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A long-range contact process in a random environment
Benedikt Jahnel, Anh Duc Vu

Abstract

We study survival and extinction of a long-range infection process on a diluted one-
dimensional lattice in discrete time. The infection can spread to distant vertices according
to a Pareto distribution, however spreading is also prohibited at random times. We prove a
phase transition in the recovery parameter via block arguments. This contributes to a line
of research on directed percolation with long-range correlations in nonstabilizing random
environments.

Introduction

The contact process is a classical model for the spread of an infection through a spatially dis-
tributed population, where individuals may spontaneously lose the infection and become sus-
ceptible again. First introduced in Harris 1974, the model and its multiple generalisations still
attract a tremendous amount of interest coming from a great variety of fields, see e.g., Ráth
and Valesin 2022; Fontes et al. 2023; Latz and Swart 2023 for rather recent contributions and,
important in view of this manuscript, M. Hilário et al. 2022; Gomes and Lima 2022; Seiler and
Sturm 2023, where random environments are considered. Focussing on the discrete-time ver-
sion on lattices, the contact process is equivalent to certain models in oriented percolation. In
particular, the key question of survival and extinction of the infection in the contact process is
in one-to-one correspondence to the existence and absence of an infinite directed path in the
associated percolation model.

The arguably simplest nontrivial undirected percolation model is the Z2-lattice with either ver-
tices or edges being open with some probability p independently from each other. The models
are then called site (respectively bond) percolation models and the modeling idea is usually that
of water flowing through open connected components, i.e., cluster. Now the standard question
is whether water can flow all the way through, i.e., whether the origin lies in an infinite cluster
with positive probability. If so, we are in the socalled supercritical percolation phase and in the
subcritical phase otherwise. In the particular example just mentioned, the percolation phase
transition for the bond model happens at pc = 1/2 Kesten 1980.

However, water can only flow in the direction of gravity, so it is natural to consider directed
edges. A simple directed model is the north-east model on Z2 where connections only form in
the north and east direction introduced in Broadbent and Hammersley 1957. As pointed out in
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B. Jahnel, A.D. Vu 2

Durrett 1984, the directed models may have to be handled quite differently compared to their
undirected counterparts. While results are often similar, the proofs differ greatly.

As mentioned before, we want to consider contact processes, i.e., infections in space-time rather
than the flow of water under gravity. As seen in the past pandemic, a multitude of different fac-
tors influence this evolution. We want to focus on the following three aspects: range of infection,
sparse environments and lockdowns. More precisely, in our model we assume that the infection
can spread to distant vertices with polynomial decay in the probability. Additionally, we per-
manently remove lattice points via iid Bernoulli random variables, thereby diluting the lattice.
Similarly but now on the time axis, we independently mark time points at which the transmission
of the infection to other vertices is prohibited. Based on this random environment, we build our
directed bond-site percolation model.

Let us mention that spatial stretches have already been considered in Bramson, Durrett, and
Schonmann 1991. There, a vertex (t, x) is only open with probability p(x) ∈ {pbad, pgood}
where p(x) does not depend on time. It is shown that survival occurs if pgood occurs sufficiently
often and pgood is sufficiently large. On the other hand, in Kesten, Sidoravicius, and Vares 2022,
the case of temporal stretches (on the bonds) has been studied. Here, survival holds even for
any pgood > pc given that pgood occurs sufficiently often, where pc is the critical parameter for
directed bond percolation. The strategy behind both results is to consider environment group-
ings and employ a multiscale analysis, i.e., Z2 is grouped into boxes at different levels and
boxes are combined to form boxes on higher levels. We will follow this general idea as well and
base our construction on Hoffman 2005 – which we have already used in Jahnel, Jhawar, and
Vu 2023 and further extend in this paper – where percolation of the randomly stretched (undi-
rected) lattice on Z2 has been proven. Let us note that this result has recently been refined in
Lima, Sidoravicius, and Vares 2023 all the way to the critical parameter pgood > pc = 1/2.

Simultanously considering temporal and spatial stretches has its own challenges. For example
in M.R. Hilário et al. 2023, the authors were able to link the existence of a nontrivial phase
transition on the (undirected) Z2-lattice to the moments of the stretches. As mentioned there,
their current method only works with one-dimensional stretches. The problem in our setting is
that spreading in space takes time – time which might not be available due to lockdowns. We
alleviate this issue by allowing long-range infections. Let us note that considering a discrete-time
process is not a restriction as a simple discretisation scheme yields also the continuous time
case.

The paper is organised as follows:

■ In Section 1, we introduce the model as well as the main result, that is, the phase tran-
sition of survival and extinction. We also give the general idea of the proof in Section
1.3.

■ Section 2 introduces the core definitions and lemmas which allow us to prove the main
theorem. Details and their proofs are given in Section 3 and 4.
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A long-range contact process in a random environment 3

Figure 1: We start with an infection in the origin which starts infecting other houses – preferably
close ones. Lockdowns happen at t = 4 and 5, so no spreading occurs during this time.
Infections still recover at any time with probability 1 − p. Note that, here and elsewhere, we
always assume time to flow from top to bottom.

■ Section 3 deals solely with the environment grouping framework while Section 4 applies
said framework. In particular, this section deals with so called “drilling” (Section 4.5) for
the multiscale-renormalisation argument.

1 A long-range contact process (LoRaC)

The model is given as a bond-site percolation model. We consider a very long street Z where
each x ∈ Z represents a location. Normally, x contains a house with residents (probability
1− q(x)), i.e., a potential host for infections. On the other hand, x might also just be empty (with
probability q(x)). Now, assume that there is an infection starting in house y. During the day, the
infection might spread to other houses due to people travelling to other houses. While trips to
far-away destinations are rare, they still happen considerably often via e.g. airplanes (probability
(1 + |y − x|)−α). Each night, all residents of a house recover with probability 1 − p. In this
setting, the survival of an infection corresponds to a bond-site percolation problem on Z × Z
(with vertices (t, x)).

During the pandemic, governments have enforced lockdowns during which people cannot leave
their houses. Therefore, no new infections occur in that time. We mimick this in our model also:
Each morning, a global lockdown is imposed with probability q(t). An illustration of the model is
given in Figure 1.
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B. Jahnel, A.D. Vu 4

1.1 Constructing the LoRaC model

After this verbal discription, let us now give a proper definition of our model. We highlight that, as
mentioned already in the introduction, contact processes are closely linked to certain directed
percolation problems where the directionality reflects the passing of time.

Definition 1 (The LoRaC). Let q(t), q(x), p ∈ (0, 1) as well as α > 1 be given. We consider
sequences of iid Bernoulli random variables (Tt)t∈Z and (Xx)x∈Z with parameters q(t) respec-
tively q(x). We call t good if Tt = 1 and bad otherwise. Analogously, we call x good if Xx = 1.

Consider the graph G = (Z× Z, E) where E consists of directed edges of the form (t, x) →
(t + 1, y) with t, x, y ∈ Z. We study a mixed bond-site-percolation model on G where all ver-
tices and edges are open (respectively closed) independently from each other with probability

P{(t, x) is open |x is good} = p and P{(t, x) is open |x is bad} = 0 ,

and for an edge e =
(
(t, x) → (t+ 1, y)

)
P{e is open | t is good} = (1 + |y − x|)−α and P{e is open | t is bad} = δxy

where δxy = 1 iff x = y and 0 otherwise. We call the model LoRaC for long-range contact
process.

Definition 2 (Percolation). We say that the model percolates if there exists an infinite sequence
of open vertices and edges such that

(t0, x0) → (t0 + 1, x1) → (t0 + 2, x2) → . . .

almost surely. In this setting, an infection starting in x0 at time t0 will spread through open edges
and vertices and therefore survive forever.

If α ≤ 1, then each vertex has infinitely many outgoing edges and therefore we already have
an infinite number of infected houses in the first step as well as all subsequent steps. Therefore
this case is trivial. If α > 1 however, the infection may die out in certain regimes.

Proposition 3 (Extinction).

1 Let q(t), q(x) ∈ (0, 1) and α > 1 be given. Then, there exists pc ∈ (0, 1) such that for
every p < pc, the model does not percolate.

2 Let q(t), q(x), p ∈ (0, 1) be given. Then, there exists αc > 1 such that for every α > αc,
the model does not percolate.
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Proof. Point 1 and 2 follow from a simple branching process argument. In these cases, we
completely ignore the environment since it benefits extinction. α > 1 implies that the number of
potential offsprings has expectation at most 2ζ(α)− 1 where

ζ(α) :=
∞∑
k=1

k−α .

Since each offspring only survives with probability p, the actual number of offsprings is just
(2ζ(α)− 1) · p, so the process dies out if we choose p < (ζ(α) + 1)−1. (Note that ζ(α) → 1
as α → ∞.)

The question then becomes whether survival is actually possible. We prove a phase transition
in the p parameter:

Theorem 4 (Survival via low recovery). Let q(t), q(x) ∈ (0, 1) and α > 1 be given. Then, there
exists pc ∈ (0, 1) such that for all p > pc, the LoRaC percolates.

Remark (Continuous time). Let us note that this result also holds for the continuous-time ana-
logue of our model and the proof can be performed via discretisation arguments.

All results also apply for higher dimensions. Survival in Z× Z implies survival in higher dimen-
sions, i.e., Z× Zd. The proof for extinction works analogously as well with α > d.

1.2 Open questions

Our main theorem is essentially a phase transition in the recovery of single infections. However,
we may also ask ourselves if the process can survive not by houses staying sick long enough,
but rather just infecting many houses instead. Maybe some clever renormalisation argument
would already do the trick?

Conjecture 5 (Survival via long spread). Given q(t), q(x), p ∈ (0, 1), there exists αc > 1 such
that for every α ∈ (1, αc), the LoRaC percolates.

A different epidemiological concern is the effectiveness of lockdowns and sparse environments.
The comparison of the LoRaC to a Galton–Watson process with time-dependent offspring dis-
tribution tells us that sufficiently long lockdowns (i.e. q(t) close to 1) will kill off the infections in
the long run. Unfortunately, the effect of the sparse environment is more complicated to handle.

Conjecture 6 (Extinction due to sparse environment). Given q(t), p ∈ (0, 1) and α > 1, there

exists q(x)c ∈ (0, 1) such that for every q(x) > q
(x)
c , the LoRaC does not percolate.

We see that infinitely long edges are definitely required for the model to percolate. If the length
of the edges was bounded, then the whole infection would be confined to a finite region since
the infection is not able to cross over large gaps. However, the exact asymptotic decay of the
edges is crucial and we are currently unable to deal with the case of exponential decay.

DOI 10.20347/WIAS.PREPRINT.3047 Berlin 2023



B. Jahnel, A.D. Vu 6

Figure 2: The environment is divided into boxes at different levels. An orange vertex starts
infecting everything on its way down. Boxes are well connected since p is large. The infection
uses special vertices (outputs/inputs depicted as circles) to spread to other neighbouring boxes.
The environment between boxes is hostile, so usually only few connections are found.

Conjecture 7 (Fewer edges). The LoRaC has a phase transition even if edges are only present
with probability

exp(−α|y − x|) .

This case would be related to the actual “randomly stretched directed lattice” with stretches
in both the temporal Kesten, Sidoravicius, and Vares 2022 and spatial component Bramson,
Durrett, and Schonmann 1991.

Unfortunately, both ideas cannot be directly combined to prove percolation. In Bramson, Durrett,
and Schonmann 1991, one considers extremely thin boxes where the height is an exponential
of the width. While the multiscale estimates would still work, the frameworks in Hoffman 2005;
Kesten, Sidoravicius, and Vares 2022 restrict ourselves to boxes which do not permit the same
extreme scaling.

1.3 Idea of proof

The setup for the proof of Theorem 4 is quite long and it is easy to get lost in details. While –
as always – the main difficulty lies in those details, they are not as insightful to the general idea
and have already been dealt with in other works. We will not reinvent the wheel, but building a
cart from it has merit in itself. The procedure is as follows:
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A long-range contact process in a random environment 7

1 We move away from Bernoulli random variables in the LoRaC and use geometric ones
instead. Both model formulations are equivalent in terms of percolation, but the latter is
much more convenient to use.

2 The next step lies in dividing both the time and space random environments into bands.

3 From there, we will use these bands to define n boxes: rectangular subsets in Z × Z.
These boxes are roughly exponentially large in n and consist of n− 1 boxes.

4 Each n box has some special vertices on the boundary which we will call (horizon-
tal/vertical) inputs and outputs. There are exponentially many of those vertices.

5 With high probability, n boxes are “good” which means that the aforementioned inputs
and outputs are well connected. Also with high probability, the output of an n box will
connect to the input of a neighbouring n box (restricted by directionality). This is graphi-
cally represented in Figure 2.

6 As n → ∞, the n boxes will always be good which yields an infinite cluster.

We make this procedure rigorous in the next section.

2 Proof skeleton

In the following, we will give the bare proof skeleton leading up to the main result of phase
transition. We try to keep the main ideas while omitting most details and proofs.

2.1 Alternative model construction and coupling

We use an alternative, more convenient description of the model. Instead of considering Bernoulli
random variables with parameters q(t) and q(x), we directly condense consecutive Bernoulli fail-
ures into geometric random variables. Therefore, we will look at the total duration of consecutive
lockdowns instead of their existence at a given time. Similarly, we consider distances between
houses. The transition from Xx to N

(X)
x is sketched in Figure 3. In terms of percolation, both

constructions are equivalent. One just loses information at which time step exactly a house
recovers.

Definition 8 (Alternative construction). Let q(t), q(x), p ∈ (0, 1) as well as α > 1 be given.
We consider independent sequences of independent geometric random variables N (T) :=
(N

(T)
t )t∈Z and N (X) := (N

(X)
x )x∈Z with parameters q(t) respectively q(x).

Consider the graph G = (Z× Z, E) where E consists of directed edges of the form (t, x) →
(t + 1, y) with t, x, y ∈ Z. We consider a mixed bond-site-percolation model on G where –

DOI 10.20347/WIAS.PREPRINT.3047 Berlin 2023
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Figure 3: We fix the first existing house starting from 0 as the new x = 0 and line up all
subsequent houses. Only the distance between houses matters. The same can be analogously
done for the lockdowns where we only care about the total duration.

given N (T) and N (X) – all vertices and edges are open (respectively closed) independently
from each other with probability

P{(t, x) is open |N (T)} = pN
(T)
t (1)

and
P{(t, x) → (t+ 1, y) is open |N (X)} = (1 + d[x, y,N (X)])−α

where d[x, y,N (X)] is the distance between the x-th and y-th house

d[x, y,N (X)] :=

max(x,y)−1∑
i=min(x,y)

N
(X)
i .

One realisation of the condensed model is given in Figure 4.

Remark (Beyond geometric random variables). Note that for the alternative construction to
make sense, we do not actually need N (X), N (T) to be geometric random variables or even
to be N−valued. In fact, it is perfectly reasonable to assume N (X), N (T) ∈ RZ

>0 (which we will
actually do in the following rescaling lemmas).

The following two coupling lemmas allow us to freely choose the values q(t) and q(x). We will
be able to handle arbitrary α by choosing p sufficiently large, so out of the four parameters
q(t), q(x), α, p, we only need to focus on p.

Lemma 9 (Compensate q(t) by p). Let γ > 0. Then, the LoRaC with parameters γN (T) and
p1/γ (with all other values being unchanged) has the same distribution as the one with parame-
ters N (T), p. In particular, we may assume that q(t) is arbitrarily small by choosing p accordingly
close to 1.

DOI 10.20347/WIAS.PREPRINT.3047 Berlin 2023



A long-range contact process in a random environment 9

Figure 4: Simulation for q(x) = q(t) = 0.4, α = 3 and p = 0.95 starting with an infected vertex
in the origin. One can see distant infections emerging due to long edges. Areas with large N

(X)
x

are easily visible by the vertical gaps, but one can also see thin horizontal gaps where N
(T)
t is

large. As the infection spreads in space, it also seems to accelerate albeit often getting stuck at
spatial barriers.

Proof. This follows immediately from Equation (1).

Lemma 10 (Compensate q(x) via α). Let γ ≥ 1 and consider some finite index set J ⊂ Z.
Then, (

1 +
∑
i∈J

N
(X)
i

)−α

≤
(
1 +

∑
i∈J

⌈γ−1N
(X)
i ⌉

)−γα

.

i.e., the LoRaC with parametersN (X), α is stochastically dominated by the process with ⌈γ−1N (X)⌉, γα.
In particular, we may choose q(t) arbitrarily small by taking α correspondingly large in order to
show percolation.

Proof. For every a ≥ 0, we prove (1 + a)γ ≥ 1 + γa. The statement is true for γ = 1.
Differentiating in γ at γ ≥ 1 yields

(1 + a)γ · log(1 + a) ≥ (1 + a) · a/(1 + a) = a ,

so the statement holds for all γ ≥ 1. Finally,(
1 +

∑
i∈J

⌈γ−1N
(X)
i ⌉

)γ

≥ 1 + γ ·
∑
i∈J

⌈γ−1N
(X)
i ⌉ ≥ 1 +

∑
i∈J

N
(X)
i

which shows the claim after taking both sides to the power −α.
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2.2 Environment grouping scheme

Next up is the grouping scheme for the random time and space environments. Due to familiarity,
we use the framework of Hoffman 2005 rather than Kesten, Sidoravicius, and Vares 2022. We
extend it for more general values s, d and add extra details to the existing procedure.

We fix two parameters

s ≥ 32 and d < 1/11 .

Consider stretches N := (Ni)i∈Z with Ni ∈ N≥1 ∪ {∞} where Ni = ∞ for at most one i.

The bottom line is that, if the Ni are generated by extremely light-tailed iid geometric random
variables, then the grouping scheme terminates almost surely. As a reference, in Hoffman 2005
we have P(Ni ≥ l + 1) = (2−1000)l.

Notation. From now on, [m,n] will be an interval of integers, i.e.,

[m,n] := {m, m+ 1, . . . , n− 1, n} ,
(m,n) := [m,n]\{m,n} .

We group indices into bands depending on how “bad” they are. An index i ∈ Z is bad if Ni is
large. These merge into bands which are even “worse”. We do so in a way such that bad bands
end up exponentially far apart. Unfortunately, a discount (depending on the distance between
far apart bands) has to be introduced for the merging scheme to locally terminate almost surely
for geometric Ni.

We will consecutively define the k bands of N , see Figure 5 for a rough illustration.

Figure 5: k bands and labels for k = 1, 2, 5, 6. The base height for labels in the diagrams is 1.
Curly brackets show the merging order of the k bands. After k = 6, the merging stops locally.
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A long-range contact process in a random environment 11

Definition 11 (k bands and k labels). The k bands and k labels are defined inductively. A 1
band is {i} for i ∈ Z. The 1 label of {i} is

f1(i) := Ni .

For indices i, j ∈ Z, we set

Dk(i, j) := #{k bands between i and j not containing either},

e.g., at the current step k = 1, we have 1 +D1(i, j) = |i− j|.
Given a partition of Z into k bands together with their k labels, the k+1 bands and k+1 labels
are defined in the following way: First, we pick specific merging indices i, j satisfying

min
(
fk(i), fk(j)

)
− logs

(
1 +Dk(i, j)

)
> 1 . (2)

The exact procedure for picking these is given in Algorithm 12. If no such pair exists, we ter-
minate the merging scheme and set all k + 1 bands and labels to be the same as their k
counterpart. Otherwise, using these i, j, we update as follows:

1 Let [mi, ni] be the k band containing i and [mj, nj] the k band containing j. Then,
[m̃, ñ] is a k + 1 band with m̃ := min{mi,mj} and ñ := max{ni, nj}. In this case,
all s ∈ [m̃, ñ] have the k + 1 label

fk+1(s) := fk(i) + fk(j)−
⌊
d logs

(
1 +Dk(i, j)

)⌋
. (3)

Note that fk+1(s) ≥ max{fk(i), fk(j)}+ 2.

2 Let [m̃, ñ] as above. If [m,n] is a k band with [m,n]∩ [m̃, ñ] = ∅, then it is also a k+1
band. In this case, all s ∈ [m,n] retain their label fk+1(s) := fk(s).
Note that this condition is equivalent to [m,n] ̸⊂ [m̃, ñ].

Remark (Short summary). Each k band is an interval of integers. At each step, two k bands
and everything inbetween merge into a bigger k + 1 band of larger label. In Algorithm 12, we
see that k bands close to the origin are preferred. For iid geometric Ni, the merging procedure
never terminates globally since there is always something to merge.

Now, let us specify how exactly the merging indices in Definition 11 are chosen.

Algorithm 12 (Finding merging indices). Consider candidates i, j ∈ Z not belonging to the
same k band and satisfying Equation (2).

1. First, look for the smallest candidate pair i, j, that is, the i ∈ Z with the smallest |i+0.1|
(i.e., −|i| is preferred over |i|) such that |j| ≤ |i|.

DOI 10.20347/WIAS.PREPRINT.3047 Berlin 2023
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2. If 1 +Dk(i, j) < (12s)2, we choose i, j as our merging indices.

3. If not, we try to look for “better” candidates that are close to i, j:

0.1 Search for candidates with i′, j′ satisfying 1 +Dk(i
′, j′) < (12s)2 as well as

1 +Dk(i, j
′) < (12s)2 or 1 +Dk(j, j

′) < (12s)2 ,

i.e. j′ is not too far away from i or j, then continue with i′, j′ instead of i, j. (Note
that j′ may coincide with i or j.)

0.2 If there are multiple candidates in the previous Step (a), take the j′ minimizing
|j′ + 0.1| and then the i′ minimizing Dk(i

′, j′). These are our merging indices.

0.3 If no such pair i′, j′ ∈ Z exists, take i, j as the merging indices.

Remark (Better candidates). The “finding better candidates”-part is new compared to Hoffman
2005 and changes the order of merges. It is relevant for the proof of Theorem 24 Point 3 in the
base case of simple bands (Definition 37).

Two things are worth mentioning: First, if two k bands with label ≥ l are not at least sl−1 apart,
then they will merge at some point. Second, the size of a k band (in terms of the indices it
contains) is limited by its label as seen in the following.

Lemma 13 (Band size limit, Hoffman 2005, Lemma 3.1). If [m,n] is a k band with fk(m) = l,
then |n−m+ 1| ≤ (s/2)l−1.

An indicated key result is the local termination of the merging scheme for light-tailed Ni.

Lemma 14 (Exponential decay of band labels, Hoffman 2005, Lemma 3.4). Assume that N =
(Ni)i∈Z is a sequence of iid geometric random variables with P(N1 ≥ l + 1) = ql. For any
J ∈ Z, l ∈ N, and decay p ∈ (0, 1), there exists a geometric parameter q := q(s, d, p) ∈
(0, 1), such that we have

P
(
∃k s.t. J lies in a k band with label ≥ l

)
≤ pl−1 .

In particular, the following holds almost surely: For each J ∈ Z, there exists a K ∈ N such
that for all k ≥ K , all the n bands containing J are identical.

Since the k bands are static at some point, we may now define the “k = ∞” bands.

Definition 15 (Bands and labels).

1 An (integer) interval [m,n] is called a band (without k in front) if there exists some
K ∈ N such that [m,n] is a k band for all k ≥ K . For j ∈ Z, the label of j is
f(j) := limk fk(j). The label of a band [m,n] is f(m).

DOI 10.20347/WIAS.PREPRINT.3047 Berlin 2023



A long-range contact process in a random environment 13

2 If N = (Ni)i∈Z is such that Z decomposes into bands that are finite, then we call N
good.

Note that bands and their labels are always finite, i.e., f(m) < ∞, except for the (potential)
band containing Ni = ∞.

From now on, we only deal with good N = (Ni)i∈Z.

Corollary 16. In the setting of Lemma 14, we may with positive probability set N0 = ∞ without
changing the bands of N and only changing the label of the band containing 0 to ∞.

Setting N
(T)
0 = ∞ means that we consider all vertices of the form (0, x) to be closed. In this

way, Corollary 16 allows us to fix 0 as a “base height” and therefore restrict ourselves to a half
space.

Definition 17 (Neighbouring bands and regularity). We enumerate bands as BN
m ,m ∈ Z

where BN
0 is the band containing 0 and BN

1 is the band to the right of BN
0 .

■ Two bands BN
m and BN

m′ are called neighbouring bands with labels ≥ l if they both
have labels ≥ l and there is no band with label ≥ l inbetween.

■ The good sequence N = (Ni)i∈Z is called regular if for all l and all neighbouring bands
BN

m and BN
m′ with labels ≥ l, we have |m − m′| ∈ [sl−1, 12 · sl−1), i.e., there are at

least sl−1 − 1 and at most 12sl−1 − 1 bands between BN
m and BN

m′ .

A regular sequence is “regular” in the sense that bands with certain labels show up regularly
and are not spread too far apart. A good sequence N = (Ni)i∈Z can always be made regular
by artificially raising individual Ni (Lemma 33). We omit further details here since they are not
needed to phrase the general proof skeleton. The condition of |m−m′| ≥ sl−1 is automatically
satisfied:

Lemma 18 (Hoffman 2005, Lemma 3.6). If BN
m and BN

m′ have label ≥ l, m ̸= m′, then
|m−m′| ≥ sl−1.

Proof. If not, these bands would have merged before.

Our next object of interest is “the space between neighbouring bands” since this is where our
model will build up its “bulk” before percolating through bands.

Definition 19 (l segments). Let N be good and [i1, i2], [i3, i4] be two neighbouring bands of
label ≥ l (for N ). Then we call (i2, i3) an l segment. We refer to Figure 6 for an illustration of
bands and segments for regular N .
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Figure 6: Bands (green bars) and segments (curly brackets) for regular N . In this picture, there
are always at least four l segments between two neighbouring bands of label l.

Lemma 20 (Number of l segments between neighbouring bands). LetN be regular andBN
m , BN

m′

be neighbouring bands of label≥ l+1. Let {m0, . . . ,mk} = {m̃ ∈ [m,m′] |BN
m̃ has label ≥

l}. Then, ⌈s/12⌉ ≤ k < 12 · s. In particular, there are between ⌈s/12⌉ and 12 · s many l
segments separated by bands of label l between two neighbouring bands of label ≥ l + 1.

Proof. Since mi −mi−1 < 12 · sl−1 by regularity and m′ −m = mk −m0 ≥ sl, we have
k · 12 · sl−1 ≥ sl which shows the first inequality. The second follows from mi −mi−1 ≥ sl−1

and m′ −m = mk −m0 < 12 · sl by the same reasoning.

Apart from the termination of the merging scheme (Lemma 14), the above Lemma 20 is this
section’s important take-away. It tells us that we always find a minimal amount of segments
between two bands. Regularity gives an upper bound.

2.3 n boxes in Z× Z

The framework for the environment grouping has been established. We use it on the temporal
environment with parameter st and the spatial one with sx. Moving along our rough proof outline
of Section 1.3, we now use this grouping to build boxes. These boxes will be connected using
“inputs” and “outputs” which are just vertices in special locations.

Definition 21 (n boxes, (m,n) strips and n gaps).

■ If [t1, t2] is a temporal 2 segment and if {x} or {x− 1} is a spatial band of label 1, then
any rectangle [t1, t2] × {x} is a 1 box. (Equivalently: if for every spatial band [x1, x2],
we have that x /∈ (x1, x2].)

■ Let n ∈ N≥2. Let [t1, t2] be a temporal n + 1 segment, i.e. the interval between two
neighbouring bands with label n + 1 (see Definition 19), and (x1, x2) be a spatial n
segment. Then, we call

[t1, t2]× (x1, x2]

an n box. (Yes, x2 included!)
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Figure 7: The inner structure of a n + 1 box. We have grey n boxes with n gaps and (n +
1, n) strips between neighbouring boxes. Curly brackets depict segments while square brackets
depict bands.

■ Let n ∈ N≥1. Let (t2, t′1) be a temporal n+1 band and (x1, x2) be a spatial m segment.
Then, we call

(t2, t
′
1)× (x1, x2]

an (n+ 1,m) strip. In other words: A (n+ 1, n) strip is the temporal interruption sepa-
rating two vertically neighbouring n boxes.

■ Let n ∈ N≥1. Let [t1, t2] be a temporal n+ 1 segment and [x2, x
′
1] be a spatial n band.

Then, we call
[t1, t2]× [x2, x

′
1]

an n gap. In other words: An n gap is the spatial interruption separating two horizontally
neighouring n boxes (starting at the right-most border of the left box).

An illustration of an n+ 1 box is given in Figure 7.

Remark (Renormalisation). We have to use n + 1 rather than n bands in the temporal part
because we essentially inserted a renormalisation step there. This unfortunately also introduces
a lot of bloat in notation. Lemma 20 tells us that an n+1 box consists of between ⌈sx/12⌉+1
and 12sx + 1 many columns as well as between ⌈st/12⌉ and 12st many rows of n boxes.
These are separated by n gaps respectively (n, n) strips.
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Next, we want to formally define good boxes as well as their inputs and outputs now. The di-
rected case makes things a bit more complicated, but the multiscale arguments still work in a
nice way. We will often need to connect sets of vertices with each other, so it makes sense to
first introduce the following notion (slightly different to Grimmett and Hiemer 2002):

Notation ((Fully) connected sets). Let A,B ⊂ Z2 be two sets of vertices. We write

A; B

if there are v ∈ A,w ∈ B such that v ; w, i.e. there exists an open directed path from v to
w. We write

A;ffc B

if for every v ∈ A and every w ∈ B, we have v ; w. Note that

A;ffc B ; C ;ffc D =⇒ A;ffc D .

Remark. Before directly moving on to the definition of inputs and outputs, let us recall the basic
idea first. Each “good” n box Bn will have four sets of vertices In[ q ](Bn) (on the top), In[≒](Bn)
(on the sides), Out[≒](Bn) (also on the sides) and Out[ q ](Bn) (on the bottom). The Out stands
for outgoing connections to other boxes’ ingoing connections In. For example, Out[ q ](Bn)
stands for vertices which potentially build an open path to In[ q ](B′

n) for another n box B′
n

directly below Bn. Since the cardinality of these sets grows exponentially in n, this means we
will have exponentially many trials to bridge an (n, n) strip (and analogously n gaps).

The locations of In[≒](Bn) and Out[≒](Bn) have to be set carefully so that the inputs and
outputs are sufficiently well connected inside Bn. Furthermore, we are only able to make state-
ments on “good” n boxes, so the following definition will appear quite bloated.

Definition 22 (Good n boxes, inputs and outputs). Let Bn be an n box.

■ For n = 1, the n box Bn = [t1, t2] × {x} is good if all vertices are open (in the sense
of Definition 8). In this case, we write In[ q ](Bn) := {(t1, x)}, Out[ q ](Bn) := {(t2, x)}
as well as

In[≒](Bn) := (t1, t2]× {x} and Out[≒](Bn) := [t1, t2)× {x} .

■ An n gap between two horizontally neighbouring boxes Bn, B
′
n is good if

Out[≒](Bn); In[≒](B′
n) and Out[≒](B′

n); In[≒](Bn) .

■ An (n, n) strip between two vertically neighbouring boxes Bn, B
′
n is good if

Out[ q ](Bn); In[ q ](B′
n) .
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■ We call an n + 1 box Bn+1 good (and otherwise bad) if the sum of the number of the
following bad objects is at most 1:

A) n boxes inside Bn+1,

B) (n+ 1, n) strips between two n boxes inside Bn+1,

C) n gaps between two n boxes inside Bn+1.

■ In the case of Bn+1 being good, we first number its n boxes (Bi,j)1≤i≤lt,1≤j≤lx by their
location (with i = j = 1 being top-left) where lt ∈ [⌈st/12⌉, 12st] and analogously
lx − 1 ∈ [⌈sx/12⌉, 12sx]. Next, we set (for some κ[≒] ∈ N specified in Equation (4))

I := [0, κ[≒] + 4) + 12sx + 2 .

Then, we can finally define the inputs and outputs of the n + 1 box. The vertical in-
puts/outputs are as follows: For j ∈ {1, . . . , lx}, we set

In[ q ](Bn+1) :=
{
v ∈ In[ q ](B1,j) |B1,j is good

}
Out[ q ](Bn+1) :=

{
v ∈ Out[ q ](Blt,j) |Blt,j is good

}
.

Let ∂Bn+1 ⊂ Z × Z be the boundary, i.e. the set of all vertices in Bn+1 having a
neighbour outside of it. Then,

In[≒](Bn+1) :=
{
v ∈ In[≒](Bi,j) ∩ ∂Bn+1 |Bi,j, Bi+1,j are valid, j ∈ {1, lx}, i ∈ I

}
Out[≒](Bn+1) :=

{
v ∈ Out[≒](Bi,j) ∩ ∂Bn+1 |Bi−1,jBi,j are valid, j ∈ {1, lx}, i ∈ I

}
where we say that n boxes Bn, B

′
n are valid if both are good and Out[ q ](Bn) ;

In[ q ](B′
n).

We refer to Figure 8 for an illustration.

The parameters sx and st roughly correspond to the width respectively height of the given
boxes. Thus, they also influence the number of connectors between boxes: The larger sx, the
larger the number of vertical connectors between vertically neighboured boxes (since the boxes
are wider). The same holds for st. We will capture the minimal amount of vertical (respectively
horizontal) connectors via the parameters κ[q] and κ[≒].

We set the following parameters:

κ[q] := ⌈sx/12⌉ − 2 and κ[≒] := ⌈st/12⌉ − 2 · (12sx + 1)− 4 (4)

and assume κ[q] ≥ 64 (additional conditions on κ[≒] are specified later).
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Figure 8: Connecting Out[≒](Bn+1) to In[≒](B′
n+1). On the right, we can see that not all n

boxes are valid since their respective In[≒]/Out[≒] might not be reachable. In that picture,
Bmin(I)+1,lx is bad (white). Therefore, that sub-box as well as Bmin(I)+2,lx do not contribute to
Out[≒](Bn+1). For In[≒](B′

n+1), it is only B′
max(I)−1,1 that does not contribute since the gap to

B′
max(I),1 is bad, i.e. In[≒](Bmax(I)−1,1) might not be able to connect to the rest of the n + 1

box B′
n+1.

Remark. The spatial parameter sx can just be fixed to 12 · 66 to ensure κ[q] ≥ 64. The value
of st (equivalently κ[≒]) will however depend α and a small parameter p which governs the
probability of bad boxes introduced later in Lemma 24. Also, for a rough estimate on the values:
We already have

sx ≥ 11 · 66 + 1 ≥ 700 and st ≥ 17′000 ,

so this is quantitively unfeasible.

2.4 Towards proving percolation

The parameters κ[q], κ[≒] had to be set in such a convoluted way to ensure the following
connectivity inside good n boxes:

Lemma 23 (Connecting inputs and outputs inside). Let n ∈ N. Let Bn be a good n box. Then,

In[ q ](Bn);ffc Out
[≒](Bn)

In[ q ](Bn);ffc Out
[ q ](Bn)

In[≒](Bn);ffc Out
[ q ](Bn) .
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A long-range contact process in a random environment 19

In particular, if B′
n is a horizontally neighbouring good n box with the n gap inbetween being

good as well, then
In[ q ](Bn);ffc Out

[ q ](B′
n) .

The application of this lemma can be retrospectively seen in Figure 2.

We may finally state the main auxilliary theorem for the multiscale argument. Using the proba-
bility of good n boxes, we are then in the state to prove the main theorem on the survival of the
infection (Theorem 4).

Lemma 24 (Main auxilliary lemma, Hoffman 2005, Lemma 4.3). Let p ∈ (0, 1) and κ[q] ≥ 64.
For all sufficiently large κ[≒] ∈ N (depending on p, κ[q]), there exists pc ∈ (0, 1) such that in
the LoRaC model for any p ≥ pc

1 P(Bn is good) ≥ 1− p
n+1 for any n box Bn.

2 Let Gn be a temporal n gap (between two neighbouring n boxes). Then,

P(Gn is good) ≥ 1− p
n+1 .

3 For an (n+ 1, n) strip S̄ between two n boxes Bn, B
′
n, we have

P(S̄ is good) ≥ 1− p
n+1 .

Proof outline. For the reader’s convenience, we will give a brief overview over the main steps.
The complete proof will be given in Section 4.

■ Point 1 follows from combinatorial estimates (Lemma 45) and induction after proving Point
2 and 3.

■ n gaps are exponentially large in n (Lemma 39). Since we have long-range edges, we
can guarantee Point 2 by choosing κ[≒] large depending on α (Lemma 47). We do so
by crossing the whole n gap in a single jump.

■ Point 3 follows from the main difficulty of the whole procedure: the “drilling” (Proposition
48). Luckily, the proof in Hoffman 2005 still works here.

Taking Lemma 24 Point 1, we can finally prove the existence of an infinite directed path and in
particular the phase transition of the LoRaC in the parameter p.

Proof of Theorem 4. Puzzling everything together is still something.
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1 We first take sx = 12 · 66, p = 1/4.

2 Using Lemma 10, we may assume at the cost of α that q(x) is sufficiently small such that
Lemma 14 holds for d = 1/12, in particular we may use the whole framework of Section
3.

3 Lemma 24 gives us some st and pc for which it holds.

4 Using Lemma 9, we may assume at the cost of p that q(t) is sufficiently small such that
Section 3 can be used for that st and d.

5 Corollary 16 lets us fix base height 0 for a positive fraction of temporal environments, i.e.
N

(T)
0 = ∞.

6 Next, choose u = (1, 42) ∈ Z>0 × Z. This lies in some n box for n large enough. By
Lemma 24 Point 1 and Borel–Cantelli, there exists some N0 such that all the n boxes Bn

with n ≥ N0 containing u are good.

7 Now, take any v ∈ In[ q ](BN0). Since N
(T)
0 = ∞, we have v ∈ In[ q ](Bn) for every

n ≥ N0, in particular v ;ffc Out(Bn). Therefore, v ; w for infinitely many w. This
already yields us an infinite directed path: Set v0 := v. Since v0 only has finitely many
direct successors, we may choose any of these successors v1 that has infinitely many
w with v0 → v1 ; w. Inductively continuing this scheme, we obtain an infinite path
v0 → v1 → v2 → . . . .

8 N (T) = (N
(T)
i )i∈Z is an iid sequence, in particular ergodic. So

P{N (T) s.t.P(∃v ∈ Z2, v ;∞|N (T)) = 1} ∈ {0, 1} .

Since we have proven percolation on a positive fraction of environments, it has to hold for
almost all of them.

3 Details: environment grouping

Now, that the rigorous roadmap has been laid out in Section 2, it is time to flesh it out. The main
goals in the current sections are:

■ Showing Lemma 14, i.e., local termination of the merging scheme.

■ Showing how good sequences can always be made regular and even “very regular” (Lem-
mas 33, 36).
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■ Introducing the notion of simple bands (Definition 37) and how they are well-behaved
(Lemma 39).

■ Splitting up very regular bands (Lemma 40).

3.1 Local termination of merging scheme

We start by quantifying the maximal “size” of bands, i.e., giving the proof for Lemma 13.

Proof of Lemma 13. The statement is true for l ≤ 3 since it implies m = n. Now suppose
[m,n] is a k band with m ̸= n and fk(j) = l > 3. Then, there must be some k′ < k
and m′, n′ such that the k′ bands [m,m′] and [n′, n] merge into [m,n]. We denote l :=
fk′−1(m), l̄ = fk′−1(n) and N := Dk′(m

′, n′). Then, there are at most N/sL−1 many k′

bands with labels L between [m,m′] and [n′, n] (otherwise some would have merged). Using
the induction hypothesis on the k′ bands of labels L

|n−m+ 1| ≤ |m′ −m+ 1|+ |n′ −m′ − 1|+ |n− n′ + 1|

≤( s
2
)l−1 + ( s

2
)l̄−1 +

∑
L=1

∑{
|b′ − b+ 1|

∣∣∣ [b′, b] ⊂ (m′, n′) is k′ − 1 band with label L
}

≤( s
2
)l−1 + ( s

2
)l̄−1 +

∑
L

(N/sL−1) · ( s
2
)L−1 ≤ ( s

2
)l−1 + ( s

2
)l̄−1 + 2N

(∗) ≤( s
2
)max{l,l̄}−1 + ( s

2
)min{l,l̄}−1 + 2 · smin{l,l̄}−1 ≤ 4

s
· ( s

2
)max{l,l̄} + 2

s
· smin{l,l̄}

(∗∗) ≤4
s
( s
2
)l−1 + 2

s
· smin{l,l̄} ≤ 4

s
( s
2
)l−1 + 2

s
· sl/(2−d)

(∗∗∗) ≤4
s
( s
2
)l−1 + 1

2
· ( s

2
)l−1 ≤ ( s

2
)l−1 ,

where (∗) follows from Equation (2) being equivalent to N < smin{l,l̄}−1 − 1, (∗∗) uses l ≥
max{l, l̄}+ 1 and (∗ ∗ ∗) uses Equation (3) for

l = max{l, l̄}+min{l, l̄} − d logs(1 +N)

≥ 2min{l, l̄} − d(min{l, l̄} − 1) ≥ (2− d)min{l, l̄},

which yields
4 · sl/(2−d) ≤ ( s

2
)l ,

(together with d < 1/11 ≤ 2− (1− log32 4)
−1 ≤ 2− (1− logs 4)

−1).

Corollary 25 (Combining distant bands, Hoffman 2005, Lemma 3.2). If [m,m′] and [n′, n]
merge at step k + 1, then

N := #
{
k bands lying in (m′, n′)

}
≥ 2

3
(n′ −m′ − 1) .
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Proof. Let Nl be the number of k bands in (m′, n′) with label l. Then Nl ≤ N/(sl−1) since
otherwise some would have merged first. Furthermore N =

∑
l Nl, so

n′ −m′ − 1 =
∑{

b′ − b+ 1 | [b, b′] is a k band in (m′, n′)
}

≤ N1+N2 +
∑
l≥3

N/(sl−1)(s/2)l−1 ≤ N1 +N2 +N/2 ≤ 3
2
N,

which shows the claim.

Next we consider generators. They are relevant in this subsection as well as in Section 3.2.
Generators of a k band are, loosely speaking, the boundary points of < k bands that are
merged to form the final k band.

Definition 26 (Generators of a k band). Let [m,n] be a k band.

■ The k generators of [m,n] are m and n.

■ For k′ < k, the k′ generators of [m,n] are the k′ generators of the k′ bands containing
a k′ + 1 generator of [m,n].

■ For 1 generators, we will omit the 1 and just call them generators.

■ We call a generator g a maximal generator if it satisfies the following:

If the k′ < k bands [m1, n1], [m2, n2] with g ∈ [m1, n1] combine, then fk′(m1) ≥
fk′(m2).

■ One verifies that k bands B always have a maximal generator.

The next lemma limits the possibilities of generators to be spread apart.

Lemma 27 (Hoffman 2005, Lemma 3.3). Let i1 < i2 < · · · < in be the generators of an k
band with

n∑
j=1

f1(ij) = m.

Then, there exists C(s, d) > 0 such that

n∑
j=2

⌊log2(ij − ij−1 + 1)⌋ ≤ C(s, d)m.
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Proof. If n = 1, we are done. For each j ∈ [2, n], let kj be the value such that there exists a
and b such that the kj bands [ia, ij−1] and [ij, ib] merge into [ia, ib]. Let Nj be number of kj
bands between [ia, ij−1] and [ij, ib]. By the previous Corollary 25

2
3
(ij − ij−1 + 1) ≤ 1 +Nj.

We have that n ≤ m/2 as well as

n∑
j=2

⌊d logs(1 +Nj)⌋ ≤ m, (5)

whose proof will be given right after. ⌊xy⌋ ≥ x⌊y⌋ − 1 yields the following chain of implication

m ≥
n∑

j=2

⌊d logs(23(ij − ij−1 + 1))⌋ ≥
n∑

j=2

d logs 2 · ⌊log2(23(ij − ij−1 + 1))⌋ − n

m
3 log2 s

2d
≥

n∑
j=2

⌊log2(23(ij − ij−1 + 1))⌋ ≥
n∑

j=2

⌊log2(ij − ij−1 + 1)⌋ − n

m
(3 log2 s

2d
+

1

2

)
≥

n∑
j=2

⌊log2(ij − ij−1 + 1)⌋ .

The claim follows from choosing C(s, d) :=
(3 log2 s

2d
+ 1

2

)
.

Proof of Inequality (5). By the assumption
∑n

j=1 f1(ij) = m, we first see that n ≤ m/2 since
f1(ij′) ≥ 2 for generators. Equation (3) gives

fkj+1(ij) = fkj(ij−1) + fkj(ij)− ⌊d logs(1 +Nj)⌋ .

If for example minj kj = kj′ is the smallest, i.e., we first combine [ij′−1] and [ij′ ], this would
yield

m =
n∑

j=1

f1(ij) =
n∑

j=1

fkj′ (ij) =
n∑

j=2

fkj′+1(ij′) + ⌊d logs(1 +Nj′)⌋ .

Continuing iteratively with fkj′+1 now instead of f1 yields

m = fk′(ij′) +
n∑

j=2

⌊d logs(1 +Nj)⌋ ≥
n∑

j=2

⌊d logs(1 +Nj)⌋ ,

which finishes the calculation. (Even fk′(ij′) ≥ 2n since merges raise labels by at least 2.)

We are finally in the spot to prove the first milestone: local termination of the merging scheme.
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Proof of Lemma 14. Let q1/2 ≤ p · s−3C(s,d)/2 and l > 1. Assume that J actually lies in a k
band with label ≥l and generators i1 < · · · < in. In the case that i1 = in = J , the claim
follows

P(f1(J) ≥ l) = P(NJ ≥ l) = ql−1 ≤ pl−1 .

Otherwise, we continue. The ij satisfy by the label updating procedure in Definition 11

m :=
n∑
j

f1(ij) ≥ l .

By Lemma 27 above and Lemma 28 below, we have at most 2C(s,d)m choices for ⌊log2(i2 −
i1 + 1)⌋, . . . , ⌊log2(in − in−1 + 1)⌋.

Given one such choice, we yet again have 2(C(s,d)+
1
2
)m choices for (i2 − i1), . . . (in − in−1):

Set aj := ⌊log2(ij− ij−1+1)⌋, in particular ij− ij−1 ≤ 2aj+1. There are 2aj+1 possibilities
for each individual j, so in total for the whole ensemble

n∏
j=2

2aj+1 ≤ 2C(s,d)m+n ≤ 2{C(s,d)+1/2}m .

Furthermore, there are at most (s/2)l−1 possible starting locations for i1 since by Lemma 13

i1 ≤ J ≤ i1 + (s/2)l−1 − 1 .

So in total, we have at most (s/2)l−1 · 2(2C(s,d)+1)m choices for i1, . . . in. For each choice of
i1, . . . , in, there are at most 2m choices for f1(i1), . . . f1(in) (by Lemma 28 below), so we
have at most

(s/2)l−1 · 2(2C(s,d)+1)m · 2m ≤ s3C(s,d)m

choices for the combined ij and f1(ij). Each such choice has probability qm−n ≤ qm/2 since
P{f1(ij) = s} ≤ qs−1. Therefore, for q1/2 ≤ p · s−3C(s,d)/2 (in particular q ≤ p/2)

P
(
∃k s.t. j lies in an k band with label ≥ l

)
≤

∑
m≥l

[
s3C(s,d)q1/2

]m
+ ql−1

≤
∑
m≥l

(p/2)m + (p/2)l−1 = pl
1

2l(1− p/2)
+ (p/2)l−1 ≤ 2−(l−1) ·

[
pl + pl−1

]
≤ pl−1,

as desired.

Here is the auxiliary lemma we previously used.
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Lemma 28 (Combinations of sums). Let S ∈ N. Then

N(S) := #
{
(a1, . . . , ak) | aj ≥ 1,

∑
aj = S

}
= 2S−1 ,

Ñ(S) := #
{
(a1, . . . , ak) | aj ≥ 1,

∑
aj ≤ S

}
≤ 2S − 1 .

Proof. For S = 1, we have N(S) = 1. Assume the claim is true for S. Then for S + 1:

Ñ(S + 1) = #
{
(a1, . . . , ak) | aj ≥ 1,

∑
aj ≤ S + 1

}
= #

⋃
R≤S

{
(a1, . . . , ak, S + 1−R) | aj ≥ 1,

∑
aj = R

}
∪ {(S + 1)}

(induction) = 1 +
∑
R≤S

2R−1 = 2S − 1

On the other hand

N(S + 1) = Ñ(S + 1)− Ñ(S) = 2S+1 − 2S = 2S

proves the claim.

We have seen in Lemma 13 that the “size” of a band is limited by its label l. To cross n gaps in
our percolation model, we are more interested in the actual consecutive stretch. It turns out that
this is also just an exponential in l.

Lemma 29 (Total weight of a band). Let [a, b] be a band of label l. Then,

b∑
i=a

f1(i) ≤ sl−1 .

Proof. We have f1(i) ≤ l for every i ∈ [a, b]. Using Lemma 13, we have |b− a| ≤ ( s
2
)l−1, so

b∑
i=a

f1(i) ≤ l · ( s
2
)l−1 ≤ sl−1

since l ≤ 2l−1.

Recall from Definition 17 that we may always enumerate the (k) bands. The exponential decay in
Lemma 14 shows that it is quite rare to encounter bands with high labels close to the origin. This
is the reason why we may set N0 := ∞ for a positive fraction of environments N = (Ni)i∈Z.
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Lemma 30 (High labels near origin). Consider the parameter regime of Lemma 14 for p small
enough such that 24

∑
l≥1(sp)

l < 1. Consider the event

Al :=
{
∀bands BN

m with 1 ≤ |m| ≤ 12 · sl, their labels are ≤ l
}
.

Then,
P(Al) ≥ 1− 24 · (sp)l and P(∩Al) > 0 ,

in particular, almost surely Al happens infinitely often.

Proof. By Lemma 14, we have

P
(
Al

)
≥1−

12·sl∑
|m|=1

P(BN
m has label > l) ≥ 1− 24 · (sp)l and P

(
∩ Al

)
≥ 1− 24

∞∑
l=1

(sp)l > 0 .

The last statement follows from the Borel–Cantelli lemma.

Proof of Corollary 16. This follows from Lemma 30 and noting that all other bands are suffi-
ciently far away from 0 so that they do not merge.

3.2 Regular bands

The next point on the bucket list is making N regular. N being unbounded guarantees the
existence of bands of labels ≥ l for all l ∈ N and that each such band has exactly 2 neighbours.
We omit most proofs since they are identical to the ones in Hoffman 2005.

Lemma 31 (Raising labels of maximal generators, Hoffman 2005, Lemma 3.7). Let N =
(Ni)i∈Z be good. Let BN

m be a band of label l and i′ ∈ Z be a maximal generator of BN
m . If for

all bands BN
m′ of label > l, we have that |m−m′| ≥ sl, then the sequence

Ñi =

{
Ni i ̸= i′

Ni + 1 i = i′

satisfies the following properties:

1 BN
n,k = BÑ

n,k ∀n ∈ Z, k ∈ N, i.e. all k bands are identical and Ñ is also good.

2 If the k label of BN
n,k is t, then the k label of BÑ

n,k is t+ 1{i′ ∈ BN
n,k}.

In particular, i′ is still a maximal generator of BÑ
m .

Lemma 32 (Making N more regular, Hoffman 2005, Lemma 3.8). Let N be good. For each
L ≥ 1, there exists NL = (NL

i )i∈Z such that
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1 N ≤ NL ≤ NL+1,

2 BN
m,k = BNL

m,k for all m ∈ Z, k ∈ N, and

3 if BNL

m and BNL

m′ are neighbouring bands with label ≥ l and if l ≤ L, then

|m−m′| ∈ [sl−1, 3 · sl−1) .

Furthermore, NL can be chosen such that (NL
i )L∈N is unbounded for at most one i.

Lemma 33 (Making sequences regular, Hoffman 2005, Lemma 3.9). Let N be good.

1 There exists a sequence Ñ ≥ N such that all the k bands for Ñ are identical to the k
bands for N and such that for neighbouring bands Bm, Bm′ of label ≥ l, we have

|m−m′| ∈ [sl−1, 3 · sl−1) ,

in particular, Ñ is regular. In this case, we have Ñ = (Ni)i∈Z with Ñi ∈ N ∪ {∞} with
at most one Ñi = ∞. (The labels may differ between N and Ñ .)

2 There exists a sequence Ñ ≥ N such that all the k bands for Ñ are identical to the k
bands for N and such that for neighbouring bands Bm, Bm′ of label ≥ l, we have

|m−m′| ∈ [sl−1, 6 · sl−1) ,

in particular, Ñ is regular. In this case, we have Ñ = (Ni)i∈Z with Ni ∈ N. (The labels
may differ between N and Ñ .)

Proof. With NL from Lemma 32, we consider

N∞
i := lim

L→∞
NL

i ∈ N ∪ {∞} .

We make the following observations:

1 If N∞
i = ∞, then i must be the maximal generator of some band BN

m .

2 N∞
i = ∞ for at most one i. Otherwise, we would find two separate bands BN

m ∋ i and
BN

m′ ∋ i′. The label of BNL

m is bounded from below by NL
i , respectively NL

i′ for BNL

m′ .
So for l > 0 such that |m − m′| < sl and L such that min(NL

i , N
L
i′ ) ≥ l, we would

violate Lemma 32 Condition 3, on the minimal distance between bands.

Let i∞ be the value with N∞
i∞ = ∞. We set

Ñi =

{
limL→∞NL

i i ̸= i∞

∞ i = i∞
.
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By construction, we have that neighbouring bands BÑ
m , BÑ

m′ always satisfy

|m−m′| ∈ [sl−1, 3 · sl−1) ,

showing the first statement. The second claim follows from choosing Ñi∞ := Ni instead of
∞.

Remark (Manipulations). The explicit construction to make bands regular as well as Lemma 30
allow us various manipulations on the environment and locations of bands as well as segments.

■ In Jahnel, Jhawar, and Vu 2023, we tweak the construction such that the origin lies not on
one of the “border segments”, but rather on the actual inside with at least two l segments
distance to the bands of label ≥ l. Later, this ensures the existence of a circuit around
the origin. This is why we always use 12s for compatibility rather than just 6s.

■ In our case here, we will do quite the opposite: On a positive fraction of environments
N (T), we may set N (T)

0 := ∞ without changing any bands (Corollary 16), effectively
considering percolation on the half-plane Z>0 × Z. Ergodicity then yields the almost-
sure existence of an infinite cluster on Z× Z.

3.3 Very regular bands and simple bands

Lastly, we need a bit more information about the internal structure of bands. This is needed to
obtain crossing probabilities of strips since we will break bands apart again. The short summary
for being very regular is: If two k bands combine, then the space between them had to be regu-
lar. The q is a parameter of the distance between those bands and will play quite an important
role.

Remark (k bands and n segments). Short reminder that k band refers to the k-th merging step
while n segment refers to the segment between to neighbouring (k) bands of label n.

Definition 34 (l segments (2)). In addition to Definition 17, we will also call (i2, i3) an l segment
if there is a good sequence M = (Mi)i∈Z with

Mi = Ni ∀i ∈ (i2, i3)

and (i2, i3) is a l segment for M . We call the segment regular if it is generated by a regular
sequence M .

Remark. The situation of the following Definition 35 is similar to Figure 6. But since the “neigh-
bouring” n bands combine, they segments and bands inbetween do not have “level” n − 1 but
rather q with q < n− 1.

Definition 35 (Very regular k bands and n segments). Let a regular sequence N be given.
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1 Any k band that is a singleton [i, i] is very regular.

2 The 1 segment ∅ is very regular.

3 Let [a, d] be a k band with label l which was formed by combining the k̃ bands [a, b]
and [c, d] into the k̃ + 1 band [a, d]. [a, d] is called very regular if there are b1 =
b, b2, . . . , bm as well as c1, c2 . . . , cm−1, cm = c with m ≤ 12s as well as a q ≥ 1 such
that

3.1 All k̃ bands inside the interval [a, d] are very regular k̃ bands.

3.2 For all s, we have that [bs, cs] is a very regular q segment.

3.3 For all s < m, we have that [cs, bs+1 − 1] is a very regular k̃ band with label q.

4 An n segment S is called very regular if

4.1 S is a regular n segment. (For n = 2 and S = [a, b], this implies s ≤ (b−a)+2 <
12s.)

4.2 All k bands with labels n− 1 inside S are very regular.

4.3 All n− 1 segments inside S are very regular.

5 A band is called very regular if it is a very regular k band for some k.

6 A regular sequence N is called very regular if all the bands generated by N are very
regular.

The notion of “very regular” allows us to split bands into smaller parts – enabling the induction
step in Proposition 48. As in Lemma 33, we make sequences very regular without changing the
final band structure.

Lemma 36 (Very regular sequences, Hoffman 2005, Lemma 3.12). Let N be good and regular.
Then, there exists N ≥ N such that N is very regular and all bands and labels are identical
under both N and N . In particular, we may always replace a regular sequence with a very
regular sequence without changing its band structure nor labels.

Proof. This is an analogon to Lemma 32 and is proven similarly (by establishing a variant of
Lemma 31). The labels of the final bands being unchanged follows from the construction: To
make bands very regular, one only needs to change the labels of the k bands on the “inside”.
But these labels do not contribute to the label of the final combined band.

There is one edge case that we have to worry about due to technical issues: We want to combine
bands that are close to each other first. This led to the quite cumbersome merging scheme in
Definition 11/Algorithm 12 as well as the following:
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Definition 37 (Simple k bands).

1 Any k band that is a singleton [i, i] is simple.

2 Let [a, d] be a k band with label l which was formed by combining the k̃ bands [a, b] and
[c, d] into the k̃+1 band [a, d]. [a, d] is called simple if both [a, b] and [c, d] are simple
k̃ bands as well as

1 +Dk̃(b, c) < (12s)2

(see Definition 11, Algorithm 12).

Remark (q in simple bands). By Definition 37 and Algorithm 12, we see that simple bands satisfy
q ≤ 2 with q as in Definition 35 above. Furthermore, if

s ≥ 72 = (12)2/2 ,

then this is even an equivalence since for q = 3, we would automatically have

1 +Dk̃(b, c) ≥ 2 · s3 > (12s)2 .

(Using that the minimal size of a 3 segment is s2.) This allows for an easy characterisation.

Lemma 38 (Sufficient criterion for simple bands). Let [a, d] be a k band with label l which was
formed by combining the k̃ bands [a, b] and [c, d] into the k̃ + 1 band [a, d]. If

1 +Dk̃(b, c) < (12s)2 ,

then [a, b] and [c, d] also had to be simple k̃ bands. In particular, if s ≥ 72 and q ≤ 2, then
[a, d] is simple.

Proof. One checks that if either [a, b] or [c, d] have been non-simple, then it would contradict
with Step 2 in the construction of k bands in Definition 11. The last statement follows from the
previous remark.

The nice thing about simple bands – and the sole reason we need to look at them – is that
their “stretch” grows at most linearly in l (rather than the extremely crude exponential estimate
in Lemma 29):

Lemma 39 (Maximal stretch of simple bands). Let s ≥ 72. Let [a, d] be a simple k band with
label l ≥ 2. Then, ∑

i∈[a,d]

fk(i) ≤ l + (13s)2 · (l − 2)/2 .
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Proof. In the case of a singleton [a, d] = [a, a], this is true since fk(a) = l. Now, assume that
the claim is true for all k bands with labels < l. If the k band is not a singleton, we split it up into
the simple k̃ bands [a, b] and [c, d] as before with labels l1 respectively l2, where l1 + l2 = l.
Since [a, d] is simple and s ≥ 72, it is very regular with q ≤ 2. Therefore, there can at most be
12s bands of label 2 between [a, b] and [c, d] with the rest being bands of label 1. Now by the
induction hypothesis∑
i∈[a,d]

fk(i) =
∑
i∈[a,b]

fk̃(i) +
∑
i∈[c,d]

fk̃(i) +
∑
i∈(b,c)

fk(i)

≤
{
l1 + (13s)2 · (l1 − 2)/2

}
+
{
l2 + (13s)2 · (l2 − 2)/2

}
+
{
2 · 12s+ (12s)2

}
≤ l + (13s)2 · (l − 4)/2 + (13s)2 = l + (13s)2 · (l − 2)/2 ,

which shows the claim.

We conclude the section with parameter estimates on very regular bands. These turn out to be
quite crucial, in particular the upper bound for q.

Lemma 40 (Estimates for m, r, q on very regular bands). Assume that we have split the very
regular band into bands with labels m, r and have the space inbetween with parameter q. Then,

m+ r = n ∀q ≤ 8 (6)

as well as
m+ r − ⌊dq⌋ = n+ σ (7)

with σ ∈ {−1, 0, 1}. Furthermore,

q ≤ ⌊(2− d)−1n⌋ =: ♭(n) . (8)

Note that since d < 1/11, we have ♭(n) ≤ ⌊11
21
n⌋.

Proof. We get to return to the label generation again (Definition 11):

n = m+ r − ⌊d logs(1 +D)⌋

where D is the number of bands between the bands of label m, r right before combining. Since
the bands are very regular, we have at most 12 · s − 1 many bands of label q between them
with corresponding q segments. Each q segment contains at least sq−1 and at most 12 · sq−1

many bands. Therefore

sq−1 ≤ D ≤ 12 · sq−1 · 12s+ (12s− 1)

sq−1 ≤ 1 +D ≤ sq · 132

q − 1 ≤ logs
(
1 +D

)
≤ q + 2 logs 13

dq − d ≤ d logs
(
1 +D

)
≤ dq + d2 logs 13 .
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If q ≤ 8, then dq + d2 logs 13 < 1, in particular ⌊d logs(1 +D)⌋ = 0. This proves Equation
(6). Furthermore, since d(2 logs 13 + 1) ≤ 1

11
(1 + 1) < 1, we have∣∣⌊dq⌋ − ⌊d logs
(
1 +D

)
⌋
∣∣ ≤ 1

which yields Equation (7). Since m, r > q, we have

n+ either 0 or 1 ≥2q − ⌊dq⌋+ 2

n ≥2q − dq = q(2− d)

(2− d)−1n ≥q ,

i.e., Inequality (8) since q is an integer.

Remark (Final remarks). As alluded to early on, we will use the whole “segment-band” frame-
work for both the temporal rows as well as spatial columns. In the case of the spatial columns,
we will attempt to cross bad bands in a single jump, so not much of the inner structure is needed.

The temporal columns are much harder to handle. We will need to exploit that bands are very
regular in order use induction. Lemma 40 will also play a crucial role throughout Section 4.5 as
it limits us in how thin we can make strips. The notion of simple bands is needed for the base
case of q ≤ 2.

4 Details: proving percolation

We employ the band/segment grouping scheme for the time/space stretches (N (T)
t )t∈Z, (N (X)

x )x∈Z
with parameters st, sx and d = 1/12. We may assume without loss of generality that these
stretches are very regular (Lemma 33, 36).

4.1 Connectivity inside/between good boxes

The usual idea with multiscale/block arguments is to connect boxes of different levels with each
other. Directionality adds bloat to the proofs, but the principle behind is actually simple and
graphical:

Lemma 41 (Reachable boxes). Let a rectangular area of lx ≥ 2 columns and lt rows of n
boxes be given, which are separated by n gaps and (n+ 1, n) strips. Number them by

(Bi,j)1≤i≤lt,1≤j≤lx .

Assume that Lemma 23 is true for n. If at most one of the n boxes, n gaps or (n+ 1, n) strips
is bad, then for any good n boxes Bi,j and Bi′,j′ with (i′ − i) ≥ lx, we have

In[ q ](Bi,j);ffc Out
[ q ](Bi′,j′) .

DOI 10.20347/WIAS.PREPRINT.3047 Berlin 2023



A long-range contact process in a random environment 33

Figure 9: Depicted are the schemes by which we connect boxes. In the best case, we
just go to the target column and move straight down. Otherwise, we have to dodge bad
boxes/connections.

Proof. Without loss of generality, we assume that j ≤ j′, otherwise we mirror the whole proce-
dure. We sketch the connecting procedure in Figure 9 where horizontal connections are made
via

In[ q ](Bk,l);ffc Out
[≒](Bk,l); In[≒](Bk,l+1);ffc Out

[ q ](Bk,l+1)

and vertical ones via Out(Bk,l) ; In(Bk+1,l). First of all, it suffices to only look at the case
with at most one bad box: If the gap between Bk,l and Bk,l+1 is bad, we simply declare Bk,l

to be bad (if it is not the starter box, otherwise take Bk,l+1). The same works for strips. We
distinguish two cases.

1 The procedure is straight-forward. If we are currently in In[ q ](Bk,l) with l < j′ and both
Bk,l+1,Bk+1,l+1 are good, then move towards Out[ q ](Bk,l+1) (and then In[ q ](Bk+1,l+1)).
Otherwise, simply move down In[ q ](Bk,l); In[ q ](Bk+1,l) and proceed.

2 If l = j′ – i.e. we have reached the target column j′ – and Bk+1,l is good, then again
In[ q ](Bk,l); In[ q ](Bk+1,l). Otherwise, dodge to side, i.e. In[ q ](Bk,l); In[ q ](Bk+1,l+σ)
with σ = 1 if l = 1 and −1 otherwise.

Since at most one box is bad, only one “delaying case” can happen, so we still reach the target
output.

Now, we know that rectangular regions of good n boxes are well-connected, given that Lemma
23 holds. Naturally, we have to prove said lemma now for n = 1 and n+ 1.

Proof of Lemma 23. This is true for n = 1. For n + 1, the claim on Bn follows from Lemma
41 and Equation (4) on sx, st: We again number the boxes in Bn as (Bi,j)1≤i≤lt,1≤j≤lx and
take some v ∈ In[ q ](Bn), in particular v ∈ In[ q ](B1,j). If w ∈ Out[≒](Bn), then in particular
w ∈ Out[≒](Bi,j′) for some Bi,j′ . Furthermore, both Bi,j′ and Bi−1,j′ are good (by definition
of Out[≒](Bn)) with

i− 1 ≥ 12sx + 1 ≥ lx .
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Using Lemma 41 and the induction hypothesis, we connect v ;ffc Out
[ q ](Bi−1,j′); In[ q ](Bi,j′);ffc

Out[≒](Bi,j′). This proves the first part. The second part follows directly from Lemma 41 and
the third part works analogously to the first part. Finally,

A;ffc B ; C ;ffc D =⇒ A;ffc D ,

yields the final statement on neighbouring boxes.

4.2 Connecting outputs with inputs and multiscale estimates

Not all outputs of n boxes connect directly to inputs. There is always some loss due to bad n−1
boxes in prior steps. In this subsection, we quantify the minimum amount of suitable connectors,
which yields the probability of good (n+ 1, n) strips as well as n gaps.

Definition 42 ((κ[q], n) trees).

1 A (κ[q], 1) tree is any single vertex.

2 A (κ[q], n) tree consists of κ[q] many disjoint (κ[q], n − 1) trees such that they all lie
inside {t} × (x1, x2] for some some t ∈ Z and spatial n segment (x1, x2).

Remark. (κ[q], n) trees capture the basic shape of the sets In[ q ](Bn) and Out[ q ](Bn) of an
n box Bn. Each such tree contains (exactly) κ[q]n−1 many vertices. They will play the role of
“connectors” between vertically neighbouring boxes as we see in the following:

Lemma 43 ((κ[q], n) trees between good n boxes). Let Bn and B′
n be n boxes where Bn lies

on top of B′
n (only separated by an (n + 1, n) strip). Then, they define at least one (κ[q], n)

tree T such that:

T ⊂ Out[ q ](Bn) and πx(T ) ⊂ πx(In
[ q ](B′

n))

where πx : Z2 → Z is the projection onto the x-coordinate. In words: They define a (κ[q], n)
tree T such that T lies in the same column as Out(Bn) and In(B′

n).

Proof. The proof is by induction. In the case a 1 box Bn = [t1, t2] × {x} we take T =
{(t2, x)}. For general n, we know that in each row of these at least κ[q]+2 many n−1 boxes,
at most one of these boxes is bad. Therefore, there are at least κ[q] many pairs of good vertically
neighboured n − 1 boxes. By the induction hypothesis, these define κ[q] many (κ[q],m − 1)
trees which satisfy Condition 2 of Definition 42 above since they lie in Bn. Therefore, we obtain
a (κ[q], n) tree as claimed.

This covers the case of vertical connectors. We set up the same framework analogously for
horizontal connectors, but actually keep things straight and explicit here:
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Lemma 44 (Number of horizontal connectors between good n boxes). Let Bn, B
′
n be neigh-

bouring good n boxes. Then, there are at least κ[≒]n many edges from Out[≒](Bn) to In[≒](B′
n)

crossing exactly over the n gap inbetween..

Proof. In the case of 1 boxes B1 = [t1, t2] × {x}, B′
1 = [t1, t2] × {x′}, every (t, x) ∈

Out[≒](B1) has an outgoing edge to (t+1, x′) ∈ In[≒](B2) for every t ∈ [t1, t2). This makes
|t2 − t1| ≥ ⌈st/12⌉ − 1 ≥ κ[≒] many different edges.

For the case of the n + 1 boxes Bn+1, B
′
n+1, we see by the definition of inputs/outputs (in

Definition 22) that Out[≒](Bn+1) and In[≒](B′
n+1) consist of κ[≒]+4 many opposing n boxes

if they were all valid. Since Bn+1, B
′
n+1 are good, at most 2 of the the boxes in Out[≒](Bn+1)

might not be valid, same for In[≒](B′
n+1). Therefore, we have κ[≒] many opposing n boxes

that may connect with each other. By the induction hypothesis, each of these contribute at least
κ[≒]n many edges, so we have κ[≒] · κ[≒]n = κ[≒]n+1 in total which proves the claim.

With this, we have guaranteed that there are exponentially many potential connectors for both
the vertical strips as well as horizontal gaps. This is important since we want to use the following
estimate:

Lemma 45 (Combinatorial estimate). Assume there is a collection of at most C “objects” that
are each good with probability at least Pn independently from each other. Furthermore, assume
that a certain object of level n+ 1 is good if at most one of the C prior objects is bad. Then, for
any p ∈ (0, 1) with pn+1 ≤ C−6, if n ≥ 1 and

1− Pn ≤ p
n+1 ,

then also
1− Pn+1 ≤ p

n+2 .

Proof. We first write 1 + kn := (1− Pn)
−1. The level n + 1 object is good with probability at

least
Pn+1 ≥ (Pn)

C + C · (Pn)
C−1 · (1− Pn) .

Therefore

1−Pn+1 ≤ 1−

[(
kn

1 + kn

)C

+ C ·
(

kn
1 + kn

)C−1

· 1

1 + kn

]
=

(kn + 1)C − (kn)
C − C · (kn)C−1

(1 + kn)C
.

The subtrahends are exactly the first two terms in this binomial expression. Therefore,

1− Pn+1 = (1+kn)
−C ·

C−2∑
i=0

(
C

i

)
(kn)

i ≤ C3 · (1 + kn)
C−2

(1 + kn)C

≤ (1 + kn)
−1.5 ≤ (1− Pn)

1.5 ≤ p
(n+1)·1.5 ≤ p

n+2 ,

where we also used 1 + kn = (1− Pn)
−1 ≥ p

−(n+1) ≥ C6.
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Remark. The lemma can be generalised to allow for C[n] = a1e
a2n instead of a constant C .

In our case, the “level n + 1” object will be an n + 1 box containing up to C many n boxes,
(n+1, n) strips as well as n gaps inbetween. By construction, each n+1 box will then contain
at most (12sx + 1) · 12st many n boxes, so the total number of level n objects is

C ≤ (12sx + 1) · 12st · (1 + 1 + 1) ≤ 450 · sxst . (9)

There is a small technical issue in using Lemma 45: In order to ensure a high probability for n
gap crossings, we need a large amount of connectors, i.e. st to be large. But this also results
in a larger constant C , so the gap crossing probability has to grow accordingly. The next two
lemmas ensure that this circular dependency is not a problem.

Lemma 46 (Horizontal strip crossing). Let Bn and B
′
n be neighbouring good n boxes. Then

P
{
Out[≒](Bn) ̸; In[≒](B′

n)
}
≤ exp

(
− {(1 + sx)

−ακ[≒]}n
)
.

Proof. By Lemma 44, there are at least κ[≒]n suitable edges that would connect Out[≒](Bn)
with In[≒](B′

n) if they were open. By Lemma 29, these edges have length at most snx . Therefore

P
{
Out[≒](Bn) ̸; In[≒](B′

n)
}
≤

(
1− {1 + snx}−α

)(κ[≒]n) ≤ exp
(
− {1 + sx}−nα · κ[≒]n

)
≤ exp

(
− {(1 + sx)

−ακ[≒]}n
)
,

which yields the claim.

Lemma 47 (Ensuring high probability of horizontal strip crossings). Given fixed p, sx and α,
then we have for st large enough (equivalently κ[≒] large enough): For any n gap G, we have

1− P(G is good) ≤ min
{
p
n+1, (450 · sxst)−6} .

In particular, we may ensure that both Theorem 24 Point 2 as well as the requirements of Lemma
45 hold for horizontal gaps.

Proof. Using the previous lemma, we see that we only need to show

2 exp
(
− {(1 + sx)

−ακ[≒]}n
)
≤ min

{
p
n+1, (450 · sxst)−6} .

First, by Equation (4)
κ[≒] ≥ st/12− 25sx = st/12− c ,

so the requirements on horizontal crossings are met if both

2 exp
(
−

{
(1 + sx)

−α(st/12− c)
}n) ≤ exp

(
−
{
(1 + sx)

−ακ[≒]
}n) ≤ (450 · sxst)−6

and

exp
(
−

{
(1 + sx)

−ακ[≒]
}n) ≤ p

n+1{
(1 + sx)

−ακ[≒]
}n ≥ (n+ 1) log 1

p

are satisfied, which is true for st (equivalently κ[≒]) large enough.
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Figure 10: As always, curly brackets indicate bands with the square brackets indicating bands.
Whenever we consider a crossing of a (n + 1, n) strip, we actually try to do so in disjoint
(n + 1, ♭(n + 1)) strips. Since these are “thin” objects, they may be broken down further, so
we pay special attention to (n, ♭(n)) strips.

4.3 Proof of Lemma 24

We can now prove Lemma 24 provided that Proposition 48 below holds for n + 1. The setting
is depicted in Figure 10.

Proposition 48 (Drilling). Let S be a (n, ♭(n)) strip with n ≥ 1. Let T ′ be a collection of
(κ[q], k) trees on top of S and T be a (κ[q], ♭(n)) tree on the bottom of S with πx(T

′) ⊂ πx(T )
where πx is the projection onto the x-coordinate. Then,

P(∃ a crossing of S intersecting both T and T ′) ≥ κ[q]−♭(n) ·#T ′ .

Proof of Theorem 24. Using Lemma 47, Point 2 is ensured by fixing some large κ[≒] (or equiv-
alently st). WLOG, we assume p ≤ (450 · sxst)−6 (for Lemma 45). Then, we choose p large
enough such that Lemma 24 holds for every n ≤ N , where N comes from Equation (10)
below. We also require p100st

2
(1− e−1) ≥ κ[q]−1/2 in Equation (11).

3) We show that Point 3 holds for n given that Proposition 48 holds for n + 1. Let N ∈ N
large enough such that

κ[q]n−♭(n)−2 ≥ (n+ 1) log 1
p

(10)

for every n ≥ N . We use Lemma 43 to first get a (κ[q], n) tree T̃ ⊂ Out[ q ](Bn)
with πx(T̃ ) ⊂ πx(In

[ q ](B′
n)). Now, the (n + 1, n) strip can be divided into (2 + κ[q

])n−♭(n+1) many (n+1, ♭(n+1)) strips. We will choose (exactly) κ[q]n−{♭(n)+1} disjoint
(n+1, ♭(n+1)) strips S such that they have a (κ[q], ♭(n+1)) tree T ′ on top satisfying
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T ′ ⊂ T̃ . By Proposition 48, the probability of crossing S is at least κ[q]−♭(n+1) ·#T ′ =
1/κ[q]. Since all those strips are disjoint, these events are independent. Therefore, we
have

P
{
∄ a crossing of S̄ intersecting Out[ q ](Bn), In

[ q ](B′
n)
}

≤ (1− 1/κ[q])κ[q]
n−♭(n+1)

≤ exp
(
− κ[q]n−♭(n)−2

)
≤ p

n+1,

which shows Point 3.

1) Showing Point 1 for n + 1 is a straight-forward application of Lemma 45 after using all
the estimates on n boxes, (n+ 1, n) strips and n gaps.

Judging by the remaining pages, one can guess that Proposition 48, i.e., drilling, is the most
difficult part. Also the fact that we have yet to use that N (T) is very regular. The good news is
that we can already prove the case of simple bands.

Proof of Proposition 48 for simple bands. The case of simple bands is equivalent to q ≤ 2 (see
Lemma 38). We assume that the temporal n band generating the (n, k) strip is simple with
k ≥ n/2. We generate crossings by going straight through a column. By Lemma 39 (and using
that st > 17′000), this probability is at least

pn+(13st)2(n−2)/2 ≥ p100st
2n.

There are #T ′ vertices (or rather columns) which potentially form an appropriate crossing if
they were open. Thus, using our assumption of

p100st
2n(1− e−1) ≥ κ[≒]−n/2 ≥ κ[≒]−k (11)

as well as Lemma 49 below

P(∃ a cluster in S connecting T and T ′) ≥ 1− (1− p100st
2n)#T ′

≥min
{
1− e−1, #T ′ · p100st2n(1− e−1)

}
≥ κ[q]−k#T ′ ,

which proves the case of simple bands. (Note that #T ′ ≤ κ[q]k−1.)

Here is the auxiliary lemma we previously used and will continue to use in the future.

Lemma 49 (Hoffman 2005, Lemma 4.2). For any c, p1, . . . , pn with 0 < pi < 1 and a :=∑n
1 pi, we have

1−
n∏

i=1

(1− pi) ≥ min
{
1− e−c, a

c
(1− e−c)

}
.
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Figure 11: Drilling/generating a crossing of S. The Events A,B,C together yield the crossing
(bold black path) with a minimal probability depending on #T ′.

4.4 Drilling: preparation

Now comes the tough part. Assume that Lemma 24 holds until ♭(n) ≤ n− 2. We want to see
that we can drill through arbitrary (n, ♭(n)) strips S, i.e., Proposition 48 holding even for q ≥ 3.
We will use that the temporal stretches N (T) are very regular to break up S into three smaller
parts, see Figure 11 with the other variables being introduced during the course of this section.
On the top, we have a (m, ♭(n)) strip Sm. On the bottom, we have a (r, ♭(n)) strip Sr. In the
middle, there are up to 12st rows of q − 1 boxes separated by (q, q − 1) strips. Lemma 40 will
be crucial in our endeavour.

The outline of the remaining proof is as follows. If

(A) there are “enough” crossings of Sm which intersect T ′ (Equation (12), Lemma 51),

(B) these crossings survive through the column of q − 1 boxes to Sr (Lemma 53),

(C) one of these survivors connects in Sr to T (Proposition 48),

then there exists a crossing of S intersecting T ′ and T . For Event B, a single crossing survives
with probability at least 0.99 (Lemma 53). This is a rather simple calculation. As for the rest, the
technicalities are more difficult than the actual proof.

In Lemma 50, we pool together small strips and estimate the probability of a crossing happening
for at least one of them. Then, we estimate the probability of Event A in Lemma 51. We do so
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by pooling several (m, ♭(m)) strips together so that each such collection has a sufficiently
high probability of crossing Sm. Lemma 50 allows us to pool together all survivors from Event
A to obtain a lower bound on the probability of Event C . Finally, Proposition 48 follows from
combining all of the previous calculations.

Let us briefly consider a general (j, J) strip S∗ with j < n and J ≥ ♭(j). Let Ŝ := ∪Ŝi be a
disjoint union of (j, ♭(j)) strips in S∗. Let T ∗ (the target) be a (κ[q], J)-tree on the bottom of
S∗ which intersects each Ŝi in a (κ[q], ♭(j))-tree. Let T̂ be a union of l-trees on top of Ŝ where
l ≤ ♭(j), all lying in the columns of T ∗.

Lemma 50 (Pooling together strips for crossings, Hoffman 2005, Lemma 4.4). Suppose Propo-
sition 48 holds for j ≤ n− 2. Then,

P(∃ a crossing of Ŝ intersecting T̂ and T ∗) ≥ min
{
0.9, 1

3
κ[q]♭(j) ·#T̂

}
.

Each such crossing is confined to its respective (j, ♭(j)) strip.

Proof. T̂ is a union of (κ[q], l) trees. Let T̂ = ∪T̂i where T̂i consists of the (κ[q], l) trees
belonging to T̂ that lie inside the (j, ♭(j)) strip Ŝi (recall l ≤ ♭(j)). By the induction hypothesis,
we have

P(∃ a crossing of Ŝi intersecting T̂i and T ∗) ≥ κ[q]−♭(j) ·#T̂i .

These are independent events since all the Ŝi are disjoint. Lemma 49 with c = 2.31 yields

P(∃ a crossing of Ŝ intersecting T̂ and T ∗)

≥ 1−
∏
i

(
1− P{∃ a crossing of Ŝi intersecting T̂i and T ∗}

)
≥ (1− e−2.31)min

{
1, 1

2.31
κ[q]−♭(j)

∑
i

#T̂i

}
≥ min

{
0.9, 1

3
κ[q]−♭(j) ·#T̂

}
which shows the claim. Furthermore, the crossing happens in one of the Ŝi.

Let us return to our (n, ♭(n)) strip S. On the bottom of it, there is a target (κ[q], ♭(n)) tree T ,
while on top of it, there is a union of (κ[q], k) trees T ′ with πx(T

′) ⊂ πx(T ). We also recall the
parameters q,m and k. Let

M := max {♭(m), q − 1} k′ := min {k, ♭(m)} .

and T be a (κ[q], ♭(n)) tree on the bottom of Sm with πx(T ) = πx(T ). This tree will act as the
target for the survivors of Event A. Next, we have to count the survivors.

Define T̃ to be the union of (κ[q], q − 1) trees in T satisfying the following: Let T̃i be a (κ[q
], q − 1) tree inside a (m,M) strip. Then T̃i ⊂ T̃ if there are v′i ∈ T ′ and ṽi ∈ T̃i such that
v′i ; ṽi inside Sm. Define the event

X :=
{
#T̃ ≥ max

{κ[q]q−2 ·#T ′

8 · κ[q]M
, κ[q]q−2

}}
. (12)
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Remark (On M,k′). We have to consider (m,M) strips rather than (m, ♭(m)) strips because
multiple (m, ♭(m)) strips might connect to the same q−1 box in the case of q−1 > ♭(m). This
would result in double counting for T̃ . On the other hand, introducing k′ basically just means
that we break up (κ[q], k) trees into smaller (κ[q], k′) = (κ[q], ♭(m)) trees so that they act as
proper inputs for the (m, ♭(m)) strips.

We only count hits of (κ[q], q− 1) trees since each (single) connection will yield a full tree after
passing through a q − 1 box (or rather a q − 1 column in Event B later).

Lemma 51 (Probability of “sufficiently many” crossings, Hoffman 2005, Lemma 4.5). Suppose
Proposition 48 holds for j ≤ n− 2. Then

P(X) ≥ min
{
0.9, 1

8
κ[q]−♭(m) ·#T ′} .

Proof. Since T̃ consists of (κ[q], q − 1) trees and each such tree has κ[q]q−2 many vertices,
we have #T̃ ≥ κ[q]q−2 if and only if T̃ ̸= ∅. In order to show #T̃ ≥ κ[q]q−2, it therefore
suffices to show T ′

; T . The proof is broken up into cases based on the size of #T ′ and the
value of M .

1 #T ′ ≤ 8 · κ[q]♭(m) and M = ♭(m). In particular, ♭(m) ≥ q − 1. Therefore, by Lemma
50 with S ′ = Sm, Ŝ to be a union of (m, ♭(m)) strips, T ∗ = T and T̂ = T ′

P(X) = P(#T̃ ≥ κ[q]q−2) ≥ P(∃ a crossing T ′
; T inside Sm) ≥ min

{
0.9, 1

3
κ[q]−♭(m)·#T ′

}
.

2 #T ′ ≤ 8 · κ[q]M and M = q − 1. Again

P(X) = P(#T̃ ≥ κ[q]M−1) = P(#T̃ ≥ κ[q]q−2) .

Write T ′ = ∪N
i=1Ti where each Ti is a union of (κ, k′) trees in a (m, ♭(m)) strip. Then,

for all i by Lemma 50

P
{
Ti ; T inside a (m, ♭(m)) strip

}
≥ min

{
0.9, 1

3
κ[q]−♭(m) ·#Ti

}
.

We are done if the minimum for one of the i is 0.9. Otherwise, Lemma 50 concludes

P
{
T ′
; T inside some (m, ♭(m)) strip

}
≥ min

{
0.9, 1

3
κ[q]−♭(m) ·#T ′} .

3 #T ′ > 8 ·κ[q]M . This is the case where we actually have to establish multiple crossings
in disjoint regions. Write T ′ = ∪N ′

i=1T
′
i where each T ′

i is now a union of k′ trees that
belong to a union of (m,M) strips S̃i. Do this in a way such that for each i

3 · κ[q]M ≤ #T ′
i ≤ 4 · κ[q]M
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and such that if i ̸= j, then the corresponding unions of (m,M) strips S̃i and S̃j are
disjoint. This is possible since each k′ tree has κ[q]k′−1 vertices and M ≥ ♭(m) ≥ k′.
Thus, N ′ satisfies

N ′ ≥ #T ′

4 · κ[q]M
≥ 8 · κ[q]M

4 · κ[q]M
= 2 .

By Lemma 50, we have with #T ′
i ≥ 3 · κ[q]M

P
{
T ′
i ; T̄ inside some (m,M) strip

}
≥ min

{
0.9, 1

3
κ[q]−♭(m) ·#T ′

i

}
= 0.9 .

Therefore, we have N ′ independent events with probability greater or equal to 0.9. The
probability of at least ⌈N ′/2⌉ of these happening is ≥ 0.9. Each such event gives us
a contribution of κ[q]q−2 to #T̃ , so we see that under the event of at least ⌈N ′/2⌉
crossings happening

#T̃ ≥ N ′

2
· κ[q]q−2 ≥ #T ′ · κ[q]q−2

8 · κ[q]M
.

Therefore

P(X) ≥ P
(
#T̃ ≥ #T ′ · κ[q]q−2

8 · κ[q]M
)
≥ 0.9 = min

{
0.9, 1

8
κ[q]−♭(m) ·#T ′} .

With this, all cases have been covered.

This covers event A. Next up is event B. Take a column of q− 1 boxes including the (q, q− 1)
strips inbetween. Let us fix a survivor v ∈ T from Event A, that is, v satisfies T ′

; v. We now
formalise what is meant by event B:

Definition 52 (Good q − 1 columns ). Let a column of up to 12st many q − 1 boxes be given
including their (q, q − 1) strips inbetween. We call it a q − 1 column and we call it good for
v, w ∈ G if v ; w inside G.

Lemma 53 (Probability of good q − 1 columns Hoffman 2005, Lemma 4.6). Suppose Lemma
24 holds for q − 1 ≤ n − 2. Consider a q − 1 column G and v, w ∈ G where v is a a vertex
on the top and w on the bottom of G. Then,

P(G is good for v, w) ≥ 0.99 .

Proof. First, we see that G is good for v and w if

1 all the corresponding q − 1 boxes and (q, q − 1) strips are good and

2 v ∈ In(B̄q−1) with B̄q−1 being the topmost q − 1 box in G.
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3 w ∈ Out(Bq−1) with Bq−1 being the bottommost q − 1 box in G.

By the induction hypothesis

P(all of the q − 1 boxes are good) ≥ (1− p)12st ≥ 1− 12st · p ,

and
P(all of the (q, q − 1) strips are good) ≥ (1− p)12st ≥ 1− 12st · p .

Next, v ∈ In(B̄q−1) if v lies in good j boxes for all j ≤ q−1. The probability of this happening
is at least

P(v ∈ In(B̄q−1)) ≥ 1−
∑
j≥1

p
j =

1− 2p

1− p
≥ 1− 2p .

The same holds for w. Using p ≤ (450st · sx)−6 yields

P(G is good for v, w) ≥ 1− 25st · p ≥ 0.99 ,

which finishes the proof.

Event C corresponds to Lemma 50.

4.5 Drilling: proof of Proposition 48

We have gathered all the parts, so it is time to combine them. Unfortunately, we have to deal
with quite a lot of case distinctions.

Proof of Proposition 48. We have already shown the case of q ≤ 2 which also includes the
case of min{m, r} ≤ 3. Now, we may always assume that m ≥ 4 as well as q ≥ 3.We
employ our strategy of linking together the Events A, B and C , that is,

(A) X happens on S1. This gives us a collection of (κ[q], q − 1) trees T̃ ⊂ T̄ on the bottom
of Sm. Each such tree has some v ∈ T̃ with T ′

; v.

(C) Consider T ∗ on the top of Sr with πx(T̃ ) = πx(T
∗). There exists a crossing of S2

intersecting T ∗ and T , i.e., some T ∗ ∋ w ; T .

(B) The q − 1 column of w ∈ T ∗, v[w] ∈ T̃ is good.

If all these events hold, then there exists a crossing of S from T ′ to T ′ via

T ′
;

A T̃ ∋ v[w];B w ∈ T ∗
;

C T .

By Lemma 51
P(A) = P(X) ≥ min

{
0.9, 1

8
κ[q]−♭(m)#T ′} .
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Under X, we have

#T̃ ≥ max

{
κ[q]q−2,

κ[q]q−2 ·#T ′

8 · κ[q]M

}
.

■ If now #T ′ ≤ 8 · κ[q]M , then #T ∗ = #T̃ ≥ κ[q]q−2 and by the Lemmas 51, 53

P(B,C |A) ≥ P(∃ a crossing of S2 intersecting T ∗ and T |#T ∗ = κ[q]q−2) · 0.99
≥0.99 ·min

{
0.9, 1

3
κ[q]−♭(r)κ[q]q−2

}
.

If M = ♭(m), then using Equation (13) from Lemma 54 below yields

P(∃ a cluster in S connecting T and T ′) ≥ P(A) · P(B,C |A)
≥0.9 · 1

8
κ[q]−♭(m)#T ′ · 0.99 ·min

{
0.9, 1

3
κ[q]−♭(r)κ[q]q−2

}
≥#T ′ · 1

27
κ[q]−♭(n)+⌊q/2⌋ ≥ κ[q]−♭(n) ·#T ′ .

For the case of M = q − 1, i.e. 8 · κ[q]♭(m) ≤ #T ′ ≤ 8 · κ[q]M , using Equation (13) of
Lemma 54 and ♭(m) > m/2 ≥ ⌈q/2⌉ yields

P(∃ a cluster in S connecting T and T ′) ≥ P(A) · P(B,C |A)

≥0.9 · 0.99 ·min
{
0.9, 1

3
κ[q]q−2−♭(r)

}
≥ min

{
0.5, 1

4

κ[q]M−1 · κ[q]♭(m)

κ[q]♭(m)+♭(r)

}
≥min

{
0.5, 1

4

κ[q]M−1 · κ[q]⌈q/2⌉

κ[q]♭(n)−⌈q/2⌉−2

}
≥ min

{
0.5,

κ[q]M · 8
κ[q]♭(n)

}
≥ #T ′

κ[q]♭(n)
.

■ If instead #T ′ ≥ 8 · κ[q]M , then using

#T̃ = #T ∗ ≥ #T ′ · κ[q]q−2

8 · κ[q]M

and Lemma 50 and Equation (14) gives

P(C |A) ≥ P
{
∃ a crossing of S2 intersecting T ∗ and T |#T ∗ ≥ #T ′ · κ[q]q−2

8 · κ[q]M
}

≥ min

{
0.9,

#T ′ · κ[q]q−2

8 · κ[q]M
· 1

3 · κ[q]♭(r)

}
≥ min

{
0.9,

#T ′

24 · κ[q]♭(n)−1

}
≥ 2

#T ′

κ[q]♭(n)
,

where the minimum disappears again from #T ′ ≤ #T ≤ κ[q]♭(n)−1. Lemma 53 yields

P(B |A,C) ≥ 0.99 .

Putting everything together, we conclude the #T ′ ≥ 8 · κ[q]M case:

P(∃ a cluster in S connecting T and T ′) ≥ P(A) · P(C |A) · P(B |A,C)

≥0.9 · 2 · #T ′

κ[q]♭(n)
· 0.99 ≥ #T ′

κ[q]♭(n)
.
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This finishes the proof of Proposition 48.

Lemma 54 (Extra estimates for final proof). Let m ≥ 4, q ≥ 3 and M = max(♭(m), q − 1).
We have

♭(m) + ♭(r)− ⌈q/2⌉ ≤ ♭(n)− 2 . (13)

Furthermore, we have

M + ♭(r)− q ≤ ♭(n)− 3 . (14)

Proof. If 3 ≤ q ≤ 8, then m+ r = n by Equation (6) in Lemma 40. In particular,

♭(m) + ♭(r) ≤ ♭(n) =⇒ ♭(m) + ♭(r)− ⌈q/2⌉ ≤ ♭(n)− 2 .

If q ≥ 9, then we use

⌈(2− d)−1(⌊dq⌋+ 1)⌉ ≤ q/21 + 2 ≤ ⌈q/2⌉ − 2

to also obtain Equation (13) via Equation (7) in Lemma 40

m+ r − ⌊dq⌋ ≤ n+ 1

♭(m) + ♭(r)− ⌈(2− d)−1(⌊dq⌋+ 1)⌉ ≤ ♭(n)

♭(m) + ♭(r)− ⌈q/2⌉ ≤ ♭(n)− 2 .

For Equation (14), we need another case distinction: If M = ♭(m), then

M + ♭(r)− q =
{
♭(m) + ♭(r)− ⌊q/2⌋

}
− ⌈q/2⌉ ≤ ♭(n)− 2− 1

Else, we have M = q − 1, which yields

M + ♭(r)− q = ♭(r)− 1 = ♭(n)− 2−
{
♭(m)− ⌊q/2⌋

}
.

Since ♭(m) > m/2 > ⌊(m− 1)/2⌋ ≥ ⌊q/2⌋ and M + ♭(r)− q is an integer, this case also
implies M + ♭(r)− q ≤ ♭(n)− 3, i.e., Equation (14).
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