A Systematic Method for Query Evaluation in
Federated Relational Databases

Yangjun Chen and Wolfgang Benn
Department of Computer Science, Technical University of Chemnitz-Zwickau
09107 Chemnitz, Germany

Abstract. In this paper, a systematic method for evaluating queries issued to an federated relational da-
tabase system is presented. The method consists of four phases: syntactic analysis, query decomposi-
tion, query translation and result synthesis, which all can be done automatically based on the metadata
built in the system, even if the structure conflicts among the local databases exist.

1. Introduction

With the advent of applications involving increased cooperation among systems, the develop-
ment of methods for integrating pre-existing databases becomes important. The design of such
global database systems must allow unified access to the diverse and possibly heterogeneous
database systems without subjecting them to conversion or major modifications [BOT86,
LA86, J090, SK92, CW93, HLM94, RPRG94, KFMRN96]. One important issue in such a sys-
tem is the query treatment, which has received much attention during the past several years. In
[NTA96], a query processing method is proposed based on the concept of “virtual function de-
pendency” to derive reasonable valuesroll valueswhich occur due to the integration. In
[LP96], a query decomposition strategy has been developed based on a simple one-to-one con-
cept mapping. Several earlier papers such as [SC94, LHS95, LHSC95] belong to special case
studies. No systematic method has been suggested at all. Especially, in the case of structure
conflicts, no idea on it emerges. (Although in [LW96] such problems are discussed, the method
proposed there, based on the conceupkrrelationscan not be automated.) The other re-
searches reported in [LOG93, DSD94, DSD95, DS96, CB96, ETB96] are mainly concerned
with optimization.

In this paper, we address this problem and try to develop a systematic method for the (select-
project-join) query evaluation in a (relational) heterogeneous environment. Our method con-
sists of four steps: syntactic analysis, query decomposition, query translation and result synthe-
sis. If the medadata are well defined, all of them can be performed automatically. First, the
guery decomposition can be done by using correspondence assertions. Secondly, the query
translation can be automated based on the relation structure terms and the corresponding deri-
vation rules, which are higher order logic concepts for accommodating complicated semantic
heterogeneities. The last step: result synthesis is merely a simple process, by which the local
answers are combined together.

The remainder of the paper is organized as follows. In Section 2, we show our system architec-
ture and the data dictionary used for storing meta information.Then, in Section 3, the query
treatment is discussed in detail. Finally, we set forth a short summary in Section 4.

2. System architecture and metadata

Before we discuss the main idea of our method for evaluating queries submitted to a federated

The work reported here is supported by DFG (Deutsche Forschungsgemeinschaft) under grant No. Be1786/1-1.
1

system, we simply describe our system architecture and the metadata used to resolve the se-
mantic conflicts among the component databases.

2.1 System architecture

Our system architecture consists of three-layers: FSM-client, FSM and FSM-agents as shown
in Fig. 1 (here FSM represents “Federated System Manager”.)

The task of the FSM-client layer consists in the application management, providing a suite of
application tools which enable users and DBAs to access the system. The FSM layer is respon-
sible for the mergence of potentially conflicting local databases and the definition of global
schemas. In addition, a centralized management for the data dictionary (DD) is supported at
this layer. The FSM-agent layer corresponds to the local system management, addressing all
the issues w.r.t. schema translation and export as well as local transaction and query processing.

In term of this architecture, each component database is installed in some FSM-agent and must
be registered in the FSM. Then, for a component relational database, each attribute value will
be implicitly prefixed with a string of the form:

<FSM-agent name>.<database system name>.<database name>.<relation name>.<attribute name>,

“wn

where denotes string concatenation. For exampkESM_agentl.informix.Patient-
DB.patient_records.nameferences attribute “name” from relation “patient_records” in an in-
formix database named “PatientDB”, installed in “FSM_agent1”.

FSM-client

network

Fig. 1. System architecture

2.2 Metadata classification

In this section, we discuss the meta information built in our system, which can be classified into
three groups: structure mappings, concept mappings and data mappings, each for a different
kind of semantic conflicts: structure conflict, concept conflict and data conflict.

2.2.1 Structure mappings

In the case of relational databases, we consider three kinds of structure conflicts which can be
illustrated as shown in Fig. 2.

attribute data
COV Wctz
conflicy
attribute name—— relation name

Fig. 2 lllustration for structure conflicts

They are,

1) when an attribute value in one database appears as an attribute name in another database,
2) when an attribute value in one database appears as a relation name in another database,
3) when an attribute name in one database appears as a relation name in another database.
As an example, consider three local schemas of the following form:.

DB;: faculty(name, research_area, income),

DB,: research(research_area, ngme, namg),

DBj3: namg’(research_area, income),

name, (research_area, income).

In DB4, there is one single relation, with one tuple per faculty member and research area, stor-
ing his/her income. In DB there is one single relation, with one tuple per research area, and
one attribute per faculty member, named by his/her name and storing its income. Finglly, DB
has one relation per faculty member, named by his/her name; each relation has one tuple per
research area storing the income.

If we want to integrate these three databases and the global schema R is chosen to be the same
as “faculty”, then an algebra expression likgme research al&income>1006R)) has to be
translated so that it can be evaluated against different local schemas. For example, in order to
evaluate this expression against{)B should be converted into the following form:

for eachy O{name,’, name/, ..., namg,'} do
{ T[research_are(Q income>1006y)}-
A translation like this is needed when a user of one of these databases wants to work with the
other databases, too.

In order to represent such conflicts formally and accordingly to support an automatic transfor-
mation of queries in case any of such conflicts exist, we introduce the conesation struc-

ture termgRST) to capture higher-order information w.r.t. a local database. Then, for the RSTs
w.r.t. some heterogeneous databases, we define a set of derivation rules to specify the semantic
conflicts among them.

Relation structure terms

In our system, an RST is defined as follows:

[rer1, .. Ryl @11 X0 @1 X9, o &I XL Y Zat, ., Al

wherere is a variable ranging over the relation name sgt {R R}, y is a variable ranging

over the attribute name set {A..., A}, X4, ...,X andz are variables ranging over respective
attribute values, and,, ..., are attribute names. In the above term, each pair of the &rm:

X (i=1,..1)ory: zis called an attribute descriptor. Obviously, such an RST can be used to
represent either a collection of relations possessing the same structure, or part structure of a re-

lation. For example f¢amer’, ..., namer} | research_area; incomezy] represents any relation

in DB3, while an RST of the formréesearch) research_area; y: znamet, ..., namgl (Or sim-

ply [‘research”| research_areQy: ziname1, ..., namg) represents a part structure of “research”

with the form: research(research_area,..., pamen DB,. Since such a structure allows vari-

ables for relation names and attribute names, it can be regarded as a higher order predicate
guantifying both data and metadata. When the variables (of an RST) appearing in the relation
name position and attribute name positions are all instantiated to constants, it is degenerated to
a first-order predicate. For example, [“faculty” | namg:research_areay, income:Xg] is a
first-order predicate quantifying tuples of.R

The purpose of RSTs is to formalize both data and metadata. Therefore, it can be used to declare
schematic discrepancies. In fact, by combining a set of RSTs into a derivation rule, we can
specify some semantic correspondences of heterogeneous local databases exactly.

For convenience, an RST can be simply writterr@pd;: X1, as: Xo, ...,a: X, y: Z] if the pos-
sible confusion can be avoided by the context.

Derivation rules

For the RSTs, we can define derivation rules in a standard way, as implicitly universally quan-
tified statements of the formg; & v, ... &y O 11 & T, ... & T where bothy;’'s andty’s are
(partly) instantiated RSTs or normal predicates of the first-order logic. For example, using the
following two rules

r'bp1-pB3 LY [research_ared; income:Z O

[“faculty” [name:y, research_ared; income:z, y O {name/’, name, ..., namg,’},
roea.pe1: [faculty’|name:x, research_areg; income:z O
[x |research_areg; income:Z, x 0 {nameg”, name’, ..., namgt,

the semantic correspondence between Bl DB; can be specified. (Note that iggh-pg1,
namg”, name’, ..., and namg are the attribute values of “name” in “faculty”.)

Similarly, using the following rules, we can establish the semantic relationship betwgen DB
and DB;:

robg1-pB2: [‘research” [research_areax z] O

[“faculty”|name:x, research_areg income:z], x ({name;, name, ..., namg},
r'obe2-pR1- [faculty” [name:x, research_areg; income:z] O

[‘research” [research_areax: 7], x 0 {nameg,”, name", ..., nam¢’}.

Finally, in a similar way, the semantic correspondence betwegmaBDB; can be construct-
ed as follows

I'bps-pe2: [‘research” [research_areqy: 7] O
[y [research_area; income:Z], y O{name;, name, ..., namg},
r'be2-pB3 LY [research_ared; income:Z O
[“research” |research_areay: 7], y O {name’, name/, ..., name,'}.
In the remainder of the paper, a conjunction consisting of RSTs and normal first-order predi-
cates is called a c-expression (standing for “complex expression”). For a derivation rule of the
form: A0 B, AandB are called the antecedent part and the consequent part of the rule, respec-

tively.
2.2.2 Concept mappings

The second semantic conflict is concerned with the concept aspects, caused by the different per-
ceptions of the same real world entities.

[SP94, SPD92] proposed simple and uniform correspondence assertions for the declaration of
semantic, descriptive, structural, naming and data correspondences and conflicts (see also
[Du94]). These assertions allow to declare how the schemas are related, but not to declare how
to integrate them. Concretely, four semantic correspondences between two concepts are defined
in [SP94], based on theieal-world stateJRWS. They are equivalence) inclusion (J or
), disjunction (J) and intersectionn(). Equivalence between two concepts means that their
extensions (populations) hold the same number of occurrences and that we should be able to
relate those occurrences in some way (e.g., with tigact identifiers Borrowing the termi-
nology from [SP94], a correspondence assertion can be informally described as follows:

S;*A =SB, iff RWSA) = RWSB) always holds,

S;*A SB, iff RW§A) 0 RW$B) always holds,

Si*A n SeB, iff RWA) n RWSB) # @ holds sometimes,

Si*A U SeB, iff RW3A) n RW3IB) = @ always holds.
For example, assumingerson book faculty andmanare four concepts (relation or attribute
names) fron5; andhuman publication student andwomanare another four concepts from
S,, the following four assertions can be established to declare their semantic correspondences,
respectively:S;eperson= Syhuman S;ebook O Syepublication Sjefaculty n Syestudent
Siemanl] S»woman

Experience shows that only the above four assertions are not powerful enough to specify all the
semantic relationships of local databases. Therefore, an extra assertion: derivatias (o

be introduced to capture more semantic conflicts, which can be informally described as follows.
The derivation from a set of concepts (FayA,, ...,A,) to another concept (s&) means that

each occurrence & can be derived by some operations over a combination of occurrences of
A, Ay, ..., andA,, denotedAq, Ay, ..., A, - B. In the case tha,, A,, ..., andA, are from a
schem&s; andB from another schents, the derivation is expressed By(A;, A, ..., A —

S, B, stating thaRWgA, Ay, ...,A)) - RWSB) holds at any time. For example, a derivation
assertion of the forng,(parent brother) - Sy»unclecan specify the semantic relationship be-
tweenparentandbrotherin S; andunclein S, clearly, which can not be established otherwise.

2.2.3 Data mappings
As to the data mappings, there are different kinds of correspondences that must be considered.

1) (exact correspondence) In this case, a value in one database corresponds to at most one val-
ue in another database. Then, we can simply make a binary table for such pairs.

2) (function correspondence) This case is similar to the first one. The only difference being
that a simple function can be used to declare the relevant relation. For example, consider an
attribute “height_in_inches” from one database and an attribute “height_in_centimeters” from
another. The value correspondence of these two attributes can be constructed by defining a

function of the form:
y =f(X) = 2.54%,

wherey is a variable ranging over the domain of “height_in_inches’xasa variable ranging

over “height_in_centimeters”. Further, a fact of the foBnheight-in-inches S, height-in-
centimeters should be declared to indicate that both of them refer to the same concept of the
real-world.

3) (fuzzy correspondence) The third case is called the fuzzy correspondence, in which a value
in one database may corresponds to more than one value in another database. In this case, we
use the fuzzy theory to describe the corresponding semantic relationship [BCG96]. For exam-
ple, consider two attributes “age_1" and “age_2” from two different databases, respectively. If
the value set of “age_Ris {1, 2, ..., 100} while the value set of “age_RTs {infantile, child,

young, adult, old, very_old}, then the mapping from “age_1" to “age_2" may be of the follow-

ing form:

{(1, infantile, 1), (2, infantile, 0.9), ...,
(3, child, 1), ..., (13, child, 1), ...,
(14, young, 0.5), (15, young, 0.6), ..., (20, young, 1), ...},

in which eachd, b) with a 0 A andb [B is associated with a valwel [0, 1] to indicate the
degree to whicla is relevant td.

2.2.4 Meta information storage

All the above meta information are stored in the data dictionary and accommodatguhitto a
of hierarchy of the form as shown in Fig. 3.

federatet
schema
~ meta, export new new
informatio schema element constrainis
schema concept data prefix normal
mapping mapping mapping guantifier: formulas
derivatio simple
ofolcNeXeICICHICD
Crsrd

Fig. 3 Data Dictionary

The intention of such an organization is straightforward. First, in our opinion, a federated sche-
ma is mainly composed of two parts: the export schemas and the associated meta information,
possibly augmented with some new elements. Accordingly, classgsrt schemdsand “me-

ta informatiori are connected with clas$etierated schemasing part-of links (see Fig. 3). In
addition, two classesitw elementsand “new constraintsmay be linked in the case that some

new elements are generated for the integrated schema and some new semantic constraints must
be made to declare the semantic relationships between the participating local databases. It
should be noticed that in our system, for the two local databases considered, we always take

one of them as the basic integrated version, with some new elements added if necessary. For
example, ifS;eperson= S»humanis given, we may takpersonas an element (as a relation

name or an attribute name) of the integrated schema. (But for evaluating a query concerning
personagainst the integrated schema, bSftpersonandS,»humanneed to be considered.)
However, ifS;faculty n Sy students given, some new elements suchSg.ity, student!rac-

ulty- 1Sstudent-andstudentwill be added intd5, if we takeS; as the basic integrated schema,
wherelSicuity, student Syefaculty n Syestudent1Siacyiy-= Syefaculty n =1Sgcuity, studendnd
ISstudent-= S*studentn = 1Sgcuiy, studentON the other hand, all the integrity constraints ap-
pearing in the local databases are regarded as part of the integrated schema. But some new in-
tegrity constraints may be required to construct the semantic relationships between the local
databases. As an example, consider a database containing a Régaztmentname, emp

...) and another one containing a relatitmployeéname, dept...), a constraint of the form:

Oe(in Employegd(in Department(d.name= e.Dept - e.namein d.emp may be generated

for the integrated schema, representing that if someone works in a department, then this depart-
ment will have him/her recorded in tleenp attribute. Therefore, the corresponding classes
should be predefined and linked according to their semantics (see below for a detailed discus-
sion).

Furthermore, in view of the discussion above, the meta information associated with a federated
schema can be divided into three groups: structure mappings, concept mappings and data map-
pings. Each structure mapping consists of a set of derivation rules and each rule is composed
of several RSTs and predicates connected witlnépresenting aonjunctior) and ‘] ”. Then,

the corresponding classes are linked in such a way that the above semantics is implicitly imple-
mented. Meanwhile, two classes can be defined for RSTs and predicates, respectively. Further,
as to the concept mappings, we define five subclasses for them with each for an assertion. At
last, three subclasses nameabte’, “functiorf and “fuzzy are needed, each behaving as a
“subset” of classdata mapping

In the following discussiorC represents the set of all classes and the type of aClass,
denoted bytypgC), is defined as:

typgC) = <aj:type,, ..., a:typg, Aggiwith ccy: outtype, ...,Agg, with cg.: outtypg, my, ...,m,>,

whereg; represents an attribute nanAgg represents an aggregation function:» C' (C, C
[C andouttypg U typgC)), my stands for a method defined on the object identifiers or on the
attribute values of objects aype is defined as follows:

typg ::= <Primitive Typ>|<list>|<set>|<ClassType>,

<PrimitiveTyp> ::= <Integer> | <Boolean> | <Character> | <String>|<Real>,

<list> ::= “["typg™7",

<set> ;1= “{"typg™}".
Furthermore, each aggregation function may be associated with a cardinality coosgttaint
{[1:1], [L:n], [m:1], [m:n]} (j = 1, ...,K).

Then, in our implementation, we have

typg“federated schenip= <IS: <string>, §: <string>, S;: <string>, indicator. <boolearr,
Agg, with [1:1]: <typg*“meta informatiof)>,

Aggp with [1:2]: <typg*“export schemdy>,
Aggz with [1:1]: <typg“new element}>,
Aggy with [1:1]: <typg*new constraint§>>,

wherelS stands for the integrated schema nagandS for the two participating local sche-
mas’,indicator is used to indicate wheth&ror S is taken as the basic integrated version and
eachAgg is an aggregation function, through which the corresponding objects of the classes
connected withfederated schemaising part-of links can be referenced.

As an example, an object of this class may be of the form: d8i I5(DB, & S, & S,, in-
dicator: O, ...), representing an integration process as illustrated in Fig. 4(a), Sylienesed
as the basic integrated schema, since the valunelichtor is 0. Otherwise, if the value of-
dicatoris 1,S, will be taken as the basic integrated schema.

® ©® =R ©
& ©
() (b)

Fig. 4. Integration process

With another object, say oid_I&(IS_DB’, §: IS_DB,& S;, ...) together, a more complicated
integration process as shown in Fig. 4(b) can be represented.

Class export schemddas a relatively simple structure as follows:

typdg* export schemdy = <S <string>, path <concatenation of stringsr_a_names<set of pairs>,

whereSis an attribute for the storage of a local database nzatteis for the access path of a
database in the FSM system, denoted as given in 2.4 andamess for an export schema,
stored as a set of pairs of the formn@ame {attr,, ...,attr}). Here,r_nameis a relation name

and eactattr; is an exported attribute name.

The type of fneta informatiohis defined as follows:

typg“meta informatiof) = <& S <pairs of strings,
Agg, with [1:n]: <typg*structure mapping>,
Agg with [1:n]: <typg*“concept mappirig>,
Aggwith [1:n]: <typg*“data mapping>>,

whereS_S;is used to store the pair of local database names, for which the meta information is
constructed, whil≫, Agg, andAgg; are three aggregation functions, through which the ob-
jects of classesstructure mapping “concept mappirigand “data mappinf can be refer-
enced, respectively.

As discussed above, any new element is defined by some function over the existing local ele-
ments (such aSecyiry-= Spefaculty) n =1Sgcury, studend TheN, & set of functions has to be
defined in ‘hew elementsin general, classrfew elementshas the following structure:

type“new element} = <S <string>, new_elem<set>, m, ...,my>.

Here,Sstands for the name of a new element added to the integrated sobamelems for

the attributes of the new element, stored as a set and each element in it is itself a set of the form:
{a ay, ..., & m}, wherearepresents the new attribute, eagfs a local attribute anah is a

method name defined ovay, ..., g,

Example 1.To illustrate classrfew elementslet us see one of its objects, which may be of
the form:
0id(S 1Staculty, studentneW_elem{{ name S,+faculty name Sye studentname m},

{income S;*faculty income S,estudentstudy_supportm’}}),
where S« faculty nameand S, faculty incomestand for two attributes d&,;, while Syestu-
dentname and @ studentstudy_supporare two attribute names 8§, mis a method name,
implementing the following function:

X if there exist tuple,td facultyandtuple O studentsuch that;.name= x,
fxy) = { t,.name =y and x = ¥in terms of data mapppijg
Null otherwise.

andm’ is another one for the function below:

Xty if there exist tuple;tC facultyandtuple O studentsuch that;.name= to.name
gx,y) = { (in terms of data mapppifgandx = ty.incomeandy = t,.study_support
Null otherwise.

Then, this object represents a new relation (na®ggliy, student With two attributes: flame
and ‘incomé. The first attribute corresponds to the attributarhé of facultyin S; (through
methodm) and the second is defined usmg

Example 2.As another example, assume that the relation schenfasuity andstudentare
facultyname income research_arepandstudentname study_suppojt respectively. In this
case, we may not create new elementsregearch_area But if we want to do so, a new at-
tribute can be defined as follows:

{work_area S;efaculty research_area, _,

wherem represents a function of the following form:

X if there exist tuple;tC facultyandtuple $ O studentsuch that;.name= t,.name
and t.research_area =
h(x,) = { & - "
Null otherwise.

Conversely, if the relation schemasfatulty andstudentarefaculty(name incomeg andstu-
den(name study_support, study argaespectively, we define a new attribute as follows:

{work_area Sy studentstudy_area, _, th
wherem' represents a function of the following form:

if there exist tuple,td facultyandtuple O studentsuch that,.name= t,.name
and b.study_area =y

y
rCy) = {
Null otherwise.

At last, if the relation schemas faiculty andstudentarefacultyname income, research_ar¢a

and studenfname study_support, study_argarespectively, the method associated with the
new attribute can be defined as follows:

{work_area S;efaculty research_areaS,* studentstudy_area, _, i,

wherem” is a method name for the following function:

uix y) ={x O{y}.
In our system, each new integrity constraint is of the following form:

(QxUTy) ... @UTp)eXy, - %n),

whereQ is eitherd or [J n > 0, expis a (quantifier-free) boolean expression (concretely, two
normal formulas connected with-", each of them is of the formp{; U.... p,,) U... O(pj U

e Pin)), X1, ..., X, are all variables occurring gxp andT;, ..., T,, are set-valued expressions
(or class names). For example, Therefore, two claggefX quantifiet and “normal formu-

las’ are defined as parts oféw constraints(see Fig. 3). Then, classéw constraintsis of

the following form:

typg“new constraint§ = <constraint_number<string>,
Agg, with [1:1]: <typg* prefix quantifiet)>,
Agg, with [1:2]: <typg“normal formula¥) >>,

whereconstraint_numbeis used to identify an newly generated individual integrity constraint
andAgg, andAgg, are two aggregation functions, through which the objects of classdix”
guantifiet and “normal formulas can be referenced, respectively. Accordingpyefix quan-
tifier” is of the form:

typg“prefix quantifief) = <constraint_number<string>, quantifiers <string>>,
and ‘normal formula%is of the form:

typg“normal formula®) = <constraint_number<string>,
|_formulawith [1:n]: <typg“formulas)>,
r_formulawith [1:n]: <typg“formulas)>>,

wherequantifiersis a single-valued attribute used to store a string of the f@wxpiT,) ... @Qx-
nOTh), while |_formulaandr_formulaare two attributes to store the left and right hand sides
of “ - ” in an expression, respectively.

Similarly, we can define all the other classes shown in Fig. 3 in such a way that the relevant
information can be stored. However, a detailed description will be tedious but without difficul-
ty, since all the mapping information are well defined in 2.2 and the corresponding data struc-
tures for them can be determined easily. Therefore, we omit them for simplicity. In the
following, we mainly discuss a query treatment technique based on the meta information stored
in the data dictionary.

3. Query treatment

Based on the metadata built as above, a query submitted to an integrated schema can be evalu-

10

ated in a four-phase method (see Fig. 5).
[ymacic anays}

Fig 5. Query treatment

First, the query will be analyzed syntactically (udifX unix utility [Ra87]). Then, it will be
decomposed in terms of the correspondence assertions. Next, we translate any decomposed
subquery in terms of the derivation rules so that it can be evaluated in the corresponding com-
ponent database. At last, a synthesis process is needed to combine the local results evaluated.
In the following, we discuss the last three issues in 3.1, 3.2 and 3.3, respectively.

3.1 Query decomposition

We consider the select-project-join queries of the following form:

L'V (oscl...sq“ (RchquZ TE:]Rn+1))!
whereAq, ..., A are attributes appearing Ry, ..., andR+1, SG (i = 1, ...,m) is of the form:B
a v,or Ba C (called the selection conditigrgndjcy (k= 1, ...,n) is of the formB a C (called
the join condition), wittB andC representing the attributesh, ..., andR,;4, vV representing
a constant and being one of the operators {=, <, >, =, #}. The SQL's way of expressing
such an algebra expression is

selectAq, ..., A

from Ry, ...,Rn+1
where sc; and ..sG,, andjc; and .. jc,,.

Then, the query decomposition can be done in an iteration process, in which each element (a
relation name, an attribute name or a constant) appearing in the query is checked against the
data dictionary.

First of all, we notice that in view of our pairwise integration process (see 2.2.4), we need only
to consider the case that a global query is decomposed into two ones (which is called a binary
decomposition hereafter) and there is no mixing appearances of local relations in a decomposed
query. (But for a close cooperation, the mixing appearance of local relations should be handled;
which is not reported here for ease of explanation.). Then, along an integration binary tree like
that shown in Fig. 4(b), a recursive process of binary decompositions can be invoked to make
a complete decomposition for the integration involving more than two component databases.
A second point we should pay attention to is that for a binary decomposition at most two de-
composed subqueries can be generated.

We have the following definition.

11

Definition Anintermediate queris a (global) query changed so that at least one relation name
in it is replaced with a local one.

Accordingly, a binary decomposition is a process to generate (two) intermediate queries, fol-
lowing a series of substitution operations to replace each element with its local counterparts.
For a relation name appearing in a global query, we distinguish among four cases:

(1) there is an equivalence assertion is associated with it,
(2) there is an intersection assertion is associated with it,
(3) there is a derivation assertion is associated with it and
(4) there is no assertion is associated with it at all.

In terms of different cases, four decomposition strategies are developed.

Formally, it can be described as follows.

Algorithm binary_decompositiqi) (*qis a select-project-join query.*)
begin
generate_intermediate_quer{gs (*see below?*)

let q; andq, be two intermediate queries generatedyéyerate_terminal_queri&p;
for eachq; (i = 1, 2)do
substitutiorfg;); (*see below?*)
end

In the following, we give the algorithms for bagkenerate_intermediate_quer(gp andsubstitutiorfc;).

Algorithm generate_intermediate_quer{g¥
begin
label := False; (fabelis used to control thehile-do loop.*)
r := the first relation name appearingjin
while label = Falsedo
{if there exists an equivalence assertion associated witthe assertion séten
{let the assertion be of the form;=ry;
generate two queriep, andg,, by replacing all the’s appearances ipwith
r, andr,, respectively;
label = True;}
if there exists an intersection assertion associated witthe assertion séten
{let the assertion be of the formy; n ry;
generate two queriep, andg,, by replacing all the’s appearances ipwith
r, andr,, respectively;
let new_elemeribe the new element constructedifpn r,; (*note thatnew_elementan
be found in classrfew elementsn the data dictionary.*)
for each select or join conditid®onin q do
{let a be an attribute involved iGon
if a appears imew_elemerand is involved in soménethod”defining a global’ attributethen

removeConfrom g,q andq,,, respectively; (*The reason for this is given below.*)
inserta into g,1 andd,, as project attributes, respectively;}
label = True;}

if there exists a derivation assertion associatednitithhe assertion séten
{let the assertion be of the formy, ...,r, - r;
generate, 1 by replacing’s appearances ipwith ry, ...,r
(also the corresponding join conditions amaoysghould be added 1g4); (*see Example 5*)
generate,, by replacing’s appearances ipwith r; (*That is,q,, is simply a copy of1.*)

label = True;}
if there is no equivalence, intersection or derivation assertion associatedheith
r .= nextf);} (*in this case, the next relation name will be checked.*)

end

12

Note that in the above algorithid,andl] are not considered for the decomposition of a select-
project-join query, since if two concepts are associated Withr (1, only one of them is in-

volved in the query each time. (But they should be considered for the new integrity constraints.)
Further, for the intersection assertion, a select or a join condition will be removeq, frand

g, if at least one attribute appearing in it is involved in the definition of some new (also global)
attribute for the integrated schema (see 2.2.4). The reason for this is that the check of the con-
dition can not be made until the corresponding local attribute values are available and comput-
ed in terms of the definition of the new attribute. Thus, such removed conditions are neglected
only for the time being and should be considered once again during the synthesis process (see
3.3). Accordingly, the corresponding attributes are shifted to the project-range (as the project
attributes) in the query.

Example 3. Consider a global quenqg = Thame, incom&@income>100aresearch_area="informa-
iik (faculty)), wherefaculty is a global relation with three attributes: “name”, “income” and

“research_area”. If an assertion of the foBpfaculty n Syestudents declared and the corre-
sponding new element is constructed in the data dictionary as given in Example 1, two inter-

mediate queriesit; = Thame, incomresearch_area='informatéé@culty)) and dx = Thame,

incomd Oresearch_area="informatfStudeny) will be generated by
generate_intermediate_quer{gs Note that for them select condition “income>1000" is elim-

inated and “income” is accordingly moved to the project-range to get the relevant local values.

Example 4.Consider the global query given in Example 3 again. If we have the new elements
stored as in Example 2, i.e., a new attribute of the foworK_area S;efaculty research_area
Syestudentstudy_area, _, fi} is also defined in ‘hew elementsthen two intermediate que-

ries: gz = Thame, income, work_ar@&CUItY) anday = Thame, income, work_arkdtudent will be pro-
duced by the above algorithm.

Example 5. Assume that we have an assertion of the f@j(parent brother) — S,euncle
stored in the data dictionary. Consider a global qUBFYTHamd Onephew="JonfUNCl9). If the
relation schemas gfarentandbrotherareparen{name, children) androthe(bname, broth-
ers), thergy (the query against)) will be of the formT,,amdOchildren="jonn{Parent =
brother), while g, (the query agains$,) is the same ag. We notice that to generate a query

like g, automatically, we have to make the join conditions among the relations appearing in the
left-hand side of *.” and the correspondences of the attributes of the both sides available be-
forehand. Therefore, they should be stored along with the corresponding derivation assertions

in the data dictionary.

After the first decomposition step, two intermediate queries are produced and a substitution
process will be executed to replace each “integrated” element in them with the corresponding
local one. Obviously, this can be done in a similar way to that in
generate_intermediate_quer(gs (In the following algorithmg; represents the query issued
to DBi.)
Algorithm substitutiorfg;) (*All the global elements ig; will be replaced so that it can be evaluated in.f)B
begin
for each element (relation or attribute namé) g; do
{if there exists an equivalence assertion associate@witthe assertion séten

{let the assertion be of the forrg; = ey;
replaceein g with g;}

13

if there exists an intersection assertion associatecewitthe assertion sétien
{let the assertion be of the forre; n ey;
replaceein g; with g;
if eis a (global) relation nantben
{let new_elemertte the new element constructeddpn e,; (*note thanew_elementan be found
in class hew elementdn the data dictionary.*)
for each select or join conditid@onin g do
{let a be an attribute involved iGon
if a appears imew_elemendnd is involved in some methdten
removeConfrom g;;
inserta into g;;}}}
if there exists a derivation assertion associatedenittihe assertion séten
{let the assertion be of the form, ...,e, - €
replacee’s appearances i) with ey, ..., &, if ey, ...,e,are relation names in B
(also the corresponding join conditions ameysghould be added tm);
if there is no equivalence, intersection or derivation assertion associatedhveith
{if DB ; is taken as the basic integrated version, nothing will be done;
else remove and those select and join conditions involving any attribuegpf
end

Example 6.Consider the intermediate quergsandqg, of Example 3. If an assertion of the
form: research_areastudy_area exists (but no new element for it) in the data dictionary, then
0, andqp will be changed into the formst,ame, incomtresearch_area="informatiéaculty)) and
Thame, incom@study_area='informatikStudeny), respectively. If the intermediate queries gge
andq, of Example 4, they will be changed into the forms; e income, research dd@gulty) and

Thame, income, study_afsfudent, respectively.

3.2 Query translation

If the relevant RSTs and derivation rules are stored in the data dictionary, a query submitted to
an integrated schema can be translated automatically. In the following, we first introduce an im-
portant concept, the so-callegtended substitutian 3.2.1. Then, in 3.2.2, we demonstrate our
strategy for the translation of queries involving no joins. In 3.2.3, the translation of joins is sim-
ply discussed.

3.2.1 Extended substitutions

Note that an attribute involved in such an algebra expression may either agge@=r, ...,

m), or/and in fAq, ...,A}, or not be involved in any operation at all. To characterize this feature,
we associate each attribute with a label which consists of a syldSdtp, s, ni, V¥, wherep,

s, niandV stand for ‘project’, ‘select’, ‘not-involved’ and ‘the current values of the attribute’,
respectively.

In terms of an algebra express@mnve can instantiate the variables appearing in the consequent
part of a derivation rule which matchg@sThen, by the constant propagation, the antecedent
part of the rule will also be instantiated; and what we want now is to derive a set of new algebra
expressions in terms of it.

Unfortunately, such a derivation can not be done only by the constant propagation, since both
the higher order information (e.g., about iterations over relation/attribute names) and the nec-
essary control mechanism are absent. For this purpose, we introduce the concept of extended
substitutions.

Definition (assumed valug¢#\ assumed value (for some variable) is either of the folor

14

s whereX is either a variable or a constamt[] {=, <, <, >, 2, #} and Srepresents a set of
constants.

For example, %, =c andJ{c,, C,, ..., G} are three assumed values.

Definition (extended substitutiohg\n extended substitution (ES) is a finite set of the form:
{X9/Vvq, ...,x/v}, wherex; (i=1, ...I) is a variable and (i = 1, ...,|) is a set of pairs of the form:
(Prop, V), whereProp ({p, s, ni, V, } (here, “ " means “do not care”) andis an assumed
value as defined above or “_". In contrast to the traditional substitution concept, the variables
X1, .-, X, May not be distinct, Each elemesty; is called a binding fox; and a variable may

have several bindings.

For exampled = {x/{(p, D}, Y{(p,), (, O{name/’, name/, ..., namg,' })}, Z{(s, >1000)}is
a legal ES. Alternatively, this ES can also be writtenx®{), y/(p,), Y/(_, O{name’,
name’, ..., nameg,'}), z/(s, >1000)}.

3.2.2 Translation of simple algebra expressionsi(o(R))

The translation can be pictorially illustrated as shown in Fig. 6.
rule: <antecedent-part>0 <consequent-part> + ES

matching * * derivation
an algebra expr. .---- »..asetof new algebra expr.

Fig. 6. Illustration for query translation process

In the following, we discuss this process in detalil.

Essentially, this process consists of two functions. With the first function, we generate an ES
by matching the algebra expression to be translated with the corresponding rule’s antecedent
part. With the second function, we derive a set of new algebra expressions in terms of the ES
and the rule’s consequent part. These two functions can be defined as follows:

the first function: substi-productionP x A - S,
the second functiomxpression-productio® x S - A,

whereP, A andS represent the set of all c-expressions, the set of all algebra expressions and
the set of all extended substitutions, respectively.

Obviously, the matching algorithm used in Prolog [LI87] can not be employed for our purpose
and a bit modification is required so that not only the assumed values of a variable but more
information associated with it are also evaluated. As we will see in the following algorithm (for
substi-productioly such information can be obtained by doing a simple analysis of the algebra
expression to be translated (see lines 2-5). In the algorithm, the following definitions are used:
assumedValy@aB, T) returns an assumed value of the foo®; whereAaB is either a select condition or

a join condition,T is an RST or a c-expression amdl {=, <, <, >, 2, #}. Xis a constant “c” iB=c, or a
variablex if B:x is an attribute descriptor in

av(q(xy, .., %), X) returns an assumed value (for), wheie a first order predicatg, (i = 1, ..., § may
J]
be a variables, a constant or a set of constants bt{x;, ...,x} must be a variable. For examp&/(x [
]
{1,606 X=0{Ccy, &, ..., G}

Algorithm substi-productio(P, €) (*P is a c-expression areds an algebra expression.*)
input: P: a c-expressiore: an algebra expression;

15

output: ES: an extended substitution;

begin
ES =
if eis of the form:m (6] R) then {
construct three setglfél?' S
PA = {Aq, ..., A}; (*PA contains the attributes involved in project operations.*)
SC = {s¢, ...,SG, ...,SGnh (*SC contains all select conditions.*)

for eacha OPA do

{let A:x be an attribute descriptor of some RSPjn

if a=Athen ES := ES] {xX/(p,)}

for eacha 0SCdo
10 {let A:x be an attribute descriptor of some RSPjn
11 assume that is of the formB 3 C;
12 if B=Athen{v:=assumedValyd 3 C, P; ES := ES1 {X/(s, V};}}
13 for each predicate of the formx,, ...,x) do

© 0o ~NOO UL~ WNPRP

14 {for each variable;, g do
]
15 {v:=aV(a(xq, ..-1 %), X) ES =ESI{x /(_, }}}
16 if eis of the formV(A) then (*V(Aj is a query to inquire the current attribute values.vf

17 {let A:x be an attribute descriptor of some RSPjn
18 ES:=ESI{x(V,)}}
end

Example. Consider the algebra expressien= Ti,comdOname="Johrtresearch_area='Informa-
iiw (R1)). If we want to translate it into an algebra expression which can be evaluated against
DB, shown in Example 1, the rules for specifying the semantic discrepancies betweamDB
DB, will be considered and the matching ruleggi.pgy. Its antecedent paktis of the form:
[“faculty”| name:x, research_areg; income:z], x {name;, name, ..., namg}.
First, by executing lines 2-5, we will have

PA = {income},

SC ={name = ‘John’, research_area = ‘Informatik’}.
Then, by executing lines 6-8, we will have

ES ={(p,)}
Next, after lines 9-12 are performed, ES will be of the following form:

ES = {@(p,),y/(s, ='Informatik’), x/(s, ='John’)}
Finally, by executing lines 13-15, a new itedt{(_, [}{name;, name, ..., namg} (constructed
in terms of the predicate:[] {name;, name, ..., namg}) will be inserted into ES. Therefore,
the final ES is of the form:

{Z(p, L), y/(s, = Infomatil’), x/{(s, ="John’), (_,d{name;, name, ..., namg})}}.
Note that in the final ES, pair (O{name;, name, ..., namg} should be eliminated if ‘John’
O{name;, name, ..., namg} holds, sincex = ‘John’ subsumesx‘l] {name;, name, ..., na-
me,}". In addition, if ‘John’ does not belong to {namename, ..., namg}, substi-production
should report an “nil” to indicate that the matching does not succeed and the translation can not
be made in terms of the rule. In fact, if {najneams, ..., namg} does not contain ‘John’, any
query concerning ‘John’ submitted to PRill evaluate to “nil”. In the algorithm, however,
such checks are not described for simplicity. It is easy to extend this algorithm to a complete
version.

After the ES is evaluated, we can derive a set of new algebra expressions in terms of it and the

16

RSTs and the first-order predicates appearing in the consequent part of the rule. This can be
done by executing the following algorithm, which generates not only two sets PA and SC (from
them, an algebra expression can be constructed), but also a set iteration control statements with
the form: for ... do, a set of checking statements with the form: if ... then, and a set of print state-
ments. Together with PA and SC produced by the algorithm, such statements make us able to
generate a complete query.

The main idea of it is as follows.

Consider a variable appearing in an RST. It may be a variable ranging over the relation names,
a variable ranging over the attribute names or a variable ranging over some attribute values.
Then, in terms of its bindings recorded in the corresponding ES, we can immediately fix its as-
sumed value. On the other hand, which statements are associated with it can also be determined
by a synthetic analysis of its assumed value and its properties.

Algorithm expression-productid®, &) (*P is a c-expression ard@lis an ES.*)
input: P: a c-expressiord: an ES;
output: PA: project attributes; SC: select conditions; FS: iteration control statements;
CS: checking statements;
begin
1 SC:=@ PA:=@ FS =@, CS :=¢, (*SC, PA, FS and CS are global set variables.*)
2 construct \{, a set of variables (iR) ranging over attribute values;
3 construct \4, a set of variables (iR) ranging over attribute names;
4 construct 4, a set of variables (iR) ranging over relation names;
5 for eachx OV, do
6 call attr-value-handlingx, P, d);
7 for eachx OV, do
8 call attr-or-rel-name-handlifx, P, 9, 0);
9 for eachx OV3do
10 call attr-or-rel-name-handli(x, P, o, 1);
end

From the above algorithm, we see that two subprocedures will be called to deal with different
cases. That igttr-value-handlings used to tackle the variables ranging over attribute values
and attr-or-rel-name-handlinis employed to deal with the variables ranging over attribute
names or the variables ranging over relation names. Below we give a formal description for
each. First, we define the following operation:

conditionProductiofxay) returns a select condition or a join condition of the fdonkE if
E:x andF:y are two attribute descriptors in the corresponding c-expression.

Algorithm attr-value-handlingx, P, o)
begin
let A:x be an attribute descriptor of some RSPjn (*Here A is an attribute name or a variable.*)
if x/(p,) is a binding im then PA := PAO {A};
if there exist bindingsd(s, v), ..., X/(S,) in d then
{fori=1,..kdo
{’sG := conditionProductiofxv); SC := SCJ {s¢};}

if X/(V,) is a binding im then returns the attribute values Af

end

~N o o0 W

17

Algorithm attr-or-rel-name-handlingx, P, d, Int)
begin

0 If Int = Othen find x:z, which is an attribute descriptor of some RSPin

1 elsefind [x | ...], which is an RST iR;

2 if there exisKk/(s, V), ..., X/(s, \{) in d then

3 {fori=1,..kdo

4 {if v is of the form: =¢hen replacex with ¢ in all the newly produced data structures

5 else

6 {letv; is of the form:aX

7 generate a statement of the fornxa then;}}} (*produce a checking statement*)

8 if there exist a binding of the form(_, O{c, C,, ..., G4}) then

9 generate a statement of the form: for eath{c, ¢, ..., ¢} do; (*produce an iteration statement*)

10 if there exist binding&/(_, '), ..., X/(_, \') in & with eachv’ #“0{cy, C,, ..., Gy}" then

11 {fori=1, ...| do {generate a statement of the formx¥f then;}}

12 if there exist a binding of the form(p,) in d then

13 generte a output statement of the form: pxjint(

14 if there exist a binding of the forme{V,) in & then

15 if Int = Othen returns all the attribute names, over whiatanges;
16 elsereturns all the relation names, over whiatanges;
end

The result of these algorithms can be thought of as composed of four parts: a set of iteration
control statements, a set of checking statements, a set of printing statements and an algebra ex-
pression derived from PA, SC and JC produced by the algorithm. If for each variabilee

algebra expression) ranging over the relation names or ranging over the attribute names, there
is a statement of the form: for each{c, ¢,, ..., G} do, where g, c,, ..., G, are constants, this

result corresponds to a program which can be correctly executed. We do this as follows.

First, we suffix each iteration statement and each checking statement with an open bracket “{”
and suffix each printing statement with a semi-comma. Then, change the newly generated al-
gebra expressiod with “if € then” and suffix it with “{”. Next, we put them together in the
order: iteration statements - checking statements - algebra expression - printing statements. Fi-
nally, we put the same number of close brackets “}’ at the end of the sequence of the elements.
For example, for the algebra expresston T ame, research alincome> 1006 faculty”)), the
following elements will be generated in terms of ryg;pg3;

“for eachy O{name,’, namey, ..., nameg,’} do”,

“print(y)”,

‘ T[research_are(Q income>1006y)}"-
Then, the corresponding code will be of the form:

for eachy O{name;’, namey, ..., name, } do

{if T[rgzsearch_are(gincome>1006y) then
{print(y):}}.

According to the above discussion, the entire process for translating a simple algebra expres-
sion of the formr(o(R))) can be outlined as follows.

Algorithm simplequery-translatiofr, €)

input:r: a derivation ruleg: an algebra expression;

output: a program corresponding to the translated query;
begin

18

0 := substi-productiofantecedent-part of €);
S:= expression-productidqnonsequent-part af d);
generate a program in termsSf

end

3.2.3 About the translation of queries containing joins

Based on the technique proposed in 3.2.2, a simple but efficient method for translating queries
involving joins can be developed as follows. Consider the algebraic expression
M, .a, (se,..sq, (Rizz Ro ... Ryre Ryyg)) again. It can be rewritten into a set of expressions of the
following form:

T1= T ..A, (UscJ .56 (Ry),
1 r 1 s
To= T[Akl...Akt (csql...squ (R2),
The1 = T[A'“l”'A"\N (05%1“,5%\/ (Rn+),
T= T, .. A, (oscl...sqn (Tlf{;iTZ ---TnﬁTnﬂ))a
where eacT; represents a subquery involving only djeand therefore contains no joins.

Note that this rewriting is completely consistent with the traditional optimal technique [EN89]
and can be implemented without difficulty. Then, we apply the technique discussed in 3.2.2 to
eachT; and subsequently make a series of join operations befliieeim this way, each local

result can be obtained correctly and efficiently.

3.3 Synthesis process

From the query decomposition discussed in 3.1, we see that a synthesis process is heeded to get
the final result of a query. The main reason for this is the existence of new elements for an in-
tegrated schema, which can not be computed until some local values are available. Therefore,
during the query decomposition phase, the relevant select or join conditions are removed to
avoid any incorrect checks. But now they should be considered. For example, globglguery

Thame, incom@income>1000research_area="informatf@culty)) may be decomposed intg =

Thame, incom@research_area='informatéf@Culty)) and d = Thame, incomresearch_area="informa-
i (Studeny) during the decomposition phase. Furtiggmay translated into

for eachy O{name;, name, ..., namg} do
{if m(0y>100dresearchjhen
{print(y)}},
if the local database is like DB2. Assume that the returned results from the local databases are
stored ins; ands,. Then,s; is a set of pairs of the forma,(b), wherea represents a faculty
member whose research area is informatik, rglhis income. Similarlys, is also a set of
pairs of the form:d, b’), wherea andb’ represent a student’s name (whose study area is also
informatik) and his financial support, respectively. In terms of the corresponding method de-
fined on income, condition “income>1000" can be rewritteg(bpb’) > 1000 (see Example 1
for g's definition). Applying this condition tg; ands,, we can get part resubsto T,y me. in-
comdOincome>1000research_area="informati@Culty)), which belong to “faculty” and “students”
simultaneously. The other part results belondSig.iry- (= Siefaculty n =1Sacuy, student

19

which can be obtained by applying the condition “income>10086; te. In addition, we no-
tice that if no new element is involved in the query evaluation, the final results are the union of
those from local databases.

In terms of the above analysis, we give our synthesis algorithm.

Algorithm synthesis
begin
let s, ands, be two local results;
if no new element is involved during the query decompoditien

si=50sy,
else
for eacht; Os; do
for eacht, Os,do
for eachcon(ay, ...,a,) O Consdo
{let bjandg; (i = 1, ...n) be the two local counterparts af
let m be the method defined ovgrandg;;

applycon(m(by, ¢y), ..., my(by, c,)) tot; andty;}
lets' be result;
s:=s,-S(or s:=s, -5, depending on which local database the relation name belongs to);

applycon(by, ...,by) tos (or applycon(cy, ...,c,) tosif s:=s, - S);
lets” be the result;
s:=s s’
end
In the algorithmConsrepresents set of all the select and join conditions removed during the
query decomposition) antbn(a,, ..., a,) represents a select or a join condition involving at-

tribute namesy, ..., anda,,

4. Conclusion

In this paper, a systematic method for evaluating queries submitted to a federated database is
presented. The method consists of four phases: syntactic analysis, query decomposition, query
translation and result synthesis. If the meta information are well defined, the entire process can
be done automatically. Especially, in the case of structure conflicts, the query translation can be
made based on the relation structure terms and the corresponding derivation rules. To this end,
two new concepts: assumed values and extended substitution are developed, which make the
propagation of the structure information possible. The query decomposition is based on the cor-
respondence assertions. In addition, a new assertion: derivation assertion is introduced, which
enables us to get a semantically more complete integrated schema, i.e., more complete answers
to a query issued to an integrated database can be obtained.

Reference

BOT86 Y. Breitbart, P. Olson, and G. Thompsom, “Database integration in a distributed heteroge-
neous database system,’Hroc. 2nd IEEE Conf. Data Engl986, pp. 301 - 310.

CB96 Y. Chen and W. Benn, “On the Query Optimization in Multidatabas&tdn. of the first
Int. Symposium on Cooperative Database Systems for Advanced Applikgttm Japan,
Dec. 1996, pp. 137 - 144.

CW93 S. Ceri and J. Widom, “Managing Semantic Heterogeneity with Production Rules and Per-
sistent Queues”, iRroc. 19th Int. VLDB ConferencBublin, Ireland, 1993, pp. 108 -119.

DS96 W. Du and M. Shan, “Query Processing in Pegasus,” in: O. Bukhres, A.K. EImagarmid (eds):
Object-oriented Multidatabase Systems: A Solution for Advanced Applica@ibapter 14.
Prentice Hall, Englewood Cliffs, N.J., 1996.

20

DSD9%4

DSD95

Du94

EN89

ETB96

HLM94

W. Du, M. Shan and U. Dayal, “Reducing Multidatabase Query Response Time by Tree Bal-
ancing”,DTD Technical ReportHewlett-Packard Labs., 1994.

W. Du, M. Shan and U. Dayal, “Reducing Multidatabase Query Response Time by Tree Bal-
ancing”, inProc. 15th Int. ACM SIGMOD Conference on Management of,[&da Jose,
california, 1995, pp. 293 -303.

Y. Dupont, “Resolving Fragmentation conflicts schema integratioRyoic. 13th Int. Conf.

on the Entity-Relationship ApproacWanchester, United Kingdom, Dec. 1994, pp. 513 -
532.

R. Elmasri and S.B. Navathiepundamantals of Database Systeffise Benjamin/Cum-
mings Publishing Company Inc. New York, 1989.

C.J. Egyhazy, K.P. Triantis and B. Bhasker, “A Query Processing Algorithm for a System of
Heterogeneous Distributed Databasést,, Journal of Distributed and Parallel Databases
4,49 - 79, Dec. 1996.

G. Harhalakis, C.P. Lin, L. Mark and P.R. Muro-Medrano, “Implementation of Rule-based
Information Systems for Integrated ManufacturinggEE Trans. on Knowledge and Data
Engineering vol. 6, No. 6, 892 - 908, Dec. 1994.

KFMRN96W. Klas, P. Fankhauser, P. Muth, T. Rakow and E.J. Neuhold, “Database Integration Using

Jo93

LA86

LHSC95

LOG93

LHS95

LI87
LNE89

LP96

LW96

NTA96

the Open Object-oriented Database System VODAK,” in: O. Bukhres, A.K. Elmagarmid
(eds):Object-oriented Multidatabase Systems: A Solution for Advanced Applicalibag-

ter 14. Prentice Hall, Englewood Cliffs, N.J., 1996.

P. Johannesson, “Using Conceptual Graph Theory to Support Schema Integrdiac’, in
12th Int. Conf. on the Entity-Relationship Approaghington, Texas, USA, Dec. 1993, pp.

283 - 296.

W. Litwin and A. Abdellatif, “Multidatabase interoperabilityEEE Comput. magvol. 19,

No. 12, pp. 10 - 18, 1986.

E. Lim, S. Hwang, J. Srivastava, D. Clements and M. Ganesh, “Myriad: design and imple-
mentation of a federated database prototypeftware-Practice and Experiendéol. 25(5),

533 - 562, May 1995.

H. Lu, B. Ooi and C. Goh, “Multidatabase Query Optimization: Issues and Solutions”,
Proc. of 3th Int. Workshop on Research Issues in Data Engine@pnd 37 - 143, Vienna,
Austria, April 1993.

E. Lim, J. Srivastava and S. Hwang, “An Algebraic Transformation Framework for Multida-
tabase QueriesPistributed and Parallel Databasg¥ol. 3, 273 - 307, 1995.

J.W. Lloyd, ‘Foundation of Logic ProgrammifigSpringer-Verlage, Berlin, 1987.

J.A. Larson, S.B. Navathe, and R. Elmasri, “A theory of attribute equivalence in databases
with application to schema integratiohZEE Trans. Software Engvol. 15, No. 4, pp. 449

- 463, 1989.

L. Liu and C. Pu, “Issues on Query Processing in Distributed and Interoperable Information
Systems,” in:Proc. of the first Int. Symposium on Cooperative Database Systems for Ad-
vanced ApplicationKyoto, Japan, Dec. 1996, pp. 218 - 227.

C. LEE and M. Wu, “A Hyperrelational Approach to Integration and Manipulation of Date
in Multidatabase Systemdlfit. Journal of Cooperative Information Systenigl. 5, No. 4
(1996) 395-429.

I. Nishizawa, A. Takasu and J. Adachi, “A query Processing Method for Integrated Access

21

to Multiple Databases,” irProc. of the first Int. Symposium on Cooperative Database Sys-
tems for Advanced ApplicatipKyoto, Japan, Dec. 1996, pp. 385 - 399.

Ra87 T. S. Ramkrishn&NIX utilities, McGraw-Hill, New York, 1987.

RPRG94 M.P. Reddy, B.E. Prasad, P.G. Reddy, and A. Gupta, “A methodology for integration of het-
erogeneous databaselEE Trans. on Knowledge and Data Engineeyivg. 6, No. 6, 920
- 933, Dec. 1994.

SC94 P. Scheuermann and E.I. Chong, “Role-based query processing in multidatabase systems”,
in: Proc. of 4th Int. Conf. on Extending Database TechnolGgybridge, United Kingdom,
March 1994, pp. 95 - 108.

SK92 W. Sull and R.L. Kashyap, “A self-organizing knowledge representation schema for exten-
sible heterogeneous information environmetEEE Trans. on Knowledge and Data Engi-
neering vol. 4, No. 2, 185 - 191, April 1992.

SPD92 S. Spaccapietra and P. Parent, and Yann Dupont, “Model independent assertions for integra-
tion of heterogeneous schemagl,DB Journa) No. 1, pp. 81 - 126, 1992.

SP94 S. Spaccapietra and P. Parent, “View integration: a step forward in solving structural con-
flicts”, IEEE Trans. on Knowledge and Data Engineeyingl. 6, No. 2, 258 - 274, April
1994.

22

