextMatchEvent(I,t).

Function hasMatch(I,t,id) is similar to the function with the same name but implements only two
parameters. It returns whether the store has a matching element with id id. Function removeMatch(I,t,id)

removes the first element with id id, for which matchBounds(I,t) holds.
Function hasEqualUB(I,t) returns whether there is any element for which equalUB(I,t) holds.

Function hasGreaterUB(I,t) returns whether there is any element for which greaterUB(I,t) holds.
Function removeGreaterUB(I,t) removes all elements for which greaterUB(I,t) holds.

Function Semantics
insert(t,e) Inserts (t,e).

hasMatch(I,t) Returns whether (u,e) with matchBounds(I,t-u) exists.
hasMatch(I,t,id) Returns whether (u,e.id) with matchBounds(I,t-u) exists.

nextMatchEvent(I,t) Returns the next event for which hasMatch(I,t) holds.
nextMatchEvent(I,t,id) Returns the next event for which hasMatch(I,t,id) holds.

removeMatch(I,t) Removes the event (u,e) = nextMatchEvent(I,t).
removeMatch(I,t,id) Removes the event (u,e.id) = nextMatchEvent(I,t,id)).

hasEqualUB(I,t) Returns whether (u,e) with equalUB(I,t-u) exists.
hasGreaterUB(I,t) Returns whether (u,e) with greaterUB(I,t-u) exists.

removeGreaterUB(I,t) Removes all(u,e) with greaterUB(I,t-u).

6.6 Dealing with Clocks
In order to realize observations with multiple clocks on one hand, and because of the fact that clocks
may be referred in multiple components on the other hand, we follow an approach where clocks
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are provided by separate automata and used by generator and monitor automata in terms of input
variables.
For every clock defined by a Clock Name has ... pattern, we construct a corresponding “clock”

automaton with a single output variable that realises the respective clock. The individual clock
variables in turn are referred in the various generator and monitor automata as input variables (cf.
Section 6.7 ff). Because of the large number of possible combinations of clock properties, we omit
a detailed discussion of how to express the required invariants and flows for an adequate automaton
representation. The general schemes are detailed in Section 3.7. Instead, we assume for each clock
variable a corresponding invariant clock_inv() and flow predicate clock_flow(). Note that these
predicates may contain randomly generated constants due to non-determinism induced by the clock,
such as clock drift intervals and skews.
Clocks with finite resolutions also require the definition of discrete transitions for clock steps.

Hence, we also introduce a respective predicate clock_step() that indicates the guard for such steps.
To summarize, the general structure of a clock automaton is shown below:

automaton ClockName {

output:

clock c; // Here come the corresponding parameters of the clock, e.g.

// clock<mindrift,maxdrift,skew,resolution> c;

// clock<maxdiff,resolution> c;

init:

clock_inv(c);

clock_flow(c);

trans init:

guard:

clock_step(c);

}

It is important to note that clocks with finite resolution require for all involved automata the
possibility to perform a corresponding transition according to the definition of automata composition
discussed in Section 4.4. In order to keep the presentation simple, we omit those stuttering transitions
in the presentation of the automata.
Note that the approach of instantiating clock automata to simulate local clocks remains valid for

exhaustive verifications. Because the invariants and flows contain randomly generated parameters
(such as drift functions and skew), formal verification takes all possible combinations of such param-
eters into account, which in turn establishes the desired kind of non-determinism when dealing with
local clocks.

6.7 Single Event Pattern
The most simple specification pattern is the SingleEvent pattern:

SingleEvent :: EventList occurs within Interval .

To demonstrate the use of automata for the SingleEvent pattern and the pattern that follow in
the next chapters, we make use of example instances. Here we define the automata by the following
pattern instance as the example ’e,f occurs within I’.
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6.7.1 Generator
The generator consists of a simple automaton with two locations. After the (single) event has been
send the automaton remains in the final location, silently.

typedef event ... Port;

automaton SingleEventGen {

input:

clock c;

output:

Port e;

Port f;

private:

timer<c> t = 0;

init:

// we have to leave the state when upper bound elapses

matchUB(I,t);

trans final:

guard:

// Transition can be taken within the interval

matchBounds(I,t);

act:

sendEvent(e);

sendEvent(f);

final:

// remain in this location

}

6.7.2 Monitor
The monitor of the single event pattern is very similar to the generator. The automaton has a third
location bad, which is reached when the pattern is violated.

typedef event ... Port;

automaton SingleEventMon {

input:

Port e;

Port f;

clock c;

private:

timer<c> t = 0;

init:

// we leave the state when Interval has elapsed

!greaterUB(I,t);
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trans good:

guard:

matchBounds(I,t);

hasEvent(e);

hasEvent(f);

trans bad:

guard:

greaterUB(I,t);

good:

// satisfied: remain in this location unless a second event arrives

trans bad:

guard:

hasEvent(e);

trans bad:

guard:

hasEvent(f);

bad:

// violated: remain in this location

}

6.8 Repetition Pattern
Recurring event occurrences are specified with the Repetition pattern:

Repetition :: EventList occurs every Interval1 [ with RepetitionOptions ]? .

RepetitionOptions :: Jitter [ and Offset ]? | Offset [ and Jitter ]?
Jitter :: jitter TimeExpr
Offset :: offset Interval2

The pattern comes with optional jitter and offset specifications. In the following, we discuss the
version with both parameters set. The version without jitter is derived from the one with jitter in a
canonical way. The same holds for the offset.
We define the automata by the pattern instance ’e,f occurs every I with jitter J and offset

O’ as an example.

6.8.1 Generator
The generator of the pattern consists of two automata. The first one generates events periodically
according to the Interval1 parameter. The second one adds the jitter. The first automaton is very
similar to the SingleEvent pattern automaton. The main difference is that the automaton is reset
after sending an event. The first event may occur in the interval [O−, O+], possibly further delayed
by the jitter.
The generator automata are an extension of the one defined in [5], together with a proof that it

adheres to the trace semantics of the specification pattern. The first automaton produces events
within the minimal and maximal time bound. The second automaton adds the jitter delay to these
events. For the jitter automaton, we introduce the functions random() and getSmallestKey(). The
random(U) function delivers a real value between 0 and U . The getSmallestKey() function delivers
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the smallest key in a hash or multi-hash table. In our case, the function delivers the next time point
in which events have to be send.

typedef event ... Port;

automaton RepetitionPeriodGen {

input:

clock c;

output:

Port ip; // ’internal’ port

private:

timer<c> t = 0;

init:

// we have to leave the state when upper offset bound elapses

matchUB(O,t);

trans loop:

guard:

matchBounds(O,t);

act:

sendEvent(ip);

set:

// reset the timer clock

t = 0;

loop:

// we have to leave the state when upper bound elapses

matchUB(I,t);

trans loop:

guard:

matchBounds(I,t);

act:

sendEvent(ip);

set:

// reset the timer clock

t = 0;

}

automaton RepetitionJitterGen {

input:

Port ip; // ’internal’ port

clock c;

output:

Port e;

Port f;

private:

timer<c> t = 0;

real next = 0;
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multihash<real,Port> events;

init:

(t <= next) || (events.count(next) == 0);

trans init:

guard:

hasEvent(ip);

set:

// Add event with the time offset and re-calculate next

events.insert(t + random(J),ip);

next = getSmallestKey(events);

// We go into the send location if time is up

trans send:

guard:

t >= next;

send:

urgent; // We do not stay in this location

// Sending events is iterated as long as further events are

// in the event list for the time point.

trans send:

guard:

events.count(next) >= 1;

act:

sendEvent(e,events.value(next));

sendEvent(f,events.value(next));

set:

events.remove(next);

trans init:

guard:

events.count(next) == 0;

set:

next = getSmallestKey(events);

}

6.8.2 Monitor
Interestingly, accurate monitoring of the Repetition pattern is not possible in general. This is because
the combination of (minimal and maximal) period with large jitters prevents deciding which fraction
of a time period belongs to which parameter. Large means in our context jitter larger than the
minimal period.
But also for J ≤ P−, construction of an accurate monitor is not obvious. The following proposition

provides suitable properties for such construction. Semantics of the repetition pattern is the set of
traces {(ei, ti)i∈N | ti = ui + ji, u0 ∈ [O−, O+], ui − ui−1 ∈ [P−, P+], ji ∈ [0, J ]}. For the
discussion we focus on time sequences, and define the language LRep = {(ti)i∈N | ti = ui + ji, u0 ∈
[O−, O+], ui − ui−1 ∈ [P−, P+], ji ∈ [0, J ]}.
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Proposition 1. Given a time sequence ω = (ti)i∈N. We define sets Ji = [J−i , J
+
i ] for i ∈ N as

follows:

• J−0 = max(0, t0 −O+),

• J+
0 = min(J, t0 −O−),

• J−i = max(0, ti − ti−1 − P+ + J−i−1),

• J+
i = min(J, ti − ti−1 − P− + J+

i−1).

Then the following holds:

(a) ω ∈ LRep ⇔ ∀i ∈ N : J−i ≤ J
+
i ∧ Ji ⊆ [0, J ]

(b) ω ∈ LRep ⇒ ∀(ji)i∈N ∈ (Ji)i∈N : ∃(ui)i∈N : ∀i ∈ N : ti = ui+ ji∧u0 ∈ [O−, O+]∧ui−ui−1 ∈
[P−, P+].

2

Property (a) states that for any time sequence ω = (ti)i∈N, the calculated sets Ji are not empty
and within the jitter bounds if and only if ω is a sequence of the repetition pattern (ω ∈ LRep).
While property (b) looks like a tautology, it states that an observed time sequence, if it belongs to
the language, can indeed be constructed by any jitter ji that belongs to the calculated jitter set. In
other words, it can be constructed by parameters ui and ji for any ji ∈ Ji.
The proposition provides an approach for the construction of a corresponding monitor. The calcu-

lation of the parameters J−i , J
+
i shows how they can be updated iteratively. Property (a) provides

the satisfaction check for the pattern.

Figure 6.1: Degree of freedom of choice for jitters ji, ji+1 when ti, ti+1 are observed

The proof of the proposition is inductive, and needs both properties:
i = 0: We know by definition that for ω ∈ LRep holds t0 = u0 + j0, u0 ∈ [O−, O+], ji ∈ [0, J ]. We
further observe that by definition holds 0 ≤ J−o and J+

0 ≤ J . We distinguish four cases. The second
and third case considers ω ∈ LRep, which is equivalent to O− ≤ t0 ≤ O+ + J .

1. t0 < O−: Here, t0 cannot be member of an ω ∈ LRep by definition. Furthermore, we get
J+

0 = t0 −O− < 0, and hence J−0 > J+
0 .

2. O− ≤ t0 ≤ O+: ⇔ t0 − O+ ≤ 0 ⇔ J−0 = max(0, t0 − O+) = 0. Furthermore, we have
t0 −O− ≥ 0⇔ J+

0 = min(J, t0 −O−) ∈ [0, J ]. Because J−0 = 0 and J+
0 ∈ [0, J ] we get (a).

Furthermore, for every J−0 = 0 ≤ j0 ≤ min(J, t0) = J+
0 we can find u0 such that t0 = u0 + j0,

which establishes also (b).
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3. O+ < t0 ≤ O+ + J : ⇔ 0 < t0 − O+ ≤ J ⇔ J−0 = t0 − O+ ∈ (0, J ]. In order to get (a) we
need to show J− ≤ J+, or equivalently t0 −O+ ≤ min(J, t0 −O−). This is satisfied because
(i) t0 − O+ ≤ t0 − O− holds trivially, and (ii) t0 − O+ ≤ J by precondition of the case. We
establish (b) as follows. Setting u0 = O+ and j0 = J−0 = t0 −O+ shows the existence for the
smallest jitter. Also for j0 = J+

0 = min(J, t0 −O−) we can find a corresponding u0, for which
it holds O− ≤ u0 ≤ O+. It is easy to see that we can find u0 also for all jitter between J−0
and J+

0 .

4. O+ + J < t0: Here, t0 cannot be member of an ω ∈ LRep by definition. Furthermore, we get
J−0 = t0 −O+ > J , and hence J−0 > J+

0 . This concludes the induction base.

i→ i+ 1: By induction we know that for any ji ∈ Ji there is a ui such that ti = ui + ji. Hence, we
get (1) ui + J−i ≤ ti ≤ ui + J+

i .
Because ui+1 − ui ∈ [P−, P+] and ji+1 ∈ [0, J ] holds by definition of LRep, ω belongs to the

language only if ti+1 ∈ ui + [P−, P+] + [0, J ], or equivalently (2) ui + P− ≤ ti+1 ≤ ui + P+ + J .
From (1) and (2), we can calculate minimal and maximal distances between ti and ti+1, for which

we get (3) P− − J+
i ≤ ti+1 − ti ≤ P+ + J − J−i , and hence:

(3a) P− − J+
i ≤ ti+1 − ti ⇔ J+

i+1 = min(J, ti+1 − ti − P− + J+
i ) ≥ 0.

(3b) ti+1 − ti ≤ P+ + J − J−i ⇔ J−i+1 = max(0, ti+1 − ti − P+ + J−i ) ≤ J .

Furthermore, from J−i ≤ J+
i we can derive P− + J−i ≤ P+ + J+

i ⇒ −P+ + J−i ≤ −P− + J+
i ⇒

ti+1 − ti − P+ + J−i ≤ ti+1 − ti − P− + J+
i and thus J−i+1 ≤ J

+
i+1.

All together establish (a).
Property (b) is established by revisiting (1). Construction of Ji+1 along (3) ensures that for any

ji ∈ Ji and ji+1 ∈ Ji+1, we get ui+1 = ti+1− ji+1 and ui = ti− ji such that ui+1− ui ∈ [P−, P+]
(cf. Figure 6.1). This concludes the induction step and hence the proof.

Restrictions For monitors, the jitter must be smaller or equal to the minimal period. Furthermore,
the period interval must be closed: I = [Pmin,Pmax] and J ≤ Pmin.
The monitor maintains sets Ji and checks for the property (a) above.

typedef event ... Port;

automaton RepetitionMon {

input:

Port e;

Port f;

clock c;

private:

timer<c> t = 0;

real Jmin = 0;

real Jmax = J;

init:

// (0 <= Jmin) && (Jmin <= Jmax) && (Jmax <= J);

trans check:

guard:

hasEvent(e);
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hasEvent(f);

set:

Jmin = max(0,t-Omax);

Jmax = min(J,t-Omin);

t = 0;

run:

// (0 <= Jmin) && (Jmin <= Jmax) && (Jmax <= J);

trans check:

guard:

hasEvent(e);

hasEvent(f);

set:

Jmin = max(0,t-Pmax+Jmin);

Jmax = min(J,t-Pmin+Jmax);

t = 0;

check:

urgent;

trans run:

guard:

(0 <= Jmin) && (Jmin <= Jmax) && (Jmax <= J);

trans bad:

guard:

!((0 <= Jmin) && (Jmin <= Jmax) && (Jmax <= J));

bad:

// pattern is violated

}

6.9 Reaction Pattern
The reaction pattern reasons about distances between event expressions:

Reaction :: whenever EventExpr occurs then EventExpr occurs within Interval
[ once ]? [ , Number out of Number times ]? .

Note that the generator automaton for the reaction pattern defines two different roles for events.
The first event expression refers to input ports. This means, the generator does not generate the
whole language of the pattern, but only the event expressions of the specified reaction. Indeed, other
interpretations for generators of this pattern could be defined. However, the selected one fits best
the intended use cases.
The generator and the monitor exploit the data types EventSequence and EventSet, which have

been introduced in Section 6.2 for supporting recognition of event expressions.
We define the automata by the pattern instance ’whenever {e1,e2} occurs then (e3,e4) occurs
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within I once, K out of N times’. The following automata contain comments for the statements
that have to be removed if the optional once is omitted. If the restriction K out of N times is
omitted then we assume K = N = 1.

6.9.1 Generator
The generator automaton starts with the definition of all events that occur in the specification. The
init location is only visited at system startup for initializing the event stores. The "main loop" is
location run.

Restrictions Generators for the pattern can be applied only for intervals which are right-closed, i.e.,
for intervals of the form (L,U] or [L,U]. The generator also in general cannot enforce once semantics.
Hence it is not allowed for generators of the pattern, and the example pattern reduces to ’whenever

{e1,e2} occurs then (e3,e4) occurs within I, K out of N times’.

typedef event ... Port1;

typedef event ... Port2;

typedef event ... Port3;

typedef event ... Port4;

automaton ReactionGen {

input:

Port1 e1;

Port2 e2;

clock c;

out:

Port3 e3;

Port4 e4;

private:

timer<c> t = 0;

EventSet instore;

list<real> intimes;

EventSequence outstore;

Window<K,N> win;

init:

// location is used for initialization only

urgent;

trans run:

set:

instore.addToExpr(e1);

instore.addToExpr(e2);

outstore.addToExpr(e3);

outstore.addToExpr(e4);

run:

// We remain in this state unless there are enough unsatisfied

// input event expressions that would let the sliding window fail.
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!win.wouldBeUnsat(geqUBCount(intimes,I,t));

// We store all input events.

// This transition is duplicated for each event ein in the input expression.

trans run:

guard:

hasEvent(ein); // ein = e1,e2

set:

instore.addEvent(ein);

// If an input event expression is completed then store it.

instore.complete() => intimes.append(t);

// Send events from the output expression anytime

trans run:

act:

sendEvent(outstore.nextEvent());

set:

outstore.addEvent(outstore.nextEvent());

outstore.complete() =>

{

// Add unsat input event expressions to the window

foreach (u,intimes)

{

greaterUB(I,t-u) =>

{

win.append(u);

intimes.remove(u);

}

}

// All input event expressions within I are sat.

foreach (u,intimes)

{

matchBounds(I,t-u) =>

{

win.append(u,true);

intimes.remove(u);

}

}

}

// Sometimes we have to send output events ...

trans sendnow:

guard:

// ... if there would be unsatisfied inputs.

// win.wouldBeUnsat(geqUBCount(intimes,I,t));

sendnow:

urgent;
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trans sendnow:

guard:

// repeat the transition while there are unfulfilled sequences.

win.wouldBeUnsat(geqUBCount(intimes,I,t));

act:

sendEvent(outstore.nextEvent());

set:

outstore.addEvent(outstore.nextEvent());

outstore.complete() =>

{

foreach (u,intimes)

{

greaterUB(I,t-u) =>

{

win.append(u);

intimes.remove(u);

}

}

foreach (u,intimes)

{

matchBounds(I,t-u) =>

{

win.append(u,true);

intimes.remove(u);

}

}

}

trans run:

// otherwise go back to "main-loop"

guard:

!win.wouldBeUnsat(geqUBCount(intimes,I,t));

}

6.9.2 Monitor
The monitor is simpler than the generator, because it does not need to ensure satisfaction. Hence,
the respective state is not needed. On the other hand, we need to track unsatisfied input expressions.

typedef event ... Port1;

typedef event ... Port2;

typedef event ... Port3;

typedef event ... Port4;

automaton ReactionMon {

input:

Port1 e1;

Port2 e2;

Port3 e3;

Port4 e4;

51



clock c;

private:

timer<c> t = 0;

EventSet instore;

multihash<real,bool> intimes;

EventSequence outstore;

Window<K,N> win;

bool winfailed = false;

bool oncefail = false; // needed only if once keyword exists

init:

// init location is used for initialization only

urgent;

trans run:

set:

instore.addToExpr(e1);

instore.addToExpr(e2);

outstore.addToExpr(e3);

outstore.addToExpr(e4);

run:

!winfailed;

!oncefail;

// We store all input events

// This transition is duplicated for each event ein in the input expression.

trans run:

guard:

hasEvent(ein); // ein = e1,e2

set:

instore.addEvent(ein);

// If an input event expression is completed then store it,

// and update sliding window.

instore.complete() =>

{

// add event expression as unsat.

intimes.insert(t,false);

// what is older than I goes into window.

foreach (u,intimes)

{

greaterUB(I,t-u) =>

{

foreach (v,intimes.values(u))

{

win.append(u,v);

// window that is failed inbetween remains failed
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win.isFailed(t,I) => winfailed = true;

}

intimes.remove(u);

}

}

}

// Check for output events

// This transition is duplicated for each event eout in the output expression.

trans run:

guard:

hasEvent(eout); // eout = e3,e4

set:

outstore.addEvent(eout);

outstore.complete() =>

{

// Set all inputs matching I to be satisfied

foreach(u,intimes)

{

matchBounds(I,t-u) =>

{

list<bool> values = intimes.values(u);

intimes.remove(u);

foreach (v,values)

{

// set expression as satisfied.

intimes.insert(u,true);

}

// This is for once only

(values.count() > 1) => oncefail = true;

}

}

}

// Missing output violates the pattern

trans bad:

guard:

winfailed;

// This is for patterns with ’once’ only.

// Too much matches violate the pattern.

trans bad:

guard:

oncefail;

bad:

// pattern is violated

}
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6.10 Age Pattern
The age pattern provides the backward view of time spans between event expressions.

Age :: whenever EventExpr occurs then EventExpr has occurred within

Interval [ once ]? [ Number out of Number times ]? .

We define the automata by the example pattern instance ’whenever (e3,e4) occurs then {e1,e2}

has occurred within I once, K out of N times’. The following automata contain comments for
the statements that have to be removed if the optional once is omitted. If the restriction K out of

N times is omitted then we assume K = N = 1.

6.10.1 Generator
Restrictions The generator of the age pattern can in general not enforce once semantics. Hence it
is not allowed for generators of the pattern, and the example pattern reduces to ’whenever (e3,e4)

occurs then {e1,e2} has occurred within I, K out of N times’.

typedef event ... Port1;

typedef event ... Port2;

typedef event ... Port3;

typedef event ... Port4;

automaton AgeGen {

input:

Port1 e1;

Port2 e2;

clock c;

output:

Port3 e3;

Port4 e4;

private:

timer<c> t = 0;

EventSet instore;

list<real> intimes;

EventSequence outstore;

Window<K,N> win;

init:

// init location is used for initialization only

urgent;

trans run:

set:

instore.addToExpr(e1);

instore.addToExpr(e2);

outstore.addToExpr(e3);

outstore.addToExpr(e4);

run:
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// We store all input events

// This transition is duplicated for each event ein in the input expression.

trans run:

guard:

hasEvent(ein); // ein = e1,e2

set:

instore.addEvent(ein);

// If an input event expression is completed then store it.

instore.complete() => intimes.append(t);

// Cleanup old input expressions

removeGreaterBounds(intimes,I,t);

// We may send an event of the output expression as long as we

// do not violate the sliding window.

trans run:

guard:

hasMatchingBound(intimes,I,t)

|| !win.wouldBeUnsat()

|| (outstore.remainingEvents() > 1);

act:

sendEvent(outstore.nextEvent());

set:

outstore.addEvent(outstore.value(key).nextEvent());

outstore.complete() =>

{

win.append(t);

hasMatchingBound(intimes,I,t) =>

{

win.setSat(t);

// This is for "once", but cannot enforce once,

// because the function may remove multiple matching

// input expressions.

removeMatchingBound(intimes,I,t);

}

}

}

6.10.2 Monitor
The main structure of the monitor of the age pattern is equivalent to the one for reactions. However,
we need to keep track of time points of completed input expressions.

typedef event ... Port1;

typedef event ... Port2;

typedef event ... Port3;

typedef event ... Port4;
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automaton AgeMon {

input:

Port1 e1;

Port2 e2;

Port3 e3;

Port4 e4;

clock c;

private:

timer<c> t = 0;

EventSet instore;

list<real> intimes;

EventSequence outstore;

Window<K,N> win;

bool oncefail = false;

init:

// init location is used for initialization only

urgent;

trans run:

set:

instore.addToExpr(e1);

instore.addToExpr(e2);

outstore.addToExpr(e3);

outstore.addToExpr(e4);

run:

!win.isFailed(t,I);

!oncefail;

// We store all input events

// This transition is duplicated for each event ein in the input expression.

trans run:

guard:

hasEvent(ein); // ein = e1,e2

set:

instore.addEvent(ein);

// If an input event expression is completed then store it.

instore.complete() => intimes.append(t);

// Cleanup old input expressions

removeGreaterBounds(intimes,I,t);

// Check for output events

// This transition is duplicated for each event eout in the output expression.

trans run:

guard:

hasEvent(eout); // eout = e3,e4

act:
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outstore.addEvent(eout);

outstore.complete() =>

{

win.append(t);

hasMatchingBound(intimes,I,t) =>

{

win.setSat(t);

// This is for once only

matchingBoundCount(intimes,I,t) > 1 => oncefail = true;

}

}

// Missing output violates the pattern

trans bad:

guard:

win.isFailed(t,I);

// Too much output violates the pattern, too, with ’once’ only.

trans bad:

guard:

oncefail;

bad:

// pattern is violated

}

6.11 Causal Reaction Pattern
The causal reaction pattern checks for reactions on causally related events only. In order to keep
definition of this pattern simple, it relates one input event stream with one output event stream:

CausalReaction :: Reaction( EventSpec ’,’ EventSpec ) within Interval .

Multiple event streams can be entangled by the definition of multiple causal reaction patterns. It
is important to keep in mind that the pattern requires the definition of a causal relation function. If
no such definition exists in the specification, we assume the default definition [>(e1,e2)=ID. Note
that relating multiple input event streams to a single output event stream may impose problems when
the ids of incoming input events are not consistent. The definition of more expressive causal relation
function which can deal with such situations is subject of ongoing work.
We define the automata by the example pattern instance ’Reaction(e1,e2) within I’.

6.11.1 Generator
Restrictions Generators for the pattern can be applied only for intervals which are right-closed, i.e.,
for intervals of the form (L,U] or [L,U]. Moreover, generators cannot be used in conjunction with the
LIFO causal relation function. This is because the generator cannot be forced to follow the pattern
in any case as this would require prophetic gifts. Suppose the pattern Reaction(e1,e2) within

[8,10]ms. Further suppose the LIFO stores contains the elements [(e1,42),(e1,44)] at time point
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50, where the next element has time stamp 45. The latest time point at which this element could be
sent is 52 because otherwise the element with time stamp 42 would miss its deadline. However, no
other input event must arrive before that time because otherwise the pattern is violated. Reacting
on such event is also not possible because this still violates the LIFO semantics.
For FIFO and ID relation functions this is no problem, and the generator works this way by sending

output events if the corresponding stored events would otherwise violate their deadline.

typedef event id ... Port1;

typedef event id ... Port2;

automaton CausalReactionGen {

input:

Port1 e1;

clock c;

output:

Port2 e2;

private:

timer<c> t = 0;

STORE<Port1> intimes; // Select the correct store type

init:

!intimes.hasEqualUB(I,t);

trans init:

guard:

hasEvent(e1);

set:

// Store event.

intimes.insert(t,e1);

trans init:

guard:

intimes.hasMatch(I,t);

act:

sendEvent(e2,intimes.nextMatchEvent(I,t).id);

set:

// Remove matching event pair.

intimes.removeMatch(I,t,intimes.nextMatchEvent(I,t).id);

trans sendnow:

guard:

intimes.hasEqualUB(I,t);

sendnow:

intimes.hasEqualUB(I,t);

trans sendnow:

guard:

intimes.hasMatch(I,t);

act:

sendEvent(e2,intimes.nextMatchEvent(I,t).id);

// Remove matching event pair.
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intimes.removeMatch(I,t,intimes.nextMatchEvent(I,t).id);

trans init:

guard:

!intimes.hasEqualUB(I,t);

}

6.11.2 Monitor
The monitor of the causal reaction pattern is very simple. It detects violation by checking for violations
of the interval for all stored input events. Matching output events are recognized and the store is
updated accordingly. Non-matching events are ignored.

typedef event id ... Port1;

typedef event id ... Port2;

automaton CausalReactionMon {

input:

Port1 e1;

Port2 e2;

clock c;

private:

timer<c> t = 0;

STORE<Port1> intimes; // Select the correct store type

init:

!intimes.hasGreaterUB(I,t);

trans init:

guard:

hasEvent(e1);

set:

// Store event.

intimes.insert(t,e1);

trans init:

guard:

hasEvent(e2);

intimes.hasMatch(I,t,e2.id);

set:

// Remove matching event pairs.

intimes.removeMatch(I,t,e2.id);

trans bad:

guard:

intimes.hasGreaterUB(I,t);

bad:

// pattern is violated

}
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6.12 Causal Age Pattern
The causal age pattern checks for ages on causally related events only. In order to keep definition of
this pattern simple, it relates one input event stream with one output event stream:

CausalAge :: Age( EventSpec ’,’ EventSpec ) within Interval .

As for the causal reaction pattern, multiple event streams can be entangled by the definition of
multiple causal reaction patterns. It is important to keep in mind that the pattern requires the
definition of a causal relation function. If no such definition exists in the specification, we assume
the default definition <](e1,e2)=ID(e1). Note that relating multiple input event streams to a single
output event stream may impose problems when the ids of incoming input events are not consistent.
The definition of more expressive causal relation function which can deal with such situations is
subject of ongoing work.
We define the automata by the example pattern instance ’Age(e1,e2) within I’.

6.12.1 Generator
Restrictions Generators for the pattern can be applied only for intervals which are right-closed, i.e.,
for intervals of the form (L,U] or [L,U].

In contrast to the causal reaction pattern, the generator of the causal age pattern can be applied
together with the LIFO relation function. This is because input event which are "to old" can simply
be ignored.
The ability to simply ignore events that do not match the deadline anymore makes the generator

very simple.

typedef event id ... Port1;

typedef event id ... Port2;

automaton CausalAgeGen {

input:

Port1 e1;

clock c;

output:

Port2 e2;

private:

timer<c> t = 0;

STORE<Port1> intimes; // Select the correct store type

init:

trans init:

guard:

hasEvent(e1);

set:

// Store event.

intimes.insert(t,e1);

// Remove elements which are too old

intimes.removeGreaterUB(I,t);

trans init:

guard:
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intimes.hasMatch(I,t);

act:

sendEvent(e2,intimes.nextMatchEvent(I,t).id);

}

6.12.2 Monitor
The monitor is even simpler than the one for causal reactions. It detects violation by checking for
non-matching events. Matching output events are recognized and the store is updated accordingly.

typedef event id ... Port1;

typedef event id ... Port2;

automaton CausalAgeMon {

input:

Port1 e1;

Port2 e2;

clock c;

private:

timer<c> t = 0;

STORE<Port1> intimes; // Select the correct store type

init:

trans init:

guard:

hasEvent(e1);

set:

// Store event.

intimes.insert(t,e1);

// Remove elements which are too old

intimes.removeGreaterUB(I,t);

trans init:

guard:

hasEvent(e2);

intimes.hasMatch(I,t,e2.id);

trans bad:

guard:

hasEvent(e2);

!intimes.hasMatch(I,t,e2.id);

bad:

// pattern is violated

}
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7 Design Rules
The MULTIC-Tooling prototype allows for modeling systems in terms of SysML. In order to suc-
cessfully perform analysis on such models, they must adhere to a number of “design rules”, which
are presented in this chapter. Based on the results of the MULTIC project [3], the particularities of
the modeling of components, inputs, outputs, and channels, as well as the specification of timing
requirements are discussed. They serve as a basis for automated model checks.
All guidelines for modeling systems presented in this chapter are explained in detail in the “Papyrus

SysML Modeling” video tutorial, which comes with this report. It is available in both English and
German. Through the explicit annotation of the applied design rules, the underlying principles can
be easily understood and learned step by step using a practical example. For a better understanding,
the relevant timestamps of the video will be referred in the further course of this chapter.

7.1 Best Practices
In order to increase the comprehensibility of the models used and to be able to provide assistance with
concrete problems, the best practice rules listed below should be taken into account when modeling
architectures. Since their compliance is not checked by the presented tool prototype, the analysis of
differently structured models is also possible in the current stage of development.
While rules BR-1 to BR-3 are fully considered in the video tutorial, their use is always implicit. If

the modeling of the system under consideration is done according to the demonstrated principles, the
resulting architecture conforms to the subsequent requirements automatically.

BP-1 A model should contain exactly one block definition diagram.

A block definition diagram (BDD) defines the hierarchical structure of the architecture under consid-
eration. While each component is represented by a Block, hierarchical structures can be represented
using Aggregation relationships. An InterfaceBlock defines a port type that can be used in the
ProxyPort instances of the inputs and outputs. The definition of a FlowProperty element in the
interface block is used to differentiate between input and output ports.

BP-2 A model should contain exactly one internal block diagram for each decom-
position of a block.

An internal block diagram (IBD) describes the interfaces between the components involved. The
previously modeled ProxyPorts can be connected to each other using BindingConnector relationships.

BP-3 A model should have exactly one requirement diagram.

A requirement diagram (RD) specifies timing requirements for the existing blocks. A Requirement

can be assigned to a Block using a satisfy relation and contains always exactly one contract.
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7.2 Modeling of Components

DR-1 A model must contain exactly one context block.

A context block is a Block that has no higher-level blocks and no input or output ports. The explicit
modeling of the system context serves as an entry point for the automated analysis.

DR-2 A model must have exactly one system block.

A system block is a Block that is connected to the context block by exactly one Aggregation and
has at least one output port. Within the context of this project, a virtual integration test is carried
out for exactly one system. A future extension for modeling multiple systems can be implemented.

DR-3 A model can have any number of subsystem blocks.

A subsystem block is a Block that is connected to the system block or a subsystem block subordinate
to it by exactly one Aggregation. According to this design rule, the functionality of the system can
be divided into as many subsystem blocks as required.

DR-4 A model must have exactly one interface block called ’Event’.

An interface block is an InterfaceBlock that has exactly one FlowProperty element called EventFlow
and the attribute Direction with the value out. The explicitly modeled interface block forms the
basis for the typing of the ports included. To facilitate the integration of functional aspects, the
implementation of user-defined functions using additional interface blocks can be simplified.
Figure 7.1 exemplifies the application of the design rules DR-1 to DR-4. The illustrated block

definition diagram of our tinySysMLModel example contains exactly one context and one system
block, two subsystem blocks and one interface block (see video tutorial, 1:07 to 7:20 min.).

«Block»
BLOCK_Context

attributes

operations

«Block»
BLOCK_System
attributes

operations

Input Output

«Block»
BLOCK_SubSystemA

attributes

operations

 InputSubA OutputSubA

«Block»
BLOCK_SubSystemB

attributes

operations
InputSubB OutputSubB

«InterfaceBlock»
Event

operations

+

 + block_system1

1

 + 

 + secondSubBlock

 1

 1

+ 

 + firstSubBlock
1

1

Figure 7.1: Block Definition Diagram
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7.3 Modeling of Inputs and Outputs

DR-5 Each input and output must be represented by a ProxyPort.

While FullPorts provide their own behavior, ProxyPorts expose some of the behavior of the owning
block [9]. The ProxyPorts therefore correspond exactly to our idea of the semantics of ports and are
used exclusively in the context of this project [3, p. 140]. Each port must possess the attribute Type
with the value Event. Moreover, the attribute isConjugated must be set to true for each input port,
and to false for each output port. The ability to clearly distinguish between inputs and outputs is an
important prerequisite for generating the simulation model.
The correct modeling of inputs and outputs can be seen from the internal block diagram of

BLOCK_System depicted in Figure 7.2 (see video tutorial, 8:16 to 13:06 min.). Each input and output
is represented by a ProxyPort instance. A positive value of the attribute isConjugated is indicated
by the presence of the prefix ~ preceding the type name Event.

«Block»
BLOCK_System

 + secondSubBlock: BLOCK_SubSystemB [1]

 + InputSubB: ~Event [1]
«ProxyPort»

 + OutputSubB: Event [1]
«ProxyPort»

 + firstSubBlock: BLOCK_SubSystemA [1]

 + InputSubA: ~Event [1]
«ProxyPort»

 + OutputSubA: Event [1]
«ProxyPort»

 + Input: ~Event [1]
«ProxyPort»

 + Output: Event [1]
«ProxyPort»

Figure 7.2: Internal Block Diagram of BLOCK_System

7.4 Modeling of Channels
As explained in Chapter 2, channels (or also connectors) are used to connect the inputs and outputs
existing in the model. Within this project BindingConnectors are used for their representation. The
rules listed below ensure that the system can be analyzed without any restrictions.
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DR-6 Each input port of a higher-level block must be connected to at least one
input port of a lower-level block using a BindingConnector.

DR-7 Each output port of a higher-level block must be connected to at least one
output port of a lower-level block using a BindingConnector.

DR-8 Each remaining free input port must be connected to at least one output port
of another block on its hierarchy level using a BindingConnector.

DR-9 Each remaining free output port must be connected to at least one input port
of another block on its hierarchical level using a BindingConnector.

The application of rules DR-6 to DR-9 can also be seen in Figure 7.2. While the input port of
BLOCK_System is connected to the input port of BLOCK_SubSystemA, another BindingConnector con-
nects its output to the input of BLOCK_SubSystemB. The output port of BLOCK_SubSystemB is in turn
connected to the output port of BLOCK_System (see video tutorial, 8:16 to 13:06 min.).

7.5 Specification of Timing Requirements

DR-10 A model must contain exactly one requirement block for each system and
subsystem block.

A requirement block is a Requirement that has a name in the name attribute, an ID in the id
attribute, and a timing specification in the text attribute. The listed attributes are required for the
clear identification of the contracts and the output of suitable error messages.

DR-11 Each system and subsystem block must be connected to its requirement block
through exactly one satisfy relation.

Each system and subsystem block must be connected to its requirement block by exactly one satisfy
relation. For the sake of traceability, complex requirement relationships are omitted in this project.

DR-12 Each timing specification in the ’text’ attribute of a requirement block can
have an assumption and must have a guarantee.

The assumption must be identified by the prefix A:, the guarantee by the prefix G:. For multi-line
specifications, each identifier is valid until the next occurrence of A: or G:. A non-existent assumption
is interpreted as A: true and is therefore always satisfied. As a result of the these rules, any pattern
used in a timing specification can be uniquely assigned to its assumption or guarantee clause.
Finally, two further rules are needed to ensure the consistency of the model and its structure with

the contents of the annotated contracts and the principles of the methodology used.
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DR-13 Each assumption of a block may only contain references to its input ports.

DR-14 Each guarantee may contain references to both input and output ports of the
corresponding block.

Figure 7.3 shows the requirement diagram of our tinySysMLModel example. According to the design
rules, each block has exactly one requirement block that is connected by a satisfy link and contains
a timing specification that meets the specified conditions (see video tutorial, 13:07 to 16:08 min.).

«Block»
BLOCK_System

«Requirement»
CONTRACT_System

id=CONTRACT_System 
text=A: Input occurs every 33ms with offset [0,33]ms and jitter
5ms.
G: Reaction(Input,Output) within [0,33]ms. 

«Block»
BLOCK_SubSystemA

«Requirement»
CONTRACT_SubSystemA

id=CONTRACT_SubSystemA 
text=A: InputSubA occurs every 33ms with offset [0,33]ms and
jitter 5ms.
G: Reaction(InputSubA,OutputSubA) within [10,20]ms. 

«Block»
BLOCK_SubSystemB

«Requirement»
CONTRACT_SubSystemB

id=CONTRACT_SubSystemB 
text=A: InputSubB occurs every 60ms with offset [0,60]ms and
jitter 5ms.
G: Reaction(InputSubB,OutputSubB) within [5,10]ms. 

SatisfySystem

«abstraction, Satisfy»

SatisfySubSystemA

«abstraction, Satisfy»

SatisfySubSystemB

«abstraction, Satisfy»

Figure 7.3: Requirement Diagram
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8 Tool Flow and Architecture
The realization of the tool prototype is based on three identified uses cases, which are illustrated
in Figure 8.1. The Syntax Check use case (UC1) checks the SysML model created by the user
on the one hand for correctness and on the other hand for the correct application of the MULTIC
methodology and the presented design rules (see Chapter 7). At the end, diagnostic information is
displayed to the user. Based on the SysML model, a Virtual Integration Test is performed in the
second use case (UC2). The SysML model is translated to a SystemC simulation model and executed.
The simulation results are made available as a VCD file including diagnostic information. The third
use case Functional Integration (UC3) enables the user to integrate his own function code into the
simulation model. The simulation model generated from the SysML model is provided as an Eclipse
CDT project.

“Syntax Check“

> Syntax check of the SysML model

> Papyrus SysML valida�on 

> Correct use of MULTIC 
design rules

> Correct use of MTSL – Syntax

> Port consistency between 
SysML model and �ming 
specifica�ons

> Display of diagnos�c informa�on 
in the SysML model and in the 
Eclipse error console

“Virtual Integra�on Test”

> Syntax Check

> Execu�on of a simula�on
based VIT incl. return of the 
results as VCD file

> Display of diagnos�c 
informa�on in the SysML
model, the Eclipse error 
console and the VCD file

“Func�onal Integra�on”

> Syntax Check

> Provision of the SystemC code 
from SysML incl. monitors and 
generators

> Provision of a CDT project for 
the manual integra�on of 
func�onal behavior

Figure 8.1: Overview of the Identified Use Cases

Based on the identified use cases, three tool flows were instantiated and transferred into suitable
system architectures. In the further course of this chapter, the use cases and their realization are
examined in more detail. Note that only the conceptual design of the tool is described. More detailed
information on the features of the implementation can be found in the corresponding Doxygen or
JavaDoc documentation, which comes with this report.

8.1 Syntax Check
As for the two subsequent use cases, the following subsections firstly explain the tool flow of the
Syntax Check and then the resulting architecture.

8.1.1 Tool Flow
The tool flow of the Syntax Check is depicted in Figure 8.2. After an initialization phase in which
system parameters are set, the model to be analyzed is read in. The individual analyses are then
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performed step by step. Firstly, the SysML model validation is performed with Papyrus. If the model
conforms to the SysML standard, the correct application of the MULTIC Design Rules is checked in
the next step. If this step has also been successfully completed, the MULTIC Tooling Specification
Language (see Chapter 7) application is checked for syntax errors and port consistency. The SystemC
simulation model is generated from the SysML model, then compiled and executed. The individual
phases are triggered and synchronized by an orchestration. If a phase could not be successfully
completed, corresponding diagnostic information is returned to the user.

Orchestra�on

Check MTSL Syntax 
and Port Consistency

Generate Generate SystemC sourcecode from the SysML model

Build
VIT

Compile and build the executable binary

Elaborate Check MTSL – Syntax and port consistency

Papyrus SysML
Valida�on

Validate 
Model 
Papyrus

Check SysML model correctness using Papyrus 

Check MULTIC 
Design Rules

Validate
Model 
MULTIC

Check the correct applica�on of the 
MULTIC design rules

Load 
Model

Load and open the SysML model

Startup Ini�alize system parameters
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Figure 8.2: Tool Flow of Syntax Check (UC1)

8.1.2 Architecture
In the next step, the tool flow described before was transferred to the architecture depicted in
Figure 8.3, consisting of the Syntax Check plugin, the Diagnosis module and some external tools.
While the Papyrus Model Editor comes with a complete modeling environment for creating SysML
diagrams, the Papyrus Model Validation provides methods for checking consistency. The Eclipse

User Interface is also included for user interaction. In addition, the UI Interaction plugin is used
to decouple the external user interface and the tool core developed within the context of this project.
The individual steps of the Syntax Check are implemented as methods that are started by the

Orchestration method (black arrow), which controls and monitors the entire analysis process. Each
individual method provides the Orchestration with return values (blue arrow) and diagnostic infor-
mation to the Diagnosis module in the event of an error (dotted arrow).

Orchestration

The Orchestrationmethod is the heart of every use case plugin. As already described in Section 8.1.1,
the execution starts with the initialization of the other plugins as well as the required methods and
parameters. Subsequently, an interaction with the Eclipse User Interface via the UI Interaction

plugin opens a dialog in which the user can select the SysML model to be analyzed.
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Figure 8.3: System Architecture of Syntax Check (UC1)

During the individual process steps, the Orchestration method also informs the user about the
current progress. Following the step-by-step call of the process step methods, it also displays a
summary and triggers the termination of the superordinate Syntax Check plugin.

Validate Model Papyrus

In order to check the correctness of the loaded model and its consistency with the SysML specifica-
tion, the Validate Model Papyrus method uses a number of library functions of the Papyrus Model

Validation. By calling an internal validation method, the check is finally executed. The return value
contains the information whether errors occurred during validation. Due to the profound integration
into the underlying Eclipse instance, the errors are automatically displayed to the user. The occurrence
of an EXISTING_ERRORS error indicates a failure of this initial model check (see Section 10.1.3).

Validate Model MULTIC

After executing the Validate Model Papyrus step, the compliance with the MULTIC Design Rules
presented in Chapter 7 is tested. The corresponding Validate Model MULTIC method is called by the
Orchestration method and returns control after successfully completing its task.

Generate

Assuming that both methods are successfully completed to ensure correctness and consistency of the
SysML model used, the automatic translation of the architectural description into a corresponding
SystemC simulation model can be performed. The Generate method runs through the entire model
hierarchy and generates a number of C++ files, whose contents are explained later in Chapter 9.
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Build VIT

To construct an executable simulation model from the previously generated files, all source files must
be compiled and linked against the TSLsim library. The Build VIT method realizes this behavior by
calling an external script, which is integrated in the tool and fully automates the build process.

Elaborate

Preparing the execution of a simulation run of the previously generated SystemC simulation model, the
so-called elaboration phase is an important step. In the course of this SystemC-specific preparation
phase, the module hierarchy is instantiated, i.e., a network of processes and channels representing
the simulation model is built at runtime. This task is performed by the Elaborate method.
In order to handle all SystemC errors that occur during elaboration, the output streams of the

executable are passed back into the tool environment and converted to the error types listed in
Section 10.1.7 using a custom error message parser. Without any confusion of the user, the purified
error messages are forwarded to the Diagnosis module and handled with the established approach.

Diagnosis

The Diagnosis module itself is realized by three plugins. The Error Handling plugin collects all
diagnostic information and forwards them to the latter two plugins. The Error Reporting ensures
that the user receives diagnostic information in the status console, which is part of the Eclipse User

Interface. In addition, the Model Decoration plugin annotates the affected SysML model elements
within the Papyrus Model Editor so that the user also receives graphical feedback.

8.2 Virtual Integration Test
For reasons of maintainability, tool flow and architecture of the Virtual Integration Test are very
similar to those of the Syntax Check. This chapter therefore gives priority to the differences.

8.2.1 Tool Flow
After all necessary parameters have been initialized, the SysML model to be analyzed is loaded. In
the further course, the Syntax Check is performed using the Syntax Check plugin (see Section 8.1).
Following a selection of simulation time and resolution by the user, the simulation-based Virtual
Integration Test is performed. At the end, the user receives a VCD file with simulation and diagnostic
information. In the event of an error, the corresponding diagnostic information is also displayed to
the user. The resulting tool flow of use case Virtual Integration Test is illustrated in Figure 8.4.

8.2.2 Architecture
The Virtual Integration Test is also implemented as an Eclipse plugin with methods for all individual
steps, whose structure can be seen in Figure 8.5. When executing the Syntax Check, however,
the Syntax Check plugin is used. While the same concepts are applied for handling errors (see
Section 10.2) as in the previous use case, the external tool GTK Wave is used besides the already known
Papyrus Model Editor and the Eclipse User Interface for displaying the simulation results.

Following the examination of the SysML model, the generation of the C++ source files as well as
the compilation and elaboration of the simulation model, the Orchestration method opens a dialog
using the UI Interaction plugin that allows the user to select the simulation duration and resolution.
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Figure 8.4: Tool Flow of Virtual Integration Test (UC2)

Simulate VIT

Based on the previously generated simulation model and the knowledge of the desired simulation
parameters, the virtual integration test can be performed. For this purpose, the external executable
from the Elaborate method is used again and is invoked with the corresponding status flags. The
output streams are redirected in the same way as for the process step mentioned before. Similarly,
arising SystemC errors are automatically forwarded to the Diagnosis module.

Show VCD

The results of the virtual integration test are presented in the external tool GTK Wave following a call
by the Show VCD method. In addition to the value sequences of all ports, the states of the observer
automatons as well as textual annotations of a carefully selected set of relevant diagnostics information
are presented to the user. After closing the VCD viewer, the plugin terminates automatically.

8.3 Functional Integration
Again, tool flow and architecture of the Functional Integration are nearly identical to those of the
previously considered Syntax Check and Virtual Integration Test use cases.

8.3.1 Tool Flow
After initialization, opening the model and performing the Syntax Check, the SystemC simulation
model is generated from the SysML model and then imported into the Eclipse environment as a CDT
project. Each step generates diagnostic information that is made available to the user.

8.3.2 Architecture
The Functional Integration is implemented in the same way as the Virtual Integration Test. Firstly,
the Syntax Check plugin is called to check syntax and semantics. An Eclipse CDT project is then
generated and finally imported into the Eclipse CDT Editor by an external call. Possible errors are
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Figure 8.5: System Architecture of Virtual Integration Test (UC2)

again handled via the Diagnosis module (see Section 10.3). In addition to the Eclipse CDT Editor,
also the Papyrus Model Editor and the Eclipse User Interface are involved.

Build Functional Integration

To build-up a fully functional Eclipse CDT project from the previously generated files, an additional
.project file has to be created. For this purpose, the Build Functional Integration method calls
another external script, which fully automates the generation process. The output stream is redirected
to the tool environment, which handles possible errors using the Diagnosis module appropriately.

Import CDT

Once the CDT project has been created, it can be imported into the Eclipse CDT Editor. In
addition to the source files generated during the Generate process step, the project also includes a
set of predefined build scripts for executing a functionally enriched simulation model. Note that the
correctness of the simulation can not be guaranteed for arbitrary modifications.
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Figure 8.6: Tool Flow of Functional Integration (UC3)
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9 Simulation Backend
The simulation backend is the part of the MULTIC Tooling prototype which actually performs the
simulative analysis of SysML models and their contracts. To this end, a Generate step (cf. Chap-
ter 8) translates a specified SysML model into an executable piece of C++ code consisting of a
representation of the model and its contracts, and the functions in order to perform the simulation.
This mainly includes the SystemC library as well as the contract-compiler.
In order to simplify code generation and handling of simulation setup procedures, many SystemC

related aspects are encapsulated into a library called TSLsim. This library provides basic blocks and
components to execute a simulation-driven Virtual Integration Test (VIT) of the specified SysML
model and its attached timing contracts. In other words, it serves as an implementation of basic
blocks, which are instantiated in the generated code extracted from the SysML model. The generated
code can be compiled and linked against this library.
This chapter aims at giving an overview of the functionality of this library. It is divided into

three section. Section 9.1 discusses an example, where a simple SysML model has been generated
into TSLsim code, and gives a brief overview on the involved concepts. Section 9.2 shows how
user-specific implementation code can be added to the simulation. This instantiated what is called
Functional Integration in Section 8.3. Finally, Section 9.3 discusses some details of implementation
wrt. multiple generatorson single output ports.

9.1 Introduction Example
This example consists of a system block containing two subsystem blocks. The full source code of
this example can be found at introduction.cpp in the examples folder. Each of the three blocks has
a contract attached which defines the timing properties on its ports. In this example, each block has
an Input and an Output port.

Hierarchy and Timing Behaviour in (Sub)System Blocks The first Subsystem Block can be
defined as:

struct BLOCK_SubSystemA : tslsim::block_base

{

tslsim::input_port InputSubA{ "InputSubA" };

tslsim::output_port OutputSubA{ "OutputSubA" };

BLOCK_SubSystemA(tslsim::module_name = "BLOCK_SubSystemA")

: block_base("A: InputSubA occurs every 33ms with offset [0,33]ms and jitter 5ms.\n"

"G: Reaction(InputSubA, OutputSubA) within [10,20]ms.")

{

this->instantiate_generator();

}

private:

};
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The block BLOCK_SubsystemA contains two ports InputSubA and OutputSubA and a contract. The
input_port and output_port are so-called observable ports and consist of a port and an internal
singal named s_<PortName>. Internally, an input port observes the port values and forwards them to
the signal. The output port observes values on the signal and forwards them to the port.
Since there is no subsystem defined, this block also implements the timing behaviour of the con-

tract guarantee part using a generator based on SystemC processes. This is achieved using the call
this->instantiate_generator(). It instructs the underlying base class to instantiate a generator
for the guarantee part of the contract and bind the generator ports to the signals of the observable
ports.
It is important to name the input/output ports correctly, because the port identifier in the contract

string is used to search for the structural component in the current SystemC hierarchy level. In this
example case, a port Input specified in the contract will be bound to the signal s_Input, and the
lookup for the signal is performed in the current hierarchy level BLOCK_SubSystemA. Hence, the port
will dynamically bind to the internal signal s_Input of the observable port Input.

Every block derived from tslsim::block_base also contains a monitor which checks if the as-
sumption of the contract is valid and if the contract guarantee is implemented by the underlying
timing behaviour. The monitor semantics implementation is based on Timed-Value Streams. Each
input/output port therefore contains a timed-value stream where all observed values are written to.
After parsing the contract, the corresponding monitor instances attach to the observers via timed-
value streams by a name-based lookup.
In a similar manner, a second Block_SubSystemB can be defined.

struct BLOCK_SubSystemB : tslsim::block_base

{

tslsim::input_port InputSubB{ "InputSubB" };

tslsim::output_port OutputSubB{ "OutputSubB" };

BLOCK_SubSystemB(tslsim::module_name = "Block_SubSystemB")

: block_base("A: InputSubB occurs every 60ms with offset [0,60]ms and jitter 5ms.\n"

"G: Reaction(InputSubB, OutputSubB) within [5,10]ms.")

{

this->instantiate_generator();

}

private:

};

The encapsulating BLOCK_System consisting of both subsystems can then be described as:

struct BLOCK_System : tslsim::block_base

{

tslsim::input_port Input{ "Input" };

tslsim::output_port Output{ "Output" };

BLOCK_System(tslsim::module_name = "BLOCK_System")

: block_base("A: Input occurs every 33ms with offset [0,33]ms and jitter 5ms.\n"

"G: Reaction(Input,Output) within [0,33]ms.")

{

firstSubBlock.InputSubA(Input);

firstSubBlock.OutputSubA(firstSubBlock_OutputSubA__secondSubBlock_InputSubB__);
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secondSubBlock.InputSubB(firstSubBlock_OutputSubA__secondSubBlock_InputSubB__);

secondSubBlock.OutputSubB(Output);

}

private:

BLOCK_SubSystemB secondSubBlock;

BLOCK_SubSystemA firstSubBlock;

tslsim::signal_type firstSubBlock_OutputSubA__secondSubBlock_InputSubB__;

};

Both subsystems are instantiated within BLOCK_System and an internal signal is used to wire the
ports appropriately. In this case, the Input port of the first block is bound to the Input port of
the system block, while both subsystems are interconnected with an internal signal. Finally, the
Output port of the second subsystem is bound to the Output port of this system block. Here, the
subsystems implement the timing behaviour, which is why no call to this->instantiate_generator()

is performed. Nevertheless, the block contains a monitor and observes the timing properties on the
Input and Output ports as defined in the attached contract.

Putting it All Together: The Context Block Finally, the system block is instantiated in the
context block, which acts as the SystemC top-level module.

struct BLOCK_Context : tslsim::context_base

{

BLOCK_Context(tslsim::module_name = "BLOCK_Context")

: context_base("A: Input occurs every 33ms with offset [0,33]ms and jitter 5ms.\n"

"G: Reaction(Input,Output) within [0,33]ms.\n")

{

sys_.Input(s_Input);

sys_.Output(s_Output);

}

private:

tslsim::signal_type s_Input{ "s_Input" };

tslsim::signal_type s_Output{ "s_Output" };

BLOCK_System sys_;

};

The context block (derived from tslsim::context_base) differs from the tslsim::block_base due
to the fact that all input ports of the underlying system instance need to be driven by generators
derived from the specified contract. Therefore, the generated code should define a signal with the
name s_<PortName> for each port PortName of the system block instantiated in the context block.
The ports of the system block are then bound to the signals, such that they can drive the system
instance.
The specified top-level contract is forwarded to the the base class for instantiating a generator

which drives the input ports of the system block.
This is done by instantiating a generator for the assumption part of the specified top-level contract.

Due to the consistent naming requirement, the generator can look up the signals and bind its ports
to them.
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Instantiating and Starting the Simulation The library provides an implementation of sc_main
which – after initialising the context – calls the user’s implementation of tslsim_main which in turn
is responsible for instantiating the simulation components:

void tslsim_main()

{

BLOCK_Context b;

tslsim::start_simulation();

}

The SystemC timing resolution and the VCD backend can be customised via parameters. By
default, the VCD file name where all observed port values and contract validation are stored is called
‘out.vcd‘ and the simulated time is 30 seconds with the default resolution provided by the SystemC
library (1 ps).

9.2 Functional Integration: Adding User-specific
Implementation Code

The generated code from Section 9.1 can be extended via SystemC ports, channels, and processes to
include custom functional behaviour from existing C/C++ code.
This example shows how the system description can be extended such that a new port is used for

communicating values and processes are triggered for performing calculations.
The code that was added in theses examples is marked with the FI-START and FI-END comments.

struct BLOCK_System : tslsim::block_base

{

tslsim::input_port Input{ "Input" };

tslsim::output_port Output{ "Output" };

/** ******* FI-START ******* */

// Specify port(s) for input/output values

sc_core::sc_in<int> FunctionalInputPort{ "FunctionalInputPort" };

sc_core::sc_out<int> FunctionalOutputPort{ "FunctionalOutputPort" };

// Prepare SystemC for defining processes in this module

SC_HAS_PROCESS(BLOCK_System);

/** ******* FI-END ******** */

BLOCK_System(tslsim::module_name = "BLOCK_System")

: block_base("A: Input occurs every 33ms with offset [0,33]ms and jitter 5ms."

"G: Reaction(Input,Output) within [0,33]ms.")

{

this->instantiate_generator();

/** ******* FI-START ******* */

// Specify SystemC thread and sensitivity to event port

SC_THREAD(function_example);

sensitive << Input;
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/** ******* FI-END ******** */

}

/** ******* FI-START ******* */

// Simple functional behaviour implemented as a SystemC Process

// The process is sensitive on the event Input port. Upon event arrival, it

// performs a calculation based on the FunctionalInputPort and forwards the

// result to the FunctionalOutputPort.

void function_example()

{

while (true) {

auto val = FunctionalInputPort.read();

val *= 2;

std::cout << "@" << sc_core::sc_time_stamp()

<< ": Performing calculation. result:" << val << "\n";

FunctionalOutputPort.write(val);

// wait for the next event

// (according to static sensitivity list defined above)

wait();

}

}

/** ******* FI-END ******** */

};

Finally, we create a process that provides input values on the System Context layer:

struct BLOCK_Context : tslsim::context_base

{

tslsim::signal_type s_Input{ "s_Input" };

tslsim::signal_type s_Output{ "s_Output" };

/** ******* FI-START ******* */

// Stimuli signal(s) for connecting the new ports of the block above

sc_core::sc_signal<int> s_stimuli{ "s_stimuli" };

sc_core::sc_signal<int> s_stimuli_out{ "s_stimuli_out" };

// Prepare SystemC for defining processes in this module

SC_HAS_PROCESS(BLOCK_Context);

/** ******* FI-END ******** */

BLOCK_System sys_;

BLOCK_Context(tslsim::module_name = "BLOCK_Context")

: context_base( "A: Input occurs every 33ms with offset [0,33]ms and jitter 5ms.\n"

"G: Reaction(Input,Output) within [0,33]ms.\n")
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{

sys_.Input(s_Input);

sys_.Output(s_Output);

/** ******* FI-START ******* */

SC_THREAD(stimuli);

// Trigger the stimuli process whenever something on the output happens

sensitive << s_stimuli_out;

// bind the ports of the BLOCK_System to the stimuli signals

sys_.FunctionalInputPort(s_stimuli);

sys_.FunctionalOutputPort(s_stimuli_out);

/** ******* FI-END ******** */

}

/** ******* FI-START ******* */

// Example process that writes an incrementing value to a signal

// and waits for its output.

void stimuli()

{

int tmp = 1;

while (true) {

std::cout << "@" << sc_core::sc_time_stamp()

<< ": Writing stimuli " << tmp << " to FunctionalInputPort\n";

s_stimuli.write(tmp++);

// wait for the next event

// (according to static sensitivity list defined above)

wait();

}

}

/** ******* FI-END ******** */

};

void tslsim_main()

{

BLOCK_Context b;

tslsim::start_simulation();

}

9.3 Supporting Multiple Generators on the Same Output Ports
While Chapter 6 discusses how timing specifications are made operational by the implementation
of monitor and generator automata, it leaves the question open how multiple timing specifications
patterns interact with each other when they refer the same ports, and particularly the same output
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ports. For monitors the situation is simple. All events on both input and output ports are observed
by the individual monitoring automata, and each automaton decides whether the observed event
stream belongs to the corresponding pattern or not. A violation of any pattern automaton causes the
violation of the whole specification.
The situation is more complicated for generators. Formally, there is no difference between mon-

itoring and generation. All patterns must be satisfied in order to satisfy the whole specification.
The problem lies in the synchronization between the individual patterns. One could implement some
parallel composition operation that constructs a combined automaton that produces the intended
event streams, or raises an alarm if the composition results in a inconsistent specification. Such
an approach however comes with high implementation effort, as it requires an engine that compiles
a product automaton from a set of generators, which is possible only based on a fully established
intermediate representation machinery.
More important, the resulting automata are in general non-deterministic if we consider them as

generators. Non-determinism occurs when the generator has different options to react on input events,
such as to decide a time point for sending an output event, or whether to send an event at all or
not. This may become a serious problem when the automaton has to decide to generate an output
event depending on whether an input event will occur or not. In other words, there may exist states
in which decisions have to be taken before all necessary information is available. It is important to
note that this lack of knowledge can be reduced but not completely eliminated in general by involving
corresponding contract assumptions on how the environment of the considered components will act.
As an example, consider the two specifications Reaction(a,c) within [3,6]ms and Reaction(b,c)

within [1,2]ms. The first specification expresses that for every input event a of some component
an output event c follows within 3 and 6ms. The second specification states that for every input
event b of the same component an output event c follows within 1 and 2ms. We want to construct a
generator, which produces event streams that match both specifications. Let’s assume that an event
a occurs at time point t0. For this event, the generator has to decide a time point t in the interval
[t0 + 3, t0 + 6] (here and in the following we omit time units) at which it produces a corresponding
output event c in order to comply with the first specification. If we ask for the latest time point where
this decision can be taken, then we find that this is t0 +3. If, otherwise, the decision is made later, say
t0 + 4, then the generator will never create an event at any time point in the interval [t0 + 3, t0 + 4),
which does not comply with the specification. On the other hand, the generator cannot produce a
consistent decision before time point t0 + 4. This is because an event b may occur at time point
t0 +4 and, according to the second specification, the generator has to produce a corresponding output
event c in the interval [t0 + 5, t0 + 6] for this event. If the two inputs events are causally related with
the same event c, then the generator has to produce an event c in the interval [t0 + 5, t0 + 6], which
is the intersection of the two identified intervals for event a and b, respectively.
The two constraints on the decision point obviously contradict each other. On one hand, the

generator has to take a decision no later then t0 + 3, one the other hand, it has to wait until t0 + 4,
because there may be a related event b to be taken into account for the decision. We claim – without
proof – that this contradiction cannot be resolved in general. The example above represents a valid
counter-example for the construction of generator automata in general, which are able to generate
every possible event stream on one hand, and also adhere to the specification in every situation. To
sketch such proof, one could cast the above specifications into a game theoretic setting, where the
environment generates input events according to the contract assumption, and the generator as the
second player has to adhere to the specification of the guarantee by sending output events accordingly.
It is to be shown that there is no winning strategy on the generator side, which is able to generate
every event stream adhering to the specification.
Therefore, we propose an approach, which is able to generate every event stream adhering to the

specification as long as there is a winning strategy for the given specification. However, the generator
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Figure 9.1: Implementation Approach for Multiple Generators

may fail because it can not proceed without producing inconsistencies. In such case, no other strategy
exists that is able to generate every possible event stream adhering to the specification.
The approach relies on a notion of window of opportunity. Every generator of a specification pattern

maintains a set of time windows in which output events may be send. For example, a generator for
the first reaction pattern from the above example opens a window in the time span [t0 + 3, t0 + 6]
whenever it has seen in input event a (at time t). A generator for a repetition pattern (re)opens a
window of opportunity depending on the period and jitter whenever it has send an output event.
A window of opportunity is defined by a tuple w = (es, n−, n+, excl, t, t−t+) where

• es is an event specification. For sake of brevity we omit the discussion of event sequences and
sets, and define es = (p, σ, id), where p is a port, σ is an event value, and id is either specifying
that the event must have the corresponding causal identifier, or equals to ∗ which denotes that
there is no such causal relation.

• n−, n+ ∈ {0, 1, n} is the occurrence requirement for the window. The parameter n− defines
the minimum number of occurrence, and n+ the maximum, respectively. We require n− ≤ n+

and define k ≤ n for any k ∈ N.

• excl ∈ {Y,N} specifies whether the specified event is exclusive. In the case that excl = Y the
window is violated by an event that does not fit the causal identifier. Otherwise, such event is
ignored.

• t specifies the creation time of the window.

• [t+ t−, t+ t+] specifies the time window for the occurrences of es.

We say that a window w = (es, n−, n+, excl, t, t−, t+) is served by an event occurrence (p.(σ, id), u),
where u ∈ [t+ t−, t+ t+], if n+ 6= 0 and either es = (p, σ, id) or es = (p, σ, ∗).

We say that a window w = (es, n−, n+, excl, t, t−, t+) is violated by an event occurrence (p.(σ, id2), u),
where u ∈ [t+ t−, t+ t+], if either n+ = 0 or es = (p, σ, id1), excl = Y and id1 6= id2.
We say that a window is safely ignored by an event occurrence, if it is neither served nor violated

by the event.
Based on the definitions above, we define an algorithm that tries to generate consistent event

streams also for multiple specifications that are referring the same output ports. The architecture of
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the approach is depicted in Figure 9.1. Here, the generators for every component are split into two
parts. The figure shows at the left side Window-Maker processes - one for each specification pattern,
which may listen on input ports, and which create windows according to the pattern semantics. The
right side shows a single Stream-Combiner, which processes the provided windows, and generates
consistent output events according to the definitions above. Whenever an event is generated that
serves a window then the Stream-Combiner notifies the corresponding Window-Maker processes about
the time stamp and the event that has been generated. Whenever a window expires then the Stream-
Combiner notifies the corresponding Window-Maker about the time of expiration.
Whenever a Window-Maker is triggered, either by an incoming event, by some timeout, or by a

notification form the Stream-Combiner then the process updates its window(s). The Stream-Combiner
is activated whenever at least one window is updated. The process decides which currently existing
windows are served – and which are not. It also identifies potential inconsistencies, which will lead
to aborting the simulation with a corresponding error. The algorithm skeleton is shown below:

Windowmaker(trigger) {

switch (trigger) // process can be triggered in four different ways

{

case timer(t): // a timer event has occurred at t

create window w;

send w to Streamcombiner;

case event(e,t): // Input event e has occurred at t

...

case served(w,t): // window w has been served at t

...

case expired(w,t): // window w has been expired at t

...

}

}

Streamcombiner(trigger) {

switch (trigger)

{

case window(w): // A Windowmaker has setup a new window

process new window w and select new events to be send;

case event(t): // An event has to be send

send event;

notify Windowmaker about serving;

case expire(w): // A window has expired.

notify Windowmaker about expiration;

}

}

Multiple windows may cause inter-dependencies, which have to be considered in the Stream-
Combiner process. Particularly, windows may be inconsistent:

• If wi = (E, 0, 0, ...) and wj = (E, 1, , ...), i.e., a "must not" window intersects with "must"
window.

• Windows may be conflicting. If wi = (E.idi, , , Y, ...) and wj = (E.idj , , , Y, ...), and idi 6= idj ,
i.e. exclusive windows with different ids.
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Figure 9.2: Window Partitioning Example

Given a set of windows, the Stream combiner process must select events and time points that
match all window constraints, and that do not conflict. To this end, the process implements the
algorithm as follows. Suppose a set of active windows W = {wi}. First, the algorithm calculates a
partitioning W̄ = {w̄j} of W with respect to the intersection of all windows (cf. Figure 9.2). This
way, every window wi ∈W is partitioned into a set W̄i = {w̄ij} ⊆ W̄ .

Next, the algorithm calculates a decision function d : W̄ → {0, 1} that satisfies the following
constraint system:

1. For all wi = (E,mini,maxi, ...) holds mini ≤
∑
w̄ij∈W̄i

d(w̄ij) ≤ maxi.

2. For all i, j and all w̄ ∈ W̄i ∩ W̄j holds d(w̄) = 1 implies that wi and wj are not conflicting.

If no decision function that satisfies the constraints above can be found then the Stream-Combiner
creates an error message informing the user about the potential inconsistency, and terminates the
simulation. Otherwise, the algorithm finally selects for every w̄ ∈ W̄ such that d(w̄) = 1 a non-
conflicting event and a time point within the intersection window of w̄.
Decision taken by Stream combiner are buffered. That is, a decision to send an event (E, t) is

deferred until t. At this time point also the notification served(w,t) is emitted. On every window
update, some decisions may become invalid and are revised if necessary.

The individual Window-Maker processes update their window(s) with respect to the underlying
specification pattern whenever they are triggered. As Figure 9.1 shows there are three potential
trigger sources. All Window-Maker processes are triggered by corresponding notifications from the
Stream-Combiner process. According to the actual notification (serve, expire) they update their
internal state and check whether the corresponding pattern may be violated. For example, an expired
window with an occurrence of occ = must must not expire but being served.
All except the event occurrence patterns are also triggered by incoming events. Typically, an

incoming event causes the generation of a new window. Thus, every Window-Maker process may
possess multiple windows at the same time. The repetition pattern is not triggered by an incoming
event. It is triggered at time 0 for the initial event generation. After that, it is only triggered by
notifications.
The following tables show the window parameters generated by the Stream-Combiner for the

individual specification patterns. The repetition pattern creates non-causal events id = ∗ that however
must occur. The time window depends on the selection of periods, jitters, and on the time point of
the previous event. Reaction and age patterns also generate non-causal events (id = ∗). If a reaction
pattern contains a "k out of n" clause, then the event generation may be optional, depending on the
actual number of ignored events. However, if no once clause exists then the pattern creates optional
windows after the first event generation until the reaction time interval has elapsed. For age pattern,
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the windows are always optional. The causal sisters of reaction and age patterns produce events with
fixed id parameter. While a reaction window allows the occurrence of events with different id, the
age pattern does not. For the occurrence holds the same as for the non-causal case.
In the tables below we make the following notions. For a window w = (es, n−, n+, excl, t, t−t+)

we denote es(w) = es and t(w) = t.

Single Event: E occurs within I The process is triggered by timer event at t = 0, served(w,t),
and expired(w,t).

Trigger Window
Timer(t = 0) w = (E.∗, 1, 1, N, 0, I−, I+)
Served(w, t) ignore
Expired(w, t) fail

Repetition: E occurs every I with offset O and jitter J The process is triggered by timer
event at t = 0, served(w,t), and expired(w,t).

Trigger Window
Timer(t = 0) w = (E.∗, 1, 1, N, 0, O−, O+ + J)
Served(w, t) calculate ui from t and w(t), w = (E.∗, 1, 1, N, ui, I−, I+J)
Expired(w, t) fail

Reaction: whenever E occurs then F occurs within I The process is triggered by events (E, t),
served(w,t), and expired(w,t).

Trigger Window
Event(E, t) w = (F.∗, 1, n,N, t, I−, I+)
Served(w, t) w′ = (es(w), 0, n,N, t(w), I−, I+)
Expired(w, t) fail if w = (F.∗, 1, ...), ignore otherwise

Reaction: whenever E occurs then F occurs within I, K out of N times The process is trig-
gered by events (E, t), served(w,t), and expired(w,t).

Trigger Window
Event(E, t) w = (F.∗,min, n,N, t, I−, I+), where min ∈ {0, 1} depend-

ing on number of previously expired windows.
Served(w, t) w′ = (es(w), 0, n,N, t(w), I−, I+)
Expired(w, t) fail if w = (F.∗, 1, ...), ignore otherwise

Reaction: whenever E occurs then F occurs within I once The process is triggered by events
(E, t), served(w,t), and expired(w,t).

Trigger Window
Event(E, t) w = (F.∗, 1, 1, N, t, I−, I+)
Served(w, t) w′ = (es(w), 0, 0, N, t(w), I−, I+)
Expired(w, t) fail if w = (F.∗, 1, ...), ignore otherwise
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Age: whenever E occurs then F has occurred within I The process is triggered by events (E, t),
served(w,t), and expired(w,t).

Trigger Window
Event(E, t) w = (F.∗, 0, n,N, t, I−, I+)
Served(w, t) w′ = (es(w), 0, n,N, t(w), I−, I+)
Expired(w, t) ignore

Causal Reaction: Reaction(E,F) within I The process is triggered by events (E, t), served(w,t),
and expired(w,t).

Trigger Window
Event(E.id, t) w = (F.id, 1, n,N, t, I−, I+)
Served(w, t) w′ = (es(w), 0, n,N, t(w), I−, I+)
Expired(w, t) fail if w = (F.id, 1, ...), ignore otherwise

Causal Age: Age(E,F) within I The process is triggered by events (E, t), served(w,t), and
expired(w,t).

Trigger Window
Event(E, t) w = (F.id, 0, n, Y, t, I−, I+)
Served(w, t) w′ = (es(w), 0, n, Y, t(w), I−, I+)
Expired(w, t) ignore

Patterns that include event sequences and/or event sets require an additional book keeping. For
incoming events windows are not created immediately but only if the event streams are complete
(cf. Chapter 6, and particularly Section 6.2). Similar holds for output event, for which sequences of
windows have to be created. For example, for an event sequence (F,G) we would have:

Trigger Window
Event(E, t) w = (F.∗, 1, n,N, t, I−, I+)
Served(w, t) if eventstore.complete() then

w′ = (F.∗, 0, n,N, t(w), I−, I+) (start next round)
else

w′ = (eventstore.nextEvent(), 1, n,N, t(w), I−, I+)
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10 Error Types
Based on the process steps of the considered use cases detailed in Chapter 8, the relevant error types
are described in the course of this chapter. While each error class usually corresponds to a single
step, the error types assigned to their specific classes are summed up in Table 10.1 to Table 10.12.
Each table consists of five columns. While the Error Type is named in the first column, the second

one contains the Error Message to be output. The subsequent columns specify the components via
which the error message is forwarded to the user. In addition to a console output (C) and a decoration
of the affected model elements (M), it is also possible to display an error dialog (D).

To enable referencing to the SysML model and to increase the traceability of the error types used,
the error messages are supplemented with additional error attributes. They include

• the name of the affected block (BlockName), port (PortName), connection (ConnName), require-
ment (ReqName), relation (RelName), and/or flow property (FloPName),

• the text of the considered or violated pattern (PatternText),

• as well as a more detailed error message (DetErrorMsg) for debugging purposes.

10.1 Syntax Check
According to its process steps, the first use case uses error types of the classes STARTUP, LOAD_MODEL,
VALIDATE_MODEL_PAPYRUS, VALIDATE_MODEL_MULTIC, GENERATE, BUILD_VIT, and ELABORATE.

10.1.1 Startup

Error Type Error Message C M D
SAVE_MODIFIED_PROJECTS “Failed to save modified projects!” X
OPEN_PAPYRUS_PERSPECTIVE “Failed to open Papyrus perspective!” X
OPEN_CONSOLE_VIEW “Failed to open status console!” X
ABORT_BY_USER “Failed to start up due to user termination!” X

Table 10.1: Error Types of Class STARTUP

10.1.2 Load Model

Error Type Error Message C M D
EMPTY_WORKSPACE “Failed to load SysML model due to empty an

workspace!”
X X

ABORT_BY_USER “Failed to load SysML model due to user termi-
nation!”

X
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EMPTY_PROJECT “Failed to load SysML model due to an empty
project!”

X X

MULTIPLE_MODELS “Failed to load project due to multiple existing
SysML models!”

X X

OPEN_EDITOR “Failed to open SysML model in Papyrus!” X

Table 10.2: Error Types of Class LOAD_MODEL

10.1.3 Validate Model Papyrus

Error Type Error Message C M D
RETRIEVE_MODEL_SET “Failed to retrieve model set!” X
FIND_MODEL_ROOT “Failed to find model root!” X
EXECUTE_VALIDATION “Failed to execute Papyrus model validation!” X
REOPEN_CONSOLE “Failed to reopen status console!” X
FIND_MARKERS “Failed to find error markers!” X
EXISTING_ERRORS “Failed to validate SysML model using Papyrus

model validation! Check ’Model Validation’ tab
for further information.”

X

ABORT_BY_USER “Failed to validate model due tu user termina-
tion!”

X

Table 10.3: Error Types of Class VALIDATE_MODEL_PAPYRUS

10.1.4 Validate Model MULTIC

Error Type Error Message C M D
EXECUTE_VALIDATION “Failed to execute MULTIC model validation!” X
EMPTY_MODEL “Empty SysML model!” X
MISSING_INTERFACE_BLOCK “Missing interface block! Each SysML model

must contain exactly one interface block named
’Event’.”

X

MISSING_CONTEXT_BLOCK “Missing context block! Each SysML model
must contain exactly one context block.”

X

MULTIPLE_CONTEXT_BLOCKS “Multiple context blocks! Each SysML model
must contain exactly one context block.”

X

MISSING_SYSTEM_BLOCK “Missing system block! Each SysML model must
contain exactly one system block.”

X

MULTIPLE_SYSTEM_BLOCKS “Multiple system block! Each SysML model
must contain exactly one system block.”

X

MISSING_PORTS_ON_SYSTEM_BLOCK “Missing ports on system block ’BlockName’!
The system block must have at least one out-
put port.”

X X

INVALID_PORT_TYPE “Invalid type of port ’PortName’ of block
’BlockName’! Each port must be of type ’Event’.”

X X

INVALID_CONNECTION “Invalid connection ’ConnName’! At the same hi-
erarchical level, output ports must be connected
to input ports.”

X X
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INVALID_CONNECTION_HIERARCHICAL “Invalid connection ’ConnName’! Between two hi-
erarchical levels, input ports must be connected
to input ports and output ports to output ports.”

X X

MISSING_CONNECTION_HIERARCHICAL “Missing connection on block ’BlockName’! Be-
tween two hierarchical levels, each input/output
port of the superordinate block must be con-
nected to at least one input/output port of the
subordinate block.”

X X

MISSING_CONNECTION “Missing connection on port ’PortName’ of block
’BlockName’! At the same hierarchical level, each
output port must be connected to at least one
input port.”

X X

MISSING_REQUIREMENT “Missing requirement for block ’BlockName’!
Each block must have exactly one requirement.”

X X

MULTIPLE_REQUIREMENTS “Multiple requirements for block ’BlockName’!
Each block must have exactly one requirement.”

X X

MISSING_SATISFY_RELATION “Missing satisfy relation for requirement
’ReqName’! Each block must be linked to its
requirement by exactly one satisfy relation.”

X X

MULTIPLE_SATISFY_RELATIONS “Multiple satisfy relations for requirement
’ReqName’! Each block must be linked to its re-
quirement by exactly one satisfy relation.”

X X

MISSING_REQUIREMENT_PROPERTIES “Missing properties for requirement ’ReqName’!
Each requirement must contain a ’Name’, an ’ID’
and a ’Text’.”

X X

INVALID_ABSTRACTION_TYPE “Invalid abstraction type of relation ’RelName’!
Each block must be linked to its requirement by
exactly one satisfy relation.”

X X

MISSING_FLOW_PROPERTY “Missing flow property for interface block
’BlockName’! Each interface block must contain
exactly one flow property.”

X X

MULTIPLE_FLOW_PROPERTIES “Multiple flow properties for interface block
’BlockName’! Each interface block must contain
exactly one flow property.”

X X

INVALID_FLOW_PROPERTY_NAME “Invalid name of flow property ’FloPName’! The
flow property must be named ’EventFlow’.”

X X

INVALID_FLOW_PROPERTY_DIRECTION “Invalid direction of flow property ’FloPName’!
The flow property direction must be set to ’out’.”

X X

HYPHEN_IN_BLOCK_NAME “Invalid name of block ’BlockName’! Block
names must not contain ’-’.”

X X

SLASH_IN_BLOCK_NAME “Invalid name of block ’BlockName’! Block
names must not contain ’/’.”

X X

COLON_IN_BLOCK_NAME “Invalid name of block ’BlockName’! Block
names must not contain ’:’.”

X X

SPECIAL_CHARACTER_IN_PORT_NAME “Invalid name of port ’PortName’ of block
’BlockName’! Port names must not contain any
special characters.”

X X

HYPHEN_IN_CONNECTION_NAME “Invalid name of connection ’ConnName’! Con-
nection names must not contain ’-’.”

X X

SLASH_IN_CONNECTION_NAME “Invalid name of connection ’ConnName’! Con-
nection names must not contain ’/’.”

X X
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COLON_IN_CONNECTION_NAME “Invalid name of connection ’ConnName’! Con-
nection names must not contain ’:’.”

X X

ABORT_BY_USER “Failed to validate model with respect to the
MULTIC Design Rules due to user termination!”

X

Table 10.4: Error Types of Class VALIDATE_MODEL_MULTIC

10.1.5 Generate

Error Type Error Message C M D
EXECUTE_GENERATION “Failed to generate simulation model!” X
ABORT_BY_USER “Failed to generate simulation model due to user

termination!”
X

Table 10.5: Error Types of Class GENERATE

10.1.6 Build VIT

Error Type Error Message C M D
RESOLVE_SCRIPT_FILE_URL “Failed to resolve build VIT script file URL!” X
MISSING_SCRIPT_FILE “Missing build VIT script file!” X
REDIRECT_OUTPUT “Failed to redirect build VIT output stream!” X
CONFIGURE_MAKE “Failed to configure make!” X
ABORT_BY_USER “Failed to build VIT due to user termination!” X
CLOSE_REDIRECT “Failed to close build VIT output stream!” X
INVALID_COMMAND “Invalid build VIT command!” X
BUILD_BINARY “Failed to compile binary!” X

Table 10.6: Error Types of Class BUILD_VIT

10.1.7 Elaborate

Error Type Error Message C M D
INVALID_COMMAND “Invalid elaborate command!” X
REDIRECT_OUTPUT “Failed to redirect elaborate output stream!” X
EXECUTE_ELABORATION “Failed to elaborate simulation model!” X
ABORT_BY_USER “Failed to elaborate simulation model due to user

termination!”
X

CLOSE_REDIRECT “Failed to close elaborate output stream!” X
SYSTEMC_GENERAL “Failed to elaborate simulation model!

DetErrorMsg.”
X

SYNTAX_GENERAL “Failed to parse contract of block ’BlockName’
due to a syntax error! DetErrorMsg.”

X X

89



SEMANTIC_GENERAL “Failed to parse contract of block ’BlockName’
due to a semantic error! DetErrorMsg.”

X X

CONTRACT_NOT_FOUND “Missing contract in requirement of block
’BlockName’! Each requirement must contain at
least one guarantee statement.”

X X

MISSING_PORT “Missing port ’PortName’ of block ’BlockName’
referenced in pattern ’PatternText’! Each port
used in a contract must be explicitly modeled in
the SysML model.”

X X

MISSING_SIGNAL “Missing signal ’s_PortName’ of block
’BlockName’ referenced in pattern ’PatternText’!
Each signal used in a contract must be explicitly
modeled in the SysML model.”

X X

OUTPUT_IN_ASSUMPTION “Invalid use of output port ’PortName’ of block
’BlockName’ in pattern ’PatternText’! Assump-
tion statements must only contain input ports.”

X X

Table 10.7: Error Types of Class ELABORATE

10.2 Virtual Integration Test
In addition to the previously defined error types, the error classes SET_VIT_PARAMETERS, SIMULATE_VIT,
and SHOW_VCD are of exclusive importance for the Virtual Integration Test.

10.2.1 Set VIT Parameters

Error Type Error Message C M D
ABORT_BY_USER “Failed to set VIT parameters due to user termi-

nation!”
X

Table 10.8: Error Types of Class SET_VIT_PARAMETERS

10.2.2 Simulate VIT

Error Type Error Message C M D
INVALID_COMMAND “Invalid simulate VIT command!” X
REDIRECT_OUTPUT “Failed to redirect simulate VIT output stream!” X
EXECUTE_SIMULATION “Failed to simulate model!” X
ABORT_BY_USER “Failed to simulate VIT due to user termina-

tion!”
X

CLOSE_REDIRECT “Failed to close simulate VIT output stream!” X
PATTERN_FAILED “Pattern ’PatternText’ of block ’BlockName’

failed! Reason.”
X X

GENERATOR_INCONSISTENCY “Failed to find a consistent configuration of slices
for pattern ’PatternText’!”

X
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GENERATOR_WINDOW_ERROR “Failed to handle existing window for pattern
’PatternText’! Reason.”

X

Table 10.9: Error Types of Class SIMULATE_VIT

10.2.3 Show VCD

Error Type Error Message C M D
INVALID_COMMAND “Invalid show VCD command!” X
ABORT_BY_USER “Failed to show VCD file due to user termina-

tion!”
X

Table 10.10: Error Types of Class SHOW_VCD

10.3 Functional Integration
The error types assigned to use case Functional Integration can be divided into the two error classes
BUILD_FI and IMPORT_CDT. Moreover, the error types of the Syntax Check are still relevant.

10.3.1 Build FI

Error Type Error Message C M D
RESOLVE_SCRIPT_FILE_URL “Failed to resolve build FI script file URL!” X
MISSING_SCRIPT_FILE “Missing build FI script file!” X
REDIRECT_OUTPUT “Failed to redirect build FI output stream!” X
CREATE_CDT_PROJECT “Failed to create CDT project!” X
ABORT_BY_USER “Failed to build FI due to user termination!” X
CLOSE_REDIRECT “Failed to close build FI output stream!” X

Table 10.11: Error Types of Class BUILD_FI

10.3.2 Import CDT

Error Type Error Message C M D
LOAD_CDT_PROJECT “Failed to load CDT project in Eclipse!” X
ABORT_BY_USER “Failed to import CDT project due to user ter-

mination!”
X

Table 10.12: Error Types of Class IMPORT_CDT
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11 Test Models
In order to be able to check the correct functioning and the correct output of the error types presented
in Chapter 10 during the individual development steps of the prototypical tool support, a series of
test models were defined within the project. In this chapter, each of the used test cases is described
briefly, followed by the relevant error types and the expected error handling behavior.
Since the Functional Integration use case only provides a developer with the files generated in the

previous steps, no separate test models were created for it. All test models are built on the minimal
example presented in Section 11.1.3 and are provided with this report.

11.1 Application Examples
The development was based on three application examples. In addition to the Emergency Stop System
case study from the predecessor project [3, p. 80–126] at Functional Level A (see Section 11.1.1)
and Functional Level B (see Section 11.1.2), the so-called tinySysMLModel (see Section 11.1.3) was
used as a minimal example for the vertical breakthrough.

11.1.1 Emergency Stop System (Functional Level A)

AE-1 Emergency Stop System (Functional Level A)
Description Case study of the predecessor project at Functional Level A. All under- and

oversampling patterns are omitted for the sake of simplicity.
Error Types Application example without any errors.

Expected Console Output for UC1

• Syntax Check successfully completed!

Expected Console Output for UC2

• Syntax Check successfully completed!
• Virtual Integration Test successfully completed!

Expected Console Output for UC3

• Syntax Check successfully completed!
• Functional Integration successfully completed!

Table 11.1: Application Example MULTIC-Tooling_ADAS_FuncA
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11.1.2 Emergency Stop System (Functional Level B)

AE-2 Emergency Stop System (Functional Level B)
Description Case study of the predecessor project at Functional Level A. All under- and

oversampling patterns are omitted for the sake of simplicity.
Error Types Application example without any errors.

Expected Console Output for UC1

• Syntax Check successfully completed!

Expected Console Output for UC2

• Syntax Check successfully completed!
• Virtual Integration Test successfully completed!

Expected Console Output for UC3

• Syntax Check successfully completed!
• Functional Integration successfully completed!

Table 11.2: Application Example MULTIC-Tooling_ADAS_FuncB

11.1.3 tinySysMLModel Example

AE-3 tinySysMLModel
Description Minimal example used for the vertical breakthrough.
Error Types Application example without any errors.

Expected Console Output for UC1

• Syntax Check successfully completed!

Expected Console Output for UC2

• Syntax Check successfully completed!
• Virtual Integration Test successfully completed!

Expected Console Output for UC3

• Syntax Check successfully completed!
• Functional Integration successfully completed!

Table 11.3: Application Example MULTIC-Tooling_tinySysMLModel
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11.1.4 tinyDemonstrator Example

AE-4 tinyDemonstrator
Description Minimal example with multiple generators per output port.
Error Types Application example without any errors.

Expected Console Output for UC1

• Syntax Check successfully completed!

Expected Console Output for UC2

• Syntax Check successfully completed!
• Virtual Integration Test successfully completed!

Expected Console Output for UC3

• Syntax Check successfully completed!
• Functional Integration successfully completed!

Table 11.4: Application Example MULTIC-Tooling_tinyDemonstrator

11.2 Syntax Check
During the development phase, test models for steps Load Model, Validate Model Papyrus, Validate
Model MULTIC, and Elaborate were created for the Syntax Check use case.

11.2.1 Startup
No test models are available for this process step.

11.2.2 Load Model

TC1-01 Empty Project
Description A project without any SysML models.
Error Types EMPTY_PROJECT

Expected Console Output

• Failed to load SysML model due to an empty project!

Expected Dialog Output

• Failed to load SysML model due to an empty project!

Table 11.5: Test Model TC1-01_EmptyProject
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TC1-03 Multiple Models
Description A project containing two SysML models.
Error Types MULTIPLE_MODELS

Expected Console Output

• Failed to load project due to multiple existing SysML models!

Expected Dialog Output

• Failed to load project due to multiple existing SysML models!

Table 11.6: Test Model TC1-03_MultipleModels

11.2.3 Validate Model Papyrus

TC2-24 Invalid Satisfy Direction
Description A SysML model which contains the satisfy relation ’SatisfySubSystemB’

that connects the correct block with its corresponding requirement, but
defines the link in the wrong direction.

Error Types EXISTING_ERRORS

Expected Console Output

• Failed to validate SysML model using Papyrus model validation! Check ’Model
Validation’ tab for further information.

Table 11.7: Test Model TC2-24_InvalidSatisfyDirection

TC4-05 Empty Requirement Text
Description A SysML model with a requirement which ’text’ attribute is empty.
Error Types EXISTING_ERRORS

Expected Console Output

• Failed to validate SysML model using Papyrus model validation! Check ’Model
Validation’ tab for further information.

Table 11.8: Test Model TC4-05_EmptyRequirementText

TC5-07 Missing Contract
Description A SysML model in which no contract has been defined in requirement

’CONTRACT_System’.
Error Types EXISTING_ERRORS
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Expected Console Output

• Failed to validate SysML model using Papyrus model validation! Check ’Model
Validation’ tab for further information.

Table 11.9: Test Model TC5-07_MissingContract

11.2.4 Validate Model MULTIC

TC1-02 Empty Model
Description A SysML model without any diagrams or model elements.
Error Types EMPTY_MODEL, MISSING_INTERFACE_BLOCK, MISSING_CONTEXT_BLOCK

Expected Console Output

• Empty SysML model!
• Missing interface block! Each SysML model must contain exactly one interface
block named ’Event’.

• Missing context block! Each SysML model must contain exactly one context block.

Table 11.10: Test Model TC1-02_EmptyModel

TC2-01 Missing Context Block
Description A SysML model missing a context block.
Error Types MISSING_CONTEXT_BLOCK

Expected Console Output

• Missing context block! Each SysML model must contain exactly one context block.

Table 11.11: Test Model TC2-01_MissingContextBlock

TC2-02 Context Block With Ports
Description A SysML model containing a context block with ports.
Error Types MISSING_CONTEXT_BLOCK, MISSING_CONNECTION_HIERARCHICAL,

MISSING_CONNECTION, MISSING_REQUIREMENT

Expected Console Output
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• Missing context block! Each SysML model must contain exactly one context block.
• Missing connection on block ’BLOCK_Context’! Between two hierarchical levels,
each input/output port of the superordinate block must be connected to at least
one input/output port of the subordinate block.

• Missing connection on port ’Input’ of block ’BLOCK_Context’! At the same hierar-
chical level, each output port must be connected to at least one input port.

• Missing connection on port ’Output’ of block ’BLOCK_Context’! At the same hier-
archical level, each output port must be connected to at least one input port.

• Missing requirement for block ’BLOCK_Context’! Each block must have exactly one
requirement.

Expected Model Decoration

• Block ’BLOCK_System’.
• Port ’Input’ of block ’BLOCK_System’.
• Port ’Output’ of block ’BLOCK_System’.

Table 11.12: Test Model TC2-02_ContextBlockWithPorts

TC2-03 Missing System Block
Description A SysML model without a system block.
Error Types MISSING_SYSTEM_BLOCK, MISSING_CONNECTION,

MISSING_SATISFY_RELATION

Expected Console Output

• Missing system block! Each SysML model must contain exactly one system block.
• Missing connection on port ’InputSubA’ of block ’BLOCK_SubSystemA’! At the same
hierarchical level, each output port must be connected to at least one input port.

• Missing connection on port ’InputSubB’ of block ’BLOCK_SubSystemB’! At the same
hierarchical level, each output port must be connected to at least one input port.

• Missing connection on port ’OutputSubB’ of block ’BLOCK_SubSystemB’! At the same
hierarchical level, each output port must be connected to at least one input port.

• Missing connection on port ’OutputSubA’ of block ’BLOCK_SubSystemA’! At the same
hierarchical level, each output port must be connected to at least one input port.

• Missing satisfy relation for requirement ’CONTRACT_System’! Each block must be
linked to its requirement by exactly one satisfy relation.

Expected Model Decoration
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• Port ’InputSubA’ of block ’BLOCK_SubSystemA’.
• Port ’OutputSubA’ of block ’BLOCK_SubSystemA’.
• Port ’InputSubB’ of block ’BLOCK_SubSystemB’.
• Port ’OutputSubB’ of block ’BLOCK_SubSystemB’.
• Requirement ’CONTRACT_System’.

Table 11.13: Test Model TC2-03_MissingSystemBlock

TC2-04 Invalid Context System Link
Description A SysML model in which the context block and the system block are not

linked by an aggregation.
Error Types MISSING_SYSTEM_BLOCK

Expected Console Output

• Missing system block! Each SysML model must contain exactly one system block.

Table 11.14: Test Model TC2-04_InvalidContextSystemLink

TC2-05 System Block Without Ports
Description A SysML model containing a system block without input or output ports.
Error Types MISSING_PORTS_ON_SYSTEM_BLOCK, MISSING_CONNECTION

Expected Console Output

• Missing ports on system block ’BLOCK_System’! The system block must have at
least one output port.

• Missing connection on port ’OutputSubB’ of block ’BLOCK_SubSystemB’! At the same
hierarchical level, each output port must be connected to at least one input port.

• Missing connection on port ’InputSubA’ of block ’BLOCK_SubSystemA’! At the same
hierarchical level, each output port must be connected to at least one input port.

Expected Model Decoration

• Block ’BLOCK_System’.
• Port ’InputSubA’ of block ’BLOCK_SubSystemA’.
• Port ’OutputSubB’ of block ’BLOCK_SubSystemB’.

Table 11.15: Test Model TC2-05_SystemBlockWithoutPorts
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TC2-06 Missing Interface Block
Description A SysML model without any interface block.
Error Types MISSING_INTERFACE_BLOCK, INVALID_PORT_TYPE

Expected Console Output

• Missing interface block! Each SysML model must contain exactly one interface
block named ’Event’.

• Invalid type of port ’InputSubB’ of block ’BLOCK_SubSystemB’! Each port must be
of type ’Event’.

• Invalid type of port ’InputSubA’ of block ’BLOCK_SubSystemA’! Each port must be
of type ’Event’.

• Invalid type of port ’OutputSubA’ of block ’BLOCK_SubSystemA’! Each port must be
of type ’Event’.

• Invalid type of port ’OutputSubB’ of block ’BLOCK_SubSystemB’! Each port must be
of type ’Event’.

• Invalid type of port ’Input’ of block ’BLOCK_System’! Each port must be of type
’Event’.

• Invalid type of port ’Output’ of block ’BLOCK_System’! Each port must be of type
’Event’.

Expected Model Decoration

• Port ’Input’ of block ’BLOCK_System’.
• Port ’Output’ of block ’BLOCK_System’.
• Port ’InputSubA’ of block ’BLOCK_SubSystemA’.
• Port ’OutputSubA’ of block ’BLOCK_SubSystemA’.
• Port ’InputSubB’ of block ’BLOCK_SubSystemB’.
• Port ’OutputSubB’ of block ’BLOCK_SubSystemB’.

Table 11.16: Test Model TC2-06_MissingInterfaceBlock

TC2-07 Missing Flow Property
Description A SysML model with an interface block for which no ’EventFlow’ flow

property is defined.
Error Types MISSING_FLOW_PROPERTY

Expected Console Output

• Missing flow property for interface block ’Event’! Each interface block must contain
exactly one flow property.

Expected Model Decoration
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• Interface block ’Event’.

Table 11.17: Test Model TC2-07_MissingFlowProperty

TC2-08 Invalid Flow Direction
Description A SysML model with an ’EventFlow’ flow property which ’Direction’ at-

tribute is not set to ’out’.
Error Types INVALID_FLOW_PROPERTY_DIRECTION

Expected Console Output

• Invalid direction of ’EventFlow’! The flow property direction must be set to ’out’.

Expected Model Decoration

• Interface block ’Event’.

Table 11.18: Test Model TC2-08_InvalidFlowDirection

TC2-09 Hyphen In System Block Name
Description A SysML model in which the name of the system block contains a hyphen.
Error Types HYPHEN_IN_BLOCK_NAME

Expected Console Output

• Invalid name of block ’BLOCK_System_Hyphen-Test’! Block names must not contain
’-’.

Expected Model Decoration

• Block ’BLOCK_System_Hyphen-Test’.

Table 11.19: Test Model TC2-09_HyphenInSystemBlockName

TC2-10 Slash In System Block Name
Description A SysML model in which the name of the system block contains a slash.
Error Types SLASH_IN_BLOCK_NAME

Expected Console Output

• Invalid name of block ’BLOCK_System_Slash/Test’! Block names must not contain
’/’.

Expected Model Decoration
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• Block ’BLOCK_System_Slash/Test’.

Table 11.20: Test Model TC2-10_SlashInSystemBlockName

TC2-11 Colon In System Block Name
Description A SysML model in which the name of the system block contains a colon.
Error Types COLON_IN_BLOCK_NAME

Expected Console Output

• Invalid name of block ’BLOCK_System_Colon:Test’! Block names must not contain
’:’.

Expected Model Decoration

• Block ’BLOCK_System_Colon:Test’.

Table 11.21: Test Model TC2-11_ColonInSystemBlockName

TC2-12 Hyphen In Top-Level Requirement Name
Description A SysML model in which the name of a requirement contains a hyphen.
Error Types Test model without any errors.

• Syntax Check successfully completed!

Expected Console Output for UC2

• Syntax Check successfully completed!
• Virtual Integration Test successfully completed!

Expected Console Output for UC3

• Syntax Check successfully completed!
• Functional Integration successfully completed!

Table 11.22: Test Model TC2-12_HyphenInTopLevelRequirementName

TC2-13 Slash In Top-Level Requirement Name
Description A SysML model in which the name of a requirement contains a slash.
Error Types Test model without any errors.
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• Syntax Check successfully completed!

Expected Console Output for UC2

• Syntax Check successfully completed!
• Virtual Integration Test successfully completed!

Expected Console Output for UC3

• Syntax Check successfully completed!
• Functional Integration successfully completed!

Table 11.23: Test Model TC2-13_SlashInTopLevelRequirementName

TC2-14 Colon In Top-Level Requirement Name
Description A SysML model in which the name of a requirement contains a colon.
Error Types Test model without any errors.

• Syntax Check successfully completed!

Expected Console Output for UC2

• Syntax Check successfully completed!
• Virtual Integration Test successfully completed!

Expected Console Output for UC3

• Syntax Check successfully completed!
• Functional Integration successfully completed!

Table 11.24: Test Model TC2-14_ColonInTopLevelRequirementName

TC2-15 Hyphen In System Block Input Port Name
Description A SysML model in which the name of the input port of the system block

contains a hyphen.
Error Types SPECIAL_CHARACTER_IN_PORT_NAME

Expected Console Output

• Invalid name of port ’Input_Hyphen-Test’ of block ’BLOCK_System’! Port names
must not contain any special characters.
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Expected Model Decoration

• Port ’Input_Hyphen-Test’ of block ’BLOCK_System’.

Table 11.25: Test Model TC2-15_HyphenInSystemBlockInputPortName

TC2-16 Slash In System Block Input Port Name
Description A SysML model in which the name of the input port of the system block

contains a slash.
Error Types SPECIAL_CHARACTER_IN_PORT_NAME

Expected Console Output

• Invalid name of port ’Input_Slash/Test’ of block ’BLOCK_System’! Port names
must not contain any special characters.

Expected Model Decoration

• Port ’Input_Slash/Test’ of block ’BLOCK_System’.

Table 11.26: Test Model TC2-16_SlashInSystemBlockInputPortName

TC2-17 Colon In System Block Input Port Name
Description A SysML model in which the name of the input port of the system block

contains a colon.
Error Types SPECIAL_CHARACTER_IN_PORT_NAME

Expected Console Output

• Invalid name of port ’Input_Colon:Test’ of block ’BLOCK_System’! Port names
must not contain any special characters.

Expected Model Decoration

• Port ’Input_Colon:Test’ of block ’BLOCK_System’.

Table 11.27: Test Model TC2-17_ColonInSystemBlockInputPortName

TC2-18 Hyphen In Flow Property Name
Description A SysML model with a flow property which name contains a hyphen.
Error Types INVALID_FLOW_PROPERTY_NAME

Expected Console Output
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• Invalid name of flow property ’EventFlow_Hyphen-Test’! The flow property must
be named ’EventFlow’.

Expected Model Decoration

• Interface block ’Event’.

Table 11.28: Test Model TC2-18_HyphenInFlowPropertyName

TC2-19 Slash In Flow Property Name
Description A SysML model with a flow property which name contains a slash.
Error Types INVALID_FLOW_PROPERTY_NAME

Expected Console Output

• Invalid name of flow property ’EventFlow_Slash/Test’! The flow property must
be named ’EventFlow’.

Expected Model Decoration

• Interface block ’Event’.

Table 11.29: Test Model TC2-19_SlashInFlowPropertyName

TC2-20 Colon In Flow Property Name
Description A SysML model with a flow property which name contains a colon.
Error Types INVALID_FLOW_PROPERTY_NAME

Expected Console Output

• Invalid name of flow property ’EventFlow_Colon:Test’! The flow property must
be named ’EventFlow’.

Expected Model Decoration

• Interface block ’Event’.

Table 11.30: Test Model TC2-20_ColonInFlowPropertyName

TC2-21 Hyphen In Connection Name
Description A SysML model that specifies a connection whose name contains a hyphen.
Error Types HYPHEN_IN_CONNECTION_NAME

Expected Console Output
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• Invalid name of connection ’BindingInputToInputSubA_Hyphen-Test’! Connection
names must not contain ’-’.

Expected Model Decoration

• Connection ’BindingInputToInputSubA_Hyphen-Test’.

Table 11.31: Test Model TC2-21_HyphenInConnectionName

TC2-22 Slash In Connection Name
Description A SysML model that specifies a connection whose name contains a slash.
Error Types SLASH_IN_CONNECTION_NAME

Expected Console Output

• Invalid name of connection ’BindingInputToInputSubA_Slash/Test’! Connection
names must not contain ’/’.

Expected Model Decoration

• Connection ’BindingInputToInputSubA_Slash/Test’.

Table 11.32: Test Model TC2-22_SlashInConnectionName

TC2-23 Colon In Connection Name
Description A SysML model that specifies a connection whose name contains a colon.
Error Types COLON_IN_CONNECTION_NAME

Expected Console Output

• Invalid name of connection ’BindingInputToInputSubA_Colon:Test’! Connection
names must not contain ’:’.

Expected Model Decoration

• Connection ’BindingInputToInputSubA_Colon:Test’.

Table 11.33: Test Model TC2-23_ColonInConnectionName

TC2-25 Hyphen In Property Name
Description A SysML model that uses a flow property whose name contains a hyphen.
Error Types Test model without any errors.
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• Syntax Check successfully completed!

Expected Console Output for UC2

• Syntax Check successfully completed!
• Virtual Integration Test successfully completed!

Expected Console Output for UC3

• Syntax Check successfully completed!
• Functional Integration successfully completed!

Table 11.34: Test Model TC2-25_HyphenInPropertyName

TC2-26 Slash In Property Name
Description A SysML model that uses a flow property whose name contains a slash.
Error Types Test model without any errors.

• Syntax Check successfully completed!

Expected Console Output for UC2

• Syntax Check successfully completed!
• Virtual Integration Test successfully completed!

Expected Console Output for UC3

• Syntax Check successfully completed!
• Functional Integration successfully completed!

Table 11.35: Test Model TC2-26_SlashInPropertyName

TC2-27 Colon In Property Name
Description A SysML model that uses a flow property whose name contains a colon.
Error Types Test model without any errors.

• Syntax Check successfully completed!

Expected Console Output for UC2
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• Syntax Check successfully completed!
• Virtual Integration Test successfully completed!

Expected Console Output for UC3

• Syntax Check successfully completed!
• Functional Integration successfully completed!

Table 11.36: Test Model TC2-27_ColonInPropertyName

TC3-01 Unconnected System Input Port
Description A SysML in which the input port of the system block is not connected to

any input port of one subsystem block.
Error Types MISSING_CONNECTION_HIERARCHICAL, MISSING_CONNECTION

Expected Console Output

• Missing connection on block ’BLOCK_System’! Between two hierarchical levels, each
input/output port of the superordinate block must be connected to at least one
input/output port of the subordinate block.

• Missing connection on port ’InputSubA’ of block ’BLOCK_SubSystemA’! At the same
hierarchical level, each output port must be connected to at least one input port.

• Missing connection on port ’Input’ of block ’BLOCK_System’! At the same hierar-
chical level, each output port must be connected to at least one input port.

Expected Model Decoration

• Block ’BLOCK_System’.
• Port ’Input’ of block ’BLOCK_System’.
• Port ’InputSubA’ of block ’BLOCK_SubSystemA’.

Table 11.37: Test Model TC3-01_UnconnectedSystemInputPort

TC3-02 Unconnected System Output Port
Description A SysML in which the output port of the system block is not connected

to any output port of one subsystem block.
Error Types MISSING_CONNECTION_HIERARCHICAL, MISSING_CONNECTION

Expected Console Output
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• Missing connection on block ’BLOCK_System’! Between two hierarchical levels, each
input/output port of the superordinate block must be connected to at least one
input/output port of the subordinate block.

• Missing connection on port ’Output’ of block ’BLOCK_System’! At the same hierar-
chical level, each output port must be connected to at least one input port.

• Missing connection on port ’OutputSubB’ of block ’BLOCK_SubSystemB’! At the same
hierarchical level, each output port must be connected to at least one input port.

Expected Model Decoration

• Block ’BLOCK_System’.
• Port ’Output’ of block ’BLOCK_System’.
• Port ’OutputSubB’ of block ’BLOCK_SubSystemB’.

Table 11.38: Test Model TC3-02_UnconnectedSystemOutputPort

TC3-03 Invalid Input Configuration
Description A SysML model containing an input port of which the attribute

’isConjugated’ is not set to ’true’.
Error Types INVALID_CONNECTION_HIERARCHICAL

Expected Console Output

• Invalid connection ’InputToInputSubA’! Between two hierarchical levels, input ports
must be connected to input ports and output ports to output ports.

Expected Model Decoration

• Connection ’InputToInputSubA’.

Table 11.39: Test Model TC3-03_InvalidInputConfiguration

TC3-04 Invalid Output Configuration
Description A SysML model containing an output port of which the attribute

’isConjugated’ is not set to ’false’.
Error Types INVALID_CONNECTION

Expected Console Output

• Invalid connection ’OutputSubAtoInputSubB’! At the same hierarchical level, output
ports must be connected to input ports.

Expected Model Decoration
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• Connection ’OutputSubAtoInputSubB’.

Table 11.40: Test Model TC3-04_InvalidOutputConfiguration

TC4-01 Missing Top-Level Requirement
Description A SysML model in which the system block is missing a requirement block.
Error Types MISSING_REQUIREMENT

Expected Console Output

• Missing requirement for block ’BLOCK_System’! Each block must have exactly one
requirement.

Expected Model Decoration

• Block ’BLOCK_System’.

Table 11.41: Test Model TC4-01_MissingTopLevelRequirement

TC4-02 Missing Requirement
Description A SysML model with another block that is missing a requirement block.
Error Types MISSING_REQUIREMENT

Expected Console Output

• Missing requirement for block ’BLOCK_SubSystemA’! Each block must have exactly
one requirement.

Expected Model Decoration

• Block ’BLOCK_SubSystemA’.

Table 11.42: Test Model TC4-02_MissingRequirement

TC4-03 Multiple Requirements
Description A SysML model with a block that is linked to multiple requirements.
Error Types MULTIPLE_REQUIREMENTS

Expected Console Output

• Multiple requirements for block ’BLOCK_SubSystemB’! Each block must have exactly
one requirement.

Expected Model Decoration
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• Block ’BLOCK_SubSystemB’.

Table 11.43: Test Model TC4-03_MultipleRequirements

TC4-04 Invalid Requirement Link
Description A SysML model that contains a block which is not connected to its re-

quirement block using a satisfy relationship.
Error Types MISSING_REQUIREMENT, MISSING_SATISFY_RELATION,

INVALID_ABSTRACTION_TYPE

Expected Console Output

• Missing requirement for block ’BLOCK_SubSystemA’! Each block must have exactly
one requirement.

• Missing satisfy relation for requirement ’CONTRACT_SubSystemA’! Each block must
be linked to its requirement by exactly one satisfy relation.

• Invalid abstraction type of relation ’RefineSubSystemA’! Each block must be linked
to its requirement by exactly one satisfy relation.

Expected Model Decoration

• Block ’BLOCK_SubSystemA’.
• Requirement ’CONTRACT_SubSystemA’.

Table 11.44: Test Model TC4-04_InvalidRequirementLink

11.2.5 Generate
No test models are available for this process step.

11.2.6 Build VIT
No test models are available for this process step.

11.2.7 Elaborate

TC5-01 Missing Delimiter In Sentence
Description A SysML model that contains the requirement ’CONTRACT_System’ in which

a point is missing as a delimiter at the end of the assumption.
Error Types SYNTAX_GENERAL, EXECUTE_ELABORATION

Expected Console Output
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• Failed to parse contract of block ’BLOCK_System’ due to a syntax error! syntax
error, unexpected IDENTIFIER, expecting UNIT.

• Failed to elaborate simulation model!

Expected Model Decoration

• Block ’BLOCK_System’.
• Requirement ’CONTRACT_System’.

Table 11.45: Test Model TC5-01_MissingDelimiterInSentence

TC5-02 Missing Time Unit
Description A SysML model that contains the requirement ’CONTRACT_System’ in which

a time unit is missing.
Error Types SYNTAX_GENERAL, EXECUTE_ELABORATION

Expected Console Output

• Failed to parse contract of block ’BLOCK_System’ due to a syntax error! syntax
error, unexpected ’.’, expecting UNIT.

• Failed to elaborate simulation model!

Expected Model Decoration

• Block ’BLOCK_System’.
• Requirement ’CONTRACT_System’.

Table 11.46: Test Model TC5-02_MissingTimeUnit

TC5-03 Mistake In Occurs Statement
Description A SysML model that contains the requirement ’CONTRACT_System’ in which

an ’s’ is missing in one of its ’occurs’ clauses.
Error Types SYNTAX_GENERAL, EXECUTE_ELABORATION

Expected Console Output

• Failed to parse contract of block ’BLOCK_System’ due to a syntax error! syntax
error, unexpected IDENTIFIER, expecting occurs every or occurs within or ’,’.

• Failed to elaborate simulation model!

Expected Model Decoration
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• Block ’BLOCK_System’.
• Requirement ’CONTRACT_System’.

Table 11.47: Test Model TC5-03_MistakeInOccursStatement

TC5-04 Missing Square Bracket For Time Interval
Description A SysML model that contains the requirement ’CONTRACT_System’ in which

a square bracket is missing in a time interval.
Error Types SYNTAX_GENERAL, EXECUTE_ELABORATION

Expected Console Output

• Failed to parse contract of block ’BLOCK_System’ due to a syntax error! syntax
error, unexpected UNIT, expecting ’[’ or ’]’.

• Failed to elaborate simulation model!

Expected Model Decoration

• Block ’BLOCK_System’.
• Requirement ’CONTRACT_System’.

Table 11.48: Test Model TC5-04_MissingSquareBracketForTimeInterval

TC5-05 Missing Bracket In Reaction Constraint
Description A SysML model containing the requirement ’CONTRACT_System’ in which a

paranthesis is missing in its reaction constraint.
Error Types SYNTAX_GENERAL, EXECUTE_ELABORATION

Expected Console Output

• Failed to parse contract of block ’BLOCK_System’ due to a syntax error! syntax
error, unexpected within, expecting ’)’.

• Failed to elaborate simulation model!

Expected Model Decoration

• Block ’BLOCK_System’.
• Requirement ’CONTRACT_System’.

Table 11.49: Test Model TC5-05_MissingBracketInReactionConstraint
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TC5-06 Missing Port Referenced In Contract
Description A SysML model containing the requirement ’CONTRACT_System’ in which

an input port is referenced not defined in the model.
Error Types MISSING_PORT, EXECUTE_ELABORATION

Expected Console Output

• Missing port ’InSubB’ of block ’BLOCK_SubSystemB’ referenced in pattern ’InSubB
occurs every 60 ms with offset [0 s, 60 ms] and jitter 5 ms.’! Each port
used in a contract must be explicitly modeled in the SysML model.

• Failed to elaborate simulation model!

Expected Model Decoration

• Block ’BLOCK_SubSystemB’.
• Requirement ’CONTRACT_SubSystemB’.

Table 11.50: Test Model TC5-06_MissingPortReferencedInContract

TC5-08 Output Port Referenced In Assumption
Description A SysML model whose requirement ’CONTRACT_System’ includes an output

port in the assumption.
Error Types OUTPUT_IN_ASSUMPTION, EXECUTE_ELABORATION

Expected Console Output

• Invalid use of output port ’Output’ of block ’BLOCK_System’ in pattern ’Output
occurs every 33 ms with offset [0 s, 33 ms] and jitter 5 ms.’! Assump-
tion statements must only contain input ports.

• Failed to elaborate simulation model!

Expected Model Decoration

• Block ’BLOCK_System’.
• Requirement ’CONTRACT_System’.

Table 11.51: Test Model TC5-08_OutputPortReferencedInAssumption

11.3 Virtual Integration Test
In addition to the test models for the Syntax Check use case, the test suite contains test models for
the step Simulate VIT of the Virtual Integration Test use case.
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11.3.1 Set VIT Parameters
No test models are available for this process step.

11.3.2 Simulate VIT

TC6-01 Inconsistent Assumption
Description A SysML model with an inconsistent assumption regarding the input

’InputSubB’ due to a period chosen too small.
Error Types PATTERN_FAILED

Expected Console Output

• Pattern ’InputSubB occurs every 33 ms with offset [0 s, 33 ms] and

jitter 5 ms.’ of block ’BLOCK_SubSystemB’ failed! First event cannot occur at
50400313570 ps.

Expected Model Decoration

• Block ’BLOCK_SubSystemB’.
• Requirement ’CONTRACT_SubSystemB’.

Table 11.52: Test Model TC6-01_InconsistentAssumption

TC6-02 Missing Offset Definitions
Description A SysML model with missing offset definitions.
Error Types PATTERN_FAILED

Expected Console Output

• Pattern ’InputSubB occurs every 60 ms with offset 0 s and jitter 5 ms.’
of block ’BLOCK_SubSystemB’ failed! First event cannot occur at 24048640492 ps.

Expected Model Decoration

• Block ’BLOCK_SubSystemB’.
• Requirement ’CONTRACT_SubSystemB’.

Table 11.53: Test Model TC6-02_MissingOffsetDefinitions

TC6-03 VIT Screencast Example
Description A SysML model with a syntax error in contract ’CONTRACT_SubSystemA’

and an inconsistent offset definition in contract ’CONTRACT_SubSystemB’.
Error Types SYNTAX_GENERAL, EXECUTE_ELABORATION, PATTERN_FAILED

Expected Console Output
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• Failed to parse contract of block ’BLOCK_SubSystemA’ due to a syntax error! syntax
error, unexpected within, expecting ’)’.

• Failed to elaborate simulation model!

• Pattern ’InputSubB occurs every 60 ms with offset [0 s, 20 ms] and

jitter 5 ms.’ of block ’BLOCK_SubSystemB’ failed! First event cannot occur at
50400313570 ps.

Expected Model Decoration

• Block ’BLOCK_SubSystemA’.
• Requirement ’CONTRACT_SubSystemA’.

• Block ’BLOCK_SubSystemB’.
• Requirement ’CONTRACT_SubSystemB’.

Table 11.54: Test Model TC6-03_VITScreencastExample

TC6-04 Inconsistent Slice Configuration
Description A SysML model whose annotated timing specifications cause the genera-

tion of an inconsistent slice configuration.
Error Types EXECUTE_ELABORATION, GENERATOR_INCONSISTENCY

Expected Console Output

• Failed to find a consistent configuration of slices for pattern ’A:
InputSubB occurs every 33ms with offset [10,43]ms and jitter

15ms. OtherInputSubB occurs every 33ms with offset [0,33]ms and

jitter 10ms. G: OutputSubB occurs every 33ms with offset [0,33]ms

and jitter 10ms. Age(InputSubB,OutputSubB) within [0,60]ms.

Age(OtherInputSubB,OutputSubB) with in [0,60]ms.’!
• Failed to elaborate simulation model!

Table 11.55: Test Model TC6-04_InconsistentSliceConfiguration

11.3.3 Show VCD
No test models are available for this process step.
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12 Conclusion
The present report documents the results of the MULTIC Tooling project, where a prototypical but
feature rich design and analysis tool for the MULTIC design methodology has been developed.
The report contains two parts. Firstly, it discusses the concepts for the construction of generator

and monitor automata from timing specifications. It defines syntax and semantics of the so-called
MULTIC Timing Specification Language (MTSL), which allows expressing timing properties in terms
of contracts. While semantics is defined in terms of languages, the construction of generators and
monitors for these specifications calls for an operational semantics. To this end, we rephrase the
formal definition of a class of hybrid automata. For implementation purposes, we also present an
implementation oriented language for specifying a sub class of these automata. Based on this inter-
mediate language, we finally discuss generators and monitors for the elements of MTSL.
The second part discusses architecture and implementation details of the developed MULTIC-Tool.

The MULTIC-Tool integrates the paradigms that have been elaborated in the predecessor project
MULTIC into a tool that can be applied also on large models in an industrial environment. It is
based on Eclipse Papyrus for capturing or importing of system specification models in SysML and
allows equipping them with timing contracts. The tool furthermore performs an automatic timing
specification consistency check through execution of a VIT. In the final step, the system specification
can be exported to SystemC, where arbitrary behavior can be added into the generated modules and
checked against the timing contracts. Potential timing contract violations are visualized as a trace
and provide (in the form or a counterexample) support for localizing the behavior or behavior chain
that caused this violation.
This second part is complemented by useful information for users of the tool about the supported set

of input models, and lists possible errors that may occur when the underlying analyses are executed.
Finally, it provides information about the test models that are delivered together with the tool, and
lists the expected results and errors that will occur when analysis is performed on these models.
The tool prototype is provided pre-installed in a virtual box appliance and ready to use. It also

contains many sample models. The reader is encouraged to have a look at the two video tutorials in
German and English. The first deals wit the correct SysML modeling and the second video explains
how to perform a Virtual Integration Test.
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