
1

The work reported here is supported by DFG (Deutsche Forschungsgemeinschaft) under grant No. Be1786/1-1.

A Systematic Method for Query Evaluation in
Federated Relational Databases

Yangjun Chen and Wolfgang Benn

Department of Computer Science, Technical University of Chemnitz-Zwickau
09107 Chemnitz, Germany

Abstract. In this paper, a systematic method for evaluating queries issued to an federated relational da-
tabase system is presented. The method consists of four phases: syntactic analysis, query decomposi-
tion, query translation and result synthesis, which all can be done automatically based on the metadata
built in the system, even if the structure conflicts among the local databases exist.

1. Introduction

With the advent of applications involving increased cooperation among systems, the develop-
ment of methods for integrating pre-existing databases becomes important. The design of such
global database systems must allow unified access to the diverse and possibly heterogeneous
database systems without subjecting them to conversion or major modifications [BOT86,
LA86, Jo90, SK92, CW93, HLM94, RPRG94, KFMRN96]. One important issue in such a sys-
tem is the query treatment, which has received much attention during the past several years. In
[NTA96], a query processing method is proposed based on the concept of “virtual function de-
pendency” to derive reasonable values fornull values which occur due to the integration. In
[LP96], a query decomposition strategy has been developed based on a simple one-to-one con-
cept mapping. Several earlier papers such as [SC94, LHS95, LHSC95] belong to special case
studies. No systematic method has been suggested at all. Especially, in the case of structure
conflicts, no idea on it emerges. (Although in [LW96] such problems are discussed, the method
proposed there, based on the concept ofsuperrelations, can not be automated.) The other re-
searches reported in [LOG93, DSD94, DSD95, DS96, CB96, ETB96] are mainly concerned
with optimization.

In this paper, we address this problem and try to develop a systematic method for the (select-
project-join) query evaluation in a (relational) heterogeneous environment. Our method con-
sists of four steps: syntactic analysis, query decomposition, query translation and result synthe-
sis. If the medadata are well defined, all of them can be performed automatically. First, the
query decomposition can be done by using correspondence assertions. Secondly, the query
translation can be automated based on the relation structure terms and the corresponding deri-
vation rules, which are higher order logic concepts for accommodating complicated semantic
heterogeneities. The last step: result synthesis is merely a simple process, by which the local
answers are combined together.

The remainder of the paper is organized as follows. In Section 2, we show our system architec-

ture and the data dictionary used for storing meta information.Then, in Section 3, the query

treatment is discussed in detail. Finally, we set forth a short summary in Section 4.

2. System architecture and metadata

Before we discuss the main idea of our method for evaluating queries submitted to a federated

2

system, we simply describe our system architecture and the metadata used to resolve the se-
mantic conflicts among the component databases.

2.1 System architecture

Our system architecture consists of three-layers: FSM-client, FSM and FSM-agents as shown
in Fig. 1 (here FSM represents “Federated System Manager”.)

The task of the FSM-client layer consists in the application management, providing a suite of
application tools which enable users and DBAs to access the system. The FSM layer is respon-
sible for the mergence of potentially conflicting local databases and the definition of global
schemas. In addition, a centralized management for the data dictionary (DD) is supported at
this layer. The FSM-agent layer corresponds to the local system management, addressing all
the issues w.r.t. schema translation and export as well as local transaction and query processing.

In term of this architecture, each component database is installed in some FSM-agent and must
be registered in the FSM. Then, for a component relational database, each attribute value will
be implicitly prefixed with a string of the form:

<FSM-agent name>.<database system name>.<database name>.<relation name>.<attribute name>,

where “.” denotes string concatenation. For example,FSM_agent1.informix.Patient-
DB.patient_records.namereferences attribute “name” from relation “patient_records” in an in-
formix database named “PatientDB”, installed in “FSM_agent1”.

2.2 Metadata classification

In this section, we discuss the meta information built in our system, which can be classified into
three groups: structure mappings, concept mappings and data mappings, each for a different
kind of semantic conflicts: structure conflict, concept conflict and data conflict.

2.2.1 Structure mappings

In the case of relational databases, we consider three kinds of structure conflicts which can be
illustrated as shown in Fig. 2.

FSM-client

FSM

FSM-agentnFSM-agent1

Fig. 1. System architecture

DDnetwork

attribute data

attribute name relation name

conflict1 conflict2

conflict3

Fig. 2 Illustration for structure conflicts

3

They are,

1) when an attribute value in one database appears as an attribute name in another database,

2) when an attribute value in one database appears as a relation name in another database,

3) when an attribute name in one database appears as a relation name in another database.

As an example, consider three local schemas of the following form:.

DB1: faculty(name, research_area, income),

DB2: research(research_area, name1, ..., namen),

DB3: name1’(research_area, income),

... ...

namem’(research_area, income).

In DB1, there is one single relation, with one tuple per faculty member and research area, stor-

ing his/her income. In DB2, there is one single relation, with one tuple per research area, and

one attribute per faculty member, named by his/her name and storing its income. Finally, DB3

has one relation per faculty member, named by his/her name; each relation has one tuple per

research area storing the income.

If we want to integrate these three databases and the global schema R is chosen to be the same

as “faculty”, then an algebra expression likeπname, research_area(σincome>1000(R)) has to be

translated so that it can be evaluated against different local schemas. For example, in order to

evaluate this expression against DB3, it should be converted into the following form:

for eachy ∈{name1’, name2’, ..., namem’ } do
{ πresearch_area(σincome>1000(y)}.

A translation like this is needed when a user of one of these databases wants to work with the

other databases, too.

In order to represent such conflicts formally and accordingly to support an automatic transfor-
mation of queries in case any of such conflicts exist, we introduce the concept ofrelation struc-
ture terms (RST) to capture higher-order information w.r.t. a local database. Then, for the RSTs
w.r.t. some heterogeneous databases, we define a set of derivation rules to specify the semantic
conflicts among them.

Relation structure terms

In our system, an RST is defined as follows:

[re{R1, ..., Rm} | a1: x1, a2: x2, ...,al: xl, y: z{A1, ..., An}],

wherere is a variable ranging over the relation name set {R1, ..., Rm}, y is a variable ranging
over the attribute name set {A1, ..., An}, x1, ...,xl andz are variables ranging over respective
attribute values, anda1, ...,al are attribute names. In the above term, each pair of the form:ai:
xi (i = 1, ...,l) or y: z is called an attribute descriptor. Obviously, such an RST can be used to
represent either a collection of relations possessing the same structure, or part structure of a re-

4

lation. For example, [re{name1’, ..., namem’} | research_area:x, income:y] represents any relation
in DB3, while an RST of the form: [re{research}| research_area:x, y: z{name1, ..., namen}] (or sim-
ply [“research”| research_area:x, y: z{name1, ..., namen}]) represents a part structure of “research”
with the form: research(research_area,..., namei, ...) in DB2. Since such a structure allows vari-
ables for relation names and attribute names, it can be regarded as a higher order predicate
quantifying both data and metadata. When the variables (of an RST) appearing in the relation
name position and attribute name positions are all instantiated to constants, it is degenerated to
a first-order predicate. For example, [“faculty” | name:x1, research_area:x2, income:x3] is a
first-order predicate quantifying tuples of R1.

The purpose of RSTs is to formalize both data and metadata. Therefore, it can be used to declare

schematic discrepancies. In fact, by combining a set of RSTs into a derivation rule, we can

specify some semantic correspondences of heterogeneous local databases exactly.

For convenience, an RST can be simply written as [re | a1: x1, a2: x2, ...,al: xl, y: z] if the pos-

sible confusion can be avoided by the context.

Derivation rules

For the RSTs, we can define derivation rules in a standard way, as implicitly universally quan-

tified statements of the form:γ1 & γ2 ... & γl ⇐ τ1 & τ2 ... & τk, where bothγi’s andτk’s are

(partly) instantiated RSTs or normal predicates of the first-order logic. For example, using the

following two rules

rDB1-DB3: [y |research_area:x, income:z] ⇐
[“faculty” |name:y, research_area:x, income:z], y ∈ {name1’, name2’, ..., namem’ },

rDB3-DB1: [“faculty”|name:x, research_area:y, income:z] ⇐
[x |research_area:y, income:z], x ∈ {name1”, name2”, ..., namel”},

the semantic correspondence between DB1 and DB3 can be specified. (Note that in rDB3-DB1,

name1”, name2”, ..., and namel” are the attribute values of “name” in “faculty”.)

Similarly, using the following rules, we can establish the semantic relationship between DB1

and DB2:

rDB1-DB2: [“research” |research_area:y, x: z] ⇐
[“faculty”|name:x, research_area:y, income:z], x ∈{name1, name2, ..., namen},

rDB2-DB1: [“faculty” |name:x, research_area:y, income:z] ⇐
[“research” |research_area:y, x: z], x ∈ {name1”, name2”, ..., namel”}.

Finally, in a similar way, the semantic correspondence between DB2 and DB3 can be construct-
ed as follows:

rDB3-DB2: [“research” |research_area:x, y: z] ⇐
[y |research_area:x, income:z], y ∈{name1, name2, ..., namen},

rDB2-DB3: [y |research_area:x, income:z] ⇐
[“research” |research_area:x, y: z], y ∈ {name1’, name2’, ..., namem’ }.

In the remainder of the paper, a conjunction consisting of RSTs and normal first-order predi-

cates is called a c-expression (standing for “complex expression”). For a derivation rule of the

form: A ⇐ B, A andB are called the antecedent part and the consequent part of the rule, respec-

5

tively.

2.2.2 Concept mappings

The second semantic conflict is concerned with the concept aspects, caused by the different per-
ceptions of the same real world entities.

[SP94, SPD92] proposed simple and uniform correspondence assertions for the declaration of
semantic, descriptive, structural, naming and data correspondences and conflicts (see also
[Du94]). These assertions allow to declare how the schemas are related, but not to declare how
to integrate them. Concretely, four semantic correspondences between two concepts are defined
in [SP94], based on theirreal-world states (RWS). They are equivalence (≡), inclusion (⊇ or
⊆), disjunction (∅) and intersection (∩). Equivalence between two concepts means that their
extensions (populations) hold the same number of occurrences and that we should be able to
relate those occurrences in some way (e.g., with theirobject identifiers). Borrowing the termi-
nology from [SP94], a correspondence assertion can be informally described as follows:

S1•A ≡ S2•B, iff RWS(A) = RWS(B) always holds,
S1•A ⊆ S2•B, iff RWS(A) ⊆ RWS(B) always holds,
S1•A ∩ S2•B, iff RWS(A) ∩ RWS(B) ≠ φ holds sometimes,
S1•A ∅ S2•B, iff RWS(A) ∩ RWS(B) = φ always holds.

For example, assumingperson, book, faculty andman are four concepts (relation or attribute
names) fromS1 andhuman, publication, student, andwomanare another four concepts from
S2, the following four assertions can be established to declare their semantic correspondences,
respectively:S1•person≡ S2•human, S1•book ⊆ S2•publication, S1•faculty ∩ S2•student,
S1•man∅ S2•woman.

Experience shows that only the above four assertions are not powerful enough to specify all the
semantic relationships of local databases. Therefore, an extra assertion: derivation (→) has to
be introduced to capture more semantic conflicts, which can be informally described as follows.
The derivation from a set of concepts (say,A1, A2, ...,An) to another concept (say,B) means that
each occurrence ofB can be derived by some operations over a combination of occurrences of
A1, A2, ..., andAn, denotedA1, A2, ...,An → B. In the case thatA1, A2, ..., andAn are from a
schemaS1 andB from another schemaS2, the derivation is expressed byS1(A1, A2, ...,An) →
S2•B, stating thatRWS(A1, A2, ...,An) → RWS(B) holds at any time. For example, a derivation
assertion of the form:S1(parent, brother) → S2•uncle can specify the semantic relationship be-
tweenparent andbrother in S1 anduncle in S2 clearly, which can not be established otherwise.

2.2.3 Data mappings

As to the data mappings, there are different kinds of correspondences that must be considered.

1) (exact correspondence) In this case, a value in one database corresponds to at most one val-
ue in another database. Then, we can simply make a binary table for such pairs.

2) (function correspondence) This case is similar to the first one. The only difference being

that a simple function can be used to declare the relevant relation. For example, consider an

attribute “height_in_inches” from one database and an attribute “height_in_centimeters” from

another. The value correspondence of these two attributes can be constructed by defining a

6

function of the form:

y = f(x) = 2.54⋅x,

wherey is a variable ranging over the domain of “height_in_inches” andx is a variable ranging

over “height_in_centimeters”. Further, a fact of the form:S1•height-in-inches≡ S2•height-in-

centimeters should be declared to indicate that both of them refer to the same concept of the

real-world.

3) (fuzzy correspondence) The third case is called the fuzzy correspondence, in which a value

in one database may corresponds to more than one value in another database. In this case, we

use the fuzzy theory to describe the corresponding semantic relationship [BCG96]. For exam-

ple, consider two attributes “age_1” and “age_2” from two different databases, respectively. If

the value set of “age_1”A is {1, 2, ..., 100} while the value set of “age_2”B is {infantile, child,

young, adult, old, very_old}, then the mapping from “age_1” to “age_2” may be of the follow-

ing form:

{(1, infantile, 1), (2, infantile, 0.9), ...,

(3, child, 1), ..., (13, child, 1), ...,

(14, young, 0.5), (15, young, 0.6), ..., (20, young, 1), ...},

in which each (a, b) with a ∈ A andb ∈ B is associated with a valuev ∈ [0, 1] to indicate the

degree to whicha is relevant tob.

2.2.4 Meta information storage

All the above meta information are stored in the data dictionary and accommodated into apart-
of hierarchy of the form as shown in Fig. 3.

The intention of such an organization is straightforward. First, in our opinion, a federated sche-
ma is mainly composed of two parts: the export schemas and the associated meta information,
possibly augmented with some new elements. Accordingly, classes “export schemas” and “me-
ta information” are connected with class “federated schema” using part-of links (see Fig. 3). In
addition, two classes “new elements” and “new constraints” may be linked in the case that some
new elements are generated for the integrated schema and some new semantic constraints must
be made to declare the semantic relationships between the participating local databases. It
should be noticed that in our system, for the two local databases considered, we always take

≡ ⊆ ∩ ∅ →

federated
schema

meta
information

export
schemas

concept
mapping

schema
mapping

data
mapping

derivation
rules

RSTs predicates

table function fuzzy

Fig. 3 Data Dictionary

new
elements

new
constraints

prefix
quantifiers

normal
formulas

predicates

simple
formulas

7

one of them as the basic integrated version, with some new elements added if necessary. For
example, ifS1•person≡ S2•human is given, we may takeperson as an element (as a relation
name or an attribute name) of the integrated schema. (But for evaluating a query concerning
person against the integrated schema, bothS1•person andS2•human need to be considered.)
However, ifS1•faculty∩ S2•student is given, some new elements such asISfaculty, student, ISfac-

ulty-, ISstudent- andstudent will be added intoS1 if we takeS1 as the basic integrated schema,
whereISfaculty, student= S1•faculty∩ S2•student, ISfaculty-= S1•faculty∩ ¬ISfaculty, student and
ISstudent- = S2•student∩ ¬ISfaculty, student. On the other hand, all the integrity constraints ap-
pearing in the local databases are regarded as part of the integrated schema. But some new in-
tegrity constraints may be required to construct the semantic relationships between the local
databases. As an example, consider a database containing a relationDepartment(name, emp,
...) and another one containing a relationEmployee(name, dept, ...), a constraint of the form:
∀e(in Employee)∀d(in Department)(d.name = e.Dept→ e.name in d.emp) may be generated
for the integrated schema, representing that if someone works in a department, then this depart-
ment will have him/her recorded in theemp attribute. Therefore, the corresponding classes
should be predefined and linked according to their semantics (see below for a detailed discus-
sion).

Furthermore, in view of the discussion above, the meta information associated with a federated
schema can be divided into three groups: structure mappings, concept mappings and data map-
pings. Each structure mapping consists of a set of derivation rules and each rule is composed
of several RSTs and predicates connected with “,” (representing aconjunction) and “⇐”. Then,
the corresponding classes are linked in such a way that the above semantics is implicitly imple-
mented. Meanwhile, two classes can be defined for RSTs and predicates, respectively. Further,
as to the concept mappings, we define five subclasses for them with each for an assertion. At
last, three subclasses named “table”, “ function” and “fuzzy” are needed, each behaving as a
“subset” of class “data mapping”.

In the following discussion,C represents the set of all classes and the type of a classC ∈ C,
denoted by type(C), is defined as:

type(C) = <a1:type1, ...,al:typel, Agg1with cc1: out-type1, ...,Aggk with cck: out-typek, m1, ...,mh>,

whereai represents an attribute name,Aggj represents an aggregation function:C → C’ (C, C’
∈ C andout-typej ∈ type(C)), mg stands for a method defined on the object identifiers or on the
attribute values of objects andtypei is defined as follows:

typei ::= <PrimitiveTyp>|<list>|<set>|<ClassType>,

<PrimitiveTyp> ::= <Integer> | <Boolean> | <Character> | <String>|<Real>,

<list> ::= “[” typei
+“]”,

<set> ::= “{”typei
+“}”.

Furthermore, each aggregation function may be associated with a cardinality constraintccj ∈
{[1:1], [1:n], [m:1], [m:n]} (j = 1, ...,k).

Then, in our implementation, we have

type(“ federated schema”) = <IS: <string>, Sf: <string>, Ss: <string>, indicator: <boolean>,
Agg1 with [1:1]: <type(“meta information”)>,

8

Agg2 with [1:2]: <type(“export schemas”)>,
Agg3 with [1:1]: <type(“new elements”)>,
Agg4 with [1:1]: <type(“new constraints”)>>,

whereIS stands for the integrated schema name,Sf andSs for the two participating local sche-
mas’,indicator is used to indicate whetherSf or Ss is taken as the basic integrated version and
eachAggj is an aggregation function, through which the corresponding objects of the classes
connected with “federated schema” usingpart-of links can be referenced.

As an example, an object of this class may be of the form: oid_1(IS: IS_DB,Sf: S1, Ss: S2, in-
dicator: 0, ...), representing an integration process as illustrated in Fig. 4(a), whereS1 is used
as the basic integrated schema, since the value ofindicator is 0. Otherwise, if the value ofin-
dicator is 1,S2 will be taken as the basic integrated schema.

With another object, say oid_2(IS: IS_DB’, Sf: IS_DB,Ss: S3, ...) together, a more complicated
integration process as shown in Fig. 4(b) can be represented.

Class “export schemas” has a relatively simple structure as follows:

type(“export schemas”) = <S: <string>, path: <concatenation of strings>, r_a_names: <set of pairs>>,

whereS is an attribute for the storage of a local database name,path is for the access path of a
database in the FSM system, denoted as given in 2.1 andr_a_names is for an export schema,
stored as a set of pairs of the form: (r_name, {attr1, ...,attrn}). Here,r_name is a relation name
and each attri is an exported attribute name.

The type of “meta information” is defined as follows:

type(“meta information”) = <Sf_Ss: <pairs of strings>,
Agg1 with [1:n]: <type(“structure mapping”)>,
Agg2 with [1:n]: <type(“concept mapping”)>,
Agg3with [1:n]: <type(“data mapping”)>>,

whereSf_Ss is used to store the pair of local database names, for which the meta information is
constructed, whileAgg1, Agg2 andAgg3 are three aggregation functions, through which the ob-
jects of classes “structure mapping”, “ concept mapping” and “data mapping” can be refer-
enced, respectively.

As discussed above, any new element is defined by some function over the existing local ele-
ments (such asISfaculty-= S1•faculty) ∩ ¬ISfaculty, student.) Then, a set of functions has to be
defined in “new elements”. In general, class “new elements” has the following structure:

type(“new elements”) = <S: <string>, new_elem: <set>, m1, ...,mh>.

S3

Fig. 4. Integration process

(a) (b)

S1

IS_DB

S2

S1

IS_DB

S2

IS_DB’

9

Here,S stands for the name of a new element added to the integrated schema,new_elem is for
the attributes of the new element, stored as a set and each element in it is itself a set of the form:
{ a, a1, ..., an, mi}, wherea represents the new attribute, eachaj is a local attribute andmi is a
method name defined overa1, ..., an.

Example 1. To illustrate class “new elements”, let us see one of its objects, which may be of
the form:

oid(S: ISfaculty, student, new_elem: {{ name, S1•faculty•name, S2•student•name, m},
{ income, S1•faculty•income, S2•student•study_support, m’}}),

whereS1•faculty•name andS1•faculty•income stand for two attributes ofS1, while S2•stu-
dent•name and S2•student•study_support are two attribute names ofS2, m is a method name,
implementing the following function:

andm’ is another one for the function below:

Then, this object represents a new relation (namedISfaculty, student) with two attributes: “name”
and “income”. The first attribute corresponds to the attribute “name” of faculty in S1 (through
methodm) and the second is defined usingm’.

Example 2.As another example, assume that the relation schemas offaculty andstudent are
faculty(name, income, research_area) andstudent(name, study_support), respectively. In this
case, we may not create new elements for “research_area”. But if we want to do so, a new at-
tribute can be defined as follows:

{ work_area, S1•faculty•research_area, _, m},

wherem represents a function of the following form:

Conversely, if the relation schemas offaculty andstudent arefaculty(name, income) andstu-
dent(name, study_support, study_area), respectively, we define a new attribute as follows:

{ work_area, S2•student•study_area, _, m’},

wherem’ represents a function of the following form:

At last, if the relation schemas offaculty andstudent arefaculty(name, income, research_area)

f(x, y) =

if there exist tuple t1 ∈ facultyandtuple t2 ∈ studentsuch that t1.name= x,
t2.name = y and x = y(in terms of data mappping),

otherwise.Null

x

g(x, y) =

if there exist tuple t1 ∈ facultyandtuple t2 ∈ studentsuch that t1.name= t2.name
(in terms of data mappping), andx = t1.income andy = t2.study_support;

otherwise.Null

x+y
2

h(x, _) =

if there exist tuple t1 ∈ facultyandtuple t2 ∈ studentsuch that t1.name= t2.name
and t1.research_area = x,

otherwise.Null

x

r(_, y) =

if there exist tuple t1 ∈ facultyandtuple t2 ∈ studentsuch that t1.name= t2.name
and t2.study_area = y,

otherwise.Null

y

10

andstudent(name, study_support, study_area), respectively, the method associated with the
new attribute can be defined as follows:

{ work_area, S1•faculty•research_area, S2•student•study_area, _, m’’},

wherem’’ is a method name for the following function:

u(x, y) = {x} ∪ { y} .

In our system, each new integrity constraint is of the following form:

(Qx1∈T1) ... (Qxn∈Tn)e(x1, ...,xn),

whereQ is either∀ or ∃, n > 0, exp is a (quantifier-free) boolean expression (concretely, two
normal formulas connected with “→” , each of them is of the form: (p11∨ ...) ∧ ... ∧ (pj1 ∨
...)), x1, ...,xn are all variables occurring inexp, andT1, ...,Tn are set-valued expressions
(or class names). For example, Therefore, two classes “prefix quantifier” and “normal formu-
las” are defined as parts of “new constraints” (see Fig. 3). Then, class “new constraints” is of
the following form:

type(“new constraints”) = <constraint_number: <string>,
Agg1 with [1:1]: <type(“prefix quantifier”)>,
Agg2 with [1:2]: <type(“normal formulas”)>>,

whereconstraint_number is used to identify an newly generated individual integrity constraint
andAgg1 andAgg2 are two aggregation functions, through which the objects of classes “prefix
quantifier” and “normal formulas” can be referenced, respectively. Accordingly, “prefix quan-
tifier” is of the form:

type(“prefix quantifier”) = <constraint_number: <string>, quantifiers: <string>>,

and “normal formulas” is of the form:

type(“normal formulas”) = <constraint_number: <string>,
l_formulawith [1:n]: <type(“ formulas”)>,
r_formulawith [1:n]: <type(“ formulas”)>>,

wherequantifiers is a single-valued attribute used to store a string of the form: (Qx1∈T1) ... (Qx-

n∈Tn), while l_formulaand r_formula are two attributes to store the left and right hand sides
of “→” in an expression, respectively.

Similarly, we can define all the other classes shown in Fig. 3 in such a way that the relevant
information can be stored. However, a detailed description will be tedious but without difficul-
ty, since all the mapping information are well defined in 2.2 and the corresponding data struc-
tures for them can be determined easily. Therefore, we omit them for simplicity. In the
following, we mainly discuss a query treatment technique based on the meta information stored
in the data dictionary.

3. Query treatment

Based on the metadata built as above, a query submitted to an integrated schema can be evalu-

p1n1

pjnj

11

ated in a four-phase method (see Fig. 5).

First, the query will be analyzed syntactically (usingLEX unix utility [Ra87]). Then, it will be
decomposed in terms of the correspondence assertions. Next, we translate any decomposed
subquery in terms of the derivation rules so that it can be evaluated in the corresponding com-
ponent database. At last, a synthesis process is needed to combine the local results evaluated.
In the following, we discuss the last three issues in 3.1, 3.2 and 3.3, respectively.

3.1 Query decomposition

We consider the select-project-join queries of the following form:

((R1 R2 ...Rn Rn+1)),

whereA1, ...,Al are attributes appearing inR1, ..., andRn+1, sci (i = 1, ...,m) is of the form: B

α v, or B α C (called the selection condition), andjck (k = 1, ...,n) is of the form:B α C (called

the join condition), withB andC representing the attributes inR1, ..., andRn+1, v representing

a constant andα being one of the operators {=, <,≤, >, ≥, ≠}. The SQL’s way of expressing

such an algebra expression is

selectA1, ...,Al

from R1, ...,Rn+1

wheresc1 and ...scm andjc1 and ...jcn.

Then, the query decomposition can be done in an iteration process, in which each element (a
relation name, an attribute name or a constant) appearing in the query is checked against the
data dictionary.

First of all, we notice that in view of our pairwise integration process (see 2.2.4), we need only
to consider the case that a global query is decomposed into two ones (which is called a binary
decomposition hereafter) and there is no mixing appearances of local relations in a decomposed
query. (But for a close cooperation, the mixing appearance of local relations should be handled;
which is not reported here for ease of explanation.). Then, along an integration binary tree like
that shown in Fig. 4(b), a recursive process of binary decompositions can be invoked to make
a complete decomposition for the integration involving more than two component databases.
A second point we should pay attention to is that for a binary decomposition at most two de-
composed subqueries can be generated.

We have the following definition.

syntactic analysis

decomposition

translation

synthesis

query

Fig 5. Query treatment

πA1…A l
σsc1…scm jc1 jcn

12

Definition An intermediate query is a (global) query changed so that at least one relation name
in it is replaced with a local one.

Accordingly, a binary decomposition is a process to generate (two) intermediate queries, fol-
lowing a series of substitution operations to replace each element with its local counterparts.
For a relation name appearing in a global query, we distinguish among four cases:

(1) there is an equivalence assertion is associated with it,
(2) there is an intersection assertion is associated with it,
(3) there is a derivation assertion is associated with it and
(4) there is no assertion is associated with it at all.

In terms of different cases, four decomposition strategies are developed.

Formally, it can be described as follows.

Algorithm binary_decomposition(q) (*q is a select-project-join query.*)
begin

generate_intermediate_queries(q); (*see below*)
let q1 andq2 be two intermediate queries generated bygenerate_terminal_queries(q);
for eachqi (i = 1, 2)do

substitution(qi); (*see below*)
end

In the following, we give the algorithms for bothgenerate_intermediate_queries(q) andsubstitution(qi).

Algorithm generate_intermediate_queries(q)
begin

label := False; (*label is used to control thewhile-do loop.*)
r := the first relation name appearing inq;
while label = Falsedo

{ if there exists an equivalence assertion associated withr in the assertion setthen
{let the assertion be of the form:r1 ≡ r2;
generate two queriesqr1 andqr2 by replacing all ther ’s appearances inq with
r1 andr2, respectively;
label = True;}

if there exists an intersection assertion associated withr in the assertion setthen
{let the assertion be of the form:r1 ∩ r2;
generate two queriesqr1 andqr2 by replacing all ther ’s appearances inq with
r1 andr2, respectively;
let new_element be the new element constructed forr1 ∩ r2; (*note thatnew_element can

be found in class “new elements” in the data dictionary.*)
for each select or join conditionCon in q do

{let a be an attribute involved inCon;
if a appears innew_element and is involved in some“method”defining a “global” attributethen

removeCon from qr1 andqr2, respectively; (*The reason for this is given below.*)
inserta into qr1 andqr2 as project attributes, respectively;}

label = True;}
if there exists a derivation assertion associated withr in the assertion setthen

{let the assertion be of the form:r1, ...,rn → r;
generateqr1 by replacingr ’s appearances inq with r1, ...,rn
(also the corresponding join conditions amongris should be added toqr1); (*see Example 5*)
generateqr2 by replacingr ’s appearances inq with r; (*That is,qr2 is simply a copy ofq.*)
label = True;}

if there is no equivalence, intersection or derivation assertion associated withr then
r := next(r);} (*in this case, the next relation name will be checked.*)

end

13

Note that in the above algorithm,∅ and⊆ are not considered for the decomposition of a select-
project-join query, since if two concepts are associated with∅ or ⊆, only one of them is in-
volved in the query each time. (But they should be considered for the new integrity constraints.)
Further, for the intersection assertion, a select or a join condition will be removed fromqr1 and
qr2 if at least one attribute appearing in it is involved in the definition of some new (also global)
attribute for the integrated schema (see 2.2.4). The reason for this is that the check of the con-
dition can not be made until the corresponding local attribute values are available and comput-
ed in terms of the definition of the new attribute. Thus, such removed conditions are neglected
only for the time being and should be considered once again during the synthesis process (see
3.3). Accordingly, the corresponding attributes are shifted to the project-range (as the project
attributes) in the query.

Example 3. Consider a global query:q = πname, income(σincome>1000∧research_area=’informa-

tik’ (faculty)), wherefaculty is a global relation with three attributes: “name”, “income” and
“research_area”. If an assertion of the form:S1•faculty∩ S2•student is declared and the corre-
sponding new element is constructed in the data dictionary as given in Example 1, two inter-
mediate queries:q1 = πname, income(σresearch_area=’informatik’(faculty)) and q2 = πname,

income(σresearch_area=’informatik’(student)) will be generated by
generate_intermediate_queries(q). Note that for them select condition “income>1000” is elim-
inated and “income” is accordingly moved to the project-range to get the relevant local values.

Example 4. Consider the global query given in Example 3 again. If we have the new elements
stored as in Example 2, i.e., a new attribute of the form: {work_area, S1•faculty•research_area,
S2•student•study_area, _, m’’} is also defined in “new elements”, then two intermediate que-
ries:q3 = πname, income, work_area(faculty) andq4 = πname, income, work_area(student) will be pro-
duced by the above algorithm.

Example 5. Assume that we have an assertion of the form:S1(parent, brother) → S2•uncle
stored in the data dictionary. Consider a global query:q = πname(σnephew=’John’(uncle)). If the
relation schemas ofparent andbrother areparent(name, children) andbrother(bname, broth-
ers), thenq1 (the query againstS1) will be of the form:πbname(σchildren=’John’(parent -
brother)), while q2 (the query againstS2) is the same asq. We notice that to generate a query
like q1 automatically, we have to make the join conditions among the relations appearing in the
left-hand side of “→” and the correspondences of the attributes of the both sides available be-
forehand. Therefore, they should be stored along with the corresponding derivation assertions
in the data dictionary.

After the first decomposition step, two intermediate queries are produced and a substitution
process will be executed to replace each “integrated” element in them with the corresponding
local one. Obviously, this can be done in a similar way to that in
generate_intermediate_queries(q). (In the following algorithm,qi represents the query issued
to DBi.)

Algorithm substitution(qi) (*All the global elements inqi will be replaced so that it can be evaluated in DBi.*)
begin

for each element (relation or attribute name)e in qi do
{ if there exists an equivalence assertion associated withe in the assertion setthen

{let the assertion be of the form:e1 ≡ e2;
replacee in qi with ei;}

name=brothers

14

if there exists an intersection assertion associated withe in the assertion setthen
{let the assertion be of the form:e1 ∩ e2;
replacee in qi with ei;
if e is a (global) relation namethen

{let new_element be the new element constructed fore1 ∩ e2; (*note thatnew_element can be found
in class “new elements” in the data dictionary.*)

for each select or join conditionCon in q do
{let a be an attribute involved inCon;
if a appears innew_element and is involved in some methodthen

removeCon from qi;
inserta into qi;}}}

if there exists a derivation assertion associated withe in the assertion setthen
{let the assertion be of the form:e1, ...,en → e;
replacee’s appearances inqi with e1, ...,en if e1, ...,en are relation names in DBi;
(also the corresponding join conditions amongeis should be added toqi);

if there is no equivalence, intersection or derivation assertion associated withe then
{if DB i is taken as the basic integrated version, nothing will be done;
else removee and those select and join conditions involving any attribute ofe;}}

end

Example 6. Consider the intermediate queriesq1 andq2 of Example 3. If an assertion of the
form: research_area≡ study_area exists (but no new element for it) in the data dictionary, then
q1 andq2 will be changed into the forms:πname, income(σresearch_area=’informatik’(faculty)) and
πname, income(σstudy_area=’informatik’(student)), respectively. If the intermediate queries areq3
andq4of Example 4, they will be changed into the forms:πname, income, research_area(faculty) and
πname, income, study_area(student), respectively.

3.2 Query translation

If the relevant RSTs and derivation rules are stored in the data dictionary, a query submitted to
an integrated schema can be translated automatically. In the following, we first introduce an im-
portant concept, the so-calledextended substitution in 3.2.1. Then, in 3.2.2, we demonstrate our
strategy for the translation of queries involving no joins. In 3.2.3, the translation of joins is sim-
ply discussed.

3.2.1 Extended substitutions

Note that an attribute involved in such an algebra expression may either appear insci (i = 1, ...,
m), or/and in {A1, ...,Al}, or not be involved in any operation at all. To characterize this feature,
we associate each attribute with a label which consists of a subsetap ⊆ { p, s, ni, V}, wherep,
s, ni andV stand for ‘project’, ‘select’, ‘not-involved’ and ‘the current values of the attribute’,
respectively.

In terms of an algebra expressionq, we can instantiate the variables appearing in the consequent
part of a derivation rule which matchesq. Then, by the constant propagation, the antecedent
part of the rule will also be instantiated; and what we want now is to derive a set of new algebra
expressions in terms of it.

Unfortunately, such a derivation can not be done only by the constant propagation, since both
the higher order information (e.g., about iterations over relation/attribute names) and the nec-
essary control mechanism are absent. For this purpose, we introduce the concept of extended
substitutions.

Definition (assumed values) A assumed value (for some variable) is either of the form:αX or

15

∈S, whereX is either a variable or a constant,α ∈ {=, <, ≤, >, ≥, ≠} and S represents a set of
constants.

For example, >x, =c and∈{c1, c2, ..., cn} are three assumed values.

Definition (extended substitutions) An extended substitution (ES) is a finite set of the form:
{ x1/v1, ...,xl/vl}, wherexi (i = 1, ...,l) is a variable andvi (i = 1, ...,l) is a set of pairs of the form:
(Prop, v), whereProp ∈{ p, s, ni, V, _} (here, “_” means “do not care”) andv is an assumed
value as defined above or “_”. In contrast to the traditional substitution concept, the variables
x1, ...,xl may not be distinct, Each elementxi/vi is called a binding forxi and a variable may
have several bindings.

For example,δ = {x/{(p, _)}, y/{(p, _), (_, ∈{name1’, name2’, ..., namem’ })}, z/{(s, >1000)} is
a legal ES. Alternatively, this ES can also be written as {x/(p, _), y/(p, _), y/(_, ∈{name1’,
name2’, ..., namem’ }), z/(s, >1000)}.

3.2.2 Translation of simple algebra expressions:π(σ(R))

The translation can be pictorially illustrated as shown in Fig. 6.

In the following, we discuss this process in detail.

Essentially, this process consists of two functions. With the first function, we generate an ES
by matching the algebra expression to be translated with the corresponding rule’s antecedent
part. With the second function, we derive a set of new algebra expressions in terms of the ES
and the rule’s consequent part. These two functions can be defined as follows:

the first function: substi-production: P × A → S,
the second function:expression-production: P × S → A,

whereP, A andS represent the set of all c-expressions, the set of all algebra expressions and
the set of all extended substitutions, respectively.

Obviously, the matching algorithm used in Prolog [Ll87] can not be employed for our purpose
and a bit modification is required so that not only the assumed values of a variable but more
information associated with it are also evaluated. As we will see in the following algorithm (for
substi-production), such information can be obtained by doing a simple analysis of the algebra
expression to be translated (see lines 2-5). In the algorithm, the following definitions are used:

assumedValue(AαB, T) returns an assumed value of the form:αX, whereAαB is either a select condition or
a join condition,T is an RST or a c-expression andα ∈ {=, <, ≤, >, ≥, ≠} . X is a constant “c” ifB = c, or a
variablex if B:x is an attribute descriptor inT.

aV(q(x1, ...,xk),) returns an assumed value (for), whereq is a first order predicate,xi (i = 1, ..., k) may

be a variables, a constant or a set of constants but∈ { x1, ...,xk} must be a variable. For example,aV(x ∈
{c1, c2, ..., cn} , x) = ∈{c1, c2, ..., cn} .

Algorithm substi-production(P, e) (*P is a c-expression ande is an algebra expression.*)
input:P: a c-expression;e: an algebra expression;

rule: <antecedent-part>⇒ <consequent-part> + ES

an algebra expr. a set of new algebra expr.

matching derivation

Fig. 6. Illustration for query translation process

xi j
xi j

xi j

16

output: ES: an extended substitution;
begin

1 ES :=φ;
2 if e is of the form: ((R)) then {
3 construct three sets fore:
4 PA := {A1, ...,Al}; (*PA contains the attributes involved in project operations.*)
5 SC := {sc1, ...,sci, ...,scm}; (*SC contains all select conditions.*)
6 for eacha ∈PA do
7 {let A:x be an attribute descriptor of some RST inP;
8 if a = A then ES := ES∪ { x/(p, _)}}
9 for eacha ∈SCdo
10 {let A:x be an attribute descriptor of some RST inP;
11 assume thata is of the form:B β C;
12 if B = A then {v := assumedValue(B β C, P); ES := ES∪ { x/(s, v)};}}
13 for each predicate of the form:q(x1, ...,xk) do
14 { for each variable inq do
15 { v := aV(q(x1, ...,xk),); ES := ES∪ { /(_, v)}}}
16 if e is of the form:V(A) then (*V(A) is a query to inquire the current attribute values ofA.*)
17 {let A:x be an attribute descriptor of some RST inP;
18 ES := ES∪ { x/(V, _)};}

end

Example. Consider the algebra expressione = πincome(σname=‘John’∧research_area=‘Informa-

tik’ (R1)). If we want to translate it into an algebra expression which can be evaluated against
DB2 shown in Example 1, the rules for specifying the semantic discrepancies between DB1 and
DB2 will be considered and the matching rule is rDB1-DB2. Its antecedent partP is of the form:
[“faculty”| name:x, research_area:y, income:z], x ∈{name1, name2, ..., namen}.

First, by executing lines 2-5, we will have

PA = {income},
SC = {name = ‘John’, research_area = ‘Informatik’}.

Then, by executing lines 6-8, we will have

ES = {z/(p, _)}.

Next, after lines 9-12 are performed, ES will be of the following form:

ES = {z/(p, _),y/(s, =‘Informatik’), x/(s, =‘John’)}

Finally, by executing lines 13-15, a new item:x/{(_, ∈{name1, name2, ..., namen} (constructed
in terms of the predicate:x ∈ {name1, name2, ..., namen}) will be inserted into ES. Therefore,
the final ES is of the form:

{ z/(p, _),y/(s, =‘Infomatil’), x/{(s, =‘John’), (_,∈{name1, name2, ..., namen})}}.

Note that in the final ES, pair (_,∈{name1, name2, ..., namen} should be eliminated if ‘John’
∈{name1, name2, ..., namen} holds, sincex = ‘John’ subsumes “x ∈ {name1, name2, ..., na-
men}”. In addition, if ‘John’ does not belong to {name1, name2, ..., namen}, substi-production
should report an “nil” to indicate that the matching does not succeed and the translation can not
be made in terms of the rule. In fact, if {name1, name2, ..., namen} does not contain ‘John’, any
query concerning ‘John’ submitted to DB2 will evaluate to “nil”. In the algorithm, however,
such checks are not described for simplicity. It is easy to extend this algorithm to a complete
version.

After the ES is evaluated, we can derive a set of new algebra expressions in terms of it and the

πA1…A l
σsc1…scm

xi j
xi j

xi j

17

RSTs and the first-order predicates appearing in the consequent part of the rule. This can be
done by executing the following algorithm, which generates not only two sets PA and SC (from
them, an algebra expression can be constructed), but also a set iteration control statements with
the form: for ... do, a set of checking statements with the form: if ... then, and a set of print state-
ments. Together with PA and SC produced by the algorithm, such statements make us able to
generate a complete query.

The main idea of it is as follows.

Consider a variable appearing in an RST. It may be a variable ranging over the relation names,
a variable ranging over the attribute names or a variable ranging over some attribute values.
Then, in terms of its bindings recorded in the corresponding ES, we can immediately fix its as-
sumed value. On the other hand, which statements are associated with it can also be determined
by a synthetic analysis of its assumed value and its properties.

Algorithm expression-production(P, δ) (*P is a c-expression andδ is an ES.*)

input:P: a c-expression;δ: an ES;

output: PA: project attributes; SC: select conditions; FS: iteration control statements;

CS: checking statements;

begin
1 SC :=φ; PA :=φ; FS :=φ; CS :=φ; (*SC, PA, FS and CS are global set variables.*)

2 construct V1, a set of variables (inP) ranging over attribute values;

3 construct V2, a set of variables (inP) ranging over attribute names;

4 construct V3, a set of variables (inP) ranging over relation names;

5 for eachx ∈V1 do
6 call attr-value-handling(x, P, δ);

7 for eachx ∈V2 do
8 call attr-or-rel-name-handlin(x, P, δ, 0);

9 for eachx ∈V3 do
10 call attr-or-rel-name-handlin(x, P, δ, 1);

end

From the above algorithm, we see that two subprocedures will be called to deal with different

cases. That is,attr-value-handling is used to tackle the variables ranging over attribute values

and attr-or-rel-name-handlin is employed to deal with the variables ranging over attribute

names or the variables ranging over relation names. Below we give a formal description for

each. First, we define the following operation:

conditionProduction(xαy) returns a select condition or a join condition of the form:EαF if

E:x andF:y are two attribute descriptors in the corresponding c-expression.

Algorithm attr-value-handling(x, P, δ)

begin
1 let A:x be an attribute descriptor of some RST inP; (*HereA is an attribute name or a variable.*)

3 if x/(p, _) is a binding inδ then PA := PA∪ {A};

4 if there exist bindings:x/(s, v1), ...,x/(s, vk) in δ then
5 { for i = 1, ...,k do
6 { sci := conditionProduction(xvi); SC := SC∪ {sci};}

7 if x/(V, _) is a binding inδ then returns the attribute values ofA;

end

18

Algorithm attr-or-rel-name-handling(x, P, δ, Int)

begin
0 If Int = 0 then find x:z, which is an attribute descriptor of some RST inP

1 else find [x | ...], which is an RST inP;

2 if there existx/(s, v1), ...,x/(s, vk) in δ then
3 { for i = 1, ...,k do
4 { if vi is of the form: =cthen replacex with c in all the newly produced data structures

5 else
6 {let vi is of the form:αX

7 generate a statement of the form: ifxαX then;}}} (*produce a checking statement*)

8 if there exist a binding of the form:x/(_, ∈{c1, c2, ..., cm}) then
9 generate a statement of the form: for eachx ∈ {c1, c2, ..., cm} do; (*produce an iteration statement*)

10 if there exist bindingsx/(_, v1’), ..., x/(_, vl’) in δ with eachvi’ ≠ “∈{c1, c2, ..., cm}” then
11 { for i = 1, ...,l do {generate a statement of the form: ifxvi’ then;}}

12 if there exist a binding of the form:x/(p, _) in δ then
13 generte a output statement of the form: print(x);

14 if there exist a binding of the form:x/(V, _) in δ then
15 if Int = 0 then returns all the attribute names, over whichx ranges;

16 else returns all the relation names, over whichx ranges;

end

The result of these algorithms can be thought of as composed of four parts: a set of iteration
control statements, a set of checking statements, a set of printing statements and an algebra ex-
pression derived from PA, SC and JC produced by the algorithm. If for each variablex (in the
algebra expression) ranging over the relation names or ranging over the attribute names, there
is a statement of the form: for eachx ∈{c1, c2, ..., cm} do, where c1, c2, ..., cm are constants, this
result corresponds to a program which can be correctly executed. We do this as follows.

First, we suffix each iteration statement and each checking statement with an open bracket “{”
and suffix each printing statement with a semi-comma. Then, change the newly generated al-
gebra expressione’ with “if e’ then” and suffix it with “{”. Next, we put them together in the
order: iteration statements - checking statements - algebra expression - printing statements. Fi-
nally, we put the same number of close brackets “}” at the end of the sequence of the elements.
For example, for the algebra expressione = πname, research_area(σincome> 1000(“faculty”)), the
following elements will be generated in terms of rule rDB1-DB3:

“for eachy ∈{name1’, name2’, ..., namem’ } do”,
“print(y)”,
“πresearch_area(σincome>1000(y)}”.

Then, the corresponding code will be of the form:

for eachy ∈{name1’, name2’, ..., namem’ } do
{if πresearch_area(σincome>1000(y) then

{print(y);}}.

According to the above discussion, the entire process for translating a simple algebra expres-
sion of the form:π(σ(R))) can be outlined as follows.

Algorithm simple-query-translation(r, e)
input: r: a derivation rule;e: an algebra expression;
output: a program corresponding to the translated query;

begin

19

δ := substi-production(antecedent-part ofr, e);
S := expression-production(consequent-part ofr, δ);
generate a program in terms ofS;

end

3.2.3 About the translation of queries containing joins

Based on the technique proposed in 3.2.2, a simple but efficient method for translating queries

involving joins can be developed as follows. Consider the algebraic expression

((R1 R2 ...Rn Rn+1)) again. It can be rewritten into a set of expressions of the

following form:

T1 = ((R1)),

T2 = ((R2)),

... ...

Tn+1 = ((Rn+1)),

T = ((T1 T2 ...Tn Tn+1)),

where eachTi represents a subquery involving only oneRi, and therefore contains no joins.

Note that this rewriting is completely consistent with the traditional optimal technique [EN89]

and can be implemented without difficulty. Then, we apply the technique discussed in 3.2.2 to

eachTi and subsequently make a series of join operations betweenTi’s. In this way, each local

result can be obtained correctly and efficiently.

3.3 Synthesis process

From the query decomposition discussed in 3.1, we see that a synthesis process is needed to get
the final result of a query. The main reason for this is the existence of new elements for an in-
tegrated schema, which can not be computed until some local values are available. Therefore,
during the query decomposition phase, the relevant select or join conditions are removed to
avoid any incorrect checks. But now they should be considered. For example, global queryq =
πname, income(σincome>1000∧research_area=’informatik’(faculty)) may be decomposed intoq1 =
πname, income(σresearch_area=’informatik’(faculty)) and q2 = πname, income(σresearch_area=’informa-

tik’ (student)) during the decomposition phase. Further,q1 may translated into

for eachy ∈{name1, name2, ..., namen} do
{ if πy(σy>1000(research)then

{print(y)}},

if the local database is like DB2. Assume that the returned results from the local databases are
stored ins1 ands2. Then,s1 is a set of pairs of the form: (a, b), wherea represents a faculty
member whose research area is informatik, andb is his income. Similarly,s2 is also a set of
pairs of the form: (a’, b’), wherea’ andb’ represent a student’s name (whose study area is also
informatik) and his financial support, respectively. In terms of the corresponding method de-
fined on income, condition “income>1000” can be rewritten tog(b, b’) > 1000 (see Example 1
for g’s definition). Applying this condition tos1 ands2, we can get part resultss to πname, in-

come(σincome>1000∧research_area=’informatik’(faculty)), which belong to “faculty” and “students”
simultaneously. The other part results belong toISfaculty- (= S1•faculty ∩ ¬ISfaculty, student),

πA1…A l
σsc1…scm jc1 jcn

πAi1
…A i r

σscj1
…scjs

πAk1
…Akt

σscl1
…sclu

πAm1
…Amw

σscn1
…scnv

πA1…A l
σsc1…scm jc1 jcn

20

which can be obtained by applying the condition “income>1000” tos1 - s. In addition, we no-
tice that if no new element is involved in the query evaluation, the final results are the union of
those from local databases.

In terms of the above analysis, we give our synthesis algorithm.

Algorithm synthesis
begin
let s1 ands2 be two local results;
if no new element is involved during the query decompositionthen

s := s1 ∪ s2;
else

for eacht1 ∈s1 do
for eacht2 ∈s2 do

for eachcon(a1, ...,an) ∈ Consdo
{let bi and ci (i = 1, ...n) be the two local counterparts ofai;
let mi be the method defined overbi and ci;
applycon(m1(b1, c1), ..., mn(bn, cn)) to t1 andt2;}

let s’ be result;
s := s1 - s’ (or s := s2 - s’ , depending on which local database the relation name belongs to);
applycon(b1, ...,bn) to s (or applycon(c1, ...,cn) to s if s := s2 - s’);
let s’’ be the result;
s := s’ ∪ s’’;

end

In the algorithmCons represents set of all the select and join conditions removed during the
query decomposition) andcon(a1, ...,an) represents a select or a join condition involving at-
tribute namesa1, ..., andan.

4. Conclusion

In this paper, a systematic method for evaluating queries submitted to a federated database is
presented. The method consists of four phases: syntactic analysis, query decomposition, query
translation and result synthesis. If the meta information are well defined, the entire process can
be done automatically. Especially, in the case of structure conflicts, the query translation can be
made based on the relation structure terms and the corresponding derivation rules. To this end,
two new concepts: assumed values and extended substitution are developed, which make the
propagation of the structure information possible. The query decomposition is based on the cor-
respondence assertions. In addition, a new assertion: derivation assertion is introduced, which
enables us to get a semantically more complete integrated schema, i.e., more complete answers
to a query issued to an integrated database can be obtained.

Reference

BOT86 Y. Breitbart, P. Olson, and G. Thompsom, “Database integration in a distributed heteroge-

neous database system,” inProc. 2nd IEEE Conf. Data Eng., 1986, pp. 301 - 310.

CB96 Y. Chen and W. Benn, “On the Query Optimization in Multidatabase,” inProc. of the first

Int. Symposium on Cooperative Database Systems for Advanced Application, Kyoto, Japan,

Dec. 1996, pp. 137 - 144.

CW93 S. Ceri and J. Widom, “Managing Semantic Heterogeneity with Production Rules and Per-

sistent Queues”, inProc. 19th Int. VLDB Conference, Dublin, Ireland, 1993, pp. 108 -119.

DS96 W. Du and M. Shan, “Query Processing in Pegasus,” in: O. Bukhres, A.K. Elmagarmid (eds):

Object-oriented Multidatabase Systems: A Solution for Advanced Applications. Chapter 14.

Prentice Hall, Englewood Cliffs, N.J., 1996.

21

DSD94 W. Du, M. Shan and U. Dayal, “Reducing Multidatabase Query Response Time by Tree Bal-

ancing”,DTD Technical Report, Hewlett-Packard Labs., 1994.

DSD95 W. Du, M. Shan and U. Dayal, “Reducing Multidatabase Query Response Time by Tree Bal-

ancing”, inProc. 15th Int. ACM SIGMOD Conference on Management of Data, San Jose,

california, 1995, pp. 293 -303.

Du94 Y. Dupont, “Resolving Fragmentation conflicts schema integration,” inProc. 13th Int. Conf.

on the Entity-Relationship Approach, Manchester, United Kingdom, Dec. 1994, pp. 513 -

532.

EN89 R. Elmasri and S.B. Navathe,Foundamantals of Database Systems, The Benjamin/Cum-

mings Publishing Company Inc. New York, 1989.

ETB96 C.J. Egyhazy, K.P. Triantis and B. Bhasker, “A Query Processing Algorithm for a System of

Heterogeneous Distributed Databases”,Int. Journal of Distributed and Parallel Databases,

4, 49 - 79, Dec. 1996.

HLM94 G. Harhalakis, C.P. Lin, L. Mark and P.R. Muro-Medrano, “Implementation of Rule-based

Information Systems for Integrated Manufacturing”,IEEE Trans. on Knowledge and Data

Engineering, vol. 6, No. 6, 892 - 908, Dec. 1994.

KFMRN96W. Klas, P. Fankhauser, P. Muth, T. Rakow and E.J. Neuhold, “Database Integration Using

the Open Object-oriented Database System VODAK,” in: O. Bukhres, A.K. Elmagarmid

(eds):Object-oriented Multidatabase Systems: A Solution for Advanced Applications. Chap-

ter 14. Prentice Hall, Englewood Cliffs, N.J., 1996.

Jo93 P. Johannesson, “Using Conceptual Graph Theory to Support Schema Integration”, inProc.

12th Int. Conf. on the Entity-Relationship Approach, Arlington, Texas, USA, Dec. 1993, pp.

283 - 296.

LA86 W. Litwin and A. Abdellatif, “Multidatabase interoperability,”IEEE Comput. mag., vol. 19,

No. 12, pp. 10 - 18, 1986.

LHSC95 E. Lim, S. Hwang, J. Srivastava, D. Clements and M. Ganesh, “Myriad: design and imple-

mentation of a federated database prototype”,Software-Practice and Experience, Vol. 25(5),

533 - 562, May 1995.

LOG93 H. Lu, B. Ooi and C. Goh, “Multidatabase Query Optimization: Issues and Solutions”,In

Proc. of 3th Int. Workshop on Research Issues in Data Engineering, pp. 137 - 143, Vienna,

Austria, April 1993.

LHS95 E. Lim, J. Srivastava and S. Hwang, “An Algebraic Transformation Framework for Multida-

tabase Queries,”Distributed and Parallel Databases, Vol. 3, 273 - 307, 1995.

Ll87 J.W. Lloyd, “Foundation of Logic Programming”, Springer-Verlage, Berlin, 1987.

LNE89 J.A. Larson, S.B. Navathe, and R. Elmasri, “A theory of attribute equivalence in databases
with application to schema integration,”IEEE Trans. Software Eng., vol. 15, No. 4, pp. 449
- 463, 1989.

LP96 L. Liu and C. Pu, “Issues on Query Processing in Distributed and Interoperable Information
Systems,” in:Proc. of the first Int. Symposium on Cooperative Database Systems for Ad-
vanced Application, Kyoto, Japan, Dec. 1996, pp. 218 - 227.

LW96 C. LEE and M. Wu, “A Hyperrelational Approach to Integration and Manipulation of Date
in Multidatabase Systems,”Int. Journal of Cooperative Information Systems, Vol. 5, No. 4
(1996) 395-429.

NTA96 I. Nishizawa, A. Takasu and J. Adachi, “A query Processing Method for Integrated Access

22

to Multiple Databases,” in:Proc. of the first Int. Symposium on Cooperative Database Sys-
tems for Advanced Application, Kyoto, Japan, Dec. 1996, pp. 385 - 399.

Ra87 T. S. Ramkrishna,UNIX utilities, McGraw-Hill, New York, 1987.
RPRG94 M.P. Reddy, B.E. Prasad, P.G. Reddy, and A. Gupta, “A methodology for integration of het-

erogeneous databases,”IEEE Trans. on Knowledge and Data Engineering, vol. 6, No. 6, 920
- 933, Dec. 1994.

SC94 P. Scheuermann and E.I. Chong, “Role-based query processing in multidatabase systems”,
in: Proc. of 4th Int. Conf. on Extending Database Technology, Cambridge, United Kingdom,
March 1994, pp. 95 - 108.

SK92 W. Sull and R.L. Kashyap, “A self-organizing knowledge representation schema for exten-
sible heterogeneous information environment,”IEEE Trans. on Knowledge and Data Engi-
neering, vol. 4, No. 2, 185 - 191, April 1992.

SPD92 S. Spaccapietra and P. Parent, and Yann Dupont, “Model independent assertions for integra-
tion of heterogeneous schemas”,VLDB Journal, No. 1, pp. 81 - 126, 1992.

SP94 S. Spaccapietra and P. Parent, “View integration: a step forward in solving structural con-
flicts”, IEEE Trans. on Knowledge and Data Engineering, vol. 6, No. 2, 258 - 274, April
1994.

