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Abstract

We consider the mission and flight planning problem for an inhomogeneous fleet
of unmanned aerial vehicles (UAVs). Therein, the mission planning problem of as-
signing targets to a fleet of UAVs and the flight planning problem of finding optimal
flight trajectories between a given set of waypoints are combined into one model and
solved simultaneously. Thus, trajectories of an inhomogeneous fleet of UAVs have to
be specified such that the sum of waypoint-related scores is maximized, considering
technical and environmental constraints. Several aspects of an existing basic model are
expanded to achieve a more detailed solution. A two-level time grid approach is pre-
sented to smooth the computed trajectories. The three-dimensional mission area can
contain convex-shaped restricted airspaces and convex subareas where wind affects the
flight trajectories. Furthermore, the flight dynamics are related to the mass change,
due to fuel consumption, and the operating range of every UAV is altitude-dependent.
A class of benchmark instances for collision avoidance is adapted and expanded to fit
our model and we prove an upper bound on its objective value. Finally, the presented
features and results are tested and discussed on several test instances using GUROBI
as a state-of-the-art numerical solver.

Keywords: Mixed-Integer Nonlinear Programming, Mission Planning, Inhomogeneous
Fleet, Time Windows, Linearization Methods

1 Introduction

Due to their variety and flexibility, unmanned aerial vehicles (UAVs) have many possible
applications. Next to the long-studied military use [5], also many companies make efforts
to incorporate them into their processes, e.g., in parcel delivery [24], but for an efficient
and autonomous use, it is crucial to plan the considered task carefully since not only the
technical parameters of the used UAV but also the weather and maybe other airborne
UAVs must be taken into account. Furthermore, the mission area can contain airports,
power plants, or mountains, restricting the airspace and the possible routes. Incorporating
all these conditions into the planning process can make the resulting problem very intricate
to solve.

The flight planning problem for a given number of inhomogeneous UAVs asks to calcu-
late a flight trajectory between a set of given waypoints for any considered UAV, complying
with its technical parameters and the related flight dynamics. The mission planning prob-
lem for an inhomogeneous fleet of UAVs is a version of the well-studied Vehicle Routing
Problem (VRP). Therein, a fleet of vehicles is assigned to a set of waypoints while the
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overall path should have minimal length. Next to the classical VRP, several of its vari-
ants are incorporating additional constraints, e.g., time windows or backhauls. Further
information about this problem class can be found in [27].

We consider the mission and flight planning problem for an inhomogeneous fleet of
UAVs as a variant of the VRP with time windows, where further constraints regarding
the flight dynamics of the considered UAVs and the environment have to be taken into
account. UAVs do not rely on streets and can navigate through the air almost freely with
some related conditions like minimum velocity, maximum altitude, or restricted airspaces.
Furthermore, safety distances in aviation are stricter than in road traffic, where they are
negligible for modeling. Wind affects the flight of every UAV since their movement is
always relative to the surrounding atmosphere. Next to environmental parameters, the
mass of a flying object has a strong influence on its flight dynamics. Several characteristics,
e.g., maximum acceleration, maximum reachable altitude, or fuel consumption, depend on
it [23]. Finally, the operating range has to be observed if the connection of a UAV and its
ground control station is not a satellite link, but a UHF/VHF connection instead.

In the literature, the mission planning problem for UAVs applies to a large number
of practical tasks, e.g., military operations [16], the observation of icebergs [1], or the
reconstruction of terrain from two-dimensional data [26], but often, the calculation of the
related flight trajectories is simplified or neglected.

An extensive survey on the evolving field of civil applications for UAVs and possible
optimization approaches can be found in [19]. Due to the great interest in the autonomous
use of UAVs and the large number of related optimization approaches, we only highlight
some recent publications, where mission and flight planning is considered. Ramirez et
al. [20] use a genetic algorithm to assign several tasks to a fleet of inhomogeneous UAVs
considering technical parameters of the different types of UAVs, restricted airspaces, and
time windows. Zhen, Xing, and Gao [29] combine an ant colony algorithm for assigning
missions to a set of homogeneous UAVs with a Dubins curve to generate the trajectory
of every UAV. The resulting paths are affected by technical parameters of the consid-
ered UAV, collision avoidance constraints, and restricted airspaces. Ribeiro et al. [22]
use a mixed-integer linear program (MILP) to organize the observation of conveyor belts
in a mining site. Their approach is rather combinatorial without exact trajectories but
incorporates energy consumption and the possibility to place and use charging stations.
Li et al. [17] apply an ant colony algorithm combined with the metropolis criterion to
the problem of finding optimal trajectories for a fleet of homogeneous UAVs on a grid
map, regarding a given safety distance between the UAVs and given obstacles. Glock and
Meyer [10] present a neighborhood search algorithm to assign possible sampling locations
after fire or chemical incidents to a set of UAVs and plan their trajectories to maximize the
collected information in a given time horizon. Flight dynamics, i.e., maximum velocity,
acceleration, and battery level of the homogeneous fleet, are translated into travel times
between target locations. Coutinho, Fliege, and Battarra [6] formulate the problem of
surveying a set of locations in the aftermath of a disaster by pilotless gliders as a mixed-
integer nonlinear problem (MINLP). By applying several linearization techniques, they
achieve an MILP computing trajectories for several aircrafts from a starting point to a
set of possible landing areas within an obstacle-free airspace assuming constant weather
conditions. Cheng, Adulyasak, and Rousseau [4] derive a branch-and-cut algorithm to
solve an MINLP describing the problem of multi-trip parcel delivery by a homogeneous
fleet of UAVs. Considering constant altitude and velocity, their energy consumption is
modeled using a mass-dependent, nonlinear function, and trajectories are given by dis-
tances and travel times. Thibbotuwawa et al. [25] set up an MILP to plan the supply
of a set of customers with an inhomogeneous fleet of UAVs under weather uncertainty.
Their proposed model incorporates several weather zones, each with related wind con-
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ditions, energy consumption, and collision avoidance. In terms of the flight dynamics,
it lacks the exact trajectory, only computing the sequence of visited customers. Kai et
al. [14] give an MILP to plan the trajectory of a UAV visiting a given set of waypoints
taking into account detailed flight dynamics. In terms of environmental constraints, the
therein presented model lacks weather conditions and restricted airspaces. Xia, Wang,
and Wang [28] formulate the problem of controlling moving ships in emission control areas
by UAVs, stationed at the coast, as an MILP and compare it with a Lagrangian relax-
ation. The UAVs are assigned to computed waypoints, where they meet a vessel. Though,
besides the battery level, no flight dynamics are taken into account. Albert, Leira, and
Imsland [1] present an integer linear optimization model for the observation of drifting
icebergs in arctic areas to support shipping using a homogeneous fleet of UAVs deployed
at a ship. Their approach uses Dubins curves to compute trajectories and can update the
present path during the mission by a new run of the optimization model. But therefore,
it neglects most of the flight dynamics to speed up the solution process. Chen et al. [3]
consider a UAV as particle affected by different force fields and plan trajectories avoiding
given obstacles. The resulting problem is solved using optimal control theory but neglects
flight dynamics and weather conditions.

Within the flight planning process, collision avoidance and conflict resolution is a
crucial field to ensure the safe operation of aircrafts and avoid significant harm. It considers
a given number of aircraft within the same airspace and asks for the best control changes
for each of them to achieve collision-free trajectories. If the problem is stated in three
dimensions, also altitude changes are possible to resolve conflicts. Although the process
of solving potential conflicts between midair aircraft is automated [15], considering this
aspect already in the operation planning phase can reduce the number of conflicts and
errors later.

An extensive review about the field of conflict detection and resolution and related
solution methods can be found in [21]. Due to its currency, we further mention only
two forthcoming approaches. Dias, Rahme, and Rey [7] derive a two-stage algorithm
for conflict resolution using a mixed-integer quadratic and mixed-integer linear problem.
It computes collision-free linear trajectories for all aircrafts, while every aircraft reaches
its initial end position. Their model is tested on the class of benchmark instances that
we also adapt for our model. In [12], Hoch et al. consider collision avoidance as a non-
stop disjoint trajectory problem, where commodities are shipped through a time-expanded
graph without coming across each other. They study the general properties of this problem
and examine different graph classes which can be applied as takeoff/landing phase with
several aircraft or airspaces with a fixed number of airports and aircraft. Due to the
underlying network, this approach lacks detailed flight trajectories.

We contribute to the state-of-the-art by considering the mission and flight planning
problem for an inhomogeneous fleet of UAVs in a mixed-integer non-linear programming
framework, including detailed flight dynamics of the different UAVs, the effect of wind in
different subareas and altitudes, convex shaped restricted airspaces, and collision avoid-
ance. Furthermore, we extend several of its aspects to enhance the quality of the computed
solution. The novelty of our approach is the combination of assigning waypoints to the
participating UAVs and calculating detailed flight trajectories at the same time. This pa-
per extends the work presented in [9]. The newly incorporated aspects are the following:
By the combination of two different time discretizations, the computed flight trajectories
have an increased level of detail. We incorporate mass-dependent maximum velocity, max-
imum acceleration, maximum reachable altitude, and a mass-dependent fuel consumption
into the presented model. The operating range of every UAV is defined dependent on
altitude, assuming no sky propagation, and the height of the used antenna. Restricted
airspaces are generalized to convex shaped areas and wind affects any UAV within spec-
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Figure 1: Sets and time step lengths for the layers T and Tf of the two-level time grid
approach.

ified convex subareas. Considering collision avoidance, we adapt and extend a class of
benchmark problems to fit our model and derive upper bounds for their necessary amount
of discrete time steps in the two- and three-dimensional case.

This paper is structured as follows. In section 2, the basic model is set up by apply-
ing the two-level time discretization. Furthermore, the computation of the UAVs flight
dynamics, the operating range, the restricted airspaces, and the influence of wind are ex-
panded to allow more realistic constraints and achieve high-quality solutions. In section 3,
a class of benchmark instances for collision avoidance is adapted to the introduced model
and upper bounds for the necessary time horizon are given. The effect of the derived
modifications and results is tested in several scenarios in section 4, including the influence
of the time discretization on the computation time, comparison between the derived upper
bounds and the computed optimal solution for collision avoidance problems, and a detailed
discussion of particular aspects of our model. We summarize the presented results and
give directions for future work in section 5.

2 Two-level Time Model

If the velocity and the acceleration can change only at any discrete time step, the step
length has to decrease to smoothen the computed trajectories. Thus, more time steps
are necessary to cover the same time interval, leading to more complex instances and
slower solution processes. In the following, we present a possibility to achieve smooth
trajectories by using two different, coupled time discretizations and apply it to the model
in [9]. Afterwards, the derived two-level time discretization model is extended in several
ways. A list of all used sets can be found in table 1. The parameters and variables within
the two-level time discretization model are given in tables 2 and 3, while the additional
parameters and variables of the complete extended model are described in tables 4 and 5.

The time horizon [0,∆tT ], for a given number of time steps T and time step length ∆t,
is discretized in two different ways to achieve a better discretization without an increase in
the number of time steps and discrete decision variables. Let nf denote the number of fine
time steps between two adjacent time steps in T . For the first discretization, the step size
∆t is applied, but the set T contains all multiples of nf + 1 in the interval [0, (nf + 1)T ],
i.e., T = {0, nf + 1, . . . , (nf + 1)T}. This discretization is applied to the binary variables
to model the possible decisions. Second, each time step t ∈ {0, 1, . . . , T} is divided into nf
(fine) time steps, resulting in a step size ∆tf = ∆t

nf+1 and a set Tf = {0, 1, . . . , (nf + 1)T}.
This fine time approximation is applied to all continuous variables to refine the computed
trajectories. Furthermore, a function TtU : Tf → T of the form

TtU =

⌊
t

nf + 1

⌋
(nf + 1) (1)

is necessary to map the fine time steps to their coarse counterpart, always rounding down.
As abbreviations T − = T \ {(nf + 1)T} and T −f = Tf \ {(nf + 1)T} are used. Figure 1
holds an illustration of this two-level time grid approach. Using the two-level time grid
approach, the mission and flight planning problem for an inhomogeneous fleet of UAVs is
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Table 1: Overview of the sets used in the extended mission and flight planning model.

Symbol Index Definition

Lu i set of altitude bands of UAV u

L0,u = Lu ∪ {0} i set of altitude bands of UAV u including
the ground

P p set of all wind zones

Q q set of all restricted airspaces

T = {0, nf + 1, . . . , (nf + 1)T} t set of discrete time steps

T − = {0, nf + 1, . . . , (nf + 1)T − 1} t set of discrete time steps excluding the
last one

Tf = {0, 1, . . . , (nf + 1)T} t set of refined discrete time steps

T −f = {0, 1, . . . , (nf + 1)T − 1} t set of refined discrete time steps exclud-
ing the last one

Tw ⊆ T t set of time steps at which waypoint w
can be visited

U u set of all considered UAVs

Vu j set of throttle bands of UAV u

W w set of all waypoints to be visited

given by

~ru(0) = ~R0
u ∀u ∈ U ,

(2.1)

~ru((nf + 1)T ) = ~RT̃u ∀u ∈ U ,
(2.2)

‖~ru(t)− ~Gu‖2 ≤ %u ∀u ∈ U , t ∈ Tf ,
(2.3)

hubu(TtU) ≤ rzu(t) ≤ hubu(TtU) ∀u ∈ U , t ∈ Tf ,
(2.4)

riu(t+ 1) = riu(t) + ∆tfv
i
u(t)

+ ∆tfw
i(TtU)bu(TtU) +

(∆tf )2

2
aiu(t) ∀u ∈ U , t ∈ T −f , i ∈ {x, y},

(2.5)

viu(t+ 1) = viu(t) + ∆tfa
i
u(t) ∀u ∈ U , t ∈ T −f , i ∈ {x, y},

(2.6)

rzu(t+ 1) = rzu(t) + ∆tf
(
vz,+u (t)− vz,−u (t)

)
∀u ∈ U , t ∈ Tf ,

(2.7)

vu(t)bu(TtU) ≤ ‖~vu(t)‖2 ≤ vu(t)bu(TtU) ∀u ∈ U , t ∈ Tf ,
(2.8)

au(t)bu(TtU) ≥ ‖~au(t)‖2 ∀u ∈ U , t ∈ Tf ,
(2.9)
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Table 2: Overview of the parameters used in the mission and flight planning model of
section 2.

Symbol Domain Definition

au R+ maximum acceleration of UAV u

~cq(t) R3 location of the top-right corner of restricted airspace q at time step
t

~cq(t) R3 location of the bottom-left corner of restricted airspace q at time
step t

Fu R+ maximum fuel of UAV u

~Gu R3 location of the ground control station for UAV u

Hu,i R+ altitude limit of UAV u in altitude band i

hu R+ maximum flight altitude of UAV u

hu
[
0, hu

]
minimum flight altitude of UAV u

M i R+ sufficiently large constants with different magnitude for i ∈
{dist, air, fuel, alt, vel}

nf N ∪ {0} number of fine time steps

~pw R3 location of waypoint w

~R0
u R3 start location of UAV u

~RT̃u R3 end location of UAV u

Sw R+ score value for visiting waypoint w

vz,+u R+ maximum climb rate of UAV u

vz,−u R+ maximum descent rate of UAV u

vu R+ maximum velocity of UAV u

vu [0, vu] minimum velocity of UAV u

~w(t) R2 horizontal wind velocity at time step t

T N number of coarse discrete time steps

∆t R+ length of one discrete time step

∆tf R+ length of one refined discrete time step

δu,w [0, %u] maximum operational distance of UAV u to waypoint w

~ε R3
+ required minimum safety distance between two UAVs

ηu,i,j R+ fuel consumption of UAV u in altitude band i and throttle band j

θu,j R+ velocity limit of UAV u in throttle band j

TtU T fine-to-coarse mapping for time discretization

ξu R+ fuel surplus of UAV u for climbing

%u R+ maximum operating range of UAV u
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Table 3: Overview of the variables used in the mission and flight planning model of
section 2.

Symbol Domain Definition

~au(t) R2 variable indicating the acceleration of UAV u at time step t in
horizontal direction

bu(t) {0, 1} binary variable indicating whether UAV u is airborne at time step
t

b+u (t) {0, 1} binary variable indicating whether the task of UAV u started at
time step t or before

b−u (t) {0, 1} binary variable indicating whether UAV u is still on its way at time
step t

du,w(t) {0, 1} binary variable indicating whether UAV u visits waypoint w at
time step t

~eu,u′(t) {0, 1}3 binary variable indicating whether the distance between UAVs u, u′

is smaller than the safety distance in top-right direction

~eu,u′(t) {0, 1}3 binary variable indicating whether the distance between UAVs u, u′

is smaller than the safety distance in bottom-left direction

~fu,q(t) {0, 1}3 binary variable indicating whether UAV u is below-left the top-
right corner of the restricted airspace q at time step t

~f
u,q

(t) {0, 1}3 binary variable indicating whether UAV u is upper-right the
bottom-left corner of the restricted airspace q at time step t

gu(t) R+ variable indicating the amount of remaining fuel of UAV u at time
step t

~ru(t) R3 variable indicating the position of UAV u at time step t

su,i,j(t) {0, 1} binary variable indicating whether UAV u is in altitude band i and
throttle band j at time step t

~vu(t) R2 variable indicating the horizontal velocity of UAV u at time step t

vz,+u (t)
[
0, vz,+u

]
variable indicating the climb rate of UAV u at time step t

vz,−u (t)
[
0, vz,−u

]
variable indicating the descent rate of UAV u at time step t
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Table 4: Overview of the additional parameters introduced in sections 2.1 - 2.5.

Symbol Domain Definition

Au R+ height of the antenna at the ground control station of UAV u

C R+ sufficiently large constant

~cq,i(t) R3 normal vector of hyperplane i of restricted airspace q at time step
t

crhsq,i (t) R right-hand side of the coordinate form related to hyperplane i of
restricted airspace q at time step t

E R+ radius of the earth

mu R+ empty weight of UAV u

NP
p N number of hyperplanes describing wind zone p

NQ
q N number of hyperplanes describing restricted airspace q

~np,i(t) R3 normal vector of hyperplane i of wind zone p at time step t

nrhsp,i (t) R right-hand side of the coordinate form related to hyperplane i of
wind zone p at time step t

vz,+,0u R+ maximum climb rate of UAV u at takeoff

vz,+u,i,j R+ maximum climb rate of UAV u in altitude band i and throttle band
j

vz,−u,i,j R+ maximum descend rate of UAV u in altitude band i and throttle
band j

vu,i R+ maximum velocity of UAV u in altitude band i

~wu,p,i(t) R3

~wl(t) R2 horizontal wind velocity in altitude band l at time step t

θu,i,j R+ velocity limit of UAV u in altitude band i and throttle band j

%alt R+ change of operating range per unit of altitude

%init R+ operating range on ground level

ϕaccu R− obtainable percentage of the maximum velocity and acceleration
per unit of fuel for UAV u

ϕalt,1u [0, 1) proportion of initial fuel for which UAV u can reach its maximum
altitude

ϕalt,2u [0, 1) constant to set initial reachable altitude of UAV u

ϕfuelu R additional fuel consumption for every remainig unit of fuel of UAV
u
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Table 5: Overview of the additional variables introduced in sections 2.1 - 2.5.

Symbol Domain Definition

bu(t) {0, 1} binary variable indicating whether UAV u is airborne and has min-
imum velocity at time step t

fu,q,i(t) {0, 1} binary variable indicating whether UAV u is inside restricted
airspace q regarding hyperplane i at time step t

wu,p,i(t) {0, 1} binary variable indicating whether UAV u is inside wind zone p
regarding hyperplane i at time step t

wu,p(t) {0, 1} binary variable indicating whether UAV u is inside wind zone p at
time step t

bu(t) = b+u (t) + b−u (t)− 1 ∀u ∈ U , t ∈ T ,
(2.10)

b−u (t+ 1) ≤ b−u (t) ∀u ∈ U , t ∈ T −,
(2.11)

b+u (t) ≤ b+u (t+ 1) ∀u ∈ U , t ∈ T −,
(2.12)

‖~ru(t)− ~pw‖3 ≤ δu,w +Mdist(1− du,w(t)) ∀u ∈ U , w ∈ W , t ∈ T ,
(2.13)

∑

u∈U ,t∈Tw

du,w(t) ≤ 1 ∀w ∈ W ,

(2.14)

~cq(TtU)−Mdist ~fu,q(TtU) ≤ ~ru(t) ≤ ~cq(TtU) +Mdist ~f
u,q

(TtU) ∀u ∈ U , q ∈ Q, t ∈ Tf ,
(2.15)

~1 · ~f
u,q

(t) +~1 · ~fu,q(t) ≤ 5 ∀u ∈ U , q ∈ Q, t ∈ T ,
(2.16)

~ru′ (t) + ε−Mdist~eu,u′ (TtU) ≤ ~ru(t) ≤ ~ru′ (t)− ε+Mdist~eu,u′ (TtU) ∀u, u′ ∈ U : u < u
′
, t ∈ Tf ,

(2.17)

~1 · ~eu,u′ (t) +~1 · ~eu,u′ (t) ≤ 7− bu(t)− bu′ (t) ∀u, u′ ∈ U : u < u
′
, t ∈ T ,

(2.18)

gu(0) = Fu ∀u ∈ U ,
(2.19)

gu(t+ 1) = gu(t)

−∆tf


ξuvz,+u +

∑

i∈Lu,j∈Vu

ηu,i,jsu,i,j(TtU)


 ∀u ∈ U , t ∈ T −f ,

(2.20)
∑

i∈Lu,j∈Vu

su,i,j(t) = bu(t) ∀u ∈ U , t ∈ T ,

(2.21)
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∑

j∈Vu

θu,j

(∑

i∈Lu

su,i,j(TtU)

)
= ‖~vu(t)‖2 ∀u ∈ U , t ∈ Tf ,

(2.22)

∑

i∈Lu

Hu,i−1


∑

j∈Vu

su,i,j(TtU)


 ≤ rzu(t) ≤

∑

i∈Lu

Hu,i


∑

j∈Vu

su,i,j(TtU)


 ∀u ∈ U , t ∈ Tf .

(2.23)

with the objective function

max
∑

u∈U ,w∈W,t∈T
Swdu,w(t)− 1

|Tf |
∑

u∈U ,t∈T

t

Mair
bu(t)

+
1

|Tf |
∑

u∈U ,t∈Tf

(
gu(t)

Mfuel
+
rzu(t)

Malt
− ‖~vu(t)‖2

Mvel

)
, (3)

where ‖.‖2 and ‖.‖3 denote the two and three-dimensional Euclidean norm, respectively.
Constraints (2.1) and (2.2) fix the respective start and end location of every UAV, while (2.3)
limits their maximum operating range. The maximum and minimum altitude of the con-
sidered UAVs is restricted by (2.4). Equations (2.5) and (2.6) are a discretization of the
Newton’s equations of motion to compute the exact flight trajectory together with the
altitude changes in (2.7). The UAVs velocity and acceleration is bounded by (2.8) and
(2.9). In (2.10) – (2.12) it is ensured, that any UAV can only take off once and remain on
the ground after landing. The visit of the given waypoints is managed by (2.13) and (2.14),
guaranteeing that the respective UAV is inside the required operational range and every
waypoint is only visited once. Constraints (2.15) and (2.16) let a UAV avoid the given
restricted airspaces, while (2.17) and (2.18) manage the collision avoidance between any
pair of UAVs. The correct computation of the UAVs fuel consumption is ensured by
equations (2.19) – (2.23).

The presented model has to be linearized to achieve a mixed-integer linear problem.
We do this according to the methods shown in [9].

2.1 Flight Dynamics

In the given model, the left part of equation (2.8) forces every UAV to fly with at least
minimum velocity as soon as it takes off. If one of the deployed UAVs cannot accelerate
to its minimum velocity within a single time step, it would have to stay on the ground
and thus would not be used for mission planning. To overcome this drawback, we define
a new binary variable bu(t), indicating whether the minimum velocity has to hold.

Proposition 2.1. Let tu := (nf + 1)
⌈

vu
au∆t

⌉
for UAV u ∈ U . Then the equation

bu(t) ≥
t+tu∑

t′=t−tu

bu(t′)− 2tu ∀u ∈ U , t ∈ {tu, (nf + 1)T − tu} (2.29)

ensures bu(t) = 1 if and only if UAV u has minimum velocity.

Proof. Due to constraint (2.6), the UAVs velocity is a linear function of its acceleration.
Thus, the real time for reaching minimum velocity vu with maximum acceleration au is
given by

vu
au

. Conversion into a number discrete time steps tu ∈ N leads to

tu := (nf + 1)

⌈
vu
au∆t

⌉
. (4)
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Due to the objective function (3), the variable bu(t) is set to zero to save fuel, if this is
possible. To ensure that it is set to one tu time steps after the UAV starts to move or
before it attempts to land, we relate it to bu(t). Then, bu(t) = 1 has to hold, if bu(t′) = 1
for all t′ ∈ {t′ − tu, t′ + tu}. To relate all 2

(
tu + 1

)
binary variables bu(t′) in this interval

to a single binary decision, 2tu is subtracted leading to the desired equation (2.29).

To incorporate the new variable, the minimum velocity has to hold only tu time steps
after takeoff. Thus, constraint (2.8) changes to

vubu(TtU) ≤ ‖~vu(t)‖2 ≤ vubu(TtU) ∀u ∈ U , t ∈ Tf . (2.8’)

Accordingly, the fuel consumption equation (2.21) is adjusted to the new variable by

∑

i∈Lu,j∈Vu

su,i,j(t) = bu(t) ∀u ∈ U , t ∈ T . (2.21’)

Otherwise, equations (2.21) and (2.22) would force any UAV that cannot accelerate to its
minimum velocity in one timestep to stay on the ground.

Due to the physics of flight, a UAV slower than minimum velocity cannot ascend and
therefore not take off. Thus, similar to the minimum velocity, the left part of equation (2.4)
eliminates any UAV from the planning process if it cannot accelerate to its minimum
velocity and ascend to the minimum altitude within a single time step. To avoid this, the
variable bu(t) also is incorporated into equation (2.4), leading to

hubu(TtU) ≤ rzu(t) ≤ hubu(TtU) ∀u ∈ U , t ∈ Tf . (2.4’)

We consider the minimum altitude small enough such that any UAV with minimum ve-
locity can ascend to it within a fine time step.

Another occurring phenomenon in aviation is the altitude- and velocity-dependent
change of flight dynamics due to decreasing thrust in higher altitudes caused by decreasing
air temperature and pressure. It affects the maximum velocity as well as the maximum
climb and descent rates. For the maximum velocity, altitude dependence is incorporated
into the model by defining a maximum velocity vu,i of UAV u ∈ U for every of its altitude
bands i ∈ Lu and replace equation (2.8’) by

vubu(TtU) ≤ ‖~vu(t)‖2 ≤
∑

i∈Lu

vu,i
∑

j∈Vu

su,i,j(TtU) ∀u ∈ U , t ∈ Tf . (2.8’’)

Besides this family of constraints, an altitude-dependent maximum velocity has to be
taken into account in the calculation of the fuel consumption. By redefining parameter
θu,j to θu,i,j , describing the velocity of UAV u ∈ U in throttle band j ∈ Vu and altitude
band i ∈ Lu, equation (2.22) changes to

∑

i∈Lu,j∈Vu

θu,i,jsu,i,j(TtU) = ‖~vu(t)‖2 ∀u ∈ U , t ∈ Tf . (2.22’)

For climb and descent rates, the velocity has to be taken into account, next to the altitude.
In a similar way to the velocity, the related parameters change to vz,+u,i,j and vz,−u,i,j , describing
the maximum climb and descent rate of UAV u ∈ U for altitude band i ∈ Lu and throttle
band j ∈ Vu, respectively. Thereby, the upper bounds for the variables vz,+u (t) and vz,−u (t)
are no longer constant. Thus, the new constraint for the upper limit of the descent rate
is given by

vz,−u (t) ≤
∑

i∈Lu,j∈Vu

su,i,j(t)v
z,−
u,i,j ∀u ∈ U , t ∈ Tf . (2.30)
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For the climb rate, the approach is a bit different since a constraint similar to (2.30) would
reject any takeoff. Therefore, a new parameter vz,+,0u is introduced for the maximum climb
rate at takeoff for every UAV u ∈ U and it is adjusted to get the maximum midair climb
rates vz,+u . The constraint, limiting the climb rate for every UAV, then has the form

vz,+u (t) ≤ vz,+,0u −
∑

i∈Lu,j∈Vu

su,i,j(t)
(
vz,+,0u − vz,+u,i,j

)
∀u ∈ U , t ∈ Tf . (2.31)

In model (2), the maximum acceleration of the UAVs is assumed to be constant in every
situation. Thus, the computed flight trajectories are inaccurate since in practice the
maximally allowed acceleration at the takeoff is significantly higher than during the flight.
This results either in underestimation during the takeoff phase or overestimation when
in midair. We follow the approach given in the Base of Aircraft Data [18] (BADA) of
the Eurocontrol Experimental Centre. Therein, a reduction factor from takeoff thrust to
cruise thrust applies with a value of CTcr = 0.95. It is incorporated into the model by
changing equation (2.9) to

au(t)
(
bu(TtU)− 0.05bu(TtU)

)
≥ ‖~au(t)‖2 ∀u ∈ U , t ∈ Tf . (2.9’)

2.2 Fuel-dependent Flight Dynamics

The flight dynamics in model (2) are independent of the mass of the considered UAVs,
but this assumption only holds for electrical systems, where the weight of the battery is
constant. For UAVs with liquid fuels, the mass affects the maximum velocity, maximum
acceleration, maximum altitude, and fuel consumption rate [23] of an aircraft by weight
reduction due to burned fuel. Since the portion of the fuel on the gross take-off weight of
a UAV can go up to 43% [8], this has a great impact on the mission planning scenario.
To include these fuel-dependent flight dynamics into the proposed model, several changes
are necessary.

In terms of the altitude, we assume a linear dependency between the amount of re-
maining fuel and the reachable altitude. We expect the empty weight mu of UAV u to

include a small fuel reserve. Let UAV u ∈ U reach altitude hu

(
1− gu(0)

mu+Fu

)
for an initial

amount of fuel gu(0) and its maximum altitude hu for ϕalt,1u gu(0), with ϕalt,1u ∈ [0, 1).

Additionally, there is an additive constant ϕalt,2u ∈ [0, 1] to achieve a more flexible inital
altitude. The resulting linear function is displayed in figure 2 and gives the cosntraint

rzu(t) ≤ hu


1 + ϕalt,2u +

ϕalt,1u gu(0)− gu(t)(
1− ϕalt,1u

)
(mu + Fu)


 ∀u ∈ U , t ∈ Tf . (2.32)

Besides, the right part of constraint (2.4’) is still necessary to limit the reachable altitude
to its maximum value and set the maximum altitude to zero when the UAV is on the
ground.

To include the mass of the remaining fuel into the calculation of the velocity and the
acceleration, we have the following proposition.

Proposition 2.2. For any UAV u ∈ U and time step t ∈ Tf , the linear approximations

‖~vu(t)‖2 ≤
(
ϕaccu

gu(t)

Fu +mu
+ 1

)
vu,i + V u


1−

∑

j∈Vu

su,i,j(TtU)




∀i ∈ Lu (2.33)
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ϕalt,1
u gu(0) gu(0)

hu

(
1− g0

Fu+mu

)

hu

ϕalt,2
u hu

Figure 2: Linear dependency between the amount of fuel and the reachable altitude.

and

‖~au(t)‖2 ≤
(
ϕaccu

gu(t)

Fu +mu
+ 1

)
au, (2.34)

with V u = maxi∈Lu vu,i and

ϕaccu = (mu + Fu)
2
(

(Fu − 2mu)
√
m2
u + Fumu + 2m2

u

)
− 3

2F
2
u

F 3
u

, (5)

minimizes the quadratic error of the mass-dependent maximum velocity and acceleration,
respectively.

Proof. We compare the given maximum velocity vu related to mu with another velocity ṽu
for a UAV with more remaining fuel. Since the generated thrust of UAV u ∈ U is limited,
it can reach a certain kinetic energy Emaxu = 1

2muv
2
u for a given time. Thus, by energy

preservation, we get the relation

1

2
(mu + gu(t))ṽ2

u =
1

2
muv

2
u ⇒ ṽu =

√
mu

mu + gu(t)
vu. (6)

Using the equation a = v
t , in the same way the expression

ãu =

√
mu

mu + gu(t)
au (7)

can be derived. Since we consider the maximum velocity and acceleration in (6) and (7),
we restrict on the positive solution of the respective square root. The non-linear factor
for equations (6) and (7) is the same. Thus, we only have to perform one least squares
approximation of the form

min
ϕaccu

∫ Fu

0

(√
mu

mu + gu(t)
−
(
ϕaccu

gu(t)

mu + Fu
+ 1

))2

dgu(t), (8)

where we fix the absolute term of the linear function to 1 to ensure that the maximum
velocity and acceleration is attained according to tour assumption. The factor 1

mu+Fu
is applied to have a greater numerical value for ϕaccu and thus avoid numerical issues.
The solution of (8) gives the desired parameter ϕaccu for the obtainable percentage of
the maximum velocity and acceleration per unit of fuel for UAV u ∈ U . Replacing the
factor bu(TtU) − 0.05bu(TtU) by the computed linear function ϕaccu

gu(t)
Fu+mu

+ 1 in (2.9’), it
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gives the desired mass-dependent maximum acceleration (2.34) for every airborne UAV
u ∈ U in time step t ∈ Tf . In terms of the mass-depedent maximum velocity, the above
approach is used and slightly modified since the altitude dependence in (2.8’’) calls for

the incorporation of an sufficiently large additive constant V u

(
1−∑j∈Vu su,i,j(TtU)

)
with

V u = maxi∈Lu vu,i to avoid nonlinearities. This leads to the remaining equation (2.33).

In addition to equations (2.33) and (2.34) the constraints (2.8’’) and (2.9’) are still
necessary to force the maximum velocity and acceleration to zero for grounded UAVs. The
used approach is similar to the method in the BADA [18], except that we assume the UAV
to reach maximum velocity and acceleration with only the fuel reserve incorporated in the
empty weight. In terms of the fuel-dependent fuel consumption, a further parameter ϕfuelu

is necessary. It describes the additional fuel consumption for every remaining fuel unit at
the previous time step and is incorporated as an additional factor into the constraint (2.20).
To ensure that a UAV is consuming no fuel when landed, a distinction between the fuel
calculation for a landed and a flying UAV is needed. Thus, the constraint (2.20) is replaced
by

gu(t+ 1) ≤ Fu(1− bu(TtU)) + gu(t)

−∆tf


ξuvz,+u +

∑

i∈Lu,j∈Vu

ηu,i,jsu,i,j(TtU) + ϕfuelu gu(t)


 ∀u ∈ U , t ∈ T −f , (2.20i)

gu(t+ 1) ≥ −Fu(1− bu(TtU)) + gu(t)

−∆tf


ξuvz,+u +

∑

i∈Lu,j∈Vu

ηu,i,jsu,i,j(TtU) + ϕfuelu gu(t)


 ∀u ∈ U , t ∈ T −f , (2.20ii)

gu(t+ 1) ≤ gu(t) + Fubu(TtU) ∀u ∈ U , t ∈ T −f , (2.20iii)

gu(t+ 1) ≥ gu(t)− Fubu(TtU) ∀u ∈ U , t ∈ T −f . (2.20iv)

Applying these changes to the model, the flight dynamics of the UAVs are compromised
since equation (2.19) ensures that every UAV takes off with maximum fuel, reducing the
maximum altitude, velocity, and acceleration. Thus, equation (2.19) is dropped to make
the amount of takeoff fuel variable and allow the UAVs to reduce the amount of initial
fuel to achieve better flight dynamics. To ensure these fuel-saving aspects, the objective
function (3) has to change to

max
∑

u∈U ,w∈W,t∈T
Swdu,w(t)− 1

|U|
∑

u∈U

gu(0)

MfuelFu
− 1

T

∑

u∈U ,t∈T

t

Mair
bu(t)

+
1

|Tf |
∑

u∈U ,t∈Tf

(
rzu(t)

Malt
− ‖~vu(t)‖2

Mvel

)
. (3’)

2.3 Range

In model (2), the maximum operating range %u is chosen constant, although it depends
on the height Au of the used antenna and the altitude rzu(t) of the UAV. To achieve more
a realistic setting, we deduce an altitude-dependent maximum range.

Proposition 2.3. Let C be a constant with C ≥ maxu∈U hu. Then the linear approxima-
tion

‖~ru(t)− ~Gu‖2 ≤ %altrzu(t) + %̃init, (2.3’)
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E

Au

rzu(t)

%u

Figure 3: Maximal operating range %u of a UAV for antenna height Au and altitude rzu(t).

with %̃init = %init +
√

2AuE −A2
u and coefficients %alt, %init solving

2C3

3 %alt + C2%init = E3

(
π
2 − sin−1

(
E−C
E

)
− E−C

E

√
1−

(
E−C
E

)2
)
,

−2E3

3

(
1−

(
E−C
E

)2) 3
2

C2%alt + 2C%init = E2

(
π
2 − sin−1

(
E−C
E

)
− E−C

E

√
1−

(
E−C
E

)2
)
,

(9)

minimizes the quadratic error to the altitude-dependent maximum operating range at time
step t ∈ Tf .

Proof. The maximum range of UAV u ∈ U can be displayed as in figure 3. Applying the
Pythagorean theorem, the maximum range is calculated by

%u(rzu(t)) =
√

2AuE −A2
u +

√
2Erzu(t)− (rzu(t))2, u ∈ U , t ∈ Tf , (10)

where E is the radius of the earth and Au is the height of the antenna.
Due to the nonlinearity of this expression, we use the continuous least squares method

to find the best approximation in terms of a linear function f(x) = %altx+ %init. Since
the antenna height Au is constant, the first term in (10) is an additive constant and only
shifts the whole function. Thus it can be neglected in the least squares approximation,
leading to the problem

min
%alt, ˜%init

∫ C

0

(√
2Erzu(t)− (rzu(t))2 − (%altrzu(t) + %init)

)2
drzu(t), (11)

with C ≥ maxu∈U hu representing a sufficiently large altitude as upper limit of the integral.
By integration and solution of the remaining minimization problem, the parameters %alt

and %init are given by (9). Finally, the constant maximum operating range %u in (2.3) is
replaced by the linear function %altrzu(t) + %̃init to obtain (2.3’).

2.4 Restricted Airspaces

Equations (2.15) and (2.16) in model (2) allow to incorporate restricted airspaces for the
UAVs, but only cubic ones which are parallel to the coordinate axes. To compare the
respective coordinates of UAV u ∈ U and the restricted airspace q ∈ Q at time step t ∈ T
and report if it is inside the area, two binary variables f i

u,q
f
i
u,q are necessary for every
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coordinate direction i ∈ {x, y, z}, one per side. Using this approach, also more complex
restricted airspaces can be modeled by a union of these cubic ones, but only at the expense
of many additional binary variables.

To describe restricted airspaces by arbitrary polyhedrons, we assume its NQ
q describing

hyperplanes to have coordinate form with normal vector ~cq,i(t) and right-hand side crhsq,i (t)

for i = 1, . . . , NQ
q and q ∈ Q. Thus, every restricted airspace q ∈ Q is represented by

AQq (t) =
{
~x ∈ R3|~cq,i(TtU) · ~x ≤ crhsq,i (TtU), i = 1, . . . , NQ

q

}
. (12)

Similar to the parameters, the related binary variables f(t) are redefined to fu,q,i(t), with
fu,q,i(t) = 1 if UAV u ∈ U is outside of the restricted airspace q ∈ Q regarding hyperplane

i = 1, . . . , NQ
q at time step t ∈ T , and fu,q,i(t) = 0 otherwise. Then equations (2.15) and

(2.16) are replaced by

~cq,i(TtU) · ~ru(t) ≥ crhsq,i (TtU)−Mdist (1− fu,q,i(TtU))

∀u ∈ U , q ∈ Q, i = 1, . . . , NQ
q , t ∈ Tf , (2.15’)

NQ
q∑

i=1

fu,q,i(t) ≥ 1 ∀u ∈ U , q ∈ Q, t ∈ T , (2.16’)

providing a more general approach to model restricted convex airspaces with again one
binary variable per side.

2.5 Wind

In the basic model (2), the wind is assumed to blow constantly everywhere within the
considered area. By introducing the fine time steps, the wind can change in every fine
time step t ∈ Tf . To allow a more accurate influence of weather conditions, we want to
include the possibility of different wind zones within the mission area. But this comes with
the restriction that wind changes only in time steps t ∈ T . For simplicity, the computation
of the position (2.5) is modified to

riu(t+ 1) = riu(t) + ∆tf
(
viu(t) + w̃iu(t)

)
+

(∆tf )2

2
aiu(t)

∀u ∈ U , t ∈ T −f , i ∈ {x, y}, (2.5’)

where w̃iu(t) is the influence of wind for UAV u ∈ U in coordinate direction i ∈ {x, y} at
time step t ∈ T −f .

As a first approach, altitude-dependent wind zones could be added since the wind
intensity and its direction can change with increasing altitude, e.g., the jetstream has to
be taken into account for mission planning in altitudes between 8 to 12 kilometers. To
incorporate this into our model, the wind vector ~wl(t) =

(
wxl (t), wyl (t)

)
∈ R2 is now defined

for every altitude band l ∈ Lu. Since the variable su,i,j(t) cannot change in every fine step,
there is a discretization error between two time steps if the altitude layer is changed. To
reduce its influence, we consider a convex combination of the wind between time steps
t, t+ nf + 1 ∈ T at every fine time step t ∈ Tf . Thus, the influence of wind is calculated
by

w̃iu(t) =
∑

l∈Lu,j∈Vu

(
(1− µ)wil(TtU)su,i,j(TtU) + µwil(VtW)su,i,j(VtW)

)

∀u ∈ U , t ∈ T −f , i ∈ {x, y}, (13)

16



with µ =
t mod (nf+1)

nf+1 and VtW = TtU + nf + 1. But this method requires again constant

wind direction within every altitude band over the whole mission area.

To overcome this drawback, a second approach is possible. In the same way as for
the restricted airspaces in section 2.4, a set P of wind zones is defined, described by NP

p

hyperplanes

APp (t) =
{
~x ∈ R3|~np,i(TtU) · ~x ≤ nrhsp,i (TtU), i = 1, . . . , NP

p

}
, (14)

with normal vectors ~np,i(t) and right-hand sides nrhsp,i (t).

Furthermore, new binary variables wu,p,i(t) ∈ {0, 1} are introduced with wu,p,i(t) = 1,
if UAV u ∈ U is within wind zone p ∈ P regarding hyperplane i ∈ APp at time step t ∈ T .
In contrast to the restricted airspaces, now additional constraints and an auxiliary binary
variable ωu,p(t) are necessary to map the variables wu,p,i(t) to a single binary decision and
to ensure that wind is only taken into account when UAV u ∈ U is in midair. Therefore,
the decision if UAV u is affected by wind zone p at time step t is modeled by

~nu,p,i(TtU) · ~ru(t) ≥ nrhsp,i (TtU)−Mdistwu,p,i(TtU)

∀u ∈ U , p ∈ P , i = 1, . . . , NP
p , t ∈ Tf , (2.35)

NP
p∑

i=1

wu,p,i(t) ≤ NP
p + ωu,p(t)− 1 ∀u ∈ U , p ∈ P , t ∈ T , (2.36)

NP
p∑

i=1

wu,p,i(t) ≥ NP
p ωu,p(t) ∀u ∈ U , p ∈ P , t ∈ T , (2.37)

∑

p∈P
ωu,p(t) ≤ |P|bu(t) ∀u ∈ U , t ∈ T . (2.38)

Analogue to the first approach, the variable wu,p(t) can only change at time step t ∈ T .
Thus, the convex combination with t̃ is applied again and the influence of wind is calculated
by

w̃iu(t) =
∑

p∈P
(1− µ)wip(TtU)ωu,p(TtU) + µwip(VtW)ωu,p(VtW)

∀u ∈ U , t ∈ T −f , i ∈ {x, y}, (2.39)

where again µ =
t mod (nf+1)

nf+1 and VtW = TtU + nf + 1. For this approach, the number of

binary variables within the model increases by
∑

p∈P(|APp |+ 1) per time step and UAV.

3 Collision Avoidance

Compliance with safety distances in aviation is crucial due to the disastrous consequences
of its failure. Therefore, the parts of a planning model computing collision-free flight tra-
jectories should be examined excessively. In the following, we consider a two dimensional
and a three dimensional setting to examine the modelled collision avoidance (2.17) and
(2.18).

A class of two-dimensional benchmark instances, called Random Circle Problems
(RCPs) [7], has a wide application in collision avoidance and conflict resolution. In this
problem class, a set of aircrafts is randomly arranged on a circle. At the beginning, all
UAVs maintain the safety distances, head towards the circles center, and have their re-
spective destination on its opposite side. The deviation from the shortest connection is

17



minimized for every participant. With an increasing number of aircrafts, it is a challenging
problem to conflict resolution approaches due to its fast increasing violations of the safety
distance if no countermeasures are taken.

We adapt these benchmark instances to our setting, assuming every participating UAV
has the same technical characteristics. Thus, there are no waypoints and the start locations
of the participating UAVs are distributed randomly along a circle of radius rRCP , with
their respective end location on the opposite side. The operating range is neglected since
every UAV must be able to reach its end location. Thus, the whole circle is within its
operating range. In the beginning, every UAV is heading towards the center of the circle
and all safety distances are ensured. To incorporate this into the model, a new constraint

vu(0) = γu ·~1 ·
(
~C − ~R0

u

)
∀u ∈ U , (15)

is added, where ~C is the location of the center of the considered circle and the new variable
γu scales the given direction to ensure the limits of the velocity.

Due to the absence of waypoints and the altitude, many constraints can be neglected
and also many binary variables are unnecessary or must be redefined, i.e., su,i,j(t) changes
to su,j(t) indicating whether UAV u ∈ U is within throttle band j ∈ V1 at time step t ∈ T
and the variables bu(t) and bu(t) are substituted by b−u (t) since all UAVs start in midair
and have to stop at their end location.

We minimize the deviation of the shortest connection by the number of necessary time
steps Tmin, such that every UAV reaches its respective end location. This number is not
known a priori and increases the more UAVs are participating. Only a lower bound Tmin

is given by the number of time steps it takes for a single UAV to fly along the diameter
of the circle with maximum velocity. Setting T to a sufficiently large value and read
Tmin from the optimal solution can be an ineffective way since the number of constraints
and variables is time-dependent, leading to a possibly too large model. Therefore, we
use an approach from [2], solving the RCP sequentially for an increasing number of time
steps, starting with T = Tmin, until a feasible solution is found or its existence cannot
be determined within a given computation time. This procedure has the advantage of
working without any objective function since the first found feasible solution gives the
value of Tmin.

To ensure that the safety distances are observed at every time step, it has to hold

∆t ≤
maxi∈{x,y} ε

i

V 1

, (16)

where V 1 = maxi∈L1 v1,i is again the maximum of the altitude-dependent maximum ve-
locities of the first UAV. Due to the assumption of identical technical characteristics of
all participating UAVs, the first UAV can be chosen without loss of generality. Without
condition (16), a pair of UAVs, complying with the safety distance between them, could
swap their positions within one time step by flying through each other. The resulting
resolution of the time is sufficient to obtain smooth trajectories. Thus, we renounce on
fine time steps in this case.

The following result gives a heuristical solution for the two-dimensional RCP.

Proposition 3.1. Consider the two-dimensional RCP with center ~C ∈ R2, radius rRCP ∈
R+, safety distances ~ε ∈ R2

+, time step length ∆t ∈ R+, n ∈ N participating UAVs, and
v ∈ R+ their maximum velocity. Then it holds

Tmin ≤
⌈

2rRCP + (π − 2)‖~C − ~rn(t′)‖
v∆t

⌉
, (17)
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with

t′ = min
t∈Z+

{‖~ru1(t+ 1)− ~ru2(t+ 1)‖ ≤ ‖~ε‖ |u1, u2 ∈ {1, . . . , n};u1 < u2} . (18)

Proof. Every UAV starts at its random starting location and heads towards the center ~C
with maximum speed. To avoid conflicts near the center ~C, all UAVs are assigned to a
smaller circle with center ~C and radius rub ≤ rRCP before the first conflict would occur.
Along this smaller circle, the UAVs rotate around its center on a semicircle and then fly
to their respective end locations. This approach generates a feasible solution if the safety
distances are observed during the rotation. Therefore, it is necessary to ensure at least the
distance ‖~ε‖ between any pair of UAVs. Let t′ be the last time step with this property. It
is be computed by

t′ = min
t∈Z+

{‖~ru1(t+ 1)− ~ru2(t+ 1)‖ ≤ ‖~ε‖ |u1, u2 ∈ {1, . . . , n};u1 < u2} . (19)

The radius rub is then given by ‖~C−~rn(t′)‖, where the position of any UAV at time step t′

can be chosen since they all have equal distance to the center. Without loss of generality,
we take the position of UAV n. For the described solution, every UAV must fly a distance
of 2(rRCP − rub) + πrub units to reach its end location. Thus, there are

T =

⌈
2rRCP + (π − 2)rub

v∆t

⌉
(20)

time steps necessary to complete this trajectory. Substitution of rub leads to the upper
bound of Tmin given in (17).

Furthermore, the quality of the described heuristic solution can be calculated.

Corollary 3.2. For the two-dimensional RCP with minimum number of time steps Tmin,
it holds

1 ≤ Tmin

Tmin
≤ π

2
. (21)

Proof. In the worst case, there are two UAVs u1, u2 ∈ U starting with ‖~R0
u1 − ~R0

u2‖ = ‖~ε‖.
Then it follows rub = rRCP and the trajectory of every UAV is πrRCP . Since all UAVs
have the same constant maximum velocity v, it holds Tmin = 2rRCP v and the number of
time steps Tmin depends only on the radius rRCP , leading to Tmin = πrRCP v = π

2T
min.

Thus, in a general setting the desired estimate (21) is obtained by combining the definition
of Tmin with the described worst case and rearranging it.

For the case of evenly distributed UAVs, the result of proposition 3.1 can be computed
without the knowledge of t′.

Corollary 3.3. Consider the Circle Problem with n ∈ N evenly distributed UAVs with
maximum velocity v ∈ R+, radius rRCP ∈ R+, safety distances ~ε ∈ R2

+, and time step
length ∆t ∈ R+. Then it holds

Tmin ≤




2rRCP + (π−2)

2 sin(πn)
‖~ε‖

v∆t



. (22)

Proof. In the evenly distributed case, every pair of UAVs has the same distance. Thus,
their start locations are the corners of a regular polygon with circumradius rRCP . Since all
UAVs head towards the center with the same velocity, they stay corner points of a regular
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polyhedron with decreasing side length. The radius rub of the smaller circle is then the
circumradius of a regular polyhedron with n corners and side length ~ε. It is computed by

rub =
‖~ε‖

2 sin
(
π
n

) (23)

Substituting this term into (20) gives the upper bound (22).

The model in the two-dimensional case is given by the constraints (2.1), (2.2), (2.5’),
(2.6), (2.8’), (2.9’), (2.11), (2.17), (2.18), (2.20i) – (2.20iv), (2.21), (2.22), (2.33), (2.34),
and (15), where all terms with vz,+u (t) are neglected, due to the absence of altitude changes.
Furthermore, the variables bu(t) and bu(t) have to be substituted by b−u (t) since all UAVs
start in midair and should only stop at their respective end locations.

Since in ordinary air traffic the aircrafts are not restricted to a single altitude and
to fully evolve the potential of our model, we extend the concept of RCPs into three
dimensions. Therefore, minimum and maximum altitudes h and h are incorporated as
lower and upper bound of the altitude rzu(t) of every UAV u ∈ U at time step t ∈ Tf ,
respectively. All UAVs are positioned analog to the two-dimensional case, but with initial
altitude R0,z ∈

[
h, h

]
.

The result of proposition 3.1 can also be adapted for the three-dimensional RCP.

Proposition 3.4. Consider the three-dimensional RCP with center ~C ∈ R3, radius rRCP ∈
R+, minimum and maximum altitude h and h, safety distances ~ε ∈ R3

+, and time step

length ∆t ∈ R+. Let nl = bh−hεz c and the sets U1, . . . ,Unl be a partition of U = {1, . . . , n}.
Furthermore, every participating UAV has maximum velocity v ∈ R+, maximum climb
and descent rate vz,+ and vz,−, and initial altitude R0,z. Then it holds

Tmin ≤ max
i∈{1,...,nl}

{⌈
2rRCP + (π − 2)‖~C − ~rn(t′i)‖

v∆t

⌉
+

⌈ |R0,z − h+ (i− 1)εz|
vz,+∆t

⌉

+

⌈ |R0,z − h+ (i− 1)εz|
vz,−∆t

⌉}
, (24)

with

t′i = min
t∈Z+

{‖~ru1(t+ 1)− ~ru2(t+ 1)‖ ≤ ‖~ε‖ |u1, u2 ∈ Ui;u1 < u2}

∀i ∈ {1, . . . , n}. (25)

Proof. For the given altitude range
[
h, h

]
and vertical safety distance εz, it is possible to

stack nl = bh−hεz c UAVs one above each other at the same x- and y-coordinates. Thus,
every partition {Ui}i∈{1,...,nl} of the set U = {1, . . . , n} decomposes the three-dimensional

RCP into nl two-dimensional RCPs considering only the UAVs Ui, respectively. According
to this, the number of time steps to perform the three-dimensional trajectory of every UAV
u is the sum of the number of time steps for its trajectory in the two-dimensional problem
and the number of time steps necessary for the altitude changes.

To arrange all two-dimensional RPCs into the altitude range
[
h, h

]
, one of them is

located at the lower or upper altitude limit and the vertical distance between two of them
is at least εz. Without loss of generality, we assign the problem considering the UAVs of
subset U1 to the altitude h. Then, the necessary number of time steps for the altitude
changes of every UAV u ∈ Ui are computed by

T zi =

⌈ |R0,z − h+ (i− 1)εz|
vz,+∆t

⌉
+

⌈ |R0,z − h+ (i− 1)εz|
vz,−∆t

⌉
∀i ∈ {1, . . . , nl}. (26)
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Table 6: Data for the UAV technical parameters according to [8].

Description Parameter Unit UAV-1 UAV-2

Minimum velocity vu
km
h 130 167

Maximum velocity vu
km
h 232 204

Military static thrust at s/l FNu kp 1250 64

Maximum initial climb rate vz,+,0u
m
s 8 2

Maximum fuel Fu kg 2000 150

Fuel surplus for climbing ξu
kg

min 0.2 0.02

Empty weight mu kg 4000 540

Thus, the number of necessary time steps in the three-dimensional case is computed by

Ti =

⌈
2rRCP + (π − 2)‖~C − ~rn(t′)‖

v∆t

⌉
+

⌈ |R0,z − h+ (i− 1)εz|
vz,+∆t

⌉

+

⌈ |R0,z − h+ (i− 1)εz|
vz,−∆t

⌉
∀i ∈ {1, . . . , nl}, (27)

with t′ from proposition 3.1. The maximum of these Ti is the desired upper bound (24).

The model in the two-dimensional case is given by the constraints (2.1), (2.2), (2.5’) –
(2.9’), (2.11), (2.17), (2.18), (2.20i) – (2.20iv), (2.21) – (2.23), (2.30), (2.31), (2.33), (2.34),
(15), and the constraint

h ≤ rzu(t) ≤ h ∀u ∈ U , t ∈ Tf . (28)

Similar to the two-dimensional case, the variables bu(t) and bu(t) are substituted by b−u (t).

4 Computational Results

To test the derived results, we apply the extended model (2) with objective (3’) to different
instances considering real-world UAVs. These are:

UAV-1. Heron TP UAV [Eitan] - Israel (Air Force), since 2012.

UAV-2. RQ-5A Hunter UAV - United States (Army), since 1996.

The data for the technical parameters of the UAVs are taken from [8] and can be found
in Table 6 to Table 8.

As length of one time step, ∆t = 0.1h is assumed. Regarding the maximum operating
range, we choose in (9) Crange = 15km, E = 6371km, and Au = 0.005km for all u ∈ U
. Thus, we obtain the optimal values m := 23.30 and ñ := 116.61, leading to the linear
approximation displayed in figure 4. For the altitude and throttle dependend climb rate
we assume vz,+u,i,j = vz,+,0u for all UAVs u ∈ U , altitude bands i ∈ Lu, and throttle bands
j ∈ Vu.

The operational range δu,w of UAV u ∈ U to waypoint w ∈ W is set to a value within
the second highest altitude band to reject the UAVs staying at maximium altitude all the
time. According to this, we choose the values δ1,w = 10km and δ2,w = 3km.
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Table 7: Altitude and throttle band related data of UAV-1 according to [8].

Altitude- Altitude velocity descend rate fuel cons.

Throttle band (in km) (in km
h ) (in m

s ) (in kg
min)

Altitude band 1
loiter speed

0.001– 3.658 130 8 2.08

Altitude band 1
cruise speed

0.001– 3.658 204 24 2.60

Altitude band 1
military speed

0.001– 3.658 232 24 5.23

Altitude band 2
loiter speed

3.658– 7.315 130 8 1.53

Altitude band 2
cruise speed

3.658– 7.315 204 24 1.91

Altitude band 2
military speed

3.658– 7.315 232 24 3.85

Altitude band 3
loiter speed

7.315– 10.972 130 8 1.06

Altitude band 3
cruise speed

7.315– 10.972 204 24 1.33

Altitude band 3
military speed

7.315– 10.972 232 24 2.66

Altitude band 4
loiter speed

10.972– 13.716 130 8 0.70

Altitude band 4
cruise speed

10.972– 13.716 204 24 0.88

Altitude band 4
military speed

10.972– 13.716 232 24 1.78
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Table 8: Altitude and throttle band related data of UAV-2 according to [8].

Altitude- Altitude velocity descend rate fuel cons.

Throttle band (in km) (in km
h ) (in m

s ) (in kg
min)

Altitude band 1
loiter speed

0.001– 3.658 167 2 0.19

Altitude band 1
cruise speed

0.001– 3.658 194 6 0.23

Altitude band 1
military speed

0.001– 3.658 204 6 0.44

Altitude band 2
loiter speed

3.658– 4.572 167 2 0.14

Altitude band 2
cruise speed

3.658– 4.572 194 6 0.17

Altitude band 2
military speed

3.658– 4.572 204 6 0.32
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Figure 4: Linear approximation of the nonlinear maximum operating range function for
antenna height Au = 0.
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Figure 5: Least squares approximation of the non-linear factor for the maximum velocity
and acceleration of UAV-1 (left) and UAV-2 (right)

The maximum acceleration au of UAV u ∈ U is not provided by [8], but it gives a value
for the military static thrust at starting or landing. In these processes, the maximum
possible acceleration of the aircraft is used [23], so we use it as an upper bound for every
time step. To compute the acceleration related to the given thrust, the second of Newton’s
axioms F = ma is chosen, rearranged to get a, and the thrust, converted to Newton, is
put in. Combined with the conversion factor from m

s2
to km

h2 , this yields the formula

au = 12960
9.807FNu
mu

. (29)

Applied to the considered UAVs, it gives a1 = 26478.9km
h2 and a2 = 11788.87km

h2 .
Equation (5) with the respective values of every UAV u ∈ U results in the parameter

values ϕacc1 = −0.591 for UAV-1 and ϕacc2 = −0.554 for UAV-2, displayed in figure 5. For

the constraint of mass-dependent maximum reachable altitude (2.32), we choose ϕalt,1u = 0

and ϕalt,2u = 1 for all u ∈ U . In absence of data, we set ϕfuelu = 0.
For the weights of the objective function M i, i ∈ {air, fuel, vel, alt} it has to hold

1

|Tf |


∑

u∈U

gu(0)

Mfuel
+

∑

u∈U ,t∈Tf

(
t

(nf + 1)Mair
bu(TtU) +

‖~vu(t)‖2
Mvel

)
 < S, (30)

∑

u∈U ,t∈Tf

rzu(t)

Malt|Tf |
< S, (31)

with S = minw∈W{Sw} to ensure that visiting a waypoint is always preferred. In this
work, we choose Mair = 102, Mfuel = 104, Mvel = 105, Malt = 104. Furthermore, we
assume the sufficently large constant Mdist = 103 and set Sw = 1 for all w ∈ W .

All instances were generated with the modeling language AMPL (Version: 20200501)
and solved with GUROBI 9.0.2 [11] on an Apple MacMini running an IntelCore i7 at 3.20
GHz clock speed and 64 GB RAM, with the relative and absolute gap set to 0 and default
settings otherwise.

4.1 CPU Time Analysis

In this section, we examine the influence of the discretization and approximation tech-
niques to the computation time of the problem. With the use of a more detailed approach,
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Figure 6: Solution time depending on the number of fine time steps.

the resulting problem becomes more complex and its computation time rises. Since we
apply the state-of-the-art solver GUROBI, we find the instance sizes that can be solved
within a given time limit.

To examine the influence of fine time steps on the solution time, we generate 41 in-
stances with 15 waypoints, a single UAV, 40 time steps, and two restricted airspaces and
vary the number of fine time steps from 0 to 9. The results in figure 6 show, that the
average computation time increases with a larger number of fine time steps. To solve 90%
of the given instances within the considered time limit, at most two fine time steps can be
used. The total amount of CPU time for solving all 410 instances was 922,686 seconds.

A comparison of the computed flight trajectories of a single instance for different
numbers of fine time steps is shown in figure 7. One can see, that the optimal trajectory
gets less crooked for an increasing number of fine time steps since the UAV has more
possibilities to change its velocity and acceleration. At the same time, the differences
between the computed trajectories become smaller, thus it suggests to use not too many
fine time steps to save computation time.

4.2 Special Instances

In the following experiments, we apply the model to specially designed instances to exam-
ine some of its aspects in detail. For the effect of wind to the optimal flight trajectories,
we compare the optimal solutions of an instance with and without the presence of wind.
Furthermore, the altitude-dependent operating range approach the mass-dependent flight
dynamics are discussed.

4.2.1 Influence of Wind Zones

We consider an instance with 10 waypoints, two UAVs, 25 time steps with 4 fine time steps
each, and three wind zones. Their respective area and wind velocity are given in table 9.
The first wind zone displays the jetstream on the northern hemisphere, while the other two
describe local weather phenomena with a heavy storm to emphasize its influence on the
UAVs, although real UAVs would stay on the ground in this situation. In absence of wind,
the total amount of CPU time to solve the instance was 280 seconds, while in presence
of wind the computation time increased to 5,263 seconds. The optimal flight trajectories
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Figure 7: Optimal flight trajectories without fine time steps (a) and for one (b), three (c),
and five (d) of them. Each fine time step is represented by an arrow head, describing the
UAVs heading.

Table 9: Area and wind velocity per the coordinate direction of the considered wind zones
in section 4.2.1.

Wind zone Area (in km) Velocity (in km
h ) Direction

Wind zone 1

(red)




0

0

7


 –




300

300

20


 300

Wind zone 2

(green)




149

0

0


 –




300

300

8


 100

Wind zone 3

(blue)




0

0

0


 –




150

300

8


 100
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Figure 8: Optimal flight trajectories for the considered instance in absence (left) and
presence (right) of wind. In the presence of wind, the different wind zones are displayed
in different colors.

and the obtained altitudes of the UAVs for both cases of the considered instance are given
in figure 8. One can see that, in the presence of wind, the assignment from waypoints to
UAVs changes. UAV-1 benefits from all three wind zones. At first, it uses wind zone 1 to
travel a longer way to waypoint 8, while the time step for visiting it is the same. Then,
it stays below wind zone 1 and uses wind zone 2 to visit the more distanced waypoint 3
at the same time step it visits waypoint 9 in the absence of wind. Finally, wind zone 3
is advantageous on the way to the end location. UAV-2 also profits from the wind zones
on the way to its first visited waypoint and when it flys to waypoint 2. In the presence of
wind, the objective value decreases since both UAVs are longer in midair and UAV-1 has to
reduce its altitude to avoid wind zone 1. Regarding the initial fuel, UAV-1 needs 6.6% less
(333.57kg instead of 361.53kg), although its trajectory is 31.7% longer (552.34km instead
of 419.41km). This fuel saving is the result of the presence of advantegeous wind zones.
On the other side, UAV-2 needs 15.1% more initial fuel (35.13kg instead of 30.51kg) for
its 13.2% longer trajectory (434.33km instead of 383.84km). Since UAV-2 cannot benefit
from tailwinds like UAV-1, it needs more fuel for the also longer trajectory.

4.2.2 Altitude-dependent Range

As shown in figure 4, the altitude-dependent approach (2.3’) in section 2.3 results in a
significant enlarged operating range compared to the constant approach (2.3) with %u =
185km.

To illustrate the new approach and its limits, we consider both UAVs, two waypoints,
200 time steps without any fine steps each, and ∆t = 0.025h. The UAVs are stationed at
the location of their respective ground control, which is also their start and end location.
Furthermore, we set ϕalt,2u = 0.1, u ∈ U , to have a better resolution of the increasing
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Figure 9: Optimal flight trajectories for the altitude-dependent operating range approach
for UAV-1 (orange) and UAV-2 (blue). Waypoints and ground controls are indicated by a
red or green square, respectively. The dashed lines mark the altitude-dependent operating
range of the respective UAV and the colored area its maximum operational distance to
the waypoints.

maximum flight altitudes of the UAVs. All components of this instance are lined up along
the x-axis and both waypoints can be visited at any time step. It took 9,185 seconds to
solve this instance to proven global optimality. The optimal flight trajectories of the UAVs
are displayed in figure 9.

As shown in figure 9, UAV-1 could reach the position of both points but it cannot
visit WP-2 since for the necessary range it requires a flight altitude greater than the
maximum operational distance to WP-2. So for visiting all points, UAV-2 has to be
deployed, although UAV-1 is near the waypoint. Furthermore, the optimal trajectories
can be divided into several phases, marked in figure 9: (a) First, both UAVs ascend after
takeoff with their maximal ascend rate to reach their mass-dependent maximal altitude.
(b) Due to the mass reduction by fuel consumption, the maximum altitude of every UAV
increases over time so the UAVs keep ascending slowly. This behavior is controlled by the
parameters F alt,1u and F alt,2u . (c) Near the respective waypoint, the UAVs slow down and
descent to get into the operational range of the waypoint. (d) At their point of return,
the UAVs achieve the maximum operational distance of the respective waypoint, visit it
and start to fly back to their end location since no UAV can get into the operational
distance to both points without leaving its operating range. To save fuel, they ascend
again to their maximum altitude. (e) On their way back, the UAVs can reach a higher
altitude compared to the beginning since they consumed most of their initial amount of
fuel. (f) Every UAV descends to its end location with maximum descent rate to stay in
the higher altitude bands as long as possible and benefits from its lower fuel consumption.
This approach, to reach the top of descent point before going down, is the most economic
descent strategy [23].

4.2.3 Mass-dependent Flight Trajectories

To illustrate the effect of mass-dependent flight dynamics to the computed trajectories,
we consider an instance with 10 waypoints, two UAVs, 25 time steps with 4 fine time
steps each, and two restricted airspaces and solve it in the presence and absence of mass-
dependent flight dynamics. In terms of mass-dependent fuel consumption, we assume the
additional fuel per mass factor ϕfuelu = 0.01 for each UAV u ∈ U . For the absence of
mass dependencies the values ϕfuelu = 0, ϕaccu = 0, and ϕalt,2u = 1 are chosen, while the
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parameter ϕalt,1u can take an arbitrary value since it is not restrictive. The total amount
of CPU time to solve the instance neglecting the mass dependencies was 1044 seconds,
while in its presence 3495 seconds were necessary. Figure 10 displays the optimal flight
trajectories, altitude and velocity profiles, and the fuel consumption for both instances.
As the results in figure 10 indicates, the optimal solution changes in the presence of mass-
dependent flight dynamics. Both UAVs have shorter trajectories and return to their end
location earlier, while only 8 of 10 waypoints were visited, two less than in the absence of
mass dependencies.

While, without the influence of mass, both UAVs use their fastest throttle band and
attain their respective maximum velocity, in the presence of the reduction factor ϕaccu , they
cannot reach it and must stay in the second-fastest throttle band. Thus, UAV-2 cannot
reach waypoint 3 within the given time and, due to the narrow time windows of waypoint
9, none of the UAVs can incorporate this waypoint into its trajectory.

The resulting shorter trajectories are beneficial to the attained altitude of UAV-1. It
can now ascend higher since it visits fewer waypoints. But it cannot reach its maximum
altitude due to the mass-dependent maximum altitude. For UAV-2, one can see the
influence of the abovementioned restriction on its flight dynamics. Whenever it ascends
after visiting a waypoint, it can reach a higher altitude since its fuel mass reduces over
time.

In terms of the initial amount of fuel, although UAV-1 has a 24.6% shorter trajec-
tory (391.05km instead of 518.87km), it requires 7.0% more initial fuel (from 366.12kg to
391.75kg). In contrast, UAV-2 has an 9.0% smaller amount of initial fuel (from 38.90kg
to 35.38kg) for a 36.1% shorter trajectory (286.29km instead of 447.79km). This contrary

behavior of UAV-1 is justified in the fuel per mass factor ϕfuelu since it applies as a per-
centage of the fuel mass. Thus, larger UAVs with higher fuel consumption are affected
more than smaller ones and in comparison, UAV-1 can hold nearly four times the amount
of fuel of UAV-2.

4.3 Collision Avoidance

In this section, we take a closer look at the computation time of RCPs for an increasing
number of UAVs and the quality of the upper bound derived in proposition 3.1. For the
following computations, the models described in section 3 were used.

For the two-dimensional case, we consider a circle with center ~C = (140, 140) and radius
rRCP = 90km and use UAVs from the type UAV-1. The safety distances in each coordinate
direction are εi = 9.26km, i ∈ {x, y}. They are chosen accordingly to the minima for radar
seperation, published by the International Civil Aviation Organization (ICAO) [13]. For
∆t = 0.02, we get Tmin =

⌈
180

232·0.02

⌉
= 39, but we initialize the calculation with T = 40

since the initial maximum velocity is reduced by the present mass dependencies.

Varying the number of participating UAVs between 2 and 12, we generate 41 instances
and solve them with the described sequential method with a time limit of 3600 seconds
for every iteration. The results are displayed in figure 11. For small problems with up
to four UAVs, at least 90% of all instances were solved to proven global optimality. In
medium-scaled problems with five to nine participating UAVs, this percentage decreases
from 61% to 29%, while it drops below 5% for large problems considering ten or more
UAVs.

To illustrate the result of proposition 3.1, we generate the upper bound for the nec-
essary number of time steps for the 257 solved instances and compare its minimum and
median value against the computed solutions for every number of participating UAVs. In
figure 12, one can see that already for small instances with four UAVs, there is a signifi-
cant gap between the given upper bound and the found optimal solution in both median
and minimum value. Furthermore, this gap increases rapidly for larger numbers of UAVs.
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Figure 10: Optimal flight trajectories, altitude and velocity profiles, and the fuel con-
sumption for both UAVs in the absence (left) and presence (right) of mass-dependent
flight dynamics.

30



Figure 11: Solution time of the RCP depending on the number of participating UAVs.
The count of solved instances for every number of UAVs is displayed above its respective
column.

In figure 13, the optimal trajectories of a RCP instance with 14 UAVs are displayed for
two different time steps, also including the circle used to calculate the upper bound in
proposition 3.1. UAVs 2 and 11 are the first pair violating the given safety distances.
Since they start near to each other, the generated circle for the upper bound has radius
rub = 86.12km, which is only about 4% smaller than the original radius rRCP . For the
three-dimensional RCP, we take the same parameters as in the two-dimensional case, to-
gether with the initial altitude rzu(0) = 10km, vertical safety distance ~εz = 1km, and
altitude bounds h = 9km and h = 10.972km for all UAVs. Thus, they are all within their
second-highest altitude band. The number of participating UAVs is varied between 2 and
20, generating 41 instances for each case. For every computation, there is a time limit of
3600 seconds. Again the described sequential method is used to solve all instances. The
results are displayed in figure 14. Allowing the UAVs to avoid conflicts by choosing dif-
ferent altitudes, the solution process is accelerated significantly. Now 676 problems were
solved to proven global optimality, while for instances up to 16 participating UAVs, 90%
of all cases were solved. Considering at most 13 UAVs, the optimal solution was found
within 240 seconds for all problems. For large-scale problems with at least 17 participating
UAVs, the number of proven optimal instances rapidly decreases to 10% at the maximum
amount of 20 UAVs.

5 Conclusions and Future Work

We extended the mission and flight planning model of [9] by more detailed and mass-
dependent flight dynamics, convex shaped restricted airspaces, and wind zones. Two
different time discretizations were applied to smooth the resulting trajectories. By lin-
earization, the model got applicable to the MILP solver GUORBI and in numerical tests
on a standard computer, several of its aspects were examined. It turned out that the pre-
sented model expansions have a significant impact on the computation time by GUROBI.
For the class of RCPs, upper bounds for the necessary amount of time steps were derived
and compared to the computed optimal solutions.

Our future work will focus on the acceleration of the solution process to solve also
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Figure 12: Minimum and the median value of the time steps for the upper bound of
proposition 3.1 and the computed optimal solution of all solved instances.

Figure 13: Trajectories of a two-dimensional RCP with 14 UAVs at time steps t = 13
(left) and t = 39 (right). Start and end location of every UAV are marked by diamonds
and the end location is labeled with the number of the UAV. The solid circle displays the
underlying circle of the RCP, while the dashed one is part of the computed upper bound.
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Figure 14: Solution time of the three-dimensional RCP depending on the number of
participating UAVs. The count of solved instances for every number of UAVs is displayed
above its respective column.

larger instances within a reasonable time and the further extension of the model to more
applications.

The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.
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