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Delta-Tolling: Adaptive Tolling for Optimizing Traffic Throughput

Guni Sharon1, Josiah Hanna1, Tarun Rambha2, Michael Albert1, Peter Stone1, Stephen D. Boyles2
1Department of Computer Science, 2Department of Civil Engineering

The University of Texas at Austin,
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Abstract
In recent years, the automotive industry has been
rapidly advancing toward connected vehicles with
higher degrees of autonomous capabilities. This
trend opens up many new possibilities for AI-based
efficient traffic management. This paper investi-
gates traffic optimization through the setting and
broadcasting of dynamic and adaptive tolls under
the assumption that the cars will be able to contin-
ually reoptimize their paths as tolls change.
Previous work has studied tolling policies that re-
sult in optimal traffic flow and several traffic mod-
els were developed to compute such tolls. Unfortu-
nately, applying these models in practice is infeasi-
ble due to the dynamically changing nature of typ-
ical traffic networks. Moreover, this paper shows
that previously developed tolling models that were
proven to yield optimal flow in theory may not be
optimal in real-life simulation. Next, this paper in-
troduces an efficient tolling scheme, denoted ∆-
tolling, for setting dynamic and adaptive tolls. We
evaluate the performance of ∆-tolling using a traf-
fic micro-simulator. ∆-tolling is shown to reduce
average travel time by up to 35% over using no tolls
and by up to 17% when compared to the current
state-of-the-art tolling scheme.

1 Introduction
In recent years, communication and computation capabili-
ties have become increasingly common onboard vehicles.
Such capabilities present opportunities for developing safer,
cleaner and more efficient road networks. This paper com-
bines knowledge from mechanism design, game theory, net-
work flow optimization, and multi-agent simulations for in-
vestigating responsive pricing, as a scheme for managing and
optimizing traffic flow.

It has been known for nearly a century that drivers seek-
ing to minimize their private travel times need not minimize
the total level of congestion. In other words, self-interested
drivers may reach an equilibrium that is not optimal from a
system perspective. On the other hand, charging each agent
with an amount equivalent to the damage it inflicts on all

other agents (also known as the marginal cost) results in opti-
mal flow [Pigou, 1920; Beckmann et al., 1956; Braess, 1969].
The damage inflicted by a given agent is evaluated through
the marginal slowdown caused by it and is commonly evalu-
ated using stylized traffic models. Such stylized models take a
“macroscopic” view of traffic, where delay can be expressed
as a smooth function of travel demand. We hereafter refer
to such models as macro-models. The marginal slowdown,
evaluated by such models, is then used to infer appropriate
tolls. However these macro-models make many approxima-
tions and assumptions that don’t hold in practice.

Modern simulation tools and computational power allow
for much more fine-grained simulation of traffic networks,
referred to as micro-simulation models. Using such a real-
istic traffic simulator we demonstrate the potential of using
tolls for reducing average travel time and increasing aver-
age utility. In this paper we show (empirically) that comput-
ing tolls using a macro-model does not lead to optimal per-
formance in a realistic simulator. We explain this effect by
noting that macro-models assume deterministic conditions,
and have a number of unrealistic features. In recent years,
researchers have relaxed the assumptions of the first macro-
scopic tolling models to incorporate responsiveness to road-
way disruptions such as accidents [de Palma and Lindsey,
1998; Yang, 1999a,b; Lindsey, 2009; Boyles et al., 2010]
and to the total level of travel demand [Nagae and Aka-
matsu, 2006; Chen and Subprasom, 2007; Gardner et al.,
2008, 2011]. However, the effectiveness of all of these models
is still restricted by the use of simplifying assumptions such
as constant and known demand and capacity for each link.

In response to the suboptimal performance of existing
macro-models, this paper introduces a novel tolling scheme
denoted ∆-tolling. ∆-tolling approximates the marginal cost
of each link using only two variables (current travel time and
free flow travel time) and one parameter. Due to its simplicity,
∆-tolling is fast to compute, adaptive to current traffic, and
accurate. We prove that, under some assumptions, ∆-tolling
results in tolls that are equivalent to the marginal cost and
demonstrate that it can lead to near-optimal performance in
practice.

2 Motivation
This section defines the notion of user equilibrium (UE) and
system optimum (SO). Applying tolls is then introduced as a



mechanism that allows UE and SO to coincide. The marginal
cost toll (MCT) policy is then presented followed by some
macroscopic traffic models that approximate it. We discuss
some of the drawbacks of such macro-models, which pro-
vides the motivation for the current study.

2.1 Computing User Equilibrium
Consider a directed network G = (V,E), where V and E
are the set of nodes and links respectively. Suppose that the
demand (flow rates) between every pair of nodes is known.
In this paper we assume that the travel time on a link e ∈ E
is a function of its flow (xe) and is represented using a non-
decreasing function te(xe) (also called volume delay or link-
performance functions). In practice, the Bureau of Public
Roads (BPR) function te(xe) = Te(1 + α( xeCe )β) is com-
monly used as the delay function, where Te is the free flow
travel time and Ce is the capacity of link e. α and β are pa-
rameters whose default values are 0.15 and 4 respectively.

When agents choose routes selfishly, a state of equilibrium,
called user equilibrium (UE) [Wardrop, 1952], is reached in
which all used routes between an origin-destination (OD) pair
have equal and minimal travel time. The link flow rates corre-
sponding to this state can be obtained by solving a non-linear
convex program that minimizes the Beckmann potential func-
tion (

∑
e∈E

∫ xe
0
te(xe) dx) Beckmann et al. [1956]. This ob-

jective ensures that the KKT (Karush-Kuhn-Tucker) condi-
tions [Kuhn and Tucker, 1951; Karush, 1939] of the convex
program correspond to Wardrop’s UE principle [Wardrop,
1952]. The constraints of the optimization problem include
non-negativity and flow conservation constraints. This model,
also known as the traffic assignment problem (see Patriksson
[1994] for a thorough overview), has been widely studied be-
cause of the mathematically appealing properties associated
with convex programming.

2.2 Computing System Optimum
The system optimal (SO) problem can be formulated using
a set of constraints similar to those used for computing UE
but replacing the objective function with

∑
e∈E xete(xe). As

mentioned before, all agents do not experience equal and min-
imal travel times at the SO state which incentivizes agents to
switch routes. Instead, if an optimal tolling policy is applied,
the flows resulting from a UE assignment in which agents
minimize the generalized cost (time + toll) coincides with the
SO solution. MCT is proven to be such a policy (UE=SO)
[Pigou, 1920; Beckmann et al., 1956; Braess, 1969]. In MCT
each agent is charged a toll that is equal to the increase in
travel time it inflicts on all other agents. Unfortunately, know-
ing in advance the marginal impact of an agent on traffic is
infeasible in practice.

2.3 Approximating Marginal-Cost Tolls
The focus of this paper is methods that approximate the
marginal cost. Most of these methods assume that demand
on each link is constant. In such cases MCT can be formally
defined as follows: given a link (e) and flow (xe) the toll ap-
plied to e equals the change in travel time caused by an in-
finitesimal flow (dte(xe)dxe

) multiplied by the number of agents
currently on this link (xe).

A number of researchers have attempted to develop macro-
models that approximate MCT for a given system [Yang et
al., 2004; Han and Yang, 2009]. However, a major drawback
of such macro-models is that they are static and do not capture
the time-varying nature of traffic. They also assume that the
delay on each link is a function of its flow and hence neglect
effects of intersections and traffic shocks. Although there has
been some research on congestion pricing using finer traffic
flow models, most of the existing models either assume com-
plete knowledge of demand distribution over time [Wie and
Tobin, 1998; Joksimovic et al., 2005] or are restricted to find-
ing tolls on freeways in which travelers choose only between
parallel tolled and free general-purpose lanes [Gardner et al.,
2013, 2015; Yin and Lou, 2009]. This limitation motivates
us to employ a simulation framework to replicate traffic in a
more realistic manner, evaluate the performance of existing
macro-models, and develop new methods to determine opti-
mal tolls while adapting to unknown and changing demand.

3 Simulation
In order to evaluate the effectiveness of different tolling mod-
els on traffic flow optimization, we used a modified ver-
sion of the Autonomous Intersection Manager (AIM) micro-
simulator [Dresner and Stone, 2008]. On the one hand, AIM
is very realistic in the sense that it allows simulating accel-
erations of individual vehicles in response to traffic condi-
tions. On the other hand, due to computational limitations,
AIM cannot scale to large road networks (only up to 3 × 3
grid network). For our experiments AIM was chosen since,
unlike other simulators, it allows non deterministic traffic be-
havior, provides (direct) measurements on vehicle following
distances, lane changes, gap acceptance, etc.

3.1 Autonomous Intersection Manager Simulator
AIM provides a multiagent framework for simulating au-
tonomous vehicles on a road network grid; it presents a realis-
tic traffic flow model that allows experimenting with adaptive
tolling. The AIM simulator uses two types of agents: inter-
section managers, one per intersection, and driver agents, one
per vehicle. Intersection managers are responsible for direct-
ing the vehicles through the intersections, while the driver
agents are responsible for controlling the vehicles to which
they are assigned. To improve the throughput and efficiency
of the system, the driver agents “call ahead” to the inter-
section manager and request a path reservation (space-time
sequence) within the intersection. The intersection manager
then determines whether or not this request can be met. If the
intersection manager approves a driver agent’s request, the
driver agent must follow the assigned path through the inter-
section. On the other hand, if the intersection manager rejects
a driver agent’s request, the driver agent may not pass through
the intersection but may attempt to request a new reservation.

At every intersection, the driver agent navigator runs anA∗
search [Hart et al., 1968] to determine the shortest path lead-
ing to the destination of the vehicle associated with it. The
navigator then directs the driver agent to drive via the shortest
route. This behavior ensures that each vehicle acts greedily
with respect to minimizing travel time. Next, we describe the



required enhancements to the standard AIM simulator [Dres-
ner and Stone, 2008] necessary to simulate realistic tolling
experiments.

3.2 Enhancements to the AIM Simulator
In order to evaluate adaptive-tolling using AIM the following
modifications were required:

• Link toll: each link (e) in the road network is associated
with a toll, tolle, which can adapt in real-time according
to traffic conditions.

• Link travel time: each link stores: (1) an estimated
travel time, te, that is based on real-time observed flow
speed, and (2) an estimated free flow travel time Te, that
is based on the link’s length divided by its speed limit.

• Route selection: when a car has several routes leading
to its destination, the driver agent chooses the route (r =
e1, e2, ..., e3) that minimizes

∑
e∈r te × V OT + tolle,

where V OT is the monetary value Of time.
• Value Of Time: each driver agent is associated with

a randomly generated V OT that is drawn from a nor-
mal distribution. We assume monetary units are chosen
such that the mean value is 1¢ per second, and assume
a standard deviation of 0.2. V OT represents the value
(in cents) of one second for the driver. A driver with
V OT = x is willing to pay up to x¢ in order to reduce
travel time by 1 second.

3.3 Macroscopic Model
This paper uses a macroscopic model to approximate MCT.
This model is used to solve the convex program described
in Section 2 using Algorithm B [Dial, 2006]. Algorithm B is
a bush-based/origin-based algorithm which exploits the fact
that at equilibrium, all used routes carrying demand from a
particular origin must belong to an acyclic subgraph in which
each destination can be reached from the origin (such a sub-
graph is also called a bush). At each iteration, the algorithm
maintains a collection of bushes (one for each origin), shifts
agents within a bush to minimize their generalized costs, and
adds/removes links in a bush until equilibrium is reached.
Closeness to equilibrium is measured using average excess
cost, which represents the average of the difference between
each agent’s generalized cost and the least cost path at the
current flow solution. In the experiments presented in this pa-
per, the algorithm was terminated when the average excess
cost of the flow solution dropped below 1E-13.

4 Empirical Evaluation: Macroscopic Model
One of the main contributions of this paper is an empirical
demonstration that setting tolls based on macro-models can
lead to suboptimal results when evaluated in a more realistic
micro-simulator. This section presents these empirical results,
which motivate our new tolling scheme as presented in the
next section.

4.1 Exemplar Road-Network
Figure 1 illustrates an exemplar road network that demon-
strate the impact of tolls that adapt to traffic demand. The

Figure 1: Exemplar road network within the AIM simulator.

speed limit across all roads is 25 meters per second. Each
horizontal road is 142 meters long, and each vertical road is
192 meters long. We examined a scenario in which agents en-
ter the network from a single source, the top road (incoming
arrow), and leave the network from one of two destinations
(outgoing arrows) D1 or D2. All roads are composed of two
lanes per direction and assumed to have infinite capacity1 ex-
cept the two vertical roads in the middle of the network (Con-
gestible link #1 and #2), which possess only one lane (capac-
ity = 1,908 agents per hour). An agent entering the system
and heading towards D1 (or symmetrically D2) has two pos-
sible routes to choose from: a short route (668 m) or a long
route (964 m). Each agent chooses one of the two routes ac-
cording to the distance, traffic conditions, and tolls associated
with it. This road network represents a special case where if
most agents are heading to D1 (or symmetrically D2) then
link #1 (#2) should be tolled while link #2 (#1) should not.
We define z (or symmetrically 1 − z) to be the proportion of
agents heading to D1 (D2). The incoming traffic rate was set
to 2,160 agents per lane per hour.

4.2 Computing the Optimal Tolls
First, we computed, in a brute-force manner, the toll
values that optimize average travel time for each z ∈
{0.0, 0.1, 0.2, ..., 1}. We considered tolling only congestible
link #2. Tolling uncongestible links is unnecessary as there
is no congestion externality associated with travel on these
links. Moreover, there is no reason to toll both congestible
links simultaneously (#1 and #2) since any of the two possi-
ble routes (leading from source toDi) includes exactly one of
these links. A negative toll value for link #2 is symmetrical to
a positive toll on link #1. We distinguish between the optimal
adaptive toll and the optimal static toll. The optimal adaptive
toll is the toll value that minimizes travel time for a given z
value. The optimal static toll is the toll value that minimizes
travel time over all z values (assuming equal weighting of the
z values, i.e., all z values have the same probability), found to

1The capacity on roads with two lanes is higher than the rate in
which agents are spawned. Hence, we consider such roads as having
infinite capacity.



Toll Values AVG Travel Time (seconds)
z Optimal Macro Model No Tolls Static Tolls Optimal Tolls Macro Tolls ∆-Tolls

0.0 15 14.8 46.0 47.6 40.9* 40.3* 40.5*
0.1 10 14.8 43.2 45.1 39.1* 39.3* 39.0*
0.2 10 14.8 38.4 40.8 35.8* 38.4 36.9*
0.3 10 14.8 34.3 35.1 33.8 37.7 33.1*
0.4 0 14.8 31.7 32.4 31.7 36.8 31.4
0.5 5 -5.3 30.8 31.2 30.8 30.9 30.9
0.6 5 -14.8 31.1 31.5 31.1 34.7 31.6
0.7 -5 -14.8 32.2 32.2 32.2 35.2 32.8
0.8 -10 -14.8 37.0 34.1* 34.1* 36.2 35.8*
0.9 -10 -14.8 40.7 36.2* 36.2* 36.8* 36.5*
1.0 -15 -14.8 43.1 39.0* 38.5* 38.1* 38.7*

Table 1: The left side of the table shows the empirical optimal and macro-model predicted toll values (imposed on link #2) for
different z values. The right side shows average travel times when no tolls, static tolls, optimal tolls, macro-model tolls and
∆-tolls are applied as calculated by the AIM simulator. * indicates statistical significance over no tolls (using unpaired t-test
with pvalue = 0.05).

be −10 in this example. While it might seem like the optimal
static toll should be zero, asymmetries in the model arising
from differences between left and right turns affect junction
delays and skew the optimal static toll to one side.

Optimal adaptive tolls for each z value are presented in Ta-
ble 1. Notice that as the z value increases, the optimal toll
steadily decreases. Intuitively, when all agents go to one des-
tination (z = 0 or z = 1) we need more of them to choose
the longer route to achieve the optimal system flow, thus re-
quiring a more extreme toll. When z ≈ 0.5, a zero toll is
optimal since agents that choose their longer route will only
make congestion worse for agents going to the other destina-
tion. As a result, enforcing tolls for 0.2 < z < 0.8 did not
result in a significant improvement over enforcing no tolls.
The reason that Table 1 present values different than zero for
that range stems from noise and asymmetries in the model.

4.3 Evaluating Optimal Tolls Using a
Macro-Model

We compared the empirically optimal tolls against the toll
values predicted by the macro-model. Toll values calculated
by the macro-model are also presented in Table 1. Table 1
also presents average travel time under different tolling poli-
cies (for now ignore the ∆-tolls column). Though the macro-
model obtains near optimal results for the extreme z values
and z = 0.5, it is sub-optimal for intermediate values. One
explanation for this phenomenon is that the stylized conges-
tion models assume that delays on a link are a function solely
of flow on that link, ignoring interactions between links at in-
tersections. For the extreme z values this assumption is more
reasonable because almost all agents on congestible links are
heading in the same direction. However for the intermediate
values (excluding 0.5) the agents on the congestible links en-
counter traffic on the bottom horizontal link (by cars taking
the longer route) causing changes in the capacity of the con-
gestible links that cannot be captured by a stylized model.
These results lead us to the following conclusions:

1. Tolls can reduce average travel time by up to 11% com-
pared to applying no tolls (see z = 0).

2. Static tolls might have a negative effect in some cases
(see z < 0.6).

3. The macro-model fails to achieve system optimal in
some cases reaching up to 10% suboptimality (see z =
0.3).

Both static and adaptive macro-model based tolls (a) result
in suboptimal performance and (b) require that the demand
over all OD pairs is known and fixed. As a result, neither is
applicable to real-world traffic. There is thus, a need for a
new tolling scheme that is dynamic, adaptive, and results in
near-optimal traffic flow.

5 Delta-tolling
This section introduces the main technical contribution of the
paper, a new tolling scheme denoted ∆-tolling. Unlike macro-
scopic models, ∆-tolling is adaptive to unknown and chang-
ing link capacities and demands. We first define ∆-tolling and
then prove, under mild assumptions, that it is equivalent to
MCT.

∆-tolling is defined over a directed networkG = (V,E) (a
road network for example) with a set of current flow values
(traffic volume for example). The output of ∆-tolling is a set
of toll values, one toll value per link. We use te to denote
the current flow time on link e ∈ E. Recall that Te denotes
the free flow travel time and tolle to denote the toll value
assigned to link e. For each link (e), ∆-tolling assigns a toll
equivalent to the difference between the current flow time (te)
and the free flow time (Te) multiplied by a parameter (β).
More formally: ∆-tolle = β(te − Te). As a rule of thumb, β
should be correlated to the mean VOT. High β values result
in high toll values which are needed to influence agents with
high VOT. Calculating ∆-tolle requires a constant amount of
time. As a result, the complexity of computing tolls for an
entire network is Θ(E).

Next we prove that ∆-tolling is equivalent to MCT under
some conditions. This is a desirable property, since MCT re-
sults in system optimal (see Section 2). First, we list the as-
sumptions under which the above statement holds:



Macro-model ∆-tolling
Parameters Required
α yes no
β yes yes
Variables Required

Demands yes no
Ce yes no
Te yes yes
te no yes
Properties Satisfied
Adaptive no yes
MCT yes yes

Table 2: The different parameters, variables and properties of
∆-tolling and macro-model tolling. MCT refers to approxi-
mating the marginal cost.

1. The delay on each link is expressed by the BPR volume
delay function, te(xe) = Te(1 + α( xeCe )β).

2. Changes in traffic flow are negligible between the time
an agent plans its route and the time it traverses the net-
work.

Lemma 1 Under the above assumptions, the tolls computed
by ∆-tolling are equivalent to the MCT.

Proof: We express the BPR volume delay function as:
(1) te(xe) = Te + axe

β where a = Te
α

Ce β
. MCT is defined

as the derivative of the delay function (dte(xe)dxe
) multiplied by

the flow (xe). Calculating MCT requires knowing the future
flow but under Assumption 2 we can use current flow instead.
So we get:
(2) MCTe = xe

dte(xe)
dxe

= xe(βaxe
β−1) = βaxe

β =

β(Te + axe
β − Te).

Combining (1) and (2) we get:
MCTe = β(te − Te) = ∆-tolle. �

The main theoretical differences between ∆-tolling and
macroscopic models are summarized in Table 2. In the next
section we study the differences in performance using the
adapted AIM simulator.

Although the assumptions made in this section might not
hold in all possible traffic networks, we provide experimen-
tal results showing that in realistic simulations, ∆-tolling im-
proves traffic flow and may achieve near optimal flow.

6 Empirical Evaluation: Delta-Tolling
This section analyzes the performance of ∆-tolling on a rep-
resentative road network. We then generalize our findings and
show they also hold for randomly generated networks. We
begin by comparing the system performance when using ∆-
tolling on the exemplar road network (presented in Figure 1).
Table 1 also presents the average travel time for ∆-tolling.
Unlike the macro-model, ∆-tolling achieves performance that
is similar to the optimal. We do not report the toll values for
∆-tolling as they are dynamically changing across the simu-
lation.

Next, we present results for larger networks. In such net-
works finding the optimal tolls in a brute force manner is

infeasible.2 For the following experiments we used grid net-
works of size 3×3 that include 9 intersection (see Figure 3 for
an example). Agents enter at the same rate of 300 agents per
hour from any incoming lane (a road with three lanes, for ex-
ample, spawns 900 agents per hour). Each agent entering the
system is assigned one of two possible exit roads with equal
probability (0.5). Each agent is also assigned two alternative
exits. Exiting via an alternative exit imposes a predefined,
randomly generated, delay.3 We justify allowing alternative
exits as follows, in many real-life scenarios, several routes,
usually of different length, may lead an agent to its destina-
tion. For example, a driver exiting Manhattan and heading
to Queens will prefer to exit via Queens Midtown Tunnel, it
can suffer some delay and exit from Ed Koch Queensboro
Bridge or suffer a severe delay while exiting via Williamsburg
Bridge. Following this logic, we view the simulated network
as part of a larger road network in which agents may use paths
outside of the network to reach their final destination.

Some roads in the simulated network are more congestible
than others i.e., the number of lanes varies. The number of
lanes for each road was randomly picked from [1, 4]. We ran
the simulator for 5000 seconds for each reported setting.4 In
the following experiments we used an upper bound on toll
values equal to 25¢.5 The upper bound is set for two reasons:
(1) avoiding overcharging in links with temporary heavy con-
gestion (2) avoiding oscillation in congestion caused by over-
pricing: heavy congestion may cause a steep increase to the
toll value which later leads to the link being vacated which
leads the toll value to reduce to zero. Zero toll value results,
again, in heavy congestion. Applying no cap on toll values
resulted in up to 5% reduced utility. We report three different
measurements:

• Time - the average travel time.

• Utility - the average utility (in cents). Where utility is
defined for each agent as its travel time multiplied by its
VOT plus the summation of tolls paid by it.

• Standardized Utility (SU) - toll revenue may be redis-
tributed back to the drivers in the form of road improve-
ments or tax reductions. We define refund as the sum of
collected tolls divided by the number of agents that ex-
ited the system. SU is defined as average utility minus
refund.

6.1 Representative Road Network
The purpose of our first experiment is to determine how dif-
ferent β values affect system performance. For this experi-
ment we used a single randomly generated instance of a 3×3

2Examining different combinations of toll assignment to all links
in the system leads to an exponential blowup.

3When each agent is assigned only one possible exit, distribut-
ing traffic becomes impossible in many cases. For such scenarios,
imposing tolls did not have a positive effect in our experiments.

4When running the simulator, in order to allow the system to
balance, we exclude data from the first 500 seconds.

5The output from the macro-model contained no toll greater than
25¢. Hence we deduced that greater tolls won’t have a positive affect
and we set the cap accordingly.



Figure 2: Average travel time, utility and standardized utility as a function of β for the representative road network.

Figure 3: A representative road network. Each agent is as-
signed one of to destinations (D1, D2). A1 and A2 denote
alternative destinations for D1 and D2 respectively. The time
penalty associated with each alternative destination is given
in parenthesis.

road network - depicted in Figure 3. Average travel time, Util-
ity and SU for different β values are presented in Figure 2.
Notice that β = 0 represent the case where no tolls are used.

Setting β = 80 gives an improvement of 35% in average
travel time over no tolls. β = 80 also gives an improvement
of 35.01% for SU over no tolls. β values greater than 80 result
in average travel times that are not significantly worse or bet-
ter. Increasing β (up to 80) results in higher toll values which
better distribute congestion. However, higher tolls also nega-
tively impact utility as drivers are forced to pay more. Utility
is maximized with β = 8 which gives a 6.96% improvement
over no tolls. We also report performance when tolls as com-
puted by the macro-model are used, given as a dashed (red)
line across the result graphs. ∆-tolling outperforms macro-
model tolling for β ≥ 4 by up to 18% in both average travel
time and SU. On the other hand, macro-model tolling ex-
ceeds by 6.25% when utility is considered. The main rea-
son for the macro-model’s advantage w.r.t utility is that ∆-
tolling imposes higher toll values. ∆-tolling (with β = 8)
collected a total of $1,921 while macro-model tolling col-

β Time Utility SU
0.0 69.9 -70.0 -70.0
8.0 51.4* -63.5 -51.1*

20.0 50.3* -67.0 -49.8*
80.0 49.5* -76.6 -48.8*

Table 3: Average travel time, utility, and SU for β values
8, 20, 80. These β values represent a trade-off between the
three metrics. *Denotes a statistically significant improve-
ment over no tolling (using a paired t-test with pvalue =
0.05).

lected only $825. Unfortunately, we observed that higher tolls
are required to better distribute congestion and optimize sys-
tem performance. On the other hand, we believe that standard
utility is a more relevant measurement for performance com-
parison between the models. In real road networks tolls are
most often used to fund road maintenance, effectively redis-
tributing the money collected back to the public. When SU is
considered, delta tolling significantly outperforms the macro-
model in all but very low β. Moreover, macro-model tolling
relies on static traffic conditions and so, unlike ∆-tolling it is
not applicable to real-life, dynamic road networks.

6.2 General Case

In order to validate that the results obtained from a single ran-
domized instance are representative, we reran the same exper-
iment using 50 different randomized road networks. Each of
these networks is a 3 × 3 grid, similar to the representative
road network, but the exit roads, alternative exits, alternative
exits’ delay, and number of lanes per road are randomized.
Table 3 shows results for three representative β values (8, 20,
80) compared to no tolling. β = 8 and β = 80 are chosen
since they maximized performance with respect to utility and
travel time/SU. β = 20 represents a good balance between
utility and travel time.

We observe that the advantage of ∆-tolling is robust to
changes in network topology. For the general case, ∆-tolling
achieves an improvement over no tolling of 29.2%, 9.31%
and 30.28% in Time, Utility and SU respectively.



7 Conclusions
This paper considers applying tolls to road networks in order
to direct the route choice of self-interested agents towards a
system optimal. The notion of such a tolling scheme is be-
coming more practical as cars are becoming increasingly au-
tonomous and the computational effort required to evaluate
several alternative routes is becoming more feasible.

This paper makes two main contributions. First, using a
traffic micro-simulator (AIM), we provide empirical evidence
suggesting that stylized macroscopic traffic models are un-
able to approximate optimal tolls accurately. Given this find-
ing and the fact that such models require full knowledge of
demand and supply and assume that these remain fixed, we
conclude that using such models to set tolls in real-life road
networks is impractical. This conclusion leads us to the sec-
ond contribution, the presentation and evaluation of a new
tolling scheme, denoted ∆-tolling. We provide theoretical
and empirical evidence that ∆-tolling results in near-optimal
system performance while being adaptive to traffic conditions
and computationally feasible.

Our ongoing research agenda includes evaluating the per-
formance of ∆-tolling in dynamic environments, in which
traffic demand and supply is time varying.
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Dietrich Braess. Über ein Paradoxon aus der Verkehrspla-
nung. Unternehmensforschung, 12:258–268, 1969.

Anthony Chen and Kitti Subprasom. Analysis of regulation
and policy of private toll roads in a build-operate-transfer
scheme under demand uncertainty. Transportation Re-
search Part A, 41(6):537–558, 2007.

Andr’e de Palma and Robin Lindsey. Information and usage
of congestible facilities under different pricing regimes.
Canadian Journal of Economics, 31(3):666–692, 1998.

Robert B. Dial. A path-based user-equilibrium traffic assign-
ment algorithm that obviates path storage and enumeration.
Transportation Research Part B, 40(10):917–936, 2006.

Kurt Dresner and Peter Stone. A multiagent approach to au-
tonomous intersection management. Journal of artificial
intelligence research, pages 591–656, 2008.

Lauren Gardner, Jennifer Duthie, Avinash Unnikrishnan, and
S. Travis Waller. Robust pricing for networks with demand
uncertainty, 2008. Presented at the 87th Annual Meeting
of the Transportation Research Board, Washington, DC.

Lauren Gardner, Stephen D. Boyles, and S. Travis Waller.
Quantifying the benefit of responsive pricing and travel
information in the stochastic congestion pricing problem.
Transportation Research Part A, 45:204–218, 2011.

Lauren Gardner, Hillel Bar-Gera, and Stephen D. Boyles. De-
velopment and comparison of choice models and tolling
schemes for high-occupancy/toll (HOT) facilities. Trans-
portation Research Part B, 55:142–153, 2013.

Lauren Gardner, Stephen D. Boyles, Hillel Bar-Gera,
and Kelly Tang. Robust tolling schemes for high-
occupancy/toll (HOT) facilities under variable demand.
Transportation Research Record, 2450:152–162, 2015.

Deren Han and Hai Yang. Congestion pricing in the absence
of demand functions. Transportation Research Part E: Lo-
gistics and Transportation Review, 45(1):159 – 171, 2009.

Peter E Hart, Nils J Nilsson, and Bertram Raphael. A for-
mal basis for the heuristic determination of minimum cost
paths. Systems Science and Cybernetics, IEEE Transac-
tions on, 4(2):100–107, 1968.

Dusica Joksimovic, Michiel C.J. Bliemer, and Piet H.L. Bovy.
Optimal toll design problem in dynamic traffic networks
with joint route and departure time choice. Transportation
Research Record: Journal of the Transportation Research
Board, 1923(1):61–72, 2005.

William Karush. Minima of functions of several variables
with inequalities as side constraints. PhD thesis, Masters
thesis, Dept. of Mathematics, Univ. of Chicago, 1939.

H. W. Kuhn and A. W. Tucker. Nonlinear programming. In
Proceedings of the Second Berkeley Symposium on Mathe-
matical Statistics and Probability, pages 481–492, Berke-
ley, Calif., 1951. University of California Press.

Robin Lindsey. Cost recovery from congestion tolls with
stochastic capacity and demand. Journal of Urban Eco-
nomics, 66(1):16–24, 2009.

T. Nagae and T. Akamatsu. Dynamic revenue management of
a toll road project under transportation demand uncertainty.
Networks and Spatial Economics, 6:345–357, 2006.

M. Patriksson. The Traffic Assignment Problem — Models
and Methods. VSP, Utrecht, Netherlands, 1994.

Arthur C. Pigou. The Economics of Welfare. Macmillan and
Co., London, 1920.

John G. Wardrop. Some theoretical aspects of road traffic
research. Proceedings of the Institution of Civil Engineers,
Part II, 1:352–362, 1952.

Byung-Wook Wie and Roger L. Tobin. Dynamic congestion
pricing models for general traffic networks. Transportation
Research Part B: Methodological, 32(5):313 – 327, 1998.



Hai Yang, Qiang Meng, and Der-Horng Lee. Trial-and-error
implementation of marginal-cost pricing on networks in
the absence of demand functions. Transportation Research
Part B: Methodological, 38(6):477 – 493, 2004.

Hai Yang. Evaluating the benefits of a combined route guid-
ance and road pricing system in a traffic network with re-
current congestion. Transportation, 26:299–322, 1999.

Hai Yang. System optimum, stochastic user equilibrium, and
optimal link tolls. Transportation Science, 33(4):354–360,
1999.

Y. Yin and Y. Lou. Dynamic tolling strategies for managed
lanes. Journal of Transportation Engineering, 135(2):45–
52, 2009.



When are Marginal Congestion Tolls Optimal?
Reshef Meir, Technion

reshefm@ie.technion.ac.il
David C. Parkes, Harvard University

parkes@eecs.harvard.edu

Abstract

Marginal tolls are known to provide the existence
of an optimal equilibrium in atomic congestion
games, but unlike nonatomic games, there might be
additional equilibria even with linear cost functions
on resources. In this paper, we show that in games
with a large number of players, all equilibria are
near-optimal.

1 Introduction
It is well known that selfish routing results in suboptimal so-
cial behavior and in increased latency [Pigou, 1920]. The
modern literature formalizes selfish routing scenarios as con-
gestion games, where the inefficiency due to strategic behav-
ior is quantified as the Price of Anarchy (PoA)– the ratio be-
tween the optimal total latency and the maximal total latency
in equilibrium [Roughgarden and Tardos, 2007].

The game theoretic literature on selfish routing can be
classified into models of atomic (unsplittable) flow and non-
atomic flow, where in the latter, each agent accounts for an in-
finitesimally small fraction of the total congestion. While in
both models a pure equilibrium is guaranteed to exist, and can
be found via a simple local best-response dynamics, atomic
congestion games are considered more challenging to ana-
lyze. Atomic games may have multiple equilibria of different
costs, and the price of anarchy can be much higher than in
nonatomic games.

The PoA is well understood in congestion games, both
atomic and nonatomic, and almost independent from the
topology of the network [Roughgarden, 2009]. That is, the
inefficiency depends mostly on the edge latency functions,
and a simple network of two parallel edges (or roads) is suf-
ficient to create instances with the highest possible PoA.

Still, it is interesting to look to change the behavior of
agents by charging them for using a resource. It has been
known since [Beckmann et al., 1956] that to enforce opti-
mal behavior in nonatomic games (i.e. such that all equi-
libria have minimum total latency), it is sufficient to impose
marginal congestion tolls, i.e., charge each agent based on
the latency he currently adds to the other agents.1 Note that
we assume tolls are dynamic that depend on monitoring the
actual congestion on one hand, but can be easily computed.
This is in contrast to static tolls that typically depend on the

1It is typically assumed that the tolls themselves are not calcu-
lated as part of the total cost, e.g. because they return to the society
indirectly, or because the central authority only cares about the la-
tency. Non-refundable tolls are also studied [Cole et al., 2006] but
not in this paper.

optimal congestion, and often require extensive computation
(see e.g. [Bonifaci et al., 2011]).

For atomic games, it is known that marginal tolls guarantee
the existence of at least one optimal equilibrium [Sandholm,
2007], however there may be other inefficient equilibria, even
in games with linear latencies [Caragiannis et al., 2010a].
The problem becomes even more involved if we take into ac-
count more general notions of equilibrium such as mixed and
correlated equilibrium. For a specific classes of atomic rout-
ing games, marginal tolls guarantee optimal behavior in any
pure equilibrium. This is the case for example for symmetric
networks with parallel links (also known as resource selec-
tion games) since in such networks the equilibrium is unique.
The class of networks for which marginal tolls are optimal
was extended first in an unpublished (and unfinished) work
by Singh [Singh, 2008]. However Singh’s result was very re-
cently refuted by Igal Milchtaich (personal communications)
who provided the correct characterization.

Several other papers studied more complicated taxation
schemes and how low they can affect the PoA [Fotakis and
Spirakis, 2008; Caragiannis et al., 2010a].

Our contribution We show that for any fixed network, if
the number of players is sufficiently large, then any equilib-
rium under marginal tolls is near-optimal. Further, this result
extend to mixed, correlated, and coarse correlated equilibria.

We use the smoothness framework [Roughgarden, 2009],
which enables the PoA bounds to be established with rela-
tively short and simple proofs.

We also consider agents with variable sensitivity to mon-
etary tolls [Cole et al., 2006; Karakostas and Kolliopoulos,
2004; Fotakis et al., 2010], reflecting how agents trade-off
money for time. As discussed in [Yang and Zhang, 2008;
Meir and Parkes, 2015b], the parameter may be unobserv-
able, and thus unknown to the central authority setting the
tolls. Thus, following [Meir and Parkes, 2015b] and in con-
trast to most of the mechanism design literature, we assume
that a marginal toll is applied, and analyze the equilibrium for
a population as the sensitivity parameter varies.

Along the way, we state formally some known results on
marginal tolls that seem to have been overlooked in the recent
study of atomic congestion and routing games.

2 Preliminaries
For an integer m, [m] = {1, 2, . . . ,m}. We use bold letters
to denote vectors, e.g., a = (a1, . . . , am).

Following the definitions in [Roughgarden, 2007], a rout-
ing game is a tuple G = 〈V,E,N, c,u,v〉, where

• (V,E) are vertices and edges of a directed graph;



• N is a finite set of agents of size n;
• c = (ce)e∈E , where ce(x) ≥ 0 is a non-decreasing func-

tion indicating the cost incurred when x agents use edge
e (ce are called latency functions);2

• u,v are vectors of n vertices each, where (ui, vi) are the
source and target nodes of agent i;

We denote byAi ⊆ 2E the set of all directed paths between
the pair of nodes (ui, vi) in the graph. Thus Ai is the set of
actions available to agent i. We denote by A = ∪iAi the set
of all directed source-target paths. A routing game is symmet-
ric (also called single-source-single-target) if all agents have
the same set of actions, i.e., Ai = A for all i.

An action profile a = (ai)i∈N specifies the path ai ∈ Ai
of each agent i, and A = ×i∈NAi is the set of all action
profiles. We denote by se(a) ∈ N the congestion on edge
e ∈ E in profile a, i.e., se = se(a) = |{i ∈ N : e ∈ ai}| (a
is omitted when clear from context).

The cost for agent i in profile a is summed over all edges,
Ci(a) =

∑
e∈ai ce(se). The social cost in a profile a in game

G is attained by summing over all agents:

SC (G,a) =

n∑
i=1

Ci(a) =

n∑
i=1

∑
e∈ai

ce(se) =
∑
e∈E

sece(se). (1)

We denote by a∗ = a∗(G) = argmina∈A SC(G,a) the pro-
file that minimizes the social cost (optimal profile).

A profile a is a pure Nash equilibrium if no agent can gain
by changing her strategy, i.e. if for all i ∈ N, a′i ∈ Ai,
Ci(a) ≤ Ci(a−i, a

′
i), where a−i = (aj)j 6=i. The definition

of equilibrium extends to mixed and correlated strategies. We
omit the formal details. Denote by PNE(G) ⊆ A the sets of
pure Nash equilibria of G.

The price of anarchy (PoA) of G is the ratio between
the social cost of worst equilibrium and the optimal profile,
i.e. PoA(G) = max{SC(G,a):a∈PNE(G)}

SC(G,a∗) (the definition of
mixed- and correlated-POA is similar). It is well known that
the PoA can be upper bounded using only the class of latency
functions in G, regardless of the structure of (V,E). For ex-
ample, if all of ce are affine functions (ce(x) = aex + be for
ae, be ≥ 0) then PoA(G) ≤ 5

2 , and this is true for mixed and
correlated-PoA as well [Roughgarden, 2009].

The price of stability (PoS) of G is similarly defined as
the ratio between the best equilibrium and the optimal pro-
file [Christodoulou and Koutsoupias, 2005], i.e. PoS(G) =
min{SC(G,a):a∈PNE(G)}

SC(G,a∗) .

Biased games We are interested in a biased game, in our
case because of the use of tolls.3 A biased game is a pair
(G, Ĝ) such that G, Ĝ are identical except in their latency
functions. Informally, we assume that players behave accord-
ing to the “biased costs” (ĉe)e∈E (e.g. play an equilibrium of
Ĝ), but social cost is measured w.r.t. the “real costs” (ce)e∈E .

2Some authors prefer the term “arc” for directed edges. We stick
with the common term in computer science.

3Biased games are also used to model cognitive and behavioral
traits such as risk aversion [Ordóñez and Stier-Moses, 2010] or al-
truism [Caragiannis et al., 2010b].

The biased price of anarchy/stability (BPoA/BPoS) com-
pares the equilibria of Ĝ to the optimum of G, using
the real social cost of both. Formally, BPoA(G, Ĝ) =
max{SC(G,a):a∈PNE(Ĝ)}

SC(G,a∗) , and similarly for BPoS.
The primary bias we will consider in this paper is tolls,

and in particular marginal tolls. That is, we define τe(x) =
(x−1)[ce(x)−ce(x−1)], and set ĉMe (x) = ce(x)+τe(x). Toll
τe(x) is exactly the marginal cost inflicted upon the remaining
x− 1 agents who use e due to an additional agent. Other tool
schemes T can be similarly defined, replacing τe(x) with any
other non-negative function Te(x).

A toll scheme T strongly enforces optimal flow in a game
G if all equilibria of ĜT (i.e., the game with biased costs ĉT )
are optimal inG (equivalently, if BPoA(G, ĜT )=1) [Fotakis
and Spirakis, 2008]. Similarly, a toll scheme weakly enforces
optimal flows if BPoS(G, ĜT ) = 1.

Marginal tolls in the nonatomic Pigouvian model were sug-
gested by Beckmann [Beckmann et al., 1956], who showed
they strongly enforce optimal flows in that model. Our goal
is to understand the power of marginal tolls in atomic routing
games.

3 Marginal tolls are weakly optimal
The marginal toll scheme for atomic games coincides with the
taxes proposed by Sandholm [Sandholm, 2007], albeit Sand-
holm defined taxes at the strategy level, rather than tolls on
particular edges. The observation that marginal tolls weakly
enforce optimal flows was also made in an unpublished report
by Singh [Singh, 2008].4 We state the result for the standard
routing games framework.

Theorem 1 ([Sandholm, 2007; Singh, 2008]). For any
atomic congestion game G, there is a pure Nash equilibrium
in ĜM that is optimal inG. Equivalently, BPoS(G, ĜM ) = 1.

The theorem follows from a simple observation: ĜM is
a potential game [Rosenthal, 1973], whose potential func-
tion φ(ĜM ,a) coincides with the social welfare of G. Thus
the optimum of SC(G,a) must a be local minimum of
φ(ĜM ,a), i.e. a pure Nash equilibrium. Quite strikingly, the
theorem was extended to a much more general framework
where agents have idiosyncratic preferences over strategies,
and congestion may depend on agents weight or other fea-
tures [Sandholm, 2007; Singh, 2008].

Unfortunately, in atomic games there may be additional
suboptimal equilibria.

Example 1. Consider a game with 3 parallel links, E =
{a, b, c} and 3 agents N = {1, 2, 3}. A1 = {a, b}, A2 =
{b, c}, and A3 = {c}. Latency functions are cb(x) =
cc(x) = x, ca ≡ 2 (see Fig. 1). The modified cost functions
under any edge-independent nonnegative tolls can be written
as ĉb(x) = ĉc(x) = (1, 2 + T (x), 3 + T ′(x)). The unique
optimum is a∗ = (a, b, c) with cost SC(a∗) = 2 + 1 + 1 = 4,
which is also a PNE. However, there is another PNE a′ =

4Recent works on tolls in routing games seem to be unaware of
this observation [Fotakis and Spirakis, 2008; Fotakis et al., 2010;
Swamy, 2012].
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Figure 1: Figure (1a) shows the base game G. The other
figures show the optimal state a∗ and the state a′ which is an
additional equilibrium of both G and ĜT .

(b, c, c) with cost SC(a′) = 1 + 2 + 2 = 5. This remains
a PNE of ĜT as long as ĉTb (x) = ĉTc (x): agent 2 is not al-
lowed to use edge a, and agent 1 does not want to use it since
ĉa(1) = 2 > 1 = ĉb(1).

This means that marginal tolls in atomic games do not, in
the general case, strongly enforce optimal flows.

4 Strongly Enforcing Optimal Flows
The prominent technique for proving PoA bounds is smooth-
ness analysis. In short, a game G is (λ, µ)-smooth if for
all a ∈ A there is a′ ∈ A such that

∑
i∈N Ci(a−i, a

′
i) ≤

λSC(G,OPT(G))+µSC(G,a). If a gameG (not just a rout-
ing game) is (λ, µ)-smooth, then PoA(G) ≤ λ

1−µ [Roughgar-
den, 2009]. Further, this holds for the mixed, correlated, and
coarse-correlated PoA as well. For routing games, it is also
shown that restricting the class of latency functions results in
smooth games. For example, if all cost functions are affine,
then G is ( 5

3 ,
1
3 )-smooth (thereby showing PoA(G) ≤ 5

2 ).
Given a biased game (G, Ĝ), we can similarly define the

property of biased smoothness.

Definition 1. (G, Ĝ) is (λ̂, µ̂)-biased smooth (BS), if there is
a′ s.t. for any profile a,∑
j∈N

(Cj(a)+Ĉj(a−j , a
′
j)−Ĉj(a)) ≤ λ̂SC (G,OPT(G))+µ̂SC (G,a).

(2)

It is easy to see that if G is (λ, µ)-smooth, then
(G,G) is (λ, µ)-BS: we set a′ = OPT(G), and note that∑
j∈N (Cj(a)+Cj(a−j , a

′
j)−Cj(a)) =

∑
j∈N Cj(a−j , a

′
j).

Theorem 2. Suppose that (G, Ĝ) is (λ̂, µ̂)-BS. Let σ be any
equilibrium (pure, mixed, correlated, or coarse-correlated) of
the game Ĝ. Then SC (G, σ) ≤ λ̂

1−µ̂SC (G,OPT(G)).

The original proof of Roughgarden [Roughgarden, 2009]
for the PoA (and coarse-correlated PoA) naturally extends to
biased smoothness.5 For completeness, we provide the proof

5A similar definition of smoothness was applied, for example, for
finite congestion games with altruism: when Ĉ(a) is a combination
ofC(a) and SC(a), then the BPoA coincides with the “robust PoA”
of Chen et al. [Chen et al., 2011].

(almost identical to the ones in [Roughgarden, 2009; Chen et
al., 2011]) in the appendix.

In particular, (1, 0)-BS means that BPoA(G, Ĝ) = 1, i.e.
that any PNE of Ĝ is optimal in G.

We are interested in showing that (G, ĜM ) is BS for some
reasonable parameters λ̂, µ̂.

4.1 Smoothness in the large
When an atomic game becomes large, i.e. when we fix the
network and increase the number of players, there is evi-
dence that the game behaves more similarly to a nonatomic
game [Feldman et al., 2015]. We show how to extend biased-
smoothness analysis (and in particular marginal tolls) to large
atomic games. While we can not apply the results of Feldman
et al. directly, our techniques are inspired by theirs.
Lemma 3. Let a,a′ be any two profiles in G with n agents,
and let ε = ε(G) = maxe∈E,x∈N(ce(x + 1) − ce(x)). Then∑
j∈NCj(a−j , a

′
j)− Cj(a)) ≤

∑
e∈E(s

′
e−se)ce(se) +O(nε).

Proof.∑
j∈N

(Cj(a−j , a
′
j)− Cj(a))

=
∑
j∈N

((
∑

e∈a′j\aj

ce(se + 1) +
∑

e∈aj∩a′j

ce(se))−
∑
e∈aj

ce(se)).

By definition of ε, we continue:

≤
∑
j∈N

((
∑

e∈a′j\aj

(ce(se) + ε) +
∑

e∈aj∩a′j

ce(se))−
∑
e∈aj

ce(se))

≤
∑
j∈N

(
∑
e∈a′j

ce(se)−
∑
e∈aj

ce(se)) +
∑
j∈N

∑
e∈E

ε

=
∑
j∈N

(s′ece(se)− sece(se)) + n|E|ε.

That is, we can write the sum of deviations as a function of
the aggregate congestion (approximately).

Next, we think of a sequence of atomic games with increas-
ing n: We fix a network (V,E) and continuous quasi-convex
cost functions c = (ce)e∈E , where ce : [0, 1]→ R+. For ease
of presentation, we consider symmetric games (i.e. where
there is just one source-target pair u, v ∈ V ), although simi-
lar arguments extend to asymmetric games. This already in-
duces a symmetric nonatomic game G̃ = (V,E, u, v, c). For
n ∈ N, we define Gn by setting Gn = (V,E,N, u, v, cn),
where cn(x) = c(x/n). Thus G̃ is the limit of (Gn)n=1,2,...

(we call it the limit game).
Our continuous cost functions can also be subject to bi-

ases. Let ˆ̃ce be the biased continuous cost of c̃e, and ĉne (x) =
ˆ̃ce(x/n). Biased-smoothness for continuous cost functions
was defined and explored in [Meir and Parkes, 2015b]: we
say that c is (λ̂, µ̂)-biased smooth w.r.t. ĉ if for all t, t′ ∈ R+,

c(t)t+ ĉ(t)(t′ − t) ≤ λ̂c(t′)t′ + µ̂c(t)t.

Clearly, if c̃ is (λ̂, µ̂)-biased smooth w.r.t. ˆ̃c, then cn is (λ̂, µ̂)-
biased smooth w.r.t. ĉn for any n.



Theorem 4. Consider a limit game G̃, where c̃e are quasi-
convex and (λ̂, µ̂)-biased smooth w.r.t. the bias ˆ̃c. Then for
any δ > 0 there are ε > 0, n(ε) s.t. for all n > n(ε), the
atomic game (Gn, Ĝn) is ((1 + δ)λ̂, µ̂)-BS. In particular,

BPoA(Gn, Ĝn) ≤ (1 + δ)
λ̂

1− µ̂
,

and this extends to any coarse-correlated equilibrium.

Proof. Let a′ = OPT(Gn), Zn = SC(Gn,a′). Since
SC(Gn,a′) = Ω(n) (the cost for each agent is at least some
constant), we write Zn > ρn for some ρ > 0 and n > n(ρ).

Since c̃e is bounded and continuous for all e ∈ E,

max
x∈[n]
{cne (x+ 1)− cne (x)} = max

x∈[n]
{c̃e(

x

n
+

1

n
)− c̃e(

x

n
)}

≤ sup
t∈[0,1]

{c̃e(t+
1

n
)− c̃e(t)}

n→∞→ 0,

and thus for all ε > 0 there is some n(ε) s.t. for all n > n(ε),
we have cne (x+ 1)− cne (x) < ε . By Lemma 3

SC(Gn,a) +
∑
j∈N

Ĉn
j (a−j , a

′
j)− Ĉn

j (a))

≤ SC(Gn,a) +
∑
e∈E

(s′e − se)ĉ
n
e (se) +O(nε)

=
∑
e∈E

(sec
n
e (se) + (s′e − se)ĉ

n
e (se)) + nε′

≤
∑
e∈E

(λ̂cn(s′e)s
′
e + µ̂cn(se)se) + nε′ (smoothness)

= λ̂Zn + µ̂SC(Gn,a) + nε′

< λ̂SC(Gn,a′) + µ̂SC(Gn,a) +
1

ρ
Znε′ (Zn > ρn)

= (λ̂+
ε′

ρ
)Zn + µ̂SC(Gn,a)

≤ (1 +
ε′

ρ
)λ̂Zn + µ̂SC(Gn,a). (λ̂ ≥ 1)

Selecting ε′ < δρ (and thus sufficiently small ε > 0, and n >
max{n(ρ), n(ε)}), completes the proof. The BPoA bound
then follows directly from Theorem 2.

Since biased smoothness hold for various pairs of cost
functions, Theorem 4 is quite useful. Mainly, we get that
marginal tolls strongly enforce near-optimal flow if there are
enough players.

Corollary 5. Consider any limit game G̃, where c̃e are quasi-
convex. Then for any δ > 0 there is some n(δ) s.t. for all
n > n(δ), BPoA(Gn, Ĝn) ≤ 1 + δ.

Proof. Consider the continuous version of marginal tolls
ˆ̃c(t) = c̃(t) + t · ∂c(t)∂t

[Beckmann et al., 1956].6 The proof
follows directly from Theorem 4 and from the fact that any
quasi-convex function c̃ is (1, 0)-biased smooth w.r.t. ˆ̃c [Meir
and Parkes, 2015b].

6Due to rounding, ĉn(x) is very close, but not identical to the
discrete ĉM (x) we previously defined.
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Figure 2: The X-axis shows the tax-sensitivity of agents,
where β = 0 means they ignore the tax.
The double red lines are the tight bounds on the BPoA for
large games with affine costs stated in Corollary 6.

5 Tax-sensitivity
We next consider agents with variable sensitivity to monetary
tolls, as in [Cole et al., 2006]. Formally, the marginal toll
τe(x) is imposed on edge e, but the cost experienced by the
agents is ĉβe (x) = c(x) + β · τe(x), where β is a parame-
ter reflecting how agents trade-off money for time. Denote
by Ĝβ the biased game obtained from G by replacing every
cost function ce(x) with ĉβ(x). We analyze the equilibrium
for a population with parameter β (where β = 1 means that
ĉβe (x) = ĉMe (x)).

In [Meir and Parkes, 2015b], various BPoA bounds are
derived for nonatomic games with various classes of cost
functions (general/convex/polynomial/linear). We show how
these bounds extend to large games.

For large atomic games, all the biased smoothness bounds
from [Meir and Parkes, 2015b] for tax-sensitivity and other
biases immediately apply. These bounds are also known to
be tight.

For example, it was shown that affine cost functions (of
the form c̃(t) = at + b for a, b ≥ 0) are (1, (1+β)

2

4 − β)-
biased smooth w.r.t. ˆ̃c(t) as defined above for all β ≤ 1 and
( (1+β)2

4β , 0)-biased smooth for β ≥ 1. We get the following
corollary due to Theorem 4:

Corollary 6. Consider any limit game G̃, where c̃e are
affine. Then for any δ > 0 there is some n(δ) s.t. for all
n > n(δ), BPoA(Gn, Ĝn) ≤ 1

(β+1)− (1+β)2

4

if β ≤ 1, and

BPoA(Gn, Ĝn) ≤ (1+β)2

4β if β ≥ 1.

Another benefit of smoothness-in-the-large is that the pa-
rameters λ̂, µ̂ are typically much smaller for classes of con-
tinuous functions than for the corresponding class of discrete
costs. Indeed, [Feldman et al., 2015] show that the PoA of
large games is significantly smaller due to this: for linear
costs the PoA drops from 5

2 to 4
3 , and for polynomials of

degree d, the PoA drops from Ω(2d) to O( d
ln d ). Our re-

sult shows that this still holds for large games with biases.
For brevity we do not re-state all the results from [Meir and
Parkes, 2015b] for large atomic games, however Fig. 2 shows
the bounds for affine costs.



6 Discussion
We have studied the problem of strongly enforcing optimal
flows in atomic congestion games through marginal conges-
tion tolls. Such tolls always weakly enforce optimal flows,
and strongly enforce optimal tolls in large games. Further,
our analysis extends to games where agents’ tax-sensitivity
is not aligned with that of the designer. This is particu-
larly important in the context of mechanism design where
we seek to shape drivers’ incentives and lead the system to
a good equilibrium [Tumer and Agogino, 2006], and when
drivers are subject to cognitive and behavioral biases such
as risk-aversion [Ordóñez and Stier-Moses, 2010; Nikolova
and Stier-Moses, 2015]. One important challenge is to ex-
tend the BPoA bounds to games where agents differ in their
levels of risk aversion or tax sensitivity. This has been done
to some extent in nonatomic games [Meir and Parkes, 2015a;
2015b].

More broadly, this work provides more evidence for the
usefulness of “biased-smoothness” analysis, in the line of
[Chen et al., 2011; Meir and Parkes, 2015b], and we hope
it can lead to a better understanding of routing games where
agents are subject to either external influences (like tolls) or
behavioral biases.
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A Omitted proofs

Theorem 2. Suppose that (G, Ĝ) is (λ̂, µ̂)-BS. Let σ be any
equilibrium (pure, mixed, correlated, or coarse-correlated) of
the game Ĝ. Then SC (G, σ) ≤ λ̂

1−µ̂SC (G,OPT(G)).

Proof. For a correlated profile σ we denote SC(G, σ) =
Ea∼σ[SC(G,a)].

By Def. 1, there is a profile a′ s.t. Eq. (2) holds for every
profile a.

It is sufficient to prove for a CCE σ. By definition of CCE,
for any i ∈ N, bi ∈ Ai,

Ea∼σ[Ĉi(a)] ≤ Ea∼σ[Ĉi(a−i, bi)]. (3)

SC(G, σ) = Ea∼σ[SC(G,a)] ≤ Ea∼σ[SC(G,a)] (4)

+

(
n∑
i=1

Ea∼σ[Ĉi(a−i, a
′
i)]− Ea∼σ[Ĉi(a)]

)

= Ea∼σ

[
SC(G,a) +

n∑
i=1

Ĉi(a−i, a
′
i)− Ĉi(a)

]
(5)

= Ea∼σ

[
n∑
i=1

(
Ci(a) + Ĉi(a−i, a

′
i)− Ĉi(a)

)]
≤ Ea∼σ

[
λ̂SC(G,OPT(G)) + µ̂SC(G,a)

]
(6)

= λ̂SC(G,OPT(G)) + µ̂SC(G, σ), (7)

where Inequality (4) follows from Eq. (3) with bi = a′i,
(5)+(7) from linearity of expectation, and (6) from Eq. (2)
applied for each a. By rearranging terms, we get the bound
in the theorem.
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Abstract

Computer-based simulation of pedestrian dynamics
is a consolidated application of agent-based models
but it still presents open challenges. The wayfind-
ing of pedestrians is a fundamental aspect to allow
the application of such models on complex envi-
ronments. Several novel approaches have recently
been proposed in the literature, yet the lack of em-
pirical knowledge still limits the reliability of the
heuristics used in the models. In this paper, a novel
model for the simulation of pedestrian wayfind-
ing is discussed and the aim is to provide general
mechanisms that can be calibrated for the repro-
duction of empirical evidences. The model is, in
fact, inspired by the behaviors observed in a exper-
iment performed with human volunteers in Novem-
ber 2015, which were put into a trade off sce-
nario, since different paths were available but the
shortest one was quickly congested. We observed
that several pedestrians choose longer trajectories
to preserve high walking speed, and often do so
following a first emerging leader. The proposed
model encompasses both a proxemic tendency to
avoid congestion, as well as an imitation mecha-
nism: these conflicting tendencies can be calibrated
according to empirical evidences. A demonstration
of the simulated dynamics on a larger scenario will
be illustrated in the paper.

1 Introduction

The simulation of the movement of pedestrians and crowds
in spatial structures is a consolidated research and application
context that still presents challenges for researchers in differ-
ent fields and disciplines: both the automated analysis and
the synthesis of pedestrian and crowd behaviour, as well as
attempts to integrate these complementary and activities [Viz-
zari and Bandini, 2013], present open issues and potential
developments in a smart environment perspective [Sassi et
al., 2015]. Although the currently available commercial
tools are used on a day-to-day basis by designers and plan-

ners1, according to a report commissioned by the Cabinet
Office [Challenger et al., 2009] there is still room for inno-
vations in models, to improve their effectiveness in modeling
pedestrians and crowd phenomena, their expressiveness (i.e.
simplifying the modeling activity or introducing the possibil-
ity of representing phenomena that were still not considered
by existing approaches) and efficiency.

Even if we only consider choices and actions related to
walking, modeling human decision making activities and ac-
tions is a complicated task: different types of decisions are
taken at different levels of abstraction, from path planning to
the regulation of distance from other pedestrians and obsta-
cles present in the environment. Moreover, the measure of
success and validity of a model is definitely not the optimal-
ity with respect to some cost function, as (for instance) in
robotics, but the plausibility, the adherence of the simulation
results to data that can be acquired by means of observations
or experiments.

The present research effort is aimed at producing insights
on this aspect: an experiment involving pedestrians has been
set up to investigate to which extent pedestrians facing a rel-
atively simple choice (i.e. choose one of two available gate-
ways leading to the same target area) in which, however, they
can face a trade-off situation between length of the trajectory
to be covered and estimated travel time. The closest gateway,
in fact, is initially selected by most pedestrians but it is too
narrow to allow a smooth passage of so many pedestrians, and
it quickly becomes congested. The other choice can therefore
become much more reasonable, allowing a higher average
walking speed and comparable (if not even lower) travel time.
We observed that several pedestrians choose longer paths to
preserve high walking speed, and often do so following a first
emerging leader. Modeling this kind of choices with current
approaches can be problematic.

The present work represents a step in the direction of pro-
ducing a general model fitting this kind of evidences. The
proposed model encompasses both a proxemic tendency to
avoid congestion, as well as an imitation mechanism: these
conflicting tendencies can be calibrated according to empiri-
cal evidences. After a discussion of relevant related works, an
analysis of different alternatives for modeling and simulating

1See http://www.evacmod.net/?q=node/5 for a large list of
pedestrian simulation tools).



this kind of scenario will be illustrated in Section 3. Results
of the application of the proposed model in a real world sce-
nario, initially described in [Wagoum et al., 2012], will then
be described, with reference to their plausibility. Conclusions
and future works will end the paper.

2 Related Works
The inclusion in simulation models of decisions related to
trade off scenarios, such as the one between overall trajectory
length and presumed travel time (considering congestion in
perceived alternative gateways), represent an issue in current
modeling approaches.

Commercial instruments, for instance, mostly provide ba-
sic tools to the modelers, that are enabled and required to
specify how the population of pedestrians will behave: this
implies that the operator constructing the simulation model
needs to specify how the pedestrians will generally choose
their route (generally selecting among different alternatives
defined by means of annotation of the actual spatial struc-
ture of the simulated environment through landmarks repre-
senting intermediate or final destinations [Kretz et al., 2014]),
as well the conditions generating exceptions to the so called
“least effort principle”, suggesting that pedestrians generally
try to follow the (spatially) shortest path toward their desti-
nation. Space, in fact, represents just one of the relevant as-
pects in this kind of choice: since most pedestrians will gen-
erally try to follow these “best paths” congestion can arise
and pedestrians can be pushed to make choices that would be
sub–optimal, from the perspective of traveled distance.

Recent works in the area of pedestrian and crowd simu-
lation started to investigate this aspect. In particular, [Guo
and Huang, 2011] proposed the modification of the floor-field
Cellular Automata [Burstedde et al., 2001] approach for con-
sidering pedestrian choices not based on the shortest distance
criterion but considering the impact of congestion on travel
time. [Wagoum et al., 2012] explored the implications of four
different strategies for the management of route choice oper-
ations, through the combination of applying the shortest or
quickest path, with a local (i.e., minimize time to vacate the
room) or global (i.e., minimize overall travel time) strategies.

Iterative approaches, borrowing models and even tools
from vehicular transportation simulation, propose to adopt a
more coarse grained representation of the environment, i.e. a
graph in which nodes are associated to intersections among
road sections, but the process can be also adopted in build-
ings [Kretz et al., 2014]. In this kind of scenario, pedes-
trians can start by adopting shortest paths on a first round
of simulation: as suggested before, the fact that all pedes-
trians take the best path generally leads to congestion and
sub-optimal travel times. Some selected pedestrians, espe-
cially those whose actual travel time differs significantly from
the planned one, will change their planned path and a new
simulation round will take place. The iteration of this pro-
cess will lead to an equilibrium or even to system optimum,
according to the adopted travel cost function [Lämmel et
al., 2009]. This iterative scheme has also been employed
in multi-scale modeling approaches [Lämmel et al., 2014;
Crociani et al., 2016].

The above approach naturally leads to consider that this
kind of problem has been paid considerable attention in
the field of Artificial Intelligence, in particular by the plan-
ning community. Hierarchical planning [Sacerdoti, 1974]
approaches, in particular, provide an elegant and effective
framework in which high level abstract tasks can be decom-
posed into low level activities. Despite the fact that the formu-
lation of the approach date to the seventies, it is still widely
considered and employed in the close area of computer graph-
ics [Kapadia et al., 2013], in which actions of virtual pedes-
trians are planned with the aim of being visually plausible
and decided within real-time constraints. Within this frame-
work, also issues related to the reconsideration of choices and
plans were analyzed, mostly within the robotics area [Levihn
et al., 2013]. In the pedestrian simulation context, one could
consider that microscopic decisions on the steps to be taken
can follow a high-level definition of a sequence of intermedi-
ate destinations to be reached by the pedestrian. This kind of
approach, which we experimentally investigated in [Crociani
et al., 2015], also allows exploiting already existing models
dealing with low level aspects of pedestrian actions and per-
ceptions.

The main issues in transferring AI planning results within
this context of application, and more generally producing
generally applicable contributions to the field, are partly due
to the above suggested fundamental difference between the
measures of success between simulation and control applica-
tions. Whereas the latter are targeted at optimal solutions,
the former have to deal with the notions of plausibility and
validity. Moreover, we are specifically dealing with a com-
plex system, in which different and conflicting mechanisms
are active at the same time (e.g. proxemics [Hall, 1966] and
imitative behaviors [Helbing et al., 1997]). Finally, whereas
recent extensive observations and analyses (see, e.g., [Boltes
and Seyfried, 2013]) produced extensive data that can be used
to validate simulations within relatively simple scenarios (in
which decisions are limited to basic choices on the regulation
of mutual distances among other pedestrian while following
largely common and predefined paths like corridors with uni-
directional or bidirectional flows, corners, bottlenecks), we
still lack comprehensive data on way-finding decisions.

3 A Model To Encompass the Pedestrian
Movement and Route Choice

This Section will propose a multi-agent model designed for
the simulation of pedestrian movement and route choice be-
havior. The model of agent is composed of two elements,
respectively dedicated to the low level reproduction of the
movement towards a target (i.e. the operational level, consid-
ering a three level model described in [Michon, 1985]) and to
the decision making activities related to the next destination
to be pursued (i.e. the route choice at the tactical level). The
component dedicated to the operational level behavior of the
agent is not extensively described since, for this purpose, the
model described in [Bandini et al., in press] has been applied.
For a proper understanding of the approaches and mecha-
nisms that will be defined at the tactical level, on the other
hand, a brief description on the representation of the environ-



ment, with different levels of abstractions, is firstly provided
in this Section. More attention will then be dedicated to the
introduction and discussion of the model for the management
of the route choice, which represents the main contribution of
this paper.

3.1 The Representation of the Environment and
the Knowledge of Agents

The adopted agent environment [Weyns et al., 2007] is dis-
crete and modeled with a rectangular grid of 40 cm sided
square cells. The size is chosen considering the average area
occupied by a pedestrian [Weidmann, 1993], and also re-
specting the maximum densities usually observed in real sce-
narios. The cells have a state that informs the agents about
the possibilities for movement: each one can be vacant or oc-
cupied by obstacles or pedestrians (at most two, so as to be
able to manage locally high density situations).

To allow the configuration of a pedestrian simulation sce-
nario, several markers are defined with different purposes.
This set of objects has been introduced to allow the move-
ment at the operational level and the reasoning at the tactical
level, identifying intermediate and final targets:

• start areas , places were pedestrians are generated:
they contain information for pedestrian generation both
related to the type of pedestrians (e.g. the distribution of
their destinations), and to the frequency of generation;

• openings , sets of cells that divide, together with the
obstacles, the environment into regions. These objects
constitutes the decision elements, intermediate destina-
tions, for the route choice activities;

• regions , markers that describe the type of the re-
gion where they are located: with them it is possible to
design particular classes of regions (e.g. stairs, ramps)
and other areas that imply a particular behavior of pedes-
trians;

• final destinations , the ultimate targets of pedestri-
ans;

• obstacles , non-walkable cells defining obstacles
and non-accessible areas.

An example of environment annotated with this set of
markers is proposed in Fig. 1(b). This model uses the floor
fields approach [Burstedde et al., 2001], using the agents’ en-
vironment as a container of information for the management
of the interactions between entities. In this particular model,
discrete potentials are spread from cells of obstacles and des-
tinations, informing about distances to these objects. The two
types of floor fields are denoted as path field, spread from
openings and final destinations (one per destination object),
and obstacle field, a unique field spread from all the cells
marked as obstacle. In addition, a dynamic floor field that
has been denoted as proxemic field is used to reproduce a
proxemic behavior [Hall, 1966] in a repulsive sense, letting
the agents to maintain distances with other agents. This ap-
proach generates a plausible navigation of the environment
as well as an anthropologically founded means of regulating
interpersonal distances among pedestrians.

This framework, on one hand, enables the agents to have
a position in the discrete environment and to perform move-
ment towards a user configured final destination. On the other
hand, the presence of intermediate targets allows choices at
the tactical level of the agent, with the computation of a
graph-like representation of the walkable space, based on the
concept of cognitive map [Tolman, 1948]. The method for
the computation of this environment abstraction has been de-
fined in [Crociani et al., 2014] and it uses the information of
the scenario configuration, together with the floor fields asso-
ciated to openings and final destinations. In this way a data
structure for a complete knowledge of the environment is pre-
computed. Recent approaches explores also the modeling of
partial knowledge of the environment by agents (e.g. [An-
dresen et al., in press]), but this aspect goes beyond the scope
of the current work. The cognitive map identifies regions (e.g.
a room) as nodes of the labeled graph and openings as edges.
An example of the data structure associated to the sample sce-
nario is illustrated in Fig. 1(c). Overall the cognitive map al-
lows the agents to identify their position in the environment
and it constitutes a basis for the generation of an additional
knowledge base, which will enable the reasoning for the route
calculation.

This additional data structure has been called Paths Tree
and it contains the information about plausible paths towards
a final destination, starting from each region of the environ-
ment. The concept of plausibility of a path is encoded in the
algorithm for the computation of the tree, which is discussed
in [Crociani et al., 2015] and only briefly described here. The
procedure starts by defining the destination as the root of the
tree and it recursively adds child nodes, each of them mapped
to an intermediate destination reachable in the region. Nodes
are added if the constraints describing the plausibility of a
path are satisfied: in this way, paths that imply cycles or a
not reasonable usage of the space (e.g. passing inside a room
to reach the exit of a corridor, as illustrated in Fig. 1(a)) are
simply avoided.

The results of the computation is a tree whose nodes are
mapped to targets in the environment and each edge refers to
a particular path between two targets. The root of the tree
is mapped to a final destination, while the underlying nodes
are only mapped to openings. Hence, each branch from the
root to an arbitrary node describes a minimal (i.e. plausible)
path towards the final destination associated to the tree. To
complete the information, each node n is labeled with the
free flow travel time2 associated to the path starting from the
center of the opening associated to n and passing through the
center of all openings mapped by the parent nodes of n, un-
til the final destination. In this way, the agents knows the
possible paths through the environment and their respective
estimated traveling times.

For the choice of their path, agents access the informa-
tion of a Paths Tree generated from a final destination End
with the function Paths(R,End). Given the region R of
the agent, the function returns a set of couples {(Pi, tti)}.
Pi = {Ωk, . . . , End} is the ordered set describing paths

2The travel time that the agent can employ without encountering
any congestion in the path, thus moving at its free flow speed.
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Figure 1: (a) An example of plausible (continuous line) and implausible (dashed) paths in a simple environment. (b) A simula-
tion scenario with the considered annotation tools and its respective cognitive map (c) and the shortest path tree (d).

which start from Ωk, belonging to Openings(R), and lead
to End. tti is the associated free flow travel time.

3.2 The Route Choice Model of Agents
This aspect of the model is inspired by the behaviors observed
in a experiment performed with human volunteers in Novem-
ber 2015 at the University of Tokyo, aiming at identifying
basic behavior at the wayfinding level. The participants were
put into a trade off scenario, since different paths were avail-
able but the shortest one was quickly congested. Empirical
analysis related to this experiment are not presented in this
paper for lack of space. Qualitatively, it has been observed
that several persons preferred to employ a longer trajectories
for achieving higher walking speed, but this kind of choice
seemed to be taken more frequently and easily after a first
emerging leader had performed it.

By considering these aspects, the objective is to propose an
approach that would enable agents to choose their path con-
sidering distances as well as the evolution of the dynamics. At
the same time, the model must provide a sufficient variability
of the results (i.e. of the paths choices) and a calibration over
possible empirical data.

The discussion of the model must starts with an overview
of the agent life-cycle, in order to understand which activity

is performed and in which order. The workflow of the agent,
encompassing the activities at operational and tactical level
of behavior at each time-step, is illustrated in Figure 2.

First of all, the agent performs a perception of his situation
considering his knowledge of the environment, aimed at un-
derstanding its position in the environment and the markers
perceivable from its region (e.g. intermediate targets). At the
very beginning of its life, the agent does not have any infor-
mation about its location, thus the first assignment to execute
is the localization. This task analyses the values of floor fields
in its physical position and infers the location in the Cognitive
Map. Once the agent knows the region where it is situated, it
loads the Paths Tree and evaluates the possible paths towards
its final destination.

The evaluation has been designed with the concept of path
utility, assigned to each path to successively compute a prob-
ability to be chosen by the agent. The probabilistic choice of
the path outputs a new intermediate target of the agent, used
to update the reference to the floor field followed at the oper-
ational layer with the local movement.

The utility-based approach fits well with the needs to easily
calibrate the model and to achieve a sufficient variability of
the results.

The core functions of the wayfinding model are Evaluate



Figure 2: The life-cycle of the agent, emphasizing the two
components of the model.

Paths and Choose Paths, which will be now discussed.

The Utility and Choice of Paths
The function that computes the probability of choosing a path
is exponential with respect to the utility value associated to it.
This is completely analogous to the choice of movement at
the operational layer:

Prob(P ) = N · eU(P ) (1)

The usage of the exponential function for the computation
of the probability of choosing a path P is a good solution
to emphasize the differences in the perceived utility values
of paths, limiting the choice of relatively bad solutions (that
in this case would lead the agent to employ relatively long
paths). U(P ) comprises the three observed components influ-
encing the route choice decision, which are aggregated with
a weighted sum:

U(P ) = κttEvaltt(P )− κqEvalq(P ) + κfEvalf (P ) (2)

where the first element evaluates the expected travel times;
the second considers the queuing (crowding) conditions
through the considered path and the last one introduces a pos-
itive influence of perceived choices of nearby agents to pur-
sue the associated path P (i.e. imitation of emerging leaders).
All the three functions provide values normalized within the
range [0, 1], thus the value of U(P ) is included in the range
[−κq, κtt + κf ].

In theory, there is no best way to define these three com-
ponents: the usage of very simple functions as well as com-
plicated ones might provide the same quality to the model.
The only way to evaluate the reliability of this model, in fact,
is with a validation procedure over some empirical knowl-
edge. Hence, these three mechanisms have been designed
with the main objective to allow the calibration over empir-
ical datasets, preferring the usage of simple functions where
possible.

The Evaluation of Traveling Times
The evaluation of traveling times is a crucial element of the
model. First of all, the information about the travel time tti of
a path Pi is derived from the Paths Tree with Paths(R,End)
(where End is the agent’s final destination, used to select the
appropriate Paths Tree, andR is the region in which the agent
is situated and it is used to select the relevant path Pi in the
Paths Tree structure) and it is integrated with the free flow
travel time to reach the first opening Ωk described by each
path:

TravelTime(Pi) = tti +
PFΩk

(x, y)

Speedd
(3)

where PFΩk
(x, y) is the value of the path field associated

to Ωk in the position (x, y) of the agent and Speedd is the
desired velocity of the agent, that can be an arbitrary value
(see [Bandini et al., in press] for more details of this aspect of
the model). The value of the traveling time is then evaluated
by means of the following function:

Eval tt(P ) = Ntt ·
min

Pi∈Paths(r)
(TravelTime(Pi))

TravelTime(P )
(4)

where Ntt is the normalization factor, i.e., 1 over the sum
of TravelTime(P ) for all paths. By using the minimum value
of the list of possible paths leading the agent towards its own
destination from the current region, the range of the func-
tion is set to (0,1], being 1 for the path with minimum travel
time and decreasing as the difference with the other paths in-
creases. This modeling choice, makes this function describe
the utility of the route in terms of travel times, instead of its
cost.

This design is motivated by the stability of its values with
the consideration of relatively long path, which might be rep-
resented in the simulation scenario. By using a cost function,
in fact, the presence of very high values of TravelTime(P )
in the list would flatten the differences among cost values of
other choices after the normalization: in particular, in situ-
ations in which most relevant paths have relatively similar
costs, excluding a few outliers (even just one), the normal-
ized cost function would provide very similar values for most
sensible paths, and it would not have a sufficient discriminat-
ing power among them.

The Evaluation of Congestion
The behavior modeled in the agent in this model considers
congestion as a negative element for the evaluation of the
path. This does not completely reflect the reality, since there
could be people who could be attracted by congested paths as
well, showing a mere following behavior. On the other hand,
by acting on the calibration of the parameter κq it is possible
to define different classes of agents with customized behav-
iors, also considering attraction to congested paths with the
configuration of a negative value.

For the evaluation of this component of the route decision
making activity associated to a path P , a function is first in-
troduced for denoting agents a′ that precede the evaluating
agent a in the route towards the opening Ω of a path P :



Forward(Ω, a) = |{a′ ∈ Ag\{a} : Dest(a′) = Ω ∧
PFΩ(Pos(a′)) < PFΩ(Pos(a))}|

(5)

where Pos and Dest indicates respectively the posi-
tion and current destination of the agent; the fact that
PF Ω(Pos(a′)) < PF Ω(Pos(a)) assures that a′ is closer
to Ω than a, due to the nature of floor fields. Each agent is
therefore able to perceive the main direction of the others (its
current destination). This kind of perception is plausible con-
sidering that only preceding agents are counted, but we want
to restrict its application when agents are sufficiently close to
the next passage (i.e. they perceive as important the choice
of continuing to pursue that path or change it). To introduce
a way to calibrate this perception, the following function and
an additional parameter γ is introduced:

PerceiveForward(Ω, a) ={
Forward(Ω, a), if PFΩ(Pos(a)) < γ

0, otherwise
(6)

The function Evalq is finally defined with the normaliza-
tion of PerceiveForward values for all the openings connect-
ing the region of the agent:

Evalq(P ) =

N · PerceiveForward(FirstEl(P ),myself )

width(FirstEl(P ))

(7)

where FirstEl returns the first opening of a path, myself
denotes the evaluating agent and width scales the evaluation
over the width of the door (larger doors sustain higher flows).

Propagation of Choices - Following Behavior
This component of the decision making model aims at repre-
senting the effect of an additional stimulus perceived by the
agents associated to sudden decision changes of other persons
that might have an influence. An additional grid has been in-
troduced to model this kind of event, whose functioning is
similar to the one of a dynamic floor field. The grid, called
ChoiceField, is used to spread a gradient from the positions
of agents that, at a given time-step, change their plan due to
the perception of congestion.

The functioning of this field is described by two parameters
ρc and τc, which defines the diffusion radius and the time
needed by the values to decay. The diffusion of values from
an agent a, choosing a new target Ω′, is performed in the cells
c of the grid with Dist(Pos(a), c) ≤ ρc with the following
function:

Diffuse(c, a) =

{
1/Dist(Pos(a), c) if Pos(a) 6= c

1 otherwise
(8)

The diffused values persist in the ChoiceField grid for τc
simulation steps, then they are simply discarded. The in-
dex of the target Ω′ is stored together with the diffusion val-
ues, thus the grid contains in each cell a vector of couples
{(Ωm, diff Ωm

), . . . , (Ωn, diff Ωn
)}, describing the values of

influence associated to each opening of the region where the
cell is situated. While multiple neighbor agents changes their
choices towards the opening Ω′, the values of the diffusion
are summed up in the respective diff Ω′ . In addition, after
having changed its decision, an agent spreads the gradient in
the grid for a configurable amount of time steps represented
by an additional parameter τa. In this way it influences the
choices of its neighbors for a certain amount of time.

The existence of values diff Ωk
> 0 for some opening Ωk

implies that the agent is influenced in the evaluation phase by
one of these openings, but the probability for which this in-
fluence is effective is, after all, regulated by the utility weight
κf . In case of having multiple diff Ωk

> 0 in the same cell, a
individual influence is chosen with a simple probability func-
tion based on the normalized weights diff associated to the
cell. Hence, for an evaluation performed by an agent a at
time-step t, the utility component Evalf can be equal to 1
only for one path P , between the paths having diff Ωk

> 0 in
the position of a.

4 Evaluation of the Model
The evaluation of the model is here discussed with a simula-
tion of a large scenario, with the aim of verifying the behav-
ior of the model in a real-world environment and to perform a
qualitative comparison of the results with another wayfinding
model from the literature.

All the presented results have been achieved with the cal-
ibration weights of the utility function configured as Ωtt =
100,Ωq = 27; Ωf = 5, while the parameters related to the
ChoiceF ield are set to ρc = 1.2m, τc = 2 time-steps =
0.44s and τd = 4 time-steps = 1s. The desired speed of
agents have been configured with a normal distribution cen-
tered in 1.4 m/s and with standard deviation of 0.2 m/s, in
accordance with the pedestrians speeds usually observed in
the real world (e.g. [Willis et al., 2004]). The distribution
is discretized in classes of 0.1 m/s, and cut by configuring a
minimum velocity of 1.0 m/s and a maximum one of 1.8 m/s
(see the blue boxes in Fig. 3(c)). To allow a maximum speed
of 1.8 m/s —considered plausible in this outflow scenario—
the time-step duration is assumed to τ = 0.22s.

The simulation scenario describes the outflow from a por-
tion of the Düsseldorf Arena, as described in [Wagoum et al.,
2012]. The annotated environment used for the simulation
with the discussed model is illustrated in Fig. 3(a): 4 start-
ing areas models the bleachers of the stadium and generates
the agents in the simulation, whose aim is to reach the outside
area indicated with the blue object. Cyan objects are the inter-
mediate targets describing the wayfinding decisions of agents.
250 agents are generated at the beginning of the simulation
from each start area, producing a total of 1000 pedestrians.

The heat map shown in Figure 3(b) provides information
about the usage of the space during the simulation, by de-
scribing the average local densities perceived by the agents
(so-called cumulative mean density). The major congested ar-
eas are located in front of the exit doors, given their relatively
small width of 1.2 m. An interesting point that comes out
from this analysis (also visible in the screen-shot in Fig. 3(a))
is that the present configuration of the environment implies



(a) (b)

(c)

Figure 3: (a) A screenshot of the simulation of the Düsseldorf Arena. Spatial markers are also displayed and the colors of the
agents identifies their current target. (b) Cumulative mean density map and (c) average speed distributions configured (blue)
and achieved (red).

that several exits receive an incoming flow from more sources
(i.e. corridors), while there are 3 exits in the upper right cor-
ner of the environment which are not employed at all by the
agents during the simulation. In addition, the usage of the ex-
its is unbalanced, causing the level of density to be higher in
some of them. The evaluation of this evidence would require
empirical data that could be used either to support the model-
ing choices or to confute these results and lead to a different
calibration (e.g. adopting a lower weight for the considera-
tion of travel time, that would lead to an increased usage of
the far exits).

The corridors connecting each bleacher to the atrium are
affected as well by high densities (around 2.5–3 persons/m2)
but their widths guarantee a sensibly higher flow, causing
smoother congestion —and so higher speeds— inside the
starting regions.

The red boxes of Fig. 3(c) shows the distribution of desired
walking speeds compared to the achieved average walking
speeds of agents during the simulation. The congestion arisen
in the exit doors of the atrium sensibly affected the travel time
of the agents. This caused that a small portion of the simu-
lated population succeeded in maintaining its desired speed
(the agents generated in positions closer to the exit), while

most of them experienced a significant delay during their way.

5 Conclusions
The present paper has introduced a general model for deci-
sion making activities related to pedestrian route choices. The
model encompasses three aspects influencing these choices,
as observed in an experimental observation: expected travel
time, perceived level of congestion on the chosen path, and
decisions of other preceding pedestrian to pursue a different
path. Achieved results are both plausible and encouraging,
though a proper validation of the model would require addi-
tional results but also the acquisition of empirical evidences
on human wayfinding decisions in congested situations.
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Bernhard Steffen. Large-scale and microscopic: a fast
simulation approach for urban areas. In Transportation
Research Board 93rd Annual Meeting, number 14-3890,
2014.

[Levihn et al., 2013] Martin Levihn, Leslie Pack Kaelbling,
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Abstract 
This paper presents an agent-based model to address the 
pedestrian route choice problem in shopping malls. 
Route choice in shopping malls may be defined by a 
number of causal factors. Shoppers may follow a pre-
defined schedule, they may be influenced by other 
people  walking, or  may want to get a glimpse of a 
familiar shopping. The route choice process assumes 
that the cost of each route can be calculated as a function 
of three factors: route length, impedance generated by 
other pedestrians and attraction for areas of interest on 
the environment. The impedance generated by the 
friction between pedestrians is assumed to exist even 
before physical contact, due to the psychological 
tendency to avoid passing close to individuals with high 
relative velocity. Pedestrians seek minimal route length 
and minimal friction with other pedestrians. In order to 
represent shopping areas environments, a new factor is 
being considered in the calculation of the route cost: the 
attraction for areas of interest on the environment. 
Simulation results were compared to real data collected 
by video recording in a shopping mall. 

1 Introduction 
Modelling of pedestrian’s behavior is a complex task and 
has been studied by different research areas. In order to 
represent motion of pedestrians more realistically, models 
are required to simulate several processes, including sense 
and avoidance of obstacles, interaction with other 
pedestrians and route choice. Agent-based abstraction has 
been widely used for pedestrian modeling, mainly due to its 
capacity to provide insights about  system´s reactions from 
changes on entities proprieties, capturing information over 
space and time at a  detailed level [Klügl and Bazzan 2012; 
Macal et al. 2006; Rossetti R. et. al. 2002]. Agent-based 
models represent agents’ decision-making ability based on 
their profile and perception over the environment. 
 
Agent-based pedestrians models require the aggregation of 
different levels of abstraction, that are modeled on different 
layers. The majority of pedestrian models present a multi-
layer simulation approach [Gaud et al. 2008; Hoogendoorn 

et al. 2002] composed by, at least, two layers: a tactical and 
an operational layer.  
 
The tactical layer chooses a path regarding an origin-
destination pair and a route choice criteria such as minimum 
distance and/or travel times. The tactical model determines 
the desired pedestrian directions, which are used in the 
operational model [Pretto et al. 2011].  
 
The operational model determines the low level microscopic 
movements of pedestrians. It is ruled by principles of 
pedestrians’sense and avoidance of obstacles. Most models 
reported in literature can be regarded as using force-based 
approaches [Helbing et al. 1991; Helbing et al. 1995]. In 
force-based models, agents evaluate forces exerted by 
infrastructure and by other agents. Helbing and Molnar 
(1995) presented a relevant work on force-based models in 
which they use Newtonian mechanics and a continuous 
space representation to model a long-range interaction. The 
concept behind this approach suggests that the motion of a 
pedestrian can be described by combination of several 
forces (including the repulsive forces from walls and other 
pedestrians). The social force model reproduces various 
emergent phenomena observed on pedestrian´dynamics. 
 
The tactical model is responsible for route choice. Realistic  
route choice is a complex process because most route 
selection strategies are based on subconscious decisions. 
Most models presented in the literature are concerned only 
with the quickest or shortest route, like Kirik et. al. (2009), 
Dressler et. al. (2010) and Lämmel et. al. (2014). However, 
other factors play an important role in route choice 
behavior, such as: peoples’ habits, number of crossings, 
pollution and noise levels, safety, shelter from poor weather 
conditions and other environment stimulations 
[Papadimitriou E., 2012]. Most relevant route choice models 
are concerned with pedestrians' evacuation. In Kretz et. al. 
(2011), for instance, pedestrians routes are chosen based on 
the minimal remaining travel time to destination. Kretz et. 
al. (2014) introduce a generic method for dynamic 
assignment used with microsimulation of pedestrian 
dynamics. In the paper, the routes mark the most relevant 
routing alternatives in any given walking geometry, 
reducing the infinitely many trajectories by which a 
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pedestrian can move from origin to destination to a small set 
of routes. Crociani and Lämmel (2016) present a work with 
two major topics. In the first topic, a novel cellular 
automaton (CA) model is proposed, which describes the 
pedestrian movement by a set of simple rules, and the 
second topic describes how the CA can be integrated into an 
iterative learning cycle where the individual pedestrian can 
adapt travel plans based on experiences from previous 
iterations. Patil et. al. (2010) propose an interactive 
algorithm to direct and control crowd simulation. The model 
presented by Treuille et. al., (2006) unifies route planning 
and local collision avoidance by using a set of dynamic 
potential and velocity. Teknomo (2008) and Teknomo et al., 
(2008) described a self-organization route choice approach 
to model the dynamics of agents, such as pedestrians and 
cars on a simple network graph. The agents decide, when 
reaching a vertex, which edge to enter next. This decision is 
based on a set of rules regarding the agent’s observation of 
the local environment. In order to represent complex 
networks, such as shopping areas and urban scenarios, 
agents need to represent more complex caracteristics and 
capabilities.  
 
The literature presents several agent-based applications to 
simulate different pedestrians’ behaviors and environments. 
The pedestrians’ simulation in a commercial environment, 
such as shopping malls, is particularly complex since 
pedestrians are exposed to different stimulus and attractions 
[Wang, W. et. al. 2014]. Agent-based simulation is 
particularly valuable for these cases because environment 
stimulus exert distinct influences depending on the person 
profile. Dijkstra et al., (2013) provide a model for pedestrian 
activity simulations in shopping environments. This 
framework provides an activity agenda for pedestrian 
agents, guiding their shopping behavior in terms of 
destination and time spent in shopping areas. Pedestrian 
agents need to successively visit a set of stores and move 
over the network. The authors assumed that pedestrian 
agents’ behavior is driven by a series of decision heuristics. 
Agents need to decide which stores to choose, in what order 
and which route to take, subject to time and environment 
constraints.  
 
Route choice in shopping malls may be defined by a number 
of causal factors. Shoppers may follow a pre-defined 
schedule, they may be influenced by other people  walking, 
or  may want to get a glimpse of a familiar shopping. 

  
Shopping agents, as described in the literature [Borgers, A., 
and Timmermans, H., 1986; Ali, W. and Moulin, B., 2006] 
usually decide (i) in which stores to stop, (ii) in what order 
and (iii) which route to take. In practice, however, shopping 
mall users´ behaviour is a combination of planned and 
unplanned decisions. Planned decisions can defined by a set 
of origin-destination pairs. Unplanned decisions may be 
resultant from eventual impulses or the attraction exerted by 
shopping windows. 
 

This paper presents an agent-based route choice model to 
represents pedestrians’ in a shopping mall environment. The 
pedestrian model allows the representation of shopping 
users capable to perform either planned and unplanned 
behaviour, depending on the agent´s profile. Simulation 
results were compared to real data collected by video 
recording in a shopping mall. 

2 The Model 
 An agent-based model is proposed to address pedestrian 
route choice problem. Agent-based models represent agents’ 
decision-making ability based on agents’ characteristics 
profile and perception over the environment. In the 
proposed model, pedestrians are agents able to choose and 
recalculate routes. Pedestrians are not assigned to 
predetermined routes. 
 
In this model, a route is a set of coordinates followed by a 
pedestrian from origin to destination. Route choice process 
comprises three factors for calculation: (i) distance, (ii) 
interaction with other pedestrians (avoiding jams) and (iii) 
attraction for areas of interest on the environment (in this 
specific case: shop windows).  
 
The framework adopted to describe pedestrian behavior in 
this model (Figure 1) presents a three-layer structure, each 
layer representing: 

(i) Demand for travel - set of origin and destination. 
Each origin-destination pair is associated to a 
number of trips and a pedestrian generation rate. 
Origins and destinations are associated with nodes 
on the environment layer.  

(ii)  Simulation environment structure -.The 
environment is described as a continuous space and 
is composed by geometric entities, such as rooms, 
doors, and other obstacles. The environment 
entities are linked by a graph-based structure 
providing a route to all entities. In this model, 
nodes are defined by a set of coordinates (x, y). 
Nodes also contain properties defining local 
features of the environment. 

(iii) Pedestrians movement, sense and avoidance of 
obstacles: set of equations and agents behavior 
rules. The social force model (1) describes 
pedestrian walking behavior regarding agents’ low-
level motion, collision avoidance and velocity 
adaptation. Pedestrians freely walk on the 
modeling environment seeking the next graph node 
of the designated route. Pedestrians’ movements 
are ruled by the sense and avoidance model and are 
not restricted to a strict set of links. 



 
Figure 1 - Layers 

2.1 The Route Choice Process  
The presented route choice process is derivate from model 
established by Werberich et. al. (2014). Werberich et. al. 
propose that the cost of each route can be calculated as a 
function of two factors: route length and the impedance 
generated by other pedestrians. The impedance generated by 
the friction between pedestrians is assumed to exist even 
before physical contact, due to the psychological tendency 
to avoid passing close to individuals with high relative 
velocity [Helbing D. et al., 2000]. Pedestrians seek minimal 
route length and minimal friction with other pedestrians. In 
this model, a new factor is being considered in route cost 
calculation: attraction for areas of interest on the 
environment. 
 
The total route cost is the sum of all link costs. Dijkistra 
algorithm [Dijkstra E., 1959] is adopted to generate valid 
routes for any origin/destination pair. Figure 2 describes the 
cost calculation for a link. 

 

Figure 2 – Pedestrian’s profile and node attraction 
 

Figure 2 presents the elements involved in the route choice 
process. The cost estimation for a Pedestrian α to walk from 
node u to n involves three factors: (i) the distance between 
nodes ( r! − r! ), (ii) the impedance perceived by the 
pedestrian α exerted by other pedestrians (I!) and (iii) the 
environment attraction perceived by pedestrian α for the 
node n (A!! ). 
 
Impedance exerted by the pedestrians in the simulation is 
calculated by simple vectors operations. Subtracting the 
desired velocity of pedestrian α from the velocity of 
pedestrians closer to node n ( pedestrians 𝛽) it is possible to 
estimate I! (equation 1). 
 

I! =  𝑣! −
!!!!!
!!!!!

∗ 𝑣!! !           (1) 
where: 
v! = Pedestrian’s β current velocity; 
r!  = Node’s n vector position; 
r!  = Node’s u vector position ; 
𝑣!!= Pedestrian’s α desired speed. 
 
The calculation of I! considers a neighborhood area around 
the node n, defined by the radius R!. All  pedestrians inside 
the neighborhood area, at the instant of the route choice, are 
nominated pedestrians β. I! is the sum of the friction forces 
exerted by each pedestrian β over the desired velocity of the 
pedestrian α. 
 
As mentioned above, the graph nodes contain properties that 
classify local features of the environment. Node properties 
define the environment characteristics. For example, 
properties can  be defined as female clothes store, male 
clothes store, electronics store, shoe store, etc. Nodes are 
defined by a set of values for all simulated properties. 
Higher properties values mean the node is closer of the 
related feature. Properties can assume values in the range [0 
– 1].  
 
The attraction exerted by these nodes properties on 
pedestrians vary dependeing on pedestrians profiles.  
Pedestrians' profiles also present a set of values for all 
simulated environment properties, that represent their 
attraction for these features. For example, male pedestrians 
probably have higher values for a property relating to a male 
clothes store. These properties also assume values  in the 
range [0 – 1]. 
 
The attraction of node n, perceived by pedestrian α (A!! ), is 
calculated as a weighted average (Equation 2): 
 

𝐴!! =  !!
!!

!!! ∗!!
!

!!
!!

!!!
                      (2) 

 
where: 



p = total number of properties; 
P!! = pedestrian α property i value; 
N!! = node n property i value. 
 
The total estimated cost for pedestrian α to walk from node 
u to n (W!

!,!), is a balance between distance, impedance and 
attractiveness, as described in Equation 3: 
 

W!
!,! =  r! − r! . (1 + I! /I!"# + (1 - A!! ))       (3) 

 
where: 
I!"# = settable parameter that adjusts the balance between 
distance and impedance. Further  description of this 
parameter can be obtained in Werberich et al. (2014). 
 
Elected routes minimize the total cost W!. Equation 3 
ensures pedestrians are attracted to areas of interest 
considering their profile. Pedestrians also avoid congested 
areas and passing close to other pedestrians with high 
relative velocity. 

2.2 Pedestrian Stopping Behavior 
It is expected that pedestrians walking on shopping 
environment, when attracted by an environmental stimulus, 
may stop for a while. For example, pedestrians attracted by 
a shop window frequently stop walking when they get 
closer to this interest point. This model simulates 
pedestrians route choice process subjected to attraction by 
interest areas, tipical of shopping environments.  
 
To simulate pedestrians’ stopping behavior the model 
introduces the concept of hotspots. Hotspots are defined by 
a location on the environment (𝑥 and 𝑦 coordinates) and a 
neighborhood area (radius 𝑅). Hotspots have the same 
environment properties as graph nodes. When a pedestrian 
reaches the neighborhood area of a hotspot, he decides 
whether to stop or not. This decision process considers the 
pedestrian profile and the hotspot properties. Pedestrian 
profile includes a value denoting the tendency to stop on a 
hotspot (T!). Higher values of T! means the pedestrian have 
higher tendency to stop on hotspots. T! values also respect 
the range [0–1]. Equation 4 defines the probability of a 
pedestrian α stopping on a hotspot q (S!

!). 
 

𝑆!
! =  (!!

!!
!!! ∗!!

!)
!!
!!

!!!
∗  𝑇!                 (4) 

where: 
p = total number of properties; 
P!! = pedestrian α property i value; 
H!! = hotspot q property i value; 
T! = pedestrian α tendency to stop on a hotspot. 
 
 
 
 
 
 
 
 
 
 
 
 

If a pedestrian decides to stop on a hotspot neighborhood, 
the hotspot coordinates become his new destination for the 
stopping period. The balance between the pedestrian desired 

speed vector (𝑣!!) and the forces exerted by the hotspot 
walls, keep the pedestrian standing in the neighborhood 
area. During this period, the interaction between pedestrians 
is maintained, allowing a realistic representation of 
pedestrians behavior at window shops. When a pedestrian 
stopping time has expired, a new route is recalculated to the 
final the destination.  
 
The time a pedestrian stops at a hotspot may has variable 
assumptions. In this formulation, pedestrians stopping time 
is assumed to be fixed, equal to 20 seconds. Assumptions 
about stopping times can be discussed in more detail. An 
important work regarding time spent at store windows was 
developed by Dijkstra J. et. al. (2014). In this paper, authors 
describe the time spent in a store based on pedestrians 
profile and store segment.   
 
Figure 3 presents a flowchart of the agent’s internal process.  
 

 
Figure 3  - Agent’s internal process 

 
As presented in this flowchart, a pedestrian only performs a  
route recalculation procedure after stopping at a hotspot. A 
Social Force-based route choice process considers the 
interaction with other pedestrians, which provides a 
dynamic behavior. However, if necessary, when simulating 
complex scenarios, the model structure allows the 
introduction of route recalculation areas. When simulating  
small scenarios, where the decision at the beginning of the 
trip was based on a good assessment of the way forward for 
all simulation timeframe, route recalculation may not be 
necessary. 



3 Collected Data 
Video data were collected in a shopping mall of Porto 
Alegre, Brazil. The camera collected images from a hall that 
connects the two main corridors of the first floor. Figure 
4  presents an image of the studied area and the collected 
pedestrian routes. 
 
The software Tracker was used to collect pedestrians’ data 
in a semi-automatic process. The collected data is composed 
by a set of coordenates (x and y) over 1 minute of video for 
each pedestrian. 
 
In order to simplify the data analysis, the enviroment was 
segmented in cells. A color map representing the cumulative 
occupation of each cell is shown at figure 5, segmented by 
gender.  

 
Figure 4 – The Mall 

 
Figure 5 –Collected data 

 

Data analysis allows the identification of three stores with 
higher pedestrian attraction . Table 1 shows the number of 
pedestrians, men (M) and women (W), that were attracted 
and stopped closer to these areas.  
 
Table 1 – Stopped pedestrians 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Simulation 
The proposed model has the potential to represent several 
properties regarding agents’ profile and environment 
characteristics. In order to simplify the simulation, only two 
properties were considered in this experiment: Male Store 
Attraction (MSA) and Female Store Attraction (FSA). 
These two properties were applied to: 
 
i.    Scenario elements: hotspots and graph nodes (MSAs and 
FSAs); 
ii.   Agents (MSAa and FSAa).  
 
The experiment was developed to identify the influence of 
MSAa and FSAa in the number of pedestrians that are 
attracted to hotspots. The MSAa and FSAa were calibrated 
based on collected data. 
 
The model was implemented using c# programming 
language (simulation engine) and Windows Presentation 
Foundation for the graphical interface. 
 
4.1 Simulation Scenario 
Figure 6 shows the simulation scenario built to represent the 
observed environment. Green areas (h1, h2, h3) are the 
hotspots. The hotspots correspond to stores where mall 
users used to stop on the real site. Dots are the graph nodes. 
Rectangles represent mall kiosks. 
 

 
Figure 6 – Simulation scenario 

 
Table 2 shows the values for MSAs and FSAs considered for 
the hotspots and its surronding yellow graph nodes. Blue 



graph nodes (Figure 6) exert no attraction over the agent, the 
value for both MSAs and FSAs are zero. The MSAs and 
FSAs values were assumed to be constants. The MSAs and 
FSAs  definition can be enhanced by considering effects of 
various design and management attributes. An example of  
the evaluation of consumers attraction can be found in 
Oppewal, H., and Timmermans, H. (1999). The authors 
estimated a stated preference model from responses to 
descriptions of an hypothetical shopping centers considering 
attributes such as: area for pedestrians, window displays, 
street layout, and street activities.  
 
 
 
Table 2 – Hotspots configuration 
 

 

4.2 Calibration 
The calibration process aimed to calibrate the agents’ profile 
(MSAa and FSAa) in order to reproduce the number of 
stopped pedestrians at each hotspot. For this purpose, four 
groups of simulations were run (s1, s2, s3, s4).  For each 
simulation group, 50 simulations were performed. Two 
agents classes were implemented: male agents (MA) and 
female agents (FA). By definition, male agents have FSAa = 
0 and female agents have MSAa = 0. Table 3 shows the  
configuration profiles defined for each simulation group. 
 
Table 3 – Agents profile configuration 
 

simulation	group	 MA	 FA	
s1	 MSAa	=	0.1	 FSAa	=	0.1	
s2	 MSAa	=	0.5	 FSAa	=	0.5	
s3	 MSAa	=	0.7	 FSAa	=	0.7	
s4	 MSAa	=	0.9	 FSAa	=	0.9	

 
The only variables in simulations were MSAa and FSAa. 
The scenario configuration was kept constant. Agents’ 
tendency to stop (𝑇!) was set to 0.7. According to observed 
data, each simulation run comprised 80 agents, 40% MA 
and 60% FA. Pedestrians are generated with a fixed rate 
over time, with 40% of change to be male and 60% of 
change to be female. Figure 7 shows a simulation 
screenshot, MA are green circles and FA are red circles. A 
simulation video is availiable at: 
https://youtu.be/10OUgNMaoNA. 
 
 

 
 

Figure 7 – Simulation screenshot 
 

Figure 8 shows a color map of the results for all simulation 
groups (s1, s2, s3, s4), and the average number of agents 
stopping at each hotspot (h1, h2, h3) over 50 simulation 
runs. 
 

 
Figure 8 – Simulations results 

 
4.2 Simularion Analysis 
Simulation group s3 presented the best ajustment to the 
observed data. Higher values of MSA and FSA lead to 
higher attraction to hotspots. However, it is important to 
highlight that even though a pedestrian chooses a route to 
get closer to a shop window, he needs to reach a hotspot to 
stop. If the hotspot area is too crowded, he may not reach 
the hotspot, due to the social force effect, and do not stop. 
Thus, the attraction effect has a tendency to be balanced. 
Figure 9 show the s3 color map and the color map generated 
from real data. The s3 color map is one of 50 simulations. It 
is possible to observe differences in color patterns between 
simulation and real data. This difference is due the noise of 



pedestrians’ tracking process and camera perspective. It is 
important to highlight stopping pattern at hotspots is similar. 
 

 
Figure 9 – Real data versus simulation data 

5 Conclusions 
The modeling approach presented in this paper provides a 
sound representation of pedestrian route choice dynamics 
considering the attraction to shop windows. Route choice is 
based on a combination of distance, impedance generated by 
other pedestrians and shop window attraction. The model 
differs from other pedestrians’ route choice approaches 
because it seamlessly incorporates pedestrians social force 
into the route choice decision process. 
 
In this model, we have created an association between the 
pedestrian’s profile and store segment. When a pedestrian 
defines a route, due to its attraction to a store, he draws his 
chance to stop at a hotspot. The formulation of stopping 
chances can be enhanced through a more complex agent 
abstraction. However, it is well known that increasing 
model complexity usually leads to an increase in the 
calibration process effort.  
 
The analysis from simulations indicates that the agents’ 
emerging behavior  provides a promising approach for real 
case applications. This model formulation is capable of 
supporting more complex agents’  profiles and aplications to  
different enviroments, such as variable shopping premisses, 
expositions sites and passengers terminals.  
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Abstract

This paper discusses the first steps towards the defi-
nition of novel statistics and metrics that character-
ize networks in terms of the complexity they pose
to the traffic assignment problem. Here, we follow
an approach in which the assignment emerges from
routes selected by learning agents. Specifically,
we deal with issues related to how routes are cou-
pled. We first define and quantify route coupling,
i.e., how much a given route is coupled with other
routes that can be used by learning agents. The in-
vestigation of route coupling is important in multi-
agent reinforcement learning settings since it mea-
sures how a change in action selection by one agent
interferes with the actions taken by other agents.
Our preliminary empirical results indicate that us-
ing route coupling to bias the learning process of
agents results in faster convergence in the traffic as-
signment problem.

1 Introduction

Traffic networks can be represented as directed graphs G =
(V,A), where V represents the set of nodes (street or road
intersections, points of interest, or districts), and A the set of
arcs (street or road segments). The topology of these graphs,
as well as other characteristics such as how demand is dis-
tributed and how latency (cost) functions are defined, have
a great influence on the traffic assignment problem (TAP),
whose goal is to assign the traffic demand (number of trips,
vehicles) onto the arcs of a network G.

Our objective is to characterize road networks by designing
qualitative metrics and statistics. In particular, given a graph,
an origin-destination matrix, and latency functions, we wish
to design metrics that numerically represent the degree of dif-
ficulty posed to the assignment task. We study the TAP not
under the traditional, centralized approach, but via an agent-
based variant. Here, each agent (in this context, a driver or
vehicle) learns to select a route taking it from its origin to its
destination. Given that in such a process a decision made by
an agent affects the outcome of other agents, this is a typical
multiagent reinforcement learning problem (MARL).

A closely related issue to the one studied in this paper is
that of how to characterize a traffic network in terms of how

high the price of anarchy (PoA); [Koutsoupias and Papadim-
itriou, 1999; Roughgarden and Tardos, 2002]) is. The PoA
measures the loss in performance caused by a situation in
which each driver seeks to minimize its travel time indepen-
dently. Some works refer to this as selfish routing. One of our
goals is to investigate how the magnitude of the PoA affects
the learning task. Knowing this, one could anticipate how
complex the assignment will be. As the Braess paradox—a
case in which the PoA can be very high—shows, the addition
of arcs to a network may end up causing more congestion
[Braess, 1968].

This paper discusses the first steps towards the definition of
novel statistics and metrics to characterize networks in terms
of the complexity they pose to the TAP. In particular, we pro-
pose a metric based on topological properties of the network,
whose goal is to measure how coupled routes are. Coupling
refers, intuitively, to how many points of interaction a route
has with other routes, and how likely it is that agents might
decide to switch routes. This serves as a way of estimating
how strongly an agent on one route might be affected by other
agents who might change their behavior. Measuring this ef-
fect is important since strong dependencies make learning in
MARL settings harder. We describe a way of using coupling
statistics to bias the learning process of agents in a way that
empirically counteracts the negative effects of non-stationary
in the learning process, and that is conducive to faster con-
vergence to an equilibrium. We evaluate our methods in sev-
eral road networks with different topologies and demands—
both real-world networks and synthetic ones, such as those
affected by the Braess paradox. In order to construct chal-
lenging networks that are affected by this paradox, we mod-
ify an existing method to extend Braess networks to arbitrary
sizes.

This paper is organized as follows: Section 2 introduces
the classical, optimization-based approach to the TAP, and an
alternative MARL-based approach to compute a user equilib-
rium. Section 3 introduces our main methods and presents a
few networks that we use to illustrate them. We present pre-
liminary results in Section 4, related work in Section 5, and
present concluding remarks in Section 6.

2 The Traffic Assignment Problem

This section introduces a mathematical formulation for the
traffic assignment problem and presents the notation that will



be used throughout the paper. As previously mentioned, a
transportation network can be represented as a directed graph
G = (V,A). Each arc a ∈ A has a latency function which
is a function of the traffic in that arc—it quantifies the effects
of network usage, such as traffic congestion. This function
depends on parameters of the arc such as the time τ to trans-
verse it without congestion (this is also known as free flow
time), and the nominal capacity ρ of the arc (e.g., in terms of
number of vehicles).

In this work we denote the set of incoming arcs to
node v ∈ V by IN (v), and the set of outgoing arcs
from node v ∈ V by OUT (v). In addition, let C =
{(o(1), d(1)), . . . , (o(|σ|), d(|σ|)} ⊆ V × V denote the set
of commodities, i.e., a set of origin-destination (OD) pairs.
Here, o(σ) and d(σ) represent, respectively, the origin and
destination nodes for σ = 1, . . . , |C|. Each commodity σ
has an associated demand rσ = ro(σ),d(σ); i.e., each OD pair

(o(σ), d(σ)) has an associated demand rσ that emanates from
node o(σ) and terminates in node d(σ).

Furthermore, each arc has a latency function that expresses
how travel time depends on the traffic flow on that arc. If
drivers were to selfishly select routes that minimize their in-
dividual travel times, they could simply select the shortest
path that satisfies their desired origin and destination nodes.
This strategy, however, makes several underlying assump-
tions which are often not met, or are unrealistic: for example,
that the time taken to traverse an arc is constant and inde-
pendent of other drivers. This is clearly not the case in real
traffic networks, where the maximum flow allowed in an arc
depends on which routes other drivers take and on how many
drivers occupy an arc at a given time.

When simulating traffic conditions on a given network, a
designer needs to select a latency function that approximates
the real-life costs of navigating in that network. One of the
best-known and widely used latency function for real-world
networks, often referred to as the BPR function, was intro-
duced by the U. S. Bureau of Public Roads [Bureau of Public
Roads, 1964]. This is a non-linear, convex, and strictly in-
creasing function. Linear functions are also frequently used
(e.g., in the case of networks affected by the Braess paradox)
to represent the latency on each arc. In this work, whenever
we refer to networks affected by this paradox, we assume that
the latency is represented by la(fa) = mafa + na, where
ma ∈ R+ and na ∈ R are parameters and fa is the flow on
arc a. We also assume that la(fa) ≥ 0.

In the next section we introduce a mathematical model for
assignment problem—this is a classical, optimization-based
method to solve the TAP. We then describe an alternative way
of solving a version of this problem, namely by searching for
a user equilibrium via MARL techniques.

2.1 A Model of Traffic Assignment

In this subsection we present mathematical models describ-
ing the two main principles that characterize the traffic as-
signment: the system optimum (SO) and user equilibrium
(UE) Wardrop [1952]. The latter principle states that “un-
der equilibrium conditions traffic arranges itself in congested
networks such that all used routes have equal and minimum
costs, while all those routes that were not used have greater

or equal costs”. The former principle refers to the system as
a whole and states that the average trip time is minimum.

Beckmann et al. [1956] were the first to propose and solve
a mathematical model to compute both the SO and UE solu-
tions. In what follows we present an arc-based mathematical
model for SO and for the UE model. A path-based mathe-
matical model may also be used to represent the respective
assignment problems. Let xσ

a be variables indicating the flow
on arc a for the commodity σ; let fa be the total flow on arc
a and Φa be the associated cost for the arc a. The SO model
for a multi-commodity network can be written as:

min Φ =
∑

a∈A

Φa (1)

subject to:

maf
2
a + nafa ≤ Φa (2)

fa =
∑

σ∈C

xσ
a ∀a ∈ A (3)

∑

a∈IN(v)

xσ
a −

∑

a∈OUT (v)

xσ
a =







dσ, if v = d(σ)

−dσ, if v = o(σ)

0, otherwise

∀v ∈ V, σ ∈ C (4)

xσ
a ≥ 0, ∀a ∈ A, ∀σ ∈ C (5)

fa ≥ 0,Φa ≥ 0 ∀a ∈ A. (6)

Objective function (1) aims at finding a flow assignment
for each arc that minimizes the total cost for the system—
resulting in an assignment respecting the SO principle. Con-
straints (2) associate the cost of each arc a to the variable Φa;
constraints (3) associate the total flow in arc a to variables fa;
constraints (4) ensure flow conservation, and constraints (5)
and (6) define the domain of variables. Note that this model
has quadratic constraints, since it contains a product between
flow variables in the constraints (2)—in particular, the prod-
uct of latency costs and arc flows (i.e., (mafa + na) fa). The
SO model can be extended to networks that consider the BPR
latency function by changing constraints (2). This formula-
tion uses a set of variables Φa and constraints (2) to define the
latency cost on each arc; this is especially useful for the case
where the latency function is a composition of linear func-
tions (see Case 2, Section 3.1, for more details).

We now consider the UE model, whose objective is to min-
imize the function

Φ =
∑

a∈A

∫ fa

x̄a

la(x)dx (7)

Since we assume that the latency function is la(x) =
max + na, we can simplify this expression. For the case
where na ≥ 0, x̄a = 0. For the case where na < 0, x̄a should
be the max x such that la(x) = 0; i.e., x̄a = −na/ma. Since
we also consider la(x) ≥ 0, the latency function becomes a
composition of two line segments, thereby defining a piece-
wise linear function which is convex and strictly increasing.
To completely define the UE model, we now only need to re-
place the constraints (2) with the following set of constraints:



1

2
maf

2
a + nafa −

(

1

2
max̄

2
a + nax̄a

)

≤ Φa. (8)

If na ≥ 0, then x̄a = 0 and constraints (8) are reduced to

1

2
maf

2
a + nafa ≤ Φa (9)

Solving the above-mentioned models involves assigning a
traffic flow to each arc in order to obtain a global assignment
that is consistent either with the SO or UE hypotheses. The
models can be solved via mathematical programming using
general-purpose solvers such as CPLEX and MOSEK.

2.2 Multiagent Learning for Route Choice

Mathematical programming-based methods like the ones pre-
viously mentioned may have difficulties if non-linear latency
functions are used. Furthermore, these methods can typi-
cally only solve static assignments. Unlike optimization ap-
proaches that use mathematical models suitable only for static
assignment with linear or convex latency functions, MARL
can be used to compute traffic assignment solutions by con-
sidering each individual driver as an autonomous agent, in a
microscopic fashion. This strategy can be used to tackle a
wide range of problems, such as those involving static or dy-
namic assignment, and also ones that require the simulation
of complex systems.

In this paper we assume that when using MARL to com-
pute traffic assignment solutions, each agent learns to make
decisions (i.e., to select routes) by using reinforcement learn-
ing. We use the Q-learning algorithm to update the value
of each state-action pair of the agent; this value represents
the expected long-term utility that the agent hopes to achieve
by selecting a given action in a state, and following the cur-
rent action-selection strategy thereafter. This update is per-
formed based on an experience tuple 〈s, a, s′, rew〉 accord-
ing to Equation 10, where α is the learning rate and γ is a
discount rate applied for future rewards. Details of the use of
Q-learning for the TAP are given in Section 4.

Q(s, a)← Q(s, a)+α
(

rew + γ max
a′

Q(s′, a′)−Q(s, a)
)

(10)

3 Methods

We are interested in characterizing traffic networks of differ-
ent types—for instance, synthetic (or pictorial) networks such
as those used to illustrate the Braess paradox; networks whose
demand distributions are closer to real-world cases (versus
symmetric-demand distributions such as those in Braess para-
dox); single versus multicommodity cases; networks with lin-
ear versus non-linear latency functions; etc. Hence, prior to
discussing the statistics we employ to measure the coupling
between routes, we introduce and discuss the nature of a few
selected networks: arbitrarily large Braess-paradox networks
(in Section 3.1), the OW network (Section 3.2), and the Sioux
Falls network (Section 3.3). We then introduce a metric for
characterizing some properties of these networks—the cou-
pling statistic (Section 3.4).

3.1 Arbitrarily Large Braess-Paradox Networks

The Braess paradox occurs whenever adding resources to a
transportation network deteriorates the quality of a UE. Us-
ing Beckmann’s model, Braess [1968] described situations in
which adding a road to a congested traffic network could have
a counter-intuitive outcome—namely, the overall travel time
could increase. This phenomenon can be interpreted as fol-
lows: suppose we close a road or increase its free travel time
by decreasing the maximum allowed speed; if the cost (e.g.,
the total travel time at UE) decreases, then we observe the
Braess paradox.

Roughgarden [2001] discusses the problem of designing
networks so that the Braess paradox does not occur—more
specifically, which edges should be removed from a network
to obtain the best possible flow at Nash equilibrium. This
author also discusses how to create arbitrarily large Braess
graphs, whose sizes depend on a factor p; a few examples are
shown in Figure 1. Although single-commodity, these net-
works are interesting since they are associated with a high
PoA. Roughgarden’s method allows the investigation of the
PoA in large graphs, rather than in simple ones like the net-
work in Figure 1a. Being able to produce large networks with
this property is useful in the context of our work because
we aim at defining novel statistics and metrics to character-
ize networks (such as Braess networks of different sizes) in
terms of the complexity they pose to the TAP—in particular
in the context of using MARL algorithms to solve it.
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Figure 1: Sample graphs that result in the Braess paradox.



Braess graphs of arbitrary size can be generated as fol-
lows: given a size parameter p, the p-th Braess graph Bp

is constructed with a set V p = {s, v1, ..., vp, w1, ..., wp, t}
of 2p + 2 vertices; and a set of arcs Ap defined by
{(s, vi), (vi, wi), (wi, t) : 1 ≤ i ≤ p}∪{(vi, wi−1) : 2 ≤ i ≤
p} ∪ {v1, t)} ∪ {s, wp)}. Next, we describe how to associate
latency functions with each of these arcs.

Latency Functions

A key decision when designing arbitrarily large Braess net-
works is how to associate latency functions to the arcs. We
extend the method described by Roughgarden [2001] in three
ways: (i) we allow networks with arbitrary constant arc costs
c, instead of unitary costs; (ii) we allow arbitrary demand val-
ues1 r instead of only fractions of a unitary demand; and (iii)
we introduce simpler piecewise latency functions which, al-
though resulting in lower PoA values, allow for solutions to
be more easily obtained via standard commercial optimiza-
tion packages.

In what follows, the demand for a given commodity (or
origin–destination pair) σ ∈ C is indicated as rσ . Let c > 0
be the cost associated with constant-cost arcs, and r ∈ R

∗+
be the total demand of the network. Roughgarden [2001] uses
c = 1 and r = p; this constrains the networks that can be
generated since p is typically much smaller than the demand.
We modify this formulation so that r can be arbitrarily large.
By default, we consider c = 10 and r = 4200.

We now define the latency function la(x) associated with
each arc a. The value of i of each arc is the same as described
in Section 3.1. We omit the subscript p in the latency function
to simplify notation. The latency functions are defined as:

• la(x) = 0 for arcs of form a = (vi, wi) ∀i ∈
{1, 2, . . . , p};

• la(x) = c for arcs of form a = (vi, wi−1) ∀i ∈
{2, . . . , p}, (s, wp) or (v1, t).

For the remaining arcs of the form a = (wi, t) or
(s, vp−i+1) ∀i ∈ {1, 2, . . . , p}, the latency function is defined
as a function of the flow in the arc. We use two strategies to
define the latency of these arcs. The first strategy is to use
a linear function with na = 0, and the second one is to use
a piecewise function based on the latency function described
by Roughgarden [2001]; these are henceforth referred to as
Case 1 and Case 2 respectively.

Case 1 - Linear function with na = 0
In this case, the latency function la(x) = max + na is a
simple line segment satisfying la(0) = 0 and lpa(

r
p
) = ic, i.e.:

ma =
icp

r
(11)

na = 0. (12)

Case 2 - Piecewise Linear function with na < 0
In this case, the latency function la(x) = max + na is
a composition of two line segments satisfying la(0) = 0,

1In this paper we use the term demand, rather than traffic rate,
but keep the symbol r used by Roughgarden [2001].

la(
r

p+1 ) = 0, and lpa(
r
p
) = ic, i.e.,

ma =
icp2 + cip

r
(13)

na = −cip. (14)

Figure 2 depicts fixed-cost arcs in blue, while arcs with cost
equal to zero appear in red. The remaining arcs (in black) are
the ones with latency functions that depend on the arc’s flow.
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Figure 2: Braess Graph B3 with latency functions.

Figure 3 shows a few sample latency functions: f0 is the
latency function for the family functions proposed by Rough-
garden [2001]; f1 represents the latency function for Case 1,
and f2 represents the latency function for Case 2.

x

l(x)

0 r

p+1

r

p

ci f0

f1
f2

Figure 3: Sample latency functions.

3.2 The OW Network

Besides Braess-paradox networks, another network of inter-
est in this work is the OW network (due to Ortúzar and
Willumsen [2001]), depicted in Figure 4 and henceforth re-
ferred to simply as OW. Although this not a full reproduction
of a real-world network, it contains interesting real-world el-
ements. This network represents two residential areas (nodes
A and B in the figure) and two major shopping areas (nodes L
and M). The numbers associated with arcs, τa, denote travel
times in those arcs under free flow (in both ways). The
proposed demand for this network corresponds to a total of
r = 1700 trips, distributed among four commodities: AL,
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Figure 5: Sioux Falls Road Network

AM, BL, and BM (600, 400, 300, and 400 trips respectively).
Furthermore, the network is defined via a latency function
that relates the latency la(fa) of an arc a and the flow fa as-
sociated with that arc.

3.3 Sioux Falls Network

The Sioux Falls (SF) network (Figure 5) is based on the real-
world city of Sioux Falls, USA. It is frequently used as a
testbed for traffic assignment approaches. The SF network
uses as a latency function the BPR function (Eq. 15), where
fa is the flow on arc a, τa is the free-flow travel time in a, and
ρa is its nominal capacity. In this paper we use ã = 0.15 and

b̃ = 4, as suggested in the literature.

la(fa) = τa

(

1 + ã

(

fa
ρ

)b̃
)

(15)

3.4 A Topological Coupling Statistic

In this section we introduce novel statistics and metrics to
characterize networks in terms of the complexity they pose to
the traffic assignment problem—in particular to multiagent
reinforcement learning algorithms. We do so by measuring
how coupled routes are. We first define and quantify route
coupling, i.e., how much a given route is coupled with other
routes that can be used by learning agents. The investigation
of route coupling is important in multiagent reinforcement
learning settings since it measures how changes in the actions
of one agent interfere with the actions taken by other agents.

Assume a graph G and latency functions la ∈ R, as pre-
viously defined; suppose that we have a demand r resulting
from drivers wishing to traverse this graph. Different drivers
may have different origins and may wish to reach different
destination nodes. Our goal is to have drivers select paths that
allow for an overall cost function to be minimized. To this
end, drivers may use a set R of routes, where each route Ri is
defined as a sequence of nodes connecting the starting node
oi of a route to a destination node di; i.e., Ri ≡ [oi, . . . , di].
Concretely, assume that there are |R| routes defined over the
graph G. If drivers were to selfishly select paths that min-
imize their own travel time, measured with respect to the
latency la of each arc in a route, we could simply compute
the shortest path between oi and di. This strategy, however,
makes assumptions that are often unrealistic: for example,
that the time taken to traverse an arc is independent of other
drivers. This is clearly not the case in real traffic networks.

Alternatively, we can minimize an overall cost function de-
fined over G by using learning methods capable of identifying
the optimal allocation of drivers to routes. In this case, one
recurring problem is that of non-stationarity: if each driver
independently observes the state of the network and makes
a decision, the effects of that decision (e.g., its impact on
total travel time) may seem to change with time in unpre-
dictable ways. The reason for this is that choices made by
other agents, and which the driver cannot always predict or
observe, cause properties of the network to remain as unob-
servable variables in the learning problem. From each driver’s
point of view, therefore, the overall learning problem seems
to change with time: even if it always selects the same action
when observing a same local state, the effective result of that
action depends on a series of latent factors. If drivers learn to
select routes in this manner, it may take a long time for the ag-
gregate effects of other drivers’ decisions to be averaged out
and for the learning algorithm to converge to an equilibrium.

We propose a way of analyzing topological properties of
the network in order to estimate how likely it is that non-
stationarity (caused by partial observation of other drivers’
decisions or intent) will negatively affect the learning process.
On one one hand, networks with sparse and non-interacting
routes will typically not be affected by non-stationarity; af-
ter all, each driver’s decisions will have almost no effect on
the travel time of other agents, therefore resulting in a pro-
cess in which drivers can independently optimize their route
choices. Networks where important routes share many arcs
with other routes, on the other hand, will be strongly affected
by non-stationarity: if a group of agents decides to change
their decisions and switch to a different route, this will di-
rectly affect the travel time of many other agents—even if
they do not change their own decisions.

The metric that we propose is called coupling, and consists
in a statistic computed based on topological properties of the
network. Our goal with it is to estimate how strong the effect
of non-stationarity might be and to describe a way of using it
to bias the learning process, in a way that empirically counter-
acts the negative effects of non-stationary and is conducive to
faster convergence to an equilibrium. Intuitively, the coupling
statistic measures how many points of interaction a route has
with other routes, and how likely it is that other agents might



decide to switch to any given alternative route. If two routes
share many arcs, for instance, the effective flow on both of
them will be more strongly affected by agents deciding to
travel on those routes or deciding to abandon them in favor of
other options; these routes are, therefore, highly coupled.

We define the coupling Ψ(Ri) of a route Ri as the expected
value of the interaction I(Ri, Rj) of that route with other
routes Rj in the system. This expectation is defined with
respect to a probability distribution P over possible routes:
routes that are more likely to be selected by agents (based on
their individual preferences for reaching particular places in
the network) have higher probability. Specifically, we define:

Ψ(Ri) = EP

[

I(Ri, ·)
]

=

|R|
∑

j=1

P (Rj)I(Ri, Rj) (16)

where I(Ri, Rj) is the normalized number of shared arcs be-
tween routes Ri and Rj :

I(Ri, Rj) =
1

|R|

|Ri ∩Rj |

|Ri|
(17)

Intuitively, I measures how much of the underlying struc-
ture and resources of the network are shared by two routes,
and P reflects the agents’ demands for different routes at
some point in time—defined according to their preferences
for reaching different regions of the network2.

In our experiments, we refer to Ψ(Ri) as the mean cou-
pling of a route Ri whenever P is assumed to be a uniform
distribution. This corresponds to the case where we have no
prior information about agents’ preferences for reaching par-
ticular nodes of the network. When we do have that informa-
tion, we can encode it in P , which then represents the relative
preferences of agents for choosing different routes.

To illustrate the use of the proposed coupling statistics, we
start with a simple example—the Braess graph B1, depicted
in Figure 1(a). This network has a single commodity: the
entire demand of r = 4200 drivers travels from s to t. There
are 3 possible routes they can select from: st1, st2, and st3, as
shown in Table 1. These form the set R of routes, which was
generated by using a k-shortest paths algorithm Yen [1971].
This algorithm returns k shortest paths (when analyzed under
free flow) associated with a given commodity. The st1 path
is the shortest one to satisfy the single demand in B1; st2 and
st3 are the second and third shortest paths, respectively.

Table 2 shows the normalized number of shared arcs be-
tween any two routes, which is the second term in Equation
17. This table should be read row-wise: e.g., st1 shares 33%
of its elements with st2. The coupling Ψ of each route (Equa-
tion 16) is shown in Table 3 for the case of uniform P . Un-
der this distribution, it is equivalent to the average normalized
number of shared arcs with other routes: Ψ(st2), for instance,

2Route coupling does not take into account interactions of a route
with itself. We abuse notation in Equations 16 and 17. In reality,
these are defined over the set R− {Ri}, not R.

is 1
2 (50.00 + 0.00). Note that st1 has the highest coupling—

but traditional MARL approaches ignore this information.
We propose to use the coupling statistic to bias the learning

process of each agent. We report results that relate to a very
simple type of biasing; namely, the Q-table of each agent is
initialized with the negative of the coupling for each route.
Continuing with our example (the B1 network), the Q-values
associated with action st1 were initialized with −33.33, and
the Q-values associated with actions st2 and st3 were initial-
ized with−25.00. This means we are using information about
route coupling to bias agents’ preferences in a way that leads
more agents to prefer routes st2 or st3, rather than st1. Our
hope is that this will successfully bias route selections, guid-
ing agents in their exploration of which are the best actions to
perform and accelerating convergence to an equilibrium.

Route Name Arcs

st1 sv1 → v1w1 → w1t
st2 sw1 → w1t
st3 sv1 → v1t

Table 1: k = 3 shortest routes for network B1

st1 st2 st3

st1 100.00 33.33 33.33
st2 50.00 100.00 0.00
st3 50.00 0.00 100.00

Table 2: Normalized number of shared arcs (B1)

Ψ
st1 st2 st3

33.33 25.00 25.00

Table 3: Route Coupling Ψ under uniform P (B1 network)

4 Simulations and Results

In order to evaluate the use of the coupling Ψ as a biasing
method in MARL we will use the OW network, since solv-
ing the traffic assignment problem in it has been shown to be
a complex task. In our experiments, agents use Q-Learning,
a standard reinforcement learning algorithm, to learn to se-
lect routes and reach a UE. Note that at this point we disre-
gard the fact that the UE may be socially bad; see discussion
in Section 5. In a traditional reinforcement learning setting,
each agent keeps its own Q-table. Q-values are associated
with each action—in this case, one of the k shortest routes
available for an agent to travel from its origin to its destina-
tion. Note that this formulation resembles a repeated game,
where there is just one state Claus and Boutilier [1998]. This
means that Equation 10 can be simplified and does not require
a discount rate. While this simplifies the learning problem,
the large number of concurrently-learning agents in MARL
makes the problem inherently more complex. Each agent se-
lects actions according to an ǫ-greedy strategy: with proba-
bility 1 − ǫ, the action with highest Q-value is selected; with



Figure 6: Mean latency as a function of number of episodes.

probability ǫ, a random action is selected. We initialize ǫ with
a high value and decay it by (1 − δ)% at the end of each
episode. This allows for high exploration at the beginning of
the learning process. In our experiments, the reward is the
negative of the individual travel time of an agent, α = 0.3,
ǫ = 1.0 at the first episode, and δ = 0.9. These values were
selected after extensive tests with different ranges of values.

The OW network, used in the following experiments, has
|C| = 4 commodities, and we associate with it a total de-
mand of r = 1700. We computed k = 5 shortest paths
per commodity. Table 4 shows the coupling for each of the
|C| × k = 20 shortest routes, computed via Equation 16.

In our experiments, we measure the average latency of the
r agents in the system and plot it as a function of time (Fig-
ure 6). We do so under three distinct situations: (i) the Q-
table of agents is initialized with zeros; (ii) the Q-table is
initialized with the negative of the coupling statistic Ψ(Ri)
associated with route Ri; (iii) the Q-table is initialized with a
random value between 0 and the (negative) maximum value
of Ψ. Note that an approximation of the UE for the OW net-
work (which can be computed, e.g., via CPLEX) is of approx-
imately 67 minutes of average latency. In Figure 6 we show
that biasing the Q-values of agents with Ψ leads to a faster
convergence to the UE.

In the future we plan to perform further experiments; first,
one that starts with a lower value of ǫ so that agents can ex-
ploit the bias provided at the beginning of the learning process
for longer periods of time. Due to lack of space, we omit a
table that shows that, at the end of the learning process, the
number of agents using each of the k paths is roughly cor-
related with Ψ of the corresponding path. This suggests that
the coupling statistic does serve, indeed, as a proxy to how
desirable different routes are—one that considers how agents
selecting between them are (as a consequence of the concur-
rent learning aspect of MARL) negatively impacted by non-
stationarity.

5 Related Work

A number of techniques from transportation planning, eco-
nomics, operations research, and computer science deal with
the TAP. Due to lack of space, we omit classical approaches.
The reader is referred to Ortúzar and Willumsen [2001]. For

Name Arcs
Mean

Coupling

AL1 AC → CG → GJ → JI → IL 36.84
AL2 AC → CG → GJ → JL 39.47
AL3 AC → CF → FI → IL 23.68
AL4 AC → CD → DG → GJ → JI → IL 30.70
AL5 AC → CD → DG → GJ → JL 31.58

AM1 AC → CD → DH → HK → KM 31.58
AM2 AC → CG → GJ → JK → KM 37.89
AM3 AC → CG → GH → HK → KM 32.63
AM4 AD → DH → HK → KM 22.37
AM5 AC → CG → GJ → JM 35.53

BL1 BD → DG → GJ → JI → IL 27.37
BL2 BD → DG → GJ → JL 27.63
BL3 BA → AC → CG → GJ → JI → IL 32.46
BL4 BA → AC → CG → GJ → JL 33.68
BL5 BA → AC → CF → FI → IL 21.05

BM1 BE → EH → HK → KM 21.05
BM2 BD → DH → HK → KM 27.63
BM3 BD → DE → EH → HK → KM 20.00
BM4 BE → ED → DH → HK → KM 18.95
BM5 BD → DG → GJ → JK → KM 28.42

Table 4: Meaning Coupling statistic of the k = 5 routes asso-
ciated with each of the four OD Pairs in the OW network.

approaches that seek to balance the UE and the SO, we refer
the reader to Bazzan and Chira [2015]. We focus on those
that seek to approximate the UE by means of reinforcement
learning or other agent-based approaches.

To the best of our knowledge, no attempts have been made
to bias the learning of the UE by using similar statistics and
metrics as the one we propose. Similar metrics such as the
Path Size Logit model [Ben-Akiva and Bierlaire, 1999] and
the C-Logit model [Cascetta et al., 1996] are used to se-
lect routes in a network in route choice models. However,
these strategies differ in the formulation metrics since they
are based on the length of arcs.

A natural way to tackle the problem of route choice is
via agent-based simulation techniques. Examples are MAT-
Sim Balmer et al. [2004], Klügl and Bazzan [2004] and
Dia and Panwai [2014]. A learning-based approach to route
choice was proposed by Tumer and Agogino [2006], where
agents learn to select from pre-computed routes in a single-
commodity network.

Finally, another topic related to our objective is the study
of performance degradation caused by the selfish behavior
of individual road users—this remains an important research
topic, as shown by Koutsoupias and Papadimitriou [1999] re-
garding the PoA problem.

6 Conclusions and Future Work

Traffic assignment and route choice are difficult learning
problems because the routes available for agents may be
highly coupled. Furthermore, the price of anarchy might be
strongly affected by issues such as the topology of the net-
work, the demand distribution, and the nature of the latency
functions, among other factors. In this paper we presented the



first steps towards the definition of statistics and metrics that
quantify how difficult the traffic assignment is, in general—
and in particular how difficult the computation of an UE is.

In this work we assumed that agents trying to reach an
UE learn to select routes independently. As a consequence,
their learning processes can be negatively affected by the non-
stationarity intrinsic to MARL settings. To counteract this ef-
fect, it might be beneficial to bias agents’ decisions in order to
accelerate convergence towards less coupled routes. We have
shown how to define and compute such a coupling metric and
experimented with using the coupling statistics as initial Q-
values; our objective was to give agents initial incentives to
select routes that are less coupled. Preliminary results show
that this strategy can lead to faster convergence.

Ongoing work is being developed to improve the biasing
strategy. We are also working towards evaluating the pro-
posed approach in more complex networks, such as the Sioux
Falls network and the Braess graphs with higher p values.
Since the Sioux Falls network has 528 commodities, it may
be time consuming to compute couplings for, say, all k = 4
routes for each of the commodities. We plan to use previous
results from Chudak et al. [2007] to pre-select routes that con-
tain the most congested arcs, and concentrate our analyzes on
them. Finally, given that we do have prior information about
agents’ preferences for reaching particular nodes of the net-
work (i.e., we do know rσ for each commodity), we can also
define a variant of the coupling statistic Ψ which is weighted
by these preferences. We also plan to extend the learning pro-
cess to a state-based one, such as that described in Bazzan and
Grunitzki [2016], where agents learn to select an arc (action)
at each node (state) of the network that is visited. This con-
trasts with our current model, where agents learn to select a
complete pre-defined route among k options.
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Abstract

Route choice is an important stage in transport
planning and modeling. Most of the existing ap-
proaches do not consider that road users can nowa-
days consult new technologies to plan their routes.
In this paper, we combine multi-agent reinforce-
ment learning (MARL) and car-to-infrastructure
communication (C2I) to deal with route choice.
The agents (road users) and the infrastructure in-
teract with each other to exchange traffic infor-
mation about the road network. The agents send
the travel cost of the edges they crossed to the in-
frastructure. The infrastructure uses these costs to
compute shortest paths, which are transmitted to
the agents when requested. The agents use such
received shortest path to update their knowledge
base. The obtained results are compared against
a classical MARL approach that does not use C2I
communication. Experimental results show that
our approach overcomes the compared method in
terms of average travel cost.

1 Introduction

Route choice is an important stage in the classical trans-
port planning and modeling [Ortúzar and Willumsen, 2011].
Route choice methods select routes and assign them to road
users, aiming to connect their individual origins with their
destinations. The output of these methods describes the state
of the transportation system, which is a relevant input for test-
ing the consequences of changes in the physical infrastructure
of the network. Most of the methods found in the literature
assume the existence of a central authority that computes and
allocates routes for the road users. In real scenarios, such
assumption is not valid because a system manager cannot di-
rectly control the behavior of the road users in terms of route
choice.

The rapid diffusion of intelligent transportation systems
(ITS) enables road users to take into account the traffic infor-
mation available on ITS to help them in their route choice pro-
cess. Such information can be acquired from several sources
such as inductive loops, video vehicle detection, GPS de-
vices, etc. From this information, it is possible to compute
estimated shortest routes, which are then recommended to

road users. If many road users decide to follow the recom-
mended routes, they may overload those routes causing jams
and increased travel times. This problem gets even worse
when there are several ITS (e.g., route guidance systems, car-
to-infrastructure-based systems, etc.) recommending routes
to road users. Such systems have no control over the total
flow that will be redirected to the suggested routes because
the real-world road users have their own beliefs about which
route they should follow. Therefore, the correct use of avail-
able traffic information is still an open problem.

The present work combines multi-agent reinforcement
learning (MARL) and car-to-infrastructure (C2I) communi-
cation to model the behavior of modern road users (agents),
which may use traffic information provided by an ITS to plan
their routes. The ITS assumes the existence of communi-
cation devices installed over the network. The communi-
cation devices and agents can exchange traffic information
with each other. Traffic information represents the cost of
traveling some path over the road network. The agents are
implemented as independent learners and behave competi-
tively in the system, i.e., each agent attempts to minimize his
own travel cost, regardless of the consequences his actions on
other agents. The agents have full autonomy to decide which
route to follow. However, they can count on traffic informa-
tion provided by the infrastructure to support their decision-
making process. The infrastructure uses the travel costs ob-
served by the agents during their trip to estimate the shortest
paths that can be transmitted to the agents. We compared our
approach to a MARL one that does not assume the exchang-
ing of traffic information provided by a C2I model. Experi-
mental results showed that present approach overcomes other
method in terms of average travel cost.

This paper is organized as follows. The route choice prob-
lem is defined in Section 2. The related works is presented
in Section 3. In Section 4, we present the infrastructure mod-
eling (Section 4.1) and agent modeling (Section 4.2). The
experimental results are discussed and analysed in Section 5.
Final remarks and future directions are presented in Section 6.

2 Route Choice in Transportation Systems

A transportation system is composed of two parts: demand
and supply. The demand represents the users of the in-
frastructure (referred to road users, trips or vehicles). The
demand can be represented by an origin-destination matrix



(OD-matrix). An OD-matrix T contains I lines (origin zones)
and J columns (destination zones). Each element Tij repre-
sents the amount of trips from vertex i to j in a given time
interval. It is said that i 2 I and j 2 J is an OD-pair.

The second part of the transportation system, the supply,
represents the road network and can be modeled as a directed
graph G = (V,E), where V is a collection of nodes, and E is
a collection of directed edges. An edge e 2 E is represented
as a two-element subset of V : e = {u, v} for some u, v 2 V ,
where u is the origin and v is the destination node of e. The
set of incoming edges of node v 2 V is defined by the set of
edges E�

(v) : {e 2 E|e = {u, v} ^ u 2 V }. Each edge
e has a travel cost ce associated to its crossing—for instance,
the cost can be travel time, fuel spent, travel distance, and so
on. As route choice is usually done in a macroscopic way
due to the simplicity of implementation, the cost of crossing
an edge is abstracted by a function. Volume-delay functions
(VDF) are well-known abstractions for this purpose. An ex-
ample of a VDF is the one suggested by Bureau of Public
Roads (BPR) [Bureau, 1964] in Equation 1, where ce repre-
sents the travel time, in minutes, for traveling edge e; cfe is the
travel time per unit of time under free-flow conditions (free-
flow travel time); fe is the volume of vehicles (in vehicles
per unit of time) using the edge e; Ce is the edge capacity;
and a and b are parameters specifically defined for each edge.
A path (or route) p = {v1, v2, v3} is defined by a set of con-
nected edges. The cost of p is the sum of the costs of all edges
of p.

ce = cfe

"
1 + a

✓
fe
Ce

◆b
#

(1)

Route choice (or, alternatively, route/traffic assignment)
methods connect supply and demand, respecting the re-
strictions of origin and destinations present on OD-matrices
[Ortúzar and Willumsen, 2011]. In studies of route choice,
network equilibrium models are commonly used for the esti-
mation of traffic patterns on scenarios that are subject to con-
gestion. Wardrop’s first principle [Wardrop, 1952] is one of
the most accepted principles of equilibrium, and states that:
“no road user can unilaterally reduce his/her travel costs by
shifting to another route”. This is also known as user equilib-
rium (UE). In this paper, the UE is used to assess the quality
of the solutions obtained by our approach.

3 Related Work

Route choice is an extensively studied field of research. The
Frank-Wolfe algorithm [Frank and Wolfe, 1956] is a classical
algorithm still often used to deal with optimization problems
where the objective function is convex and the constraints of
the problem are linear. The adaptation of the Frank-Wolfe al-
gorithm for the calculation of UE in route choice problems
is originally presented in [LeBlanc et al., 1975]. This algo-
rithm focuses on the computing of UE in large-scale scenar-
ios. They consider the existence of a central authority respon-
sible for computing and assigning routes for the road users.
This approach does not assume the road drivers can change
their route along the trip. The present paper focuses on mod-

eling the individual decision-making of the road users under
the presence of traffic information.

Multi-agent systems are often used in decentralized ap-
proaches for route choice [Ramos and Grunitzki, 2015;
Dia and Panwai, 2007; Klügl and Bazzan, 2004]. In these
approaches, road users have the autonomy to decide which
route to take. In [Tumer et al., 2008], a MARL approach
that stimulates the cooperation between agents is presented.
The agent’s task is to learn the best route from a set of pre-
computed routes. In the present work, the agents learn their
route during the trip (en-route mechanism). This makes the
learning task harder because the search space is significantly
increased. A MARL approach that stimulates cooperation
between road users, but in an en-route perspective is pre-
sented in [Grunitzki et al., 2014]. In each of these MARL
approaches mentioned here, the exchanging of traffic infor-
mation is not considered. The agents learn their routes ac-
cording to the knowledge they acquire during the episodes.
The present paper uses a C2I-based system to simulate the
behavior of real road users that use traffic information to sup-
port their decision-making process.

Existing route guidance systems provide only route guid-
ance after congestions happen. Some approaches that prop-
agate the traffic flow in the route guidance system according
to route intentions of the agents are presented [Claes et al.,
2011; Wang et al., 2014]. In [Wang et al., 2014], the authors
propose a C2I system in an en-route perspective for shortest
routes. In [Cao et al., 2016], there are agents situated over
the network junctions collecting the road users’ intentions, in
order to update the route guidance system. These approaches
assume that agents follow the requested route, which is used
to propagate the flows of road users on the network. However,
in practice, this cannot be assumed because each road user
has his own motivations to make his choices. The present pa-
per focuses on modeling the behavior of modern road users,
which makes use of available traffic information only to sup-
port their decisions.

4 Approach

MARL C2I-based approach is composed of two kinds of enti-
ties: agents and communication devices, as illustrated in Fig-
ure 1. The agents represent cars, whilst the communication
devices represent the infrastructure. During the execution of
the method, agents and infrastructure can interact with each
other in order to exchange traffic information.

The learning is organized in episodes and time steps. A
time step represents the time needed by the agent to execute
an action, in this case, traveling a given edge. An episode
represents one trial, in which all agents start their learning
process in their initial state and make successive interactions
with the environment until reaching their final state (destina-
tion). An episode ends when all agents have reached their
final state. These two concepts, episodes and time steps, are
important to understanding the moment in which the entities
can interact with each other. In the following sections, the
modeling of agents and infrastructure is presented in detail.
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Figure 1: Interaction scheme between agent and infrastructure.

4.1 Infrastructure Modeling

The infrastructure is composed of a set of communication de-
vices, D, distributed over the network. Each node v 2 V
is associated with one communication device dv 2 D. As
shown in Figure 1, every node (junction) has a communica-
tion device physically installed. One of the communication
devices is called central communication device (communica-
tion device I, in Figure 1) because it has the extra responsi-
bility of: i) concentrating traffic information for all edges; ii)
computing all shortest paths; and iii) transmitting the com-
puted shortest paths back to other devices.

In present work, the word agent is not used to refer to the
communication devices. This avoids possible confusion be-
tween: learning agents (road users) and nonlearning agents
(communication devices). For this reason, whenever the word
agent is used, it will be refering to a road user.

The communication between agents and communication
devices is modeled as a two-way dedicated short-range com-
munication system (DSRCS). Note that there are two kinds
of interactions, represented by dashed and full lines in Fig-
ure 1. These lines represent the sending of a message from
a sender to a receiver entity. Full lines represent the commu-
nication between agents and communication devices. This
kind of interaction can occur once at each time step of an
episode, as illustrated in Figure 1. In a single message, an
agent can send traffic information and also request a shortest
path. On the other hand, the dashed lines represent the inter-
actions between the communication devices and the central
communication device. These interactions always occur at
the beginning of each episode, before agents start their trips.

The communication between agents and infrastructure is
only possible when they (agents and infrastructure) are topo-
logically close. Agents cannot communicate with each other.
This makes the system simple because it dispenses the need
for a channel between an agent and a central authority that

represents an infrastructure.
In short, a communication device d plays the following

roles: i) storing local information about the travel cost of all
incoming edges of the node in which d is situated; ii) comput-
ing the estimated shortest paths from its node to all other node
of the network; iii) exchanging travel information to agents.
In the following we detail these roles.

Information Storing

Each communication device d is responsible for storing traffic
information about the incoming edges of a node vd. The traf-
fic information is communicated to the agents that cross the
edges with destination node vd. When an agent has crossed
an edge e = {u, v}, he perceives the travel cost ce on e. This
cost is communicated to the communication device dv when
the agent arrives at node v. The communication device d up-
dates its knowledge base with this traffic information about
e. During the execution, many vehicles cross the incoming
edges of a given node. So, the communication device of this
node needs to update its knowledge very often throughout the
episode’s steps.

The C2I communication enables the communication be-
tween agent and infrastructure when they are nearby. Besides
that, the agent can measure the travel cost of the edges he
crossed. The traffic information is measured by the agents in-
stead of the one provided by sensors in order to make the sys-
tem simpler. The use of local sensors, such as inductive loops
or cameras, has the disadvantage to need physical mecha-
nisms distributed along the edges. Besides that, they require
a specific communication channel to transmit the observed
traffic information to the communication device.

Computing estimated shortest paths

Each communication device can send to the agents the es-
timated shortest path from its current node to the destination
node of the agents, as illustrated by the communication device



II, in Figure 1. The weights of the edges are estimated based
on travel cost the communication devices have in their knowl-
edge base. At the end of each episode—when all agents finish
their trip—, all communication devices transmit their traffic
information to the central communication device. The central
communication device (communication device I, in Figure 1)
uses the Floyd-Warshall algorithm [Warshall, 1962] for find-
ing the shortest paths of the network. In a single execution,
the algorithm finds the costs of the shortest paths between all
pairs of nodes. The output of this algorithm is used to recur-
sively compute the set of edges that represents each shortest
path. After that, the central communication device sends to
all other communication devices the estimated shortest paths.
The term estimated is used because the real travel cost, in a
next episode, may change due to the actual actions performed
by the agents.

Exchanging traffic information

When an agent is close to a communication device, he can re-
quest traffic information. In Figure 1, the agent A requests a
shortest path to his destination node vs+ 2 V . The communi-
cation device finds a route r = {e0, . . . , en} in its knowledge
base, where e0’s origin node is vd 2 V ; and en’s destina-
tion node is the agent’s destination vs+ . This route is then
transmitted to the agent. Every time such information is re-
quested, the communication device sends it to the agent. How
the information is used by the agent is explained in the next
section. Here, the interest is in showing how the iterations
between agent and communication device work.

4.2 Agents Modeling

The learning agents (vehicles/road users) are implemented
as independent learners, through multiple independent learn-
ers technique [Buşoniu et al., 2008]. Consequently, the
agent’s decision-making process ignores the existence of
other agents. This is needed because transportation systems
may have thousands or millions of agents interacting. In such
condition, the use of join-action learners is infeasible, as re-
marked by [Tuyls and Weiss, 2012].

The learning task of each agent is to build a route
that connects its origin to its destination and minimizes
its travel costs. The routes are built dynamically along
the trip (en-route learning). Compared to approaches that
use pre-established sets of precomputed routes that connect
agent’s origin to destination (route-based learning) [Tumer
and Agogino, 2006], the current formulation is harder to be
handled by the MARL. In route-based approaches, the search
space is restricted by the number of routes presents in the
precomputed set of routes. In en-route approaches, as in the
current paper, the search space is restricted by the set of valid
routes between one OD-pair, which grows according to the
size and topology of the network. However, compared to
route-based learning approaches, the en-route approach has
the following advantages: i) it does not require the input of
the initial subset of routes; and ii) it does not restrict the agent
search space, enabling them to explore any feasible route (not
only those pre-given).

The decision-making process of agents is modeled as a fi-
nite Markov decision process (MDP), which is composed of

a set of states S and a set of actions A. For each pair state-
action Q (s, a) there is a Q-value associated to it. The Q-
values represent how good the expected future reward is fol-
lowing a given state-action transition. The goal in an MDP
is to find the sequence of transitions (policy) that maximizes
the reward of the agent over its lifetime. In our approach, an
agent’s state s 2 S represents the node v 2 V , in which he
is situated. The set of actions A represents the edges e 2 E.
The set of actions in a state s, A (s), is represented by the set
of outgoing edges E+

(vs). The reward function is defined
by R(s, a) = �cea , which represents the travel cost of edge
e. The reinforcement learning algorithm used to update the
Q-values Q (s, a) is Q-Learning [Watkins and Dayan, 1992],
given in Equation 2, where ↵ is the learning rate; � is the dis-
count factor; and s0 is the resulting state of being in state s
and taking the action a.

Q (s, a) Q (s, a) + ↵
⇣
r + �max

a0
Q (s0, a0)�Q (s, a)

⌘

(2)
At each time step, agents can interact with the infrastruc-

ture aiming at: i) send traffic information about their crossed
edges to a communication device; and ii) request the short-
est path from their current node to their destination. When
an agent crosses an edge, he observes its travel cost and au-
tomatically communicates it to the infrastructure (item i), as
illustrated by the agent B, in Figure 1. The shortest path re-
quest (item ii), can be realized at each time step, with a prob-
ability 0  ⌧  1, as illustrated by the agent A. A high value
of communication rate, ⌧ ! 1, makes the agents update their
MDP very often along the episode, while low values, ⌧ ! 0,
makes the agents not update their MDP with the traffic infor-
mation provided by the infrastructure.

When an agent requests a route, he transmits his destina-
tion node to a given communication device. The commu-
nication device returns to the agent a shortest path p. This
shortest path connects the node in which the communication
device is installed to the destination of the agent. When the
agent receives a shortest path, he needs to update his MDP
according to the travel cost of p. This cost must be com-
parable with the other Q-values of the MDP, which repre-
sent the expected discounted reward that the agent may re-
ceive following a given pair state-action. In the present route
choice approach, Q-values represent the expected discounted
travel cost from a given node to a destination node. The travel
cost is discounted by �, according to Q-learning update rule.
Thus, we use the Bellman equation [Bellman, 1957], pre-
sented in Equation 3, to evaluate the Q-value of a given route
p = {v0, v1, . . . , vn}, where s represents the vertex v0; a is
the action that represents the edge e = {v0, v1}; s0 is the state
that represents vertex v1; and a0 the action that represents the
edge e0 = {v1, v1+1}. This equation expresses a relationship
between the value of the edges that connect the nodes of a
given route.

Qp
(s, a) = r (s, a) + �Qp

(s0, a0) (3)

In this en-route mechanism, even if an agent receives a
shortest path, he only will follow it if the action selection



strategy select it. The action selection is given by the ✏-
decreasing strategy given by Equation 4, where the explo-
ration probability is initialized by ✏0 and exponentially de-
creases along the episodes � 2 ⇤, by a factor D. In this man-
ner, agents choose actions randomly (exploration) with prob-
ability ✏, and greedly (exploitation) with probability 1 � ✏.
The selection of random actions is used to stimulate agents to
explore the travel time of other possible routes. Once such ac-
tions detect attractive edges, this information could be propa-
gated to the other agents through the infrastructure.

✏� = ✏0D
� (4)

5 Experiments

5.1 Scenario

We evaluate our approach in a well-known transportation
problem presented in the literature, called scenario Sioux
Falls (SF). Although it is inspired by the city of Sioux
Falls, USA, it is not considered a realistic scenario. All
data sets containing network, demand, and cost function
are available at https://github.com/bstabler/

TransportationNetworks. The demand is comprised
by 360600 trips distributed among 528 OD-pairs. The road
network, presented in Figure 2, has 24 vertices and 76 edges.
The numbers in the edges represent their travel time under
free-flow condition, in both directions. The cost function of
this scenario is defined by the VDF proposed by the Bureau
of Public Road[Bureau, 1964], shown in Equation 1. The pa-
rameters a and b are defined in 0.15 and 4, respectively, as
suggested by [LeBlanc et al., 1975].
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Figure 2: Road network topology of scenario SF.

Relevant aspects of the SF scenario are summarized in Ta-
ble 1. The presented average travel time (ATT) under user
equilibrium were obtained using the Frank-Wolfe algorithm.
It is important to remark that the algorithm produces an ap-
proximation to the UE. This is used in this paper to assess
how close to the UE the proposed approach can get.

Table 1: Relevant aspects of scenario SF.
Feature Scenario SF

trips 360600
OD-pairs 528
vertices 24
edges 76

cost function VDF-BPR
ATT under UE ⇡ 20.76

5.2 Numerical Results

The Q-Learning algorithm has some parameters to be set: the
learning rate (↵), the discount factor (�), and the exploration
rate (✏).

The learning rate and the discount factor used in all exper-
iments of present work were empirically found: ↵ = 0.9 and
� = 0.99. The discount factor plays a major role than the
learning rate in route choice. This can be explained by the
fact that action selection (outgoing edges) are very important
in this problem since learning aims at minimizing the travel
cost in the whole route. For this reason, a high discount fac-
tor must be used. The learning rate is also high due to the
stochastic characteristics of the environment. This makes the
agent override the old information with a greater proportion
of the most recent information.

The exploration strategy used in this work starts with a
high probability of exploration which is reduced along the
episodes in order to enable agents to exploit more and more.
The exploration rate starts at ✏0 and decreases exponential by
a factor D at each learning episode. The multiplicative factor
must be set to fit the simulation horizon. In this paper, we
used 1000 episodes, ✏0 = 1.0, and � = 0.99. As will be
shown, not all combinations of parameters need to be run for
1000 episodes because the convergence for some route choice
pattern is reached much earlier. However, for uniformity, the
same value for episodes (1000), initial exploration (1.0) and
multiplicative factor (0.99) are used in all cases.

Our approach has an extra parameter to be defined, the
communication rate (⌧ ). This parameter represents the prob-
ability of an agent to request an information from the in-
frastructure during his decision-making process. As men-
tioned before, the Q-Learning performance is directly related
to the balance between exploration and exploitation defined
for the action selection rule. In our approach, the key pa-
rameter that must be set is the communication rate (⌧ ). We
tested some combination of values for ⌧ in order to find
the best one. The space of possible values is discretized in
⌧ = {0, 0.25, 0.5, 0.75, 1}. Thus, we can evaluate the effects
of zero (0%), low (25%), medium (50%), high (75%), and
full (100%) communication during the action selection. All



result presented in this paper represent the average of 30 rep-
etitions.

The results for the scenario SF are presented in Table 2.
The baseline used for the sake of comparison is the ⌧ = 0

configuration. This is equivalent to the application of Q-
Learning for the route choice problem, without C2I commu-
nication. The obtained results for ⌧ = 0 show that the base-
line cannot converge to the approximate UE (⇡ 20.76 min-
utes). The baseline solution is 1.14 minutes worse than the
UE condition. In the presence of no communication with the
infrastructure, agents have no way to identify whether an ac-
tion is good nor not, except through experimenting it. As the
environment is highly dynamic due to the large number of
agents who take actions simultaneously and generating noise
in the MDP of the other agents, this is difficult to the MARL
algorithm to converge to most appropriated policies.

Table 2: Average travel time (ATT) and standard deviation
(SD) for different values of ⌧ .

⌧ 0 0.25 0.5 0.75 1
ATT 21.9 21.265 21.337 21.358 33.941
SD 0.131 0.053 0.075 0.066 2.759

The results for ⌧ > 0 represent the obtained solutions of
the present approach. Our approach yields better results when
0.25  ⌧  0.75. For ⌧ = 1, the MARL converges to inad-
equate solutions. High values of ⌧ make agents update their
knowledge base quite often. As consequence, every agent has
the information about the most attractive route known by the
infrastructure. Even if the route’ cost are based on histori-
cal information, each agent will have a high probability to
choose the route that is known by the other agents as the most
attractive one. In congested scenarios like the SF one, such
behavior makes agents compete for the edges of most attrac-
tive paths. Consequently, they overload some routes, whereas
others are being underutilized. Low values of ⌧ reduce the
competition by the most attractive edges and enables agents
to better utilize the knowledge they acquire by experiencing
the environment. It reduces the noisy knowledge present in
their MDP and allows them to better balance their experi-
enced knowledge with the knowledge acquired from infras-
tructure.

A t-test with 95% of confidence interval was conducted for
all distributions present in Table 2. The conclusion is that the
proposed approach is better than the baseline for values of
⌧ = {0.25, 0.5, 0.75}. The best ATT yield by our approach is
obtained with ⌧ = 0.25, which is 0.63 minutes better than the
baseline. Note that even for ⌧ = 0.75, the proposed approach
yields an ATT better than the baseline. In the baseline, agents
receive only the feedback from the environment (reward) and
it is related to the action they choose. It is hard for them to
make good decisions when there are too many agents gener-
ating noise in their MDP and due to the high probability they
have to select random actions in the early episodes. Such
noise can make the agent understand that a given action is
bad, when actually it is convenient for reaching his objective.
In the proposed approach, the traffic information provided by
the infrastructure is able to be fixed in the upcoming episodes,

1 5 10 50 500

0e
+0

0
2e

+0
6

4e
+0

6
6e

+0
6

8e
+0

6

episode

av
er

ag
e 

tra
ve

l t
im

e 
(m

)

τ = 0
τ = 0.25
τ = 0.5
τ = 0.75
τ = 1

Figure 3: Performance vs. time on scenario SF

making the agent reconsider such action while building his
behavior. On the other hand, the excess of traffic information
provided by ⌧ = 1.0 can result in poor performance for the
system.

In the next experiment, we demonstrate the convergence
speed of the proposed approach compared to the baseline.
Figure 3 shows the performance (in terms of ATT) along the
episode for each value of ⌧ evaluated. Note that for ⌧ � 0.25
all curves have a similar shape. In initial episodes, our ap-
proach presents learning curves steeper than the baseline.
This is explained by the traffic information that the agents
receive, which is capable of guiding them to their destination
faster. In the baseline, the agents may drive in a looping man-
ner due to the bad actions they take.

The ATT in the initial episodes is quite high due to the char-
acteristics of the cost function. Since the travel time grows
exponentially according to the flow (see Equation 1), when
the flow exceeds the edge capacity, the travel time of the edge
grows rapidly. This condition, associated with the large de-
mand taking suboptimal actions in the early episodes, makes
the ATT be high in early episodes of all cases.

6 Conclusions and Future Work

This paper combines MARL and car-to-infrastructure (C2I)
communication in an approach for route choice. Road users
(agents) and infrastructure can interact with each other in or-
der to exchange traffic information about the road network.
The traffic information is provided by a C2I intelligent trans-
portation system, in which agents can request traffic informa-
tion whenever they want.

We evaluated our approach on a classic scenario present in
the literature. The obtained results were compared against a
MARL approach for route choice, without C2I communica-
tion. The obtained results show the proposed approach can



overcome the compared method when the frequency of use
of traffic information is properly set. In the experiments, the
agents that use the traffic information very often may impair
their travel time due to the large flow allocated in the most at-
tractive routes. Reducing the frequency of use of traffic infor-
mation allows the agents better exploit the knowledge gained
on previous episodes, regardless of whether it has been ac-
quired via C2I communication or experiencing the environ-
ment.

The present work focused on the combination of MARL
and C2I communication. However, for its implementation be
feasible in the real word, limitations as the following must
be addressed. The demand used in this paper is homoge-
neous in terms of individual preferences, i.e., all road users
goal is to minimize their travel cost. However, in the real
world, they also have personal preferences/restrictions asso-
ciated with the trip, such as the avoidance of large roads,
tolls or even the exposure of their trip information. Besides
this, the road users exchange traffic information from a single
source. However, in the real world, they may use multiple
sources. In this kind of system, the traffic information may
differ from one system to other according to the mechanisms
they use to get and manipulate it. The effects of multiple traf-
fic information systems interacting with the agents must be
investigated. The evaluation of different strategies to balance
exploration and exploitation, such as the ones that weight the
random actions according to its quality, must be conducted
in order to speed up the convergence. Finally, a comparison
against communication-based approaches available on litera-
ture must be conducted.
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Universidade Federal do Rio Grande do Sul
{goramos,bazzan}@inf.ufrgs.br

Abstract
The notion of regret has been extensively employed
to measure the performance of reinforcement learn-
ing agents. The regret of an agent measures how
much worse it performs following its current policy
in comparison to following the best possible pol-
icy. As such, measuring regret requires complete
knowledge of the environment. However, such an
assumption is not realistic in most multiagent sce-
narios. In this paper, we address the route choice
problem, in which each driver must choose the best
route between its origin and its destination. The
expected outcome corresponds to an equilibrium
point in the space of policies where no driver bene-
fits from deviating from its policy, a concept known
as User Equilibrium (UE). Considering the limited
observability of such a scenario, we investigate how
the agents can estimate their regret based exclu-
sively on their experience. To this regard, we intro-
duce the concept of estimated action regret, through
which an agent can estimate how much worsen it
performs by taking a given action rather than the
best in hindsight. Additionally, we show how such
estimations can be used as a reinforcement signal to
improve their performance. We empirically evalu-
ate our approach in different route choice scenarios,
showing that the agents produce reasonable estima-
tions of their regret. Furthermore, we show that
using such estimations as the reinforcement signal
provides good approximations to the UE.

1 Introduction
Reinforcement learning (RL) in multiagent domains is a chal-
lenging task. In RL, an agent must learn by trial-and-error
how to behave within the environment in order to maximise
its utility. When multiple agents share a common environ-
ment, they must adapt their behaviour to those of others. The
problem becomes even harder when the agents are selfish and
compete for a common resource. An example is the route
choice problem, which concerns how rational drivers1 be-
have when choosing routes between their origins and desti-

1Henceforth, we use the terms agent and driver alternately.

nations to minimise their travel costs. Learning is a funda-
mental aspect of route choice because the agents must adapt
their choices to account for the changing traffic conditions. In
other words, the agents must adapt to each others’ decisions.

An interesting class of multiagent RL techniques com-
prises the regret minimisation approaches. In this context, re-
gret has been typically employed to measure the performance
of reinforcement learning agents. Specifically, regret mea-
sures how much worse an agent performs following its cur-
rent policy in comparison to following the best possible pol-
icy one in hindsight. In this sense, regret minimisation can be
seen as an inherent definition on how rational agents behave
over time. Along these lines, the regret measure naturally fits
as a guide of the learning process.

In recent works [Zinkevich et al., 2008; Bowling and
Zinkevich, 2012; Waugh et al., 2015], regret has been used
to improve the learning process. However, calculating re-
gret requires complete knowledge of the environment (i.e.,
the utility associated with every possible policy). In fact, one
may assume that an online service broadcasts the required
information through mobile devices. Nevertheless, investi-
gating methods to accomplish such a task in the absence of
any global information is more challenging and is also rel-
evant, especially in highly competitive scenarios like traffic
[Bazzan and Klügl, 2013; Stone and Veloso, 2000].

In this paper, we address the route choice problem by min-
imising regret. Specifically, we investigate how the agents
can estimate their regret locally (i.e., based exclusively on
their experience) and how such estimations can be employed
to guide the RL process. To this regard, each agent keeps an
internal history of experienced rewards, which is used for es-
timating the regret associated with each of its actions. We re-
fer to such measure as the estimated action regret and employ
it for updating the agents’ policies. The expected outcome
corresponds to an equilibrium point in the space of policies in
which no driver benefits from deviating from its policy. This
is the so-called User Equilibrium (UE) [Wardrop, 1952]. To
the best of our knowledge, this is the first attempt to improve
the learning process by using regret estimations as the rein-
forcement signal.

Through experiments, we show that our approach provides
fairly precise estimations of the agents’ regret relying only
on agents’ experience. Moreover, we present good evidence
that using such regret estimates as the reinforcement signal is



beneficial for the learning process. Consequently, in all tested
cases, the results are reasonably close to the UE.

We remark that this work represents our very first step to-
wards developing rational agents able to analyse their learn-
ing performance and to improve their expected outcome. In
the medium-term, we aim at investigating formal aspects of
the learning process to guarantee the efficiency of RL under
multiagent domains.

This paper is organised as follows. The background on
route choice, RL and regret algorithms is presented in Sec-
tion 2. In Sections 3 and 4, we describe how the agents can
estimate their regret locally and how they can learn using such
estimations, respectively. The experimental evaluation is dis-
cussed in Section 5. Finally, Section 6 presents the conclud-
ing remarks and future work directions.

2 Background
2.1 Route Choice
The route choice problem concerns how rational drivers be-
have when choosing routes between their origins and destina-
tions. In this section, we introduce the basic concepts related
to route choice. For a more comprehensive overview, we refer
the reader to [Ortúzar and Willumsen, 2011].

A road network can be represented as a directed graph
G = (N,L), where the set of nodes N represent the inter-
sections and the set of links L represent the roads between in-
tersections. The demand for trips generates a flow of vehicles
on the links, with fl the flow on link l. To this regard, each
link l ∈ L has a cost cl : fl → R+ associated with crossing
it. Let Tij be the demand for trips between origin i ∈ N and
destination j ∈ N (we refer to an origin-destination pair as
simply OD pair). The set of all such demands is represented
by an OD matrix T = {Tij | ∀i, j ∈ N, i 6= j, Tij ≥ 0}.
The total demand is denoted d =

∑
Tij∈T Tij . A trip is made

by means of a route R ⊆ L, which is a sequence of links
connecting an origin to a destination. The cost of a route R is
given by CR =

∑
l∈R cl.

The cost of a link is typically modelled using the volume-
delay function (VDF) abstraction. A VDF takes as input the
flow of vehicles within a link and, based on its attributes (such
as length and capacity), returns the cost (travel time) of such
link. A simple VDF is presented in Equation (1), with tl de-
noting the free flow travel time (i.e., minimum travel time,
when the link is not congested). In this particular VDF, the
travel time on link l is increased by 0.02 for each vehicle/hour
of flow.

cl(fl) = tl + 0.02× fl (1)

In the route choice process, drivers decide which route to
take every day to reach their destinations. Usually, this pro-
cess is modelled as a commuting scenario, where drivers’
daily trips occur under approximately the same conditions.
In this sense, each driver i ∈ D, with |D| = d, is modelled as
an agent, which repeatedly deals with the problem of choos-
ing the route that takes the least time to its destination. The
utility ui : R→ R received by driver i after taking route R is
inversely associated with the route’s cost, as in Equation (2).
The expected outcome of this problem can be described by

the Wardrop’s first principle: “the cost on all the routes actu-
ally used are equal, and less than those which would be expe-
rienced by a single vehicle on any unused route” [Wardrop,
1952]. Such a solution concept is known as User Equilibrium
(UE). However, observe that the UE does not describe the
system at its best operation. Indeed, such an state is only
achieved when the average travel cost is minimum, as de-
scribed by the Wardrop’s second principle [Wardrop, 1952].
To this regard, such solution concept is commonly referred as
System Optimum (SO).

ui(R) = −CR (2)

2.2 Reinforcement Learning
Reinforcement learning (RL) concerns with how an agent
learns a behaviour by reward and punishment from interac-
tions with its environment. We can formulate the RL prob-
lem as a Markov decision process (MDP). An MDP is a tuple
〈S,A, T, r〉, where: S is the set of environment states; A is
the set of actions; T : S × A× S → [0, 1] is the state transi-
tion function, with T (s, a, s′) = P (s′ | s, a) representing the
probability of reaching state s′ after taking action a in state
s; and r : S × A → R is the reward function, with r(s, a)
denoting the reward received after taking action a in state s
[Sutton and Barto, 1998].

In the context of the route choice problem, the actions of
an agent represent the choice of routes between his origin and
destination. Such a set of actions is known a priori by the
agents. In this sense, the set of states and, consequently, the
transition functions can be ignored. Moreover, we can define
the reward received after taking action a as r(a) = u(R),
with a = R (we will refer to reward and utility, rather than
cost, hereinafter). On this basis, we can model the route
choice problem as a stateless2 MDP.

Solving a stateless MDP involves finding a policy π (i.e.,
which route to take) that maximises the accumulated reward.
When the model of the environment dynamics (i.e., the re-
ward function r) are known by the agent, finding such an op-
timal policy is trivial. However, this is rarely the case, espe-
cially in multiagent settings. To this regard, the agent must
repeatedly interact with the environment to learn a model of
its dynamics. A particularly suitable class of RL algorithms
here comprises the so-called temporal-difference algorithms,
through which an agent can learn without an explicit model
of the environment.

The Q-learning algorithm is a good representative of
temporal-difference methods [Watkins and Dayan, 1992]. In
the case of a stateless MDP, a Q-learning agent learns the ex-
pected return Q(a) for selecting each action a by exploring
the environment. The exploration of the environment must
balance exploration (gain of knowledge) and exploitation (use
of knowledge). A typical strategy here is ε-greedy, in which
the agent chooses a random action with probability ε (explo-
ration) or choosing the best action with probability 1− ε (ex-

2Observe that a stateless MDP is equivalent to having an initial
state with actions corresponding to the routes available to the agent,
and an ending state with no actions. When an agent chooses action
a on the initial state, it performs the desired action and reaches the
ending state with probability 1, receiving reward r(a).



ploitation). Usually, ε starts with 1.0 and, at the end of each
learning episode, it is multiplied by a decay rate λ in order to
increase exploitation as the agent converges to its best action.
After taking action a and receiving reward r(a), the stateless
Q-learning algorithm updatesQ(a) using Equation (3), where
the learning rate α ∈ [0, 1] weights how much of the previ-
ous estimate should be retained. The Q-learning algorithm is
guaranteed to converge to an optimal policy in the limit under
certain assumptions.

Q(a) = (1− α)Q(a) + αr(a) (3)

2.3 Regret
The regret concept was introduced in the context of evaluat-
ing the performance of learning rules [Hannan, 1957]. Regret
measures how much worse an agent i performs, on average,
by following its current policy πi ∈ Π as compared to follow-
ing the best possible policy in hindsight. Precisely, the regret
RTi of agent i at time T is given by Equation (4), where rt(a)
represents the reward of action a at time t and, slightly abus-
ing notation, πt represents the action taken at time t under
policy π. Therefore, regret can be seen as the average amount
lost for following a policy other than the best one.

RTi = max
π∈Π

1

T

T∑
t=1

rt(πt)− 1

T

T∑
t=1

rt(πti) (4)

In the context of reinforcement learning (RL), regret has
been typically used as a measure of convergence [Shoham et
al., 2007; Buşoniu et al., 2008; Zinkevich, 2003; Bowling and
Veloso, 2002; Powers and Shoham, 2005; Banerjee and Peng,
2005]. An RL algorithm is said no-regret if it learns a policy π
for which RT → 0 as T → ∞ [Hannan, 1957]. Along these
lines, regret minimisation can be seen as a natural definition
on how rational agents behave over time. In this paper, we
use the regret measure to guide the learning process.

We remark that, by definition, computing regret assumes
complete knowledge of the environment. Specifically, an
agent cannot compute its regret without knowing the reward
of every other action along time. Consequently, agents can-
not (i) calculate their regret and (ii) learn using their regret,
except if very strong assumptions are made (e.g., assuming
that every agent knows the reward of all actions along time).
Therefore, using the regret of Equation (4) to guide the learn-
ing process is not realistic in multiagent scenarios.

Zinkevich et al. introduced the concept of counterfactual
regret and proposed an algorithm for minimising it [Zinke-
vich et al., 2008]. The counterfactual regret is used to esti-
mate the regret when the information about states is incom-
plete (useful in extensive form games with imperfect infor-
mation). This is one of the first works to include the regret in
the learning process. Subsequently, Waugh et al. employed
a regression algorithm to provide enhanced estimates on the
counterfactual regret [Waugh et al., 2015]. However, these
works assume that the regret is known by the agents, which
is unrealistic for the problem we are considering.

In [Bowling and Zinkevich, 2012], the authors propose a
graph representation to express the relation between actions
and the associated regret. Such a representation was em-
ployed to mimic the structure of local search methods, thus

allowing no-regret algorithms to minimise a broader class
of optimisation problems. Nevertheless, their work also as-
sumes that the utility function is available to the agents.

Powers and Shoham proposed a set of performance crite-
ria regarding multiagent learning and proposed an algorithm
that meets such criteria [Powers and Shoham, 2005]. Their
algorithm, however, makes some strong assumptions regard-
ing the environment observability (e.g., an agent can observe
its opponents’ rewards). Banerjee and Peng extended Pow-
ers and Shoham’s approach to a class of no-regret algorithms
and dropped some of the observability assumptions [Banerjee
and Peng, 2005]. Notwithstanding, these approaches do not
employ the regret to guide the learning process.

Along these lines, in this paper we investigate how agents
can estimate their regret based on their experience and pro-
pose the use of such estimations to guide the agents’ learning
process. Moreover, we disaggregate the regret formulation
by measuring the regret of actions rather than of policies. We
show that performing such estimates is realistic and improves
the learning process. To the best of our knowledge, this is the
first effort towards addressing regret estimation and learning
through such regret.

3 Estimating Regret Locally
In this section, we discuss how agents can estimate their re-
gret. As discussed in Section 2.3, the agents cannot compute
their real regret (using Equation (4)) due to the lack of infor-
mation regarding the routes rewards. The point is that regret
is measured considering (i) the agent’s average reward under
their current policy and (ii) the average reward under the best
policy in hindsight. Calculating the latter requires knowing
the rewards of all routes along time. However, after each trip,
an agent can observe the reward of the route taken, but cannot
observe the reward of the other routes. Such a full observ-
ability property would only be possible under strong assump-
tions (e.g., a central authority broadcasting such information),
which can be unrealistic in traffic domains. Furthermore, in-
vestigating methods to accomplish such a task in the absence
of any supporting service is more challenging and is also rele-
vant, especially in the highly competitive settings considered
here [Stone and Veloso, 2000].

In this paper, we investigate how agents can estimate their
regret based exclusively on local information (i.e., the re-
wards actually experienced by them). To this regard, we pro-
pose an alternative definition of regret that describes the esti-
mated regret of each action.

Let Ai ⊆ A denote3 the set of routes of agent i. At time t,
agent i performs a given action ati ∈ Ai and receives a reward
of rt(ati). We represent the history of experiences of agent i
as Hi = {rti,a | a ∈ Ai, t ∈ [1, T ]}, with rti,a the reward
experience of driver i for taking action a at time t. However,
recall that an agent cannot observe the reward of action a on
time t except if it has taken such action at that time, i.e., if a =
ati. To this regard, the agents can assume the reward of non
taken actions to be the same as the most up to date experience
on that route. Precisely, let r̃ti,a represent the newest reward

3We slightly abuse notation here to account for drivers with dif-
ferent OD pairs, whose route sets are obviously different.



experience of agent i for taking action a on time t (either
the current reward or the last4 actually experienced one), as
given by Equation (5). The history of experiences of agent i
can then be rewritten as Hi = {r̃ti,a | a ∈ Ai, t ∈ [1, T ]}.

r̃ti,a =

{
rt(ati) if a = ati
r̃t−1
i,a otherwise

(5)

Given the above definitions, we can now formulate the av-
erage estimated regret of agent i for taking action a at time
t as in Equation (6). In general terms, we will refer to this
formulation as estimated action regret. The estimated action
regret R̃ti,a can be seen as the estimated amount lost by agent
i for taking action a at time t instead of the best action regard-
ing its experience. Additionally, we can reformulate Equation
(4) to obtain the estimated agent regret, as in Equation (7).
The estimated agent regret R̃ti expresses how much worse
agent i performed, on average, up to time t for not taking
only the best action regarding its experience. The main ad-
vantage of this formulation over the real regret (Equation (4))
is that it can be computed locally by the agents, eliminating
the need for a central authority. Moreover, as the required in-
formation is already available to the agents, they can use such
regret to guide their learning process.

R̃ti,a = max
b∈Ai

1

t

t∑
s=1

r̃si,b −
1

t

t∑
s=1

r̃si,a (6)

R̃ti = max
a∈Ai

1

t

t∑
s=1

r̃si,a −
1

t

s∑
s=1

rs(asi ) (7)

4 Learning Through Regret
In this section, we present a simple algorithmic solution for
the agents to learn using the estimated action regret of Equa-
tion (6). To this end, we employ the Q-learning algorithm
(as presented in Section 2.1). We highlight, however, that any
other reinforcement learning algorithm could be used as well.

Every driver i ∈ D is represented by a Q-learning agent.
The route choice problem can then be modelled as a stateless
MDP. As such, the states and the transition functions can be
ignored. Let A = {Ai | i ∈ D} be the set of agents’ actions,
where Ai is the set of routes of agent i, with Ai = Aj if
agents i and j belong to the same OD pair. The reward for
taking action a at time t is given by rt(a).

The learning process works as follows. At each episode
t ∈ [1, T ], each agent i ∈ D chooses an action ati ∈ Ai
using the ε-greedy strategy. After taking the chosen action,
the agent receives a reward of rt(ati). Afterwards, the agent
updates its history Hi using Equation (5) and calculates the
estimated regret of action ati using Equation (6). Finally, the
agent updates Qi(ati) using Equation (3). This process is re-
peated for each episode, aiming at minimising agents’ regret.

Recall that the original definition of regret of Equation (4)
measures the regret of the agent, not of his actions. However,

4As initial value, one can consider the minimum possible reward,
which is computed using the links’ free flow travel times (as de-
scribed in Section 2.1). From a practical perspective, such informa-
tion could be easily obtained using any offline navigation device.

the agent regret is not useful in the learning process because
it does not consider how much the reward of a single action
contributes to the regret. In other words, as we consider the
average regret, the reward of a good-performing action could
be penalised by those of bad-performing actions. Moreover,
the learning process works by adjusting the expected value (or
regret) of each action of the agent. In this sense, our estimated
action regret definition isolates the regret per action, thus al-
lowing the actions to be evaluated singly. The estimated ac-
tion regret is more suitable to evaluate how promising a given
action is as compared to the others.

Finally, it is worth noting that, although each driver min-
imises its actions’ regret, this is equivalent to minimising its
total regret. Recall that the estimated action regret measures
how much worse an action performs as compared to the best
one. By employing such a value in the learning process,
the agent puts more weight on the actions with smaller re-
gret. Moreover, using the ε-greedy strategy, the agent tends
to choose the action with the smallest regret with a higher
probability. Consequently, we can state that minimising the
estimated action regret along time is equivalent to minimising
the estimated agent regret.

5 Experimental Evaluation
5.1 Setup
In order to evaluate our approach, we employ five different
road networks that are available in the literature.
Pigou : this is a classical network introduced in [Pigou,

1920]. It comprises only two links l1 and l2, with
cl1(fl1) = 1.0 and cl2(fl2) = fl2/d. We set the number
of drivers to d = 100, all of them belonging to the same
OD pair. In this scenario, there are only two actions (one
corresponding to each link), i.e., |A| = 2.

OW : is a small, synthetic network, with |N | = 13, |L| = 48,
and d = 1700 [Ortúzar and Willumsen, 2011, exercise
10.1]. The vehicles are distributed among four OD pairs.
The costs of the links are calculated using Equation (1).
In this network, the number of possible routes for each
OD pair is high. To this regard, we employ the KSP
algorithm [Yen, 1971] to find the k shortest routes for
each OD pair, i.e., |A| = k.

Braess graphs : these are expanded versions of the net-
work introduced in [Braess, 1968]. Specifically, let
p ∈ {1, 2, . . .} be the pth expansion of such graph,
where 1st Braess graph is equivalent to the orig-
inal graph [Roughgarden, 2006]. We generalise such
model to consider a discrete set of drivers. The com-
plete description of these graphs is available in Ap-
pendix A. We employ the 1st Braess graph, 2nd
Braess graph and 3rd Braess graph, and de-
fine d = 4000, with all drivers belonging to the same
OD pair, and, by definition, |A| = 2p+ 1.

An experiment corresponds to a complete execution, with
1000 episodes, of the Q-learning algorithm on a single net-
work. After an execution is completed, we measure its per-
formance by means of the average travel time (avg-tt here-
after, measured in minutes) and the average estimated agent



Table 1: Performance of our approach in different road networks. For each tested network, we show: the average travel time
(which, ideally, should approximate the UE), the UE (as reported in the literature), the average estimated agent regret (Equation
(7)), the average real agent regret (Equation (4)), and the relative difference between the estimated and real agent regrets.

network avg-tt UE estimated regret real regret relative difference (%)
Pigou 1.000 1.000 0.0136 0.0135 4.11
OW 67.156 67.157 0.0031 0.0045 8.02

1st Braess graph 1.988 2.000 0.0245 0.0224 8.25
2nd Braess graph 2.832 3.000 0.0393 0.0221 41.66
3rd Braess graph 3.701 4.000 0.0882 0.0293 64.64

regret (using Equation (7)), both regarding the last episode.
We tested different combinations for the Q-learning param-
eters. For each such combination, 30 repetitions were per-
formed. The best5 combination found was α = 0.5, ε = 1.0
and λ = 0.99. Moreover, in the case of the OW network, we
also tested different values for k (the KSP algorithm is run
once for each OD pair, in the beginning of the experiment).
The best results were achieved for k = 8. The results of such
configurations were selected for further analysis in the next
subsection.

The main hypotheses of our work are that: (i) the results
approach the user equilibrium (UE), and (ii) the regret esti-
mations are reasonably precise. In the next subsection, we
analyse how successful our approach performed regarding
our initial hypotheses.

5.2 Results
The performance of our approach in all tested road networks
is presented in Table 1. In the table, we show the two main
performance metrics avg-tt and average estimated agent re-
gret. Additionally, in order to analyse such results, we present
the UE (as reported in the literature), the average real agent
regret (using Equation (4)6), and the relative difference be-
tween the estimated and real regrets.

Our first hypothesis states that the avg-tt results are close to
the UE. As shown in Table 1, such results are indeed close to
the UE values reported in the literature. The results become
slightly far from the UE for the Braess graphs, especially the
larger ones (p > 1). This phenomenon can be explained by
the nature of such graphs. Under UE, only the so-called type-
P routes are used (see Appendix A for a detailed description).
However, such routes have very similar costs. Consequently,
it becomes harder for the agents to choose which route to
take. The problem becomes even harder for larger Braess
graphs because the number of type-P routes also increases
with p. Furthermore, the Braess graphs were designed so that
the UE values are the farthest possible from the System Op-

5The best value for α varied slightly from one network to an-
other. However, such a value was reasonably close to 0.5 in all tested
cases. Thus, for uniformity, we chose α = 0.5 for all networks.

6In order to compute the real regret of Equation (4), we con-
sidered that the space of policies consists of a simple mapping from
routes to deterministic policies. In fact, ignoring mixed policies over
the set of available actions is a common practice in the literature
[Banerjee and Peng, 2005; Zinkevich et al., 2008].

timum (SO). Nonetheless, observe that, for these particular
graphs, our avg-tt results are closer to the SO than those of
the UE. Therefore, such results evidence that our approach
provides good approximations to the UE.

Regarding our second aforementioned hypothesis, its vali-
dation involves evaluating how precise the regret estimations
are. To analyse such precision, we compare the real and es-
timated agent regrets by means of their relative difference.
The lower such difference, the better. Of course, such dif-
ference cannot be computed by the agents, otherwise the re-
gret estimation would not be necessary. As can be seen in
Table 1, the estimated regrets are reasonably close to the
real ones, especially for the networks Pigou, OW and 1st
Braess graph. For the larger Braess graphs, the results
were somewhat worse. The point here, again, is that the
Braess graphs are more challenging because they were de-
signed to be among the hardest networks. As the agents have
more difficulty to learn their best routes, the network takes
longer to reach a more stable point. Consequently, the agents
estimations need to be updated more frequently to account
for the high variations in the routes costs. However, despite
the difficulties, the estimations were reasonable. We highlight
that such estimations could be greatly improved by adopting
more sophisticated estimation methods (e.g., using a nonlin-
ear regressor). Thus, the present results also evidence that
our regret estimation mechanism reaches a reasonable level
of precision.

Along these lines, we can conclude, at least experimen-
tally, that the agents can, in fact, estimate their regret locally
and use such information to learn their best routes. Obvi-
ously, these results are not definitive. As initially mentioned,
this work represents a very first step towards a more formal
investigation regarding formal guarantees for RL algorithms,
which is our medium-term objective.

6 Concluding Remarks
In this paper, we addressed the route choice problem by min-
imising the drivers’ regret. This problem concerns how ratio-
nal drivers learn which route to take so as to minimise their
expected travel costs. To this regard, we developed methods
for learning agents to estimate their regret locally (i.e., based
exclusively on their experience) and to learn using such esti-
mations. Specifically, each agent keeps a history of experi-
mented rewards, which is used to compute the so-called esti-
mated action regret.



Based on experiments, we have shown that our approach
provides reasonably precise estimations of the agents’ regret
and that such estimations are useful in the learning process.
We recall that this work represents an initial effort towards
a more formal investigation of efficiency guarantees for RL
algorithms, which is our medium-term objective.

For future work, we would like to investigate formally
how precise the regret estimations might be. We expect that
more sophisticated methods could be employed to estimate
the agents’ regret (e.g., using a nonlinear regressor). More-
over, we would like to study how much our approach benefits
when the agents can communicate to improve their estima-
tions. We also consider investigating the benefits of employ-
ing an online service for providing global information for the
agents. Regarding the learning process, a promising direc-
tion would be adopting algorithms that learn mixed policies
over the actions rather than only the best action. Furthermore,
considering this work is a proof-of-concept, no comparison
was made against other methods in the literature. Thereby,
making such a comparison is an obviously important step to
provide a more complete analysis of our approach. Last but
not least, it would be interesting to explore how the learning
process could be shaped towards globally efficient routes.
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A Expanding the Braess Graphs
The original Braess graph was designed to illustrate the
counter-intuitive phenomenon that removing a link from a
road network may improve its outcome [Braess, 1968]. This
is the so-called Braess paradox. In this paper, we are not inter-
ested in the paradox itself. However, we employed the Braess
graph for validating our approach given it poses some inter-
esting challenges in the drivers’ decision process (as seen in
Section 5.2). Roughgarden devised a method for generating
the pth expansion of the original Braess graph [Roughgar-
den, 2006]. Nonetheless, the proposed modelling required
the flow (i.e., the number of vehicles) to be normalised in the
interval [0, p], with p the order of the Braess graph. In order
to overcome such limitation, we extend Roughgarden’s mod-
elling dropping such a requirement, thus delivering a more
general model. Moreover, we provide updated theoretical re-
sults for the System Optimal (SO) and User Equilibrium (UE)
solution concepts, as well as the results for the Braess para-
dox and the price of anarchy.

A.1 Graphs Generation Process

Consider the modelling introduced in Section 2.1. Let Bp be
the pth Braess graph, with B1 being equivalent to the origi-
nal Braess graph. The set of nodes can be described as Np =
{s, n1, . . . , np, o1, . . . , op, t}, with |Np| = 2p+2 and s ∈ N
and t ∈ N representing the source and target nodes, respec-
tively, for all d drivers (i.e., all drivers share the same OD
pair). Let (i, j) represent a link from i ∈ N to j ∈ N . The set
of links can be formulated as Lp = {(s, ni), (ni, oi), (oi, t) :
1 ≤ i ≤ p} ∪ {(ni, oi−1) : 2 ≤ i ≤ p} ∪ {(n1, t), (s, op)},
with |Lp| = 4p+ 1. The links are grouped into three distinct
types, each with a corresponding cost function, as follows.

type-A : for all links on the form (ni, oi), we use cpl (fl) = 0;

type-B : for all links on the form (ni, oi−1), (s, op), and
(n1, t), we use cpl (fl) = 1;

type-C : for all links on the form (oi, t) and (s, np−i+1),
with i ∈ {1, . . . , p}, we use a piecewise, continuous,
non-decreasing function as in Equation (8). Using this
function, the maximum possible cost of a type-C link
(when fl = d) is ip2. The shape of the type-C cost
function is illustrated in Figure 1.

cpl (fl) =

{
0 if fl ≤ d/(p+ 1)
ip(pfl+fl−d)

d otherwise
(8)

The routes are divided into two groups. Let P denote7

the set of routes without any type-C link, i.e., P = {Pi =
(s, ni, oi, t) | i ∈ [1, p]}, with |P | = p. All the other
routes, with type-C links, are then represented by Q =
{(s, n1, t)}∪{Qi = (s, ni, oi−1, t) | i ∈ [2, p]}∪{(s, op, t)},
with |Q| = p + 1. We will distinguish the routes from these
two groups as type-P and type-Q routes.

7We slightly abuse notation here, using (s, . . . , t) to represent a
sequence of connected links {(s, ·), . . . , (·, t)} that form a route.
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Figure 2: The first, second, and third Braess graphs. Links
are labelled with their types.

A.2 Theoretical Results
Given the above formulation, we can define theoretical re-
sults for the System Optimum (SO) and the User Equilibrium
(UE) as follows. The SO is achieved when the total flow d is
equally divided among the p + 1 type-Q routes. In this case,



each such route receives a portion d/(p + 1) of the flow and
the type-P routes are not used. Under such conditions, each
route has a cost of 1 and the avg-tt is also 1.

The UE, on the other hand, is achieved when only the p
type-P routes are used. In this case, each such route receives
a flow of d/p, thus costing p+ 1. Under such circumstances,
the avg-tt is also p+ 1. By comparing the SO and UE results,
we can define the price of anarchy to be p + 1 [Koutsoupias
and Papadimitriou, 1999].

Observe that, in both solution concepts, the avg-tt and the
route costs are always the same. This is due to the fact that, in
both cases, all routes being used have precisely the same flow
and cost, i.e., under SO all used routes have a flow of d/(p+1)
and cost 1 each, and under UE all used routes have a flow of

d/p and cost p+ 1. Consequently, as all vehicles experiment
the same cost, we have that the avg-tt and the route costs are
always the same.

Regarding the Braess paradox, our modelling does not in-
validate it. Observe that, whenever the type-A links (those
in the form (ni, oi)) are removed, all type-P routes are also
eliminated. Moreover, recall that, under UE, the cost of the
flow is p + 1. However, after the type-P routes are removed,
the UE is achieved when the flow is equally divided among
the type-Q routes, which is precisely the SO. Thus, remov-
ing the type-P routes leads to an improvement in the overall
performance, meaning that the Braess paradox exists.
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Abstract
The goal of adaptive traffic management is to adjust
the timing of traffic signals at intersections in order
to dynamically adapt, in real time, to traffic condi-
tions. The SCOOT system, a commercial product
widely deployed around the world, focuses on ad-
justing three traffic signal control parameters: split,
cycle and offset. By responding to data collected
from sensors embedded in roadways, SCOOT can
effectively adjust to expected fluctuations in traf-
fic, such as those that occur regularly during com-
muting hours. However, SCOOT does not perform
optimally when there are unexpected disruptions in
traffic flow, such as after the occurrence of an ac-
cident or during events that cause traffic conditions
to deviate from the norm. The work presented here
outlines an empirical study of the three SCOOT pa-
rameters, comparing the adjustment algorithm em-
ployed by SCOOT to a number of different adap-
tive methodologies, including two novel schemes.
Experimental results, analysed across a range of
different traffic flows, demonstrate that the novel
methods perform as well as SCOOT under normal
conditions and better under disruptive conditions.

1 Introduction
The notion of adaptive traffic management has been con-
sidered in a range of fields, from traffic control engineering
to intelligent systems science. The goal is to maximise the
throughput of vehicles across networks of roadways: reduc-
ing travel times for individuals, minimising wait times at in-
tersections and avoiding collisions. There are a number of
desirable subgoals, such as reducing the amount of pollution
created by decreasing travel times, lowering petrol costs by
shortening idle times and diminishing stress on commuters.

Within the multi-agent systems (MAS) community, a pop-
ular approach is to represent each vehicle as an autonomous
agent and employ mechanisms that require the vehicles to
negotiate with each other [Carlino et al., 2013; Dresner and
Stone, 2004; Vasirani and Ossowski, 2012]. However, wide-
spread deployment of autonomous vehicles in real-world en-
vironments is not a near-term reality. There are many chal-
lenges that remain before self-driving cars will be used by

the masses. First, there is the development and deployment
of the cars themselves. Google’s self-driving cars are widely
talked about, with a fleet of autonomous cars that have col-
lectively covered over 700K miles [Gomes, 2014]. Yet, these
cars navigate using special maps that have enhanced infor-
mation, such as location of traffic signals and driveways. As
well, they cannot avoid unmarked potholes and would not
be able to obey commands from a traffic officer [Gomes,
2014]. Second, there is the current state of connectivity. The
communication infrastructure necessary for broad vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) currently
does not exist. In the USA, the National Highway Traffic
Safety Administration (NHTSA) is currently pushing for the
use of V2V technology nationwide, arguing that it could dra-
matically reduce accidents by warning of dangers ahead; but,
to date, there is no nationwide agreement or timeline for im-
plementation. It is estimated that self-driving cars will not
completely supercede human-driven cars until at least the
year 2040 [Litman, 2015; Shanker et al., 2013].

Motivated by these practical contraints, our work does not
rely on the presence of autonomous vehicles—instead, we
focus on adaptive solutions to traffic problems that can be
deployed within today’s infrastructure. An intersection is
a prominent feature of existing infrastructure, where roads
cross each other and the need to coordinate access to the
intersection is vital for preventing collisions. The task of
intersection management is primarily achieved using traf-
fic signals, familiar artifacts that are well integrated into
road infrastructures world-wide1. Traditionally, intersection
management by traffic signals is implemented as fixed pe-
riods of green, amber and red lights. In an effort to im-
prove on the performance of fixed traffic signals, adaptive
Urban Traffic Controllers (UTCs) have been developed and
deployed in many cities around the world [Wang, 2005;
Mladenovic and Abbas, 2013; Papageorgiou et al., 2003].
Adaptive UTCs use information about current road condi-
tions and determine, some in real-time, the best signal set-
tings. These systems attempt to harmonise the interplay be-
tween all aspects of traffic (private cars, public transporta-

1In some countries, another common feature of the infrastructure
is a roundabout (also called a rotary or traffic circle); but these are
controlled through norms and driver behaviour, and do not fall into
the category of technologies that are controlled through infrastruc-
ture external to the driver, which is what we consider here.



Figure 1: The SCOOT Model [Limited, 2016]. The red stripe
across the road behind the yellow car in the figure illustrates
an induction-loop road sensor.

tion, cyclists and pedestrians) in areas ranging in size from
a few city blocks to entire cities. The majority of adaptive
UTCs employ optimisation algorithms which are costly to de-
velop, calibrate, maintain and expand [Wang, 2005]. Exam-
ples of deployed UTCs include: SCOOT2 [Hunt et al., 1981],
RHODES [Mirchandani and Wang, 2005] and OPAC [Gartner
et al., 2001]. We focus on SCOOT because it is a popular sys-
tem, it is deployed in our local city and we have access to data
for modelling. The remainder of this paper is organised as fol-
lows. Section 2 describes how SCOOT works. Our approach
is presented in Section 3 and experiment design in Section 4.
Our results are presented in Section 5 and discussed in Sec-
tion 6. Section 7 reviews other adaptive approaches to traffic
control, and Section 8 closes with a summary and directions
for future research.

2 SCOOT
SCOOT (Split, Cycle and Offset Optimisation Technique) is
a centralised, real-time system that minimises delay and pre-
vents congestion by coordinating small sets of traffic signals,
called regions. The intersections within a region always form
a linear path, i.e., signal timings are optimised to improve
traffic flow in a single direction. SCOOT responds to data
collected from induction-loop sensors embedded in roadways
(Figure 1), which are simple counter devices that trigger when
vehicles drive over them. Using the sensor data, SCOOT re-
sponds effectively to expected fluctuations in traffic.

Traffic can flow into an intersection from multiple direc-
tions, each of which is called a link. The degree of saturation
of an intersection is a measure of its level of use, i.e., the
amount of traffic demand compared to its maximum capac-
ity. The traffic signal has a phase for each link which se-
quences through a period of green time, followed by a period
red time3. SCOOT adjusts three traffic signal control parame-
ters, as follows:

2http://www.scoot-utc.com
3Typically, red time is preceded by a short period of amber (yel-

low) time; in some countries, green time is preceded by a short pe-
riod of joint amber and red time.

• split—The amount of green time allocated to each indi-
vidual link is called split. Five seconds before a phase
change, SCOOT considers the effect on the degree of sat-
uration caused by advancing (terminating the phase), re-
tarding (extending the phase) or holding (allowing the
phase to continue to termination). SCOOT selects the op-
tion that reduces the degree of saturation the most. The
split is adjusted in increments/decrements of 4 seconds.

• cycle—Cycle length is the total amount of time it takes
for every link to receive its complement of green time.
SCOOT optimises cycle length by examining the road-
way with the highest degree of saturation. If that is
greater than 90%, then the cycle length (for the entire
region) is increased. SCOOT decreases the cycle length
if every roadway entering the intersection has a degree
of saturation greater than 90%. Cycle length changes
are made in increments (or decrements) of 4, 8, 16,
and 32 seconds (the shorter the cycle, the smaller the
change) [Halkias, 1997].

• offset—A green wave is a phenomenon that occurs
when a vehicle crosses many intersections in a row and
all the traffic signals show green, so the vehicle does not
have to stop at each intersection. In order for a green
wave to occur, the traffic signals at adjacent intersections
in a given path must be synchronised. The offset param-
eter represents the difference between the start of green
time at two consecutive intersections. SCOOT checks the
offset once at the end of every cycle and attempts to min-
imise the number stops required per vehicle by adjusting
the offset in increments/decrements of 4 seconds.

Although SCOOT responds well to expected changes, such
as regular increases in directional traffic flows during com-
muting times, SCOOT does not perform optimally when there
are unexpected disruptions in traffic flow, such as when there
are accidents or entertainment events that suddenly cause pat-
terns to deviate from the norm. In our work, we have devel-
oped a set of traffic patterns that test the efficacy of SCOOT
under different conditions. We use these patterns to compare
several different parameter adjustment policies to the SCOOT
benchmark, including two novel schemes that take a market-
based approach. Experimental results, analysed across differ-
ent traffic flows, demonstrate that our novel methods perform
as well as SCOOT under normal conditions and better than
SCOOT under disruptive conditions.

3 Our Approach
Our approach to traffic control parameter optimisation con-
siders the three SCOOT parameters described above. In order
to tune these parameters for real-time traffic control, we ad-
dress a number of questions: Which parameters should be
adjusted? When should the parameters be adjusted? What
data is used to inform an adjustment? and How should the
parameters be adjusted?

Our approach to traffic control revolves around the notion
that traffic control is a coordination problem where intersec-
tions work together to minimise delay. Thus, we decom-
pose the intersection into a multi-agent system and utilise an



auction-based approach to facilitate coordination amongst its
agents. Our approach shares some similarities with SCOOT: it
manages traffic flow using the same three parameters (cycle,
split and offset), uses degree of saturation to measure road
usage and uses transportation technology (vehicle detectors)
that is currently available. However, our approach has a many
significant differences. Adjustments to the traffic control pa-
rameters are made periodically and intersections are not clus-
tered into fixed, pre-defined regions. Without these restric-
tions, our approach allows our mechanism to function on a
much larger scale than SCOOT.

We first experimented with the idea of intersections as
agents, informed in real-time by road sensors, in Raphael et
al. [2015], where we presented our SAT mechanism. Here we
expand upon that work in several ways. First, we present two
new strategies for the behaviour of our traffic control agents.
Second, we present experimental results that demonstrate the
robustness of our approach in the face of unexpected disrup-
tions in traffic flow. Finally, we compare our approach with a
broad set of alternate strategies.

In both approaches, we use an intersection agent as an auc-
tion manager and traffic signal agents that represent the traffic
signal phases. A phase represents multiple traffic streams. A
single phase can service multiple vehicle manoeuvres. For
example, the first phase of a traffic signal may allow through
traffic and left turns. We use a two-phase signal plan: one
light phase for north/south-bound traffic and the other phase
for west/east-bound traffic. Thus, at every intersection, there
is an intersection agent working in concert with two traffic
signal agents. Our traffic signal control mechanism employs
a first-price, single-item auction. As traffic flows through an
intersection, auctions take place at fixed intervals4. The traffic
signal agents bid against each other; the winner is the agent
with the highest bid. The winning agent then makes a single
adjustment to its traffic signal timing.

3.1 GRACE
Our initial investigation into traffic control mecha-
nisms [Raphael et al., 2015] was limited in its ability
to react to changing traffic conditions because only green
time was adjusted (in 5-second segments). Our new method
presented here, GeneRal Purpose Auction-based Traffic
ControllEr (GRACE), allows traffic signal agents to change
all three variables. Adjustments are made in discrete steps, s
(measured in seconds), defined as:

s = 〈∆green time,∆offset ,∆cycle length〉

For example, if s = 〈3,−4, 10〉, then the green time would be
increased by 3s, the offset reduced by 4s and the cycle length
increased by 10s. A finite set of possible adjustment values
is defined, specific to each mechanism (see below).

In [Raphael et al., 2015], we measured the level of use of a
roadway by calculating saturation , the ratio of the volume

4The optimal length of the fixed interval varies with each mech-
anism, and the values we use in our work were determined experi-
mentally. Detailed discussion of these results is beyond the scope of
this paper, but can be found in our technical reports.

of traffic (as measured by road sensors) to its estimated max-
imum capacity. However, this ratio does not quantify how a
change to green time (or cycle length) effects the level of use
in a lane(s), so GRACE uses degree of saturation [Lee et al.,
2002; Roess et al., 2009], X , which is defined as:

X =
v

c
∗ L
g

(1)

where: v is the volume of traffic read by the traffic signal
agent; c is the maximum possible volume of traffic (in vehi-
cles per hour); L is cycle length; and g is green time. Traffic
signal agents in GRACE are characterised by their utility func-
tion and their bidding rule. Next, we present two different
GRACE-based traffic signal agents: DCF and MMDOS.

3.2 DCF
In Dynamic Coalition Formation (DCF), traffic signal agents
find the best offset to reduce the number of vehicles that will
have to stop for the red light and a green time that will min-
imise the maximum degree of saturation. At an intersection,
each lane of traffic flow may have a different degree of satu-
ration. DCF attempts to minimise the degree of saturation of
the lane experiencing the highest level of use. The utility of
adjustment s is given by:

U(s) = −[X + D(s)] (2)

where the values for the degree of saturation Xt and estimated
number of stopped vehicles D(s) reflect the adoption of ad-
justment s. The bidding rule for DCF is:

b = X (3)

The possible adjustment values for DCF are: ∆green time ∈
{0 . . . 5}, ∆offset ∈ {−4, 0, 4}, and ∆cycle length = 0
(i.e., cycle length does not change).

3.3 MMDOS
In Minimise Maximum Degree Of Saturation (MMDOS), traf-
fic signal agents minimise the degree of saturation of the lane
experiencing the highest level of use. The utility of adjust-
ment s in MMDOS is given by:

U(s) = −[X] (4)

The biddings rule for MMDOS is:

b = X + u (5)

where u is the length of the queue of cars on the roadway as-
sociated with the phase under the agent’s control. The pos-
sible adjustment values for MMDOS are: ∆green time ∈
{1 . . . 5}, ∆offset = 0, and ∆cycle length = 0 (i.e., off-
set and cycle length do not change).

4 Experiments
We evaluated GRACE in a simulated 5 × 5 grid-based city
plan (Figure 2). Our traffic control experiments were con-
ducted on Simulation of Urban MObility (SUMO) [Krajzewicz
et al., 2012], an open source microscopic traffic simulator.
All traffic signals used a two-phase signal plan: during one



Figure 2: Grid-based city plan with intersection layout.

phase, north/south bound traffic passed through the intersec-
tion, while west/east bound traffic passed in the other phase.
The signal plan did not include dedicated turning (right or
left) phases, therefore left and right turns were given lower
priority than through movements, i.e., vehicles turning left or
right waited until it is safe to do so. All the roads were fit-
ted with road sensors to collect traffic volume data. Also, the
four corner traffic signals were disabled because there were
no conflicting traffic movements at those intersections. Thus,
in our experiments, GRACE adaptively controls twenty-one of
the intersections.

4.1 Traffic Conditions
For the experiments described here, we utilised three different
traffic scenarios to evaluate the performance of our market-
based mechanism. The scenarios employed sudden increases
in traffic volume (or intensity) to disrupt traffic flow. The final
scenario replicated traffic conditions that may occur during a
sporting event. The scenarios are:

• Structured is traffic that flows through the network with
an identifiable (e.g., commuter) path with heavy flow;

• Unstructured is traffic flow with no identifiable path
with heavy flow; and

• Football emulated traffic conditions before, during and
after a football match. The traffic flow represented a
worst-case scenario where there is a sudden sharp in-
crease in traffic demand. There are two disruptions: first,
fans enter the area of the arena (30 minutes after the sim-
ulation started); and second, fans exit the arena (approx-
imately 90 minutes later).

We raised the intensity of traffic at the one-hour mark dur-
ing Structured and Unstructured traffic conditions. Structured
represents the traffic pattern that is ideal for an adaptive urban
controller such as SCOOT. Each set of experimental condi-
tions were repeated 30 times to attain suitable statistics.

We evaluated the performance of the traffic controllers us-
ing the metric travel time. Travel time is by far the most
common way of measuring the effectiveness of traffic con-
trollers. We examined travel time in several different forms.
First, we looked at the average travel time of all the vehi-
cles across the 30 simulations. Second, we collected data on
the average travel time of vehicles as they finished their jour-
ney at each time step. We compare the performance of our
market-based controller to SCOOT (described in Section 1),
fixed-time traffic signals (Section 4.2) and an auction-based
traffic controller that learns a bidding strategy (Section 4.3).

4.2 Fixed-time Signals
We also implemented a fixed-time traffic signal controller,
FXM. The fixed-time traffic signal controllers represented
traditional, non-adaptive, traffic signal devices. In the case
of fixed-time traffic signal controllers, all three traffic con-
trol parameters remain constant. The traffic signals displayed
the same light sequences for the same duration every cycle.
We chose to use the initial traffic signal timing settings used
by the adaptive mechanisms as the settings for the fixed-time
traffic signals. Thus, any differences in performances can be
attributed to the adaptive nature of the controller (and not ini-
tial signal timings). The fixed-time traffic signals have a cycle
length of 80 seconds, and 87.5% of that is allotted to the split.

4.3 Learning to Bid
We implemented a version of the auction-based traffic con-
trol mechanism of Mashayekhi and List [2015] in our SUMO
traffic controller evaluation testbed. Of the three parameters
adjusted by SCOOT, Mashayekhi and List modify only one,
the split (green time). Their auction determines the amount
of green time in a phase as well as the order of the phases.
Mashayekhi and List used Reinforcement Learning (RL) to
learn a bidding strategy. The only major difference between
their implementation and ours was the number of movement
managers. In their work, each movement manager was as-
sociated with a single stream of traffic. In our version, there
were fewer movement managers because our test network did
not have dedicated turning lanes. Furthermore, Mashayekhi
and List did not specify an action space. Therefore, we dis-
cretised the bidding space to values [0 . . . 10] as our action
space. That is, whenever an agent bids, its bid amount is
some value between 0 and 10.

5 Results

Average Travel Time (std.)

Traffic Pattern

Policy Structured Unstructured Football

SAT 160.22 (8.22) 623.64 (42.31) 150.66 (9.10)
MMDOS 169.50 (7.31) 652.09 (48.57) 137.36 (5.35)
DCF 158.37 (4.98) 609.22 (32.80) 135.15 (4.84)

FXM 165.93 (1.38) 927.47 (107.39) 184.34 (7.13)
SCOOT 143.66 (4.85) 1931.35 (225.81) 233.42 (9.42)
RL 302.82 (17.70) 1038.09 (266.38) 200.89 (10.59)

Table 1: Average travel time of vehicles under different meth-
ods of traffic control.

We simulated our three scenarios using six different traffic
control methods: our earlier mechanism (SAT, from [Raphael
et al., 2015]), two new GRACE mechanisms (MMDOS and
DCF), and three baselines: a fixed-time traffic signal (FXM),
SCOOT, and the RL controller. In this section, we describe our



results, primarily the difference in performance of the con-
trollers with patterned traffic (e.g., Structured traffic) versus
non-patterned traffic (Unstructured and Football traffic).

Average travel times reflect time saved (or incurred) at in-
tersections due to adequate traffic flow. With Unstructured
and Football traffic, our market-based approaches outper-
formed all the other traffic controllers (Table 1). The worst
performing mechanism from our approaches did better than
FXM. DCF had the best overall average travel time in both
the Unstructured and Football traffic. In Unstructured traffic,
DCF reduced average travel time by 34.3% and 68%, com-
pared to FXM and SCOOT, respectively. For the simulated
football event, DCF reduced average travel time by 26.7% and
42%, compared to FXM and SCOOT, respectively. SCOOT had
the worst performance with the two non-patterned traffic sce-
narios. With Unstructured traffic, SCOOT increased average
travel time by over 100% and with the football match traffic
it increased travel time by 26% (this is compared to FXM).
However, SCOOT had the best performance with Structured
traffic (the second best time was achieved by DCF). RL per-
formed slightly worse than FXM with Unstructured and Foot-
ball traffic; it increased travel time by nearly 10% in both
cases.

Figure 3 provides a more detailed picture of travel time un-
der SCOOT control versus our DCF controller. At each time
step, as vehicles completed their journey, we captured their
average travel time. With Unstructured traffic, SCOOT’s travel
time begins to increase even before the occurrence of the dis-
ruption at the 3600th second (Figure 3b). Under SCOOT,
there is a sharp increase in travel times during the Unstruc-
tured disruption and it never recovers until the very end of
the simulation. During the half-hour influx of drivers begin-
ning at the 1800th second (Figure 3c), cars under DCF ex-
perienced significantly less delay than vehicles controlled by
SCOOT. Immediately after the disruption ends, the average
travel time peaks for both DCF and SCOOT, but SCOOT had
the highest increase in average travel times. Both methods
return to normal day-to-day travel times soon after the influx
ends. Again, for the second disruption, starting at the 9000th
second, traffic under SCOOT experienced far more delays than
DCF. Although SCOOT did better than DCF in overall perfor-
mance with Structure traffic, we find that there was signifi-
cant overlap (Figure 3a) in travel times between vehicles un-
der SCOOT control and vehicles controlled by DCF. In other
words, there were many vehicles under DCF control that ex-
perienced travel time as short as those found in SCOOT. In
Figures 3b and 4b, the SCOOT and RL simulations required
more time steps than the other traffic controllers. The dif-
ference in the simulation horizon is due to how SUMO (the
traffic simulator) works. SUMO does not terminate a simula-
tion until all the vehicles that have been spawned complete
their assigned trip. In all our simulations, the same number
of vehicles were spawned but delay caused by the traffic con-
trollers (e.g., SCOOT) resulted in a significant increase in the
simulation horizon.

We also collected cumulative averages as the simulations
ran (Figures 4). With Unstructured and Football traffic (Fig-
ures 4b and 4c), we see how quickly SCOOT’s performance di-
verges from the market-based approaches. Our market-based
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Figure 3: A comparison of average travel times of vehicles
that have completed their journey at each time step. Begin-
ning and end of disruptions are marked by dotted lines.
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Figure 4: Cumulative average travel times. Beginning and
end of disruptions are marked by dotted lines.

approaches did experience some increase in travel time dur-
ing disruptions (e.g., the period from 1800th second to the

3600th second in Figure 4c), but never peaked as high as
SCOOT. With Structured traffic, the traffic scenario where
SCOOT had the best performance, we find that our approach
closely matched FXM (Figure 4a). RL had the worst perfor-
mance under Structured traffic. In Figure 4a, we see that RL
never showed any signs of adapting to the traffic demands.
Also, in Unstructured traffic (Figure 4b) RL’s performance
closely mirrors FXM but in Football traffic (Figure 4c) it be-
haved more like SCOOT.

6 Discussion
Our results clearly demonstrate the dramatic effect traffic dis-
ruptions may have on the performance of SCOOT. Although
our market-based approach utilises the same traffic parame-
ters as SCOOT, we manipulate the split, offset and cycle time
in a completely different manner. SCOOT is simply unable to
satisfy the changing traffic demands and conflicting intersec-
tion manoeuvres (it is the latter that our approach excels at).
SCOOT was designed to optimise the signal timing of small
sets of traffic signals (that form a linear path). This severely
restricts the ability of SCOOT to adapt to unexpected cross
traffic. SCOOT performed well with traffic that had some es-
tablished pattern of behaviour such as Structured, but could
not cope with the Unstructured and Football scenarios. In
Structured traffic (and the other scenarios like it) the scope of
the control problem is more manageable than in other traffic
scenarios.

RL did not perform as well as expected and our results did
not resemble those found in [Mashayekhi and List, 2015].
There are a number of factors inherent to reinforcement-
learning that could have contributed to its poor performance.
For example, state space size (and representation) can affect
learning, i.e., convergence to an optimal policy [Bakker et al.,
2010; Sutton and Barto, 1998].

Lastly, DCF and MMDOS represents our latest efforts to ex-
pand the capabilities of our market-based traffic controllers.
One of the most important improvements to our approach is
the new way in which it selects green time shifts. SAT can
only make changes to green time in 5 second increments.
DCF and MMDOS can make smaller adjustments, if neces-
sary, to fine-tune green time allocations. Although DCF does
attempt to form green waves, this ability does not always pro-
vide much of an advantage over SAT. DCF does use a constant
cycle length and this may have negatively effected its perfor-
mance. We will investigate this question in future work.

7 Related Work
Our approach is inspired by the work of Tumer and
Agogino [2007], who applied MAS to the problem of air traf-
fic control. Rather than modelling airplanes as autonomous
agents, the authors made a counter-intuitive choice and
defined waypoints—intermediate positions in an airplane’s
flight path—as the agents. These static waypoints negotiated
for the “right” to accept a plane at a particular instance in
time. We adopt a similar approach to traffic control and select
geographically fixed agents whose behaviour is influenced by
traffic conditions. This is very different from many other traf-
fic control systems that view the vehicles—rather than the



intersections—as their focus. To address the parameter ad-
justment questions from Section 3, we employ auctions to
expedite parameter adjustments and coordinate intersections.

The variety of approaches to auction-based traffic control
demonstrates the versatility of auctions as a means of re-
source allocation. Dresner and Stone [2004] did away with
traffic lights entirely; relying instead on a reservation sys-
tem to work out when it is safe to enter an intersection.
Auctions can be deployed as a tool to determine road pric-
ing (or congestion charge) in order to optimise route selec-
tion [Iwanowski et al., 2003; Markose et al., 2007]. Auc-
tions can also be used as complete, intersection-level, traffic
controllers. Carlino et al. [2013] described a traffic control
system where second-price sealed bid auctions were used at
intersections to determine order of use. Vehicles have an em-
bedded agent bidding on their behalf, which is referred to as
the wallet agent. A system agent also bids in a manner that
facilitates traffic flow beneficial to the entire transportation
system—while the wallet agent is solely (selfishly) concerned
with getting its vehicle to its destination in the least expen-
sive and quickest way. The authors tested different modes and
found that the typical fixed-length traffic signal performed the
worst in terms of reducing trip times.

One of the more interesting properties of utilising an auc-
tion mechanism as a component of traffic control is that it
allows the intersection to consider the needs of individual
drivers. Schepperle et al. [2007] described an intersection
controller called Initial Time-Slot Auction (ITSA) which is
valuation-aware—a mechanism that takes into consideration
the individual’s cost of waiting at an intersection. In ITSA,
vehicles approach and register with an intersection. An in-
tersection agent executes a second-price sealed-bid auction
for the most current time slot available. The authors also de-
scribed two variants of ITSA: a mechanism is included to pre-
vent starvation5 where auctions are suspended if vehicle wait-
ing time has reached some fixed limit; and ITSA+SUBSIDIES,
which considers subsidies where vehicles that have not par-
ticipated in an auction yet can influence the auction of the
vehicles in front of them. The authors compared their traf-
fic controller to the reservation-based system in Dresner
and Stone [2004]. Both ITSA and ITSA+SUBSIDIES were
able to reduce average travel time while minimising aver-
age weighted waiting time, as compared to the reservation-
based system. ITSA+SUBSIDIES was better at reducing aver-
age weighted waiting time.

Vasirani et al. [2012] expanded on Dresner and
Stone’s [2004] work by examining the performance changes
to a reservation-based system where time slots were allocated
using a combinatorial auction (CA). As drivers approached
the intersection, reservations were awarded through the auc-
tion, instead of simply handed out in order of arrival (the
Dresner and Stone approach). In this way, drivers express
their true valuation for a contested reservation. In a network
with a single intersection, the authors looked at the delay ex-
perienced by drivers based on the amount they were willing

5In this context, starvation refers to one traffic flow being given
a green signal for (too) long periods, and the other (stopped) traffic
flows are “starved” for green time.

to “pay” to use the intersection. They found that initially hav-
ing a willingness to pay does decrease delay, but eventually
this levels off. However, CA was found to increase overall
delay. As the intensity of traffic increased, CA experienced
far more delays and rejected reservations than the first-come,
first-served approach. Both reservation-based systems de-
scribed in [Dresner and Stone, 2004; Vasirani and Ossowski,
2012] rely on vehicle agents having the capability to commu-
nicate with each other.

Other researchers have investigated approaches simi-
lar to our auction-based mechanism. Mashayekhi &
List [Mashayekhi and List, 2015] designed a multi-agent
auction-based traffic controller. The major difference be-
tween our approach and [Mashayekhi and List, 2015] is in
the bidding strategy. We designed our bidding strategy from
common traffic engineering practices while Mashayekhi &
List used Reinforcement Learning to acquire a bidding strat-
egy. Another significant difference is their traffic controller
needs vehicle-to-infrastructure communication: as vehicles
approach an intersection, they must report their presence to
the movement managers via tokens. Our methods do not rely
on such technologies.

8 Summary
We have presented our exploratory work on automated traf-
fic control systems that do not require the existence of ve-
hicle agents and can adjust dynamically as road conditions
change. Moreover, our approach uses local traffic state infor-
mation gathered from induction-loop vehicle detectors. As a
result, our market-based traffic control methods are not con-
strained by the lack of transportation communication devices
and protocols. Locally acting agents provide a robust traffic
control system that maintains performance gains during and
after traffic flow disruptions.

In patterned traffic, such as Structured, SCOOT performs
well, but so do fixed-time signals. Thus, when recognised,
these traffic patterns can be exploited; but this is not always
the case in large cities where traffic disruptions (such as ac-
cidents or local events) can easily perturb the norm. Through
a broad series of experiments, we have demonstrated the ef-
ficacy of our new approach, in comparison with our earlier
work and several benchmarks (SCOOT, fixed-time signals and
a reinforcement learning approach). The experimental results
highlight the impact of including offset and fine-tuned green
time adjustments in bidding, which produce improvements in
travel time. Our next steps with this work involve incorpo-
rating elements in the bidding to improve green waves. We
will also continue evaluating the traffic parameters discussed
in this paper with the aim of developing a clearer picture of
the impact that adjusting split, cycle and offset (and various
combinations thereof) has on travel time.
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Abstract
In this paper, we treat pedestrian evacuation in
emergency scenarios of networked smart spaces.
Personal safety may be jeopardized due to natu-
ral catastrophes (e.g., hurricanes, earthquakes, etc.)
and/or adversarial actions of intentional enemies.
During evacuation, the severity of emergency may
increase causing partial or complete blockage of
some evacuation routes. Thus, it is of the highest
importance to (re)route evacuees based on updated
real-time structure safety conditions. In this pa-
per, we propose a multi-agent based architecture for
dynamic route safety optimization in large smart
space evacuation. The objective of the model is to
ensure that the smart space network gets evacuated
securely while aptly responding to unpredictable
contingencies in the network safety.

1 Introduction
The objective of an evacuation is to relocate evacuees from
hazardous to safe areas or the areas where the life-threatening
risk is minimal while providing them with safe routes.
Present building evacuation approaches are mostly static and
preassigned. Frequently, no coordination is available except
for predefined evacuation maps. With sufficient estimated
time to calamity and in case of larger evacuations, human
coordinators are introduced mostly in isolated critical evac-
uation points. Due to uncertainty related with emergencies,
there is a need for a real-time route recommendation sys-
tem for dynamically determining evacuation routes in inner
spaces based on the imminent or ongoing emergency.

Some typical reasons for evacuation include natural disas-
ters like hurricanes, earthquakes, and wildfire, and adversarial
actions like biological, nuclear, or chemical attacks. Evacu-
ation routes may be subject to damage and destruction that
may arise from natural catastrophes or action of intentional
enemies. Due to the lack of the overall evacuation network
information, there might be casualties caused by a too slow
evacuation on hazardous routes. To avoid casualties and fa-
cilitate evacuation, we propose the usage of smart space tech-
nology for the introduction of route recommender systems
into inner spaces. Smart spaces are spaces equipped with in-
formation processing, sensing and actuation facilities. These

systems can provide assistance and facilitate the distribution
of real-time evacuation information to evacuees through, e.g.,
LCD displays and smartphones.

A smart space can be modelled as an agent able to acquire
and apply knowledge about itself and about its inhabitants
in order to improve their well-being in the same. Moreover,
a network of smart spaces can be implemented not only in
buildings, but also at an urban scale. A city may be seen as
a network of smart spaces and their inhabitants. In such a
complex system, by using the information of the both, intel-
ligent evacuation route recommendation is aimed at guiding
people to safe areas considering individually optimal routes
while optimizing global people flow based on safety condi-
tions. The resulting interaction of a multitude of space agents
and humans requires a scalable and responsive evacuation co-
ordination approach.

In this paper, we propose a multi-agent based architec-
ture for evacuation safety optimization that considers per-
sonal safety requirements in the recommended routes and en-
sures dynamic route update based on safety conditions within
buildings and on the road infrastructure. The proposed model
reduces exposure to hazard by dynamically updating evac-
uees’ routes in real time thus leading them to safe areas.
Routes, evacuation areas, and safe areas are dynamically cal-
culated and recalculated based on additional data, either real-
time, historical, or other data added to the system, to compute
optimal initial routes and redirect evacuees if changes in the
emergency situation occur.

The rest of the paper is organized as follows. In Section
2, we consider crowd dynamics related with velocity, den-
sity and flow of pedestrians in inner spaces and State-of-
the-art evacuation control approaches. The proposed route-
recommender architecture is presented in Section 3 with nec-
essary details on its functioning when recommending safe
and efficient evacuation routes. In Section 4, we formally
define the distributed evacuation safety optimization problem
and in Section 5, we describe the optimization approach. We
conclude the paper in Section 6.

2 Crowd dynamics
Total capacity is traditionally used to measure a building
safety related with panic. It determines the total number of
people who can fit in an edifice due to the physical space



Figure 1: Risk levels in free flow and congestion: crowd flow
rate - density relationship

available or limitations set by law. However, it is not a suf-
ficient parameter to avoid panic-related casualties in larger
spaces since the capacity should be controlled for every larger
constituent space in the building.

Evacuation routes may pass from larger to smaller spaces
where overcrowding may occur. The formation of crowds,
their size and granularity, and in general dynamics of crowds
are crucial parameters in panic tolerant evacuation systems,
see, e.g., Lujak and Ossowski [2016, In press 2016]. Over-
crowding is the main reason for crowd crushing, injuries and
mass fatalities that can be avoided by keeping density and ve-
locity of the crowd under critical values. These values are in-
fluenced by multiple factors like, e.g., crowd profile (average
age, physical conditions, presence of families with children
and people with physical disabilities, etc.), nature of surface
(e.g., concrete, mud, sand), presence of depressions in the
walking surface or debris, gravel, rocks, mud, slopes, steps,
etc.

Similar to vehicle flow, a macroscopic fundamental dia-
gram for pedestrian traffic involves crowd traffic flow, density
and velocity. The relationship between crowd density (num-
ber of people per square metre [#people/m2]) and crowd
flow (number of people per metre per second [#people/(m ·
s)]) is as follows: x = v(ρ) · ρ, where x is unit flow rate, ρ
is pedestrian density, and v(ρ) is pedestrian velocity [m/s],
which in general depends on the pedestrian density ρ, Figure
1.

One of the assumptions under which a proper shape of the
fundamental diagram for pedestrian traffic is found, is that
the congestion is spread homogeneously over the network,
see, e.g., Knoop and Hoogendoorn [2013]. However, crowds
rarely pack in regular formation. Knoop and Hoogendoorn
Daamen et al. [2015] show the effect of inhomogeneity by
deriving the so-called generalised macroscopic fundamental
diagram. Hoogendoorn et al. [2011] have shown that a sim-
ilar relation exists between the number of pedestrians in an
area and the average flow in that area.

When there are few pedestrians on a walkway, i.e., low
flow levels, there is space available to choose higher walking
speeds. As crowd density increases, crowd flow increases
only until critical density ρcr is reached, Figure 1. When
a critical level of crowding occurs, maximal flow xmax oc-

curs at some critical combination of velocity and density and
separates the free flow (x ≤ xcr) from the congested one
(x > xcr). With the increase of density above ρcr, people
flow decreases until jam density where there is no more flow.

The critical density can be different for different
events/crowds, see, e.g., Helbing and Johansson [2011].
Pedestrians can only circulate freely when crowds are no
denser than approximately 10-15 persons per 10 m2. Af-
ter this point, as crowd density increases the crowd flow rate
falls. As individual movement becomes effortful because of
closer interactions among evacuees, consequently also crowd
velocity falls.

At high density, the crowd moves at the pace of the slowest
individuals and there is the potential for overcrowding and
personal injury. Evacuees’ safety decreases due to a higher
possibility of panic related behaviors such as herding and
stampeding. This is why we should aim not to let the peo-
ple density pass the critical value at any area.

Regarding velocity, people should avoid running to avoid
panic. Human walking speed can vary depending on various
factors such as, e.g., height, age, terrain, weight, effort, etc.
The average human walking speed is about 5.0 kilometres
per hour and it ranges from 4.51 to 5.43 kilometres per hour,
see, e.g., Rastogi et al. [2010]. This means that every space
should be dynamically controlled detecting group formations
that should not surpass these values at any position.

The crowd is unlikely to be evenly distributed throughout
an open space. This can make it difficult to estimate the point
at which the space is reaching its capacity limit. This is why,
at high risk people densities, it is important to monitor and
control the crowd movement in all constituent areas of the
space of interest at all times.

Before the crowd reaches jam density ρmax, we can de-
tect spaces between evacuees by people tracking technolo-
gies. Tracking refers to data output from the technologies that
capture the evacuees’ walking paths, e.g., WiFi by tracking
their mobile phone signals, monocular and 3D stereo video,
thermal imaging, infrared beams, and beacons. Each technol-
ogy has its own set of challenges and benefits. For example,
Wi-Fi and beacons are based on radio wave technologies, and
are distinct by range and the accuracy of the signal capture
process.

2.1 Evacuation control in smart spaces
By the use of ambient intelligence, we can both monitor and
influence crowd actions during evacuation. The space ac-
cess restrictions can be changed dynamically depending on
the area safety status. The information about the number of
people to evacuate and their behaviour facilitates successful
planning of evacuation and assessing necessary emergency
services.

Application of ambient intelligence to evacuation control
is a dynamic research area. In Mitleton-Kelly et al. [2013], a
review on the utilisation of AmI (Ambient Intelligence) tech-
nology in providing support and enhancing crowd evacuation
during emergencies and improving traffic management is pre-
sented. While most of the approaches treat congested net-
works and related k-shortest path problem, to the best of our
knowledge, there is little work on dynamic real-time route op-



timization based on the safety of the paths’ constituent arcs,
e.g., Stepanov and Smith [2009]. Most of the approaches take
the binary approach for safety: the route is safe or not. In this
paper ,we go a step forward and offer the optimization of the
routes when the route safety is represented by a continuous
variable.

Azhar Mohd et al. [2016] provide a review of intelli-
gent evacuation management systems covering the aspects
of crowd monitoring, crowd disaster prediction, evacuation
modelling, and evacuation path guidelines. While the review
deals with video and nonvideo based aspects of crowd mon-
itoring and crowd disaster prediction, evacuation techniques
are reviewed via the theme of soft computing, along with a
brief review on the evacuation navigation path.

A literature review of network emergency evacuation mod-
eling was presented in Xiongfei et al. [2010]. The linear
programming approach uses time-expanded networks to com-
pute the optimal evacuation plan and requires a user-provided
upper bound on evacuation time. It suffers from high compu-
tational cost and may not scale up to large transportation net-
works in urban scenarios. In Lu et al. [2005], a capacity con-
strained route planner (CCRP) was proposed. It is a heuristics
that produces sub-optimal solution for the evacuation plan-
ning problem. The CCRP models capacity as a time series
and uses a capacity constrained routing approach to incorpo-
rate route capacity constraints. It addresses the limitations of
the linear programming approach by using only the original
evacuation network and it does not require prior knowledge
of evacuation time. The CCRP algorithm produces high qual-
ity solutions and significantly reduces the computational cost
compared to the linear programming approach that produces
optimal solutions. CCRP is also scalable to the number of
evacuees and the size of the network.

Desmet and Gelenbe [2013] propose an approach to the
design and optimisation of emergency management schemes
that offers fast estimates based on graph and probability mod-
els. They show that graph models can offer insight into the
critical areas in an emergency evacuation and that they can
suggest locations where sensor systems are particularly im-
portant and may require hardening.

In Bruce et al. [2008], a GIS-based system that deter-
mines evacuation routes for specific areas requiring evacu-
ation is presented. Routes, evacuation areas, and safe areas
are dynamically calculated and recalculated based on addi-
tional data to compute optimal initial routes and redirect evac-
uees if changes in the emergency situation occur. However,
the model includes only two operative states of the roads:
open, closed, and their travel time if open. The proposed sys-
tem does not take into account relative safety variation of the
route.

One possible way of personalizing evacuation notifications
and communicating evacuation routes in indoor work en-
vironments over smartphones was presented in Aedo et al.
[2012]. The paper considers efficient communication of pre-
defined evacuation routes that can be personalized based on
a type of the evacuee. However, this paper does not consider
autonomous smart space route update based on the evacuation
route real time safety conditions.

3 Architecture for safe evacuation routes’
recommendation

Safety conditions in the infrastructure change due to the evac-
uees’ behavior and the safety conditions caused by the hazard.
The proposed architecture for safe evacuation routes’ recom-
mendation integrates real-time evacuation route computation
and situational awareness both at the evacuee and infrastruc-
ture level. The proposed architecture is made of the evacuee’s
route recommender and overall smart route evacuation sys-
tem, both relying on smart space technologies, Figure 2. In
more detail:

• Evacuee’s route recommender is meant as a mobile
app that serves as an evacuee’s evacuation guide and
an interaction bridge between the evacuee and the smart
space while increasing situational awareness of the evac-
uee and recommending him/her evacuation route that
avoids unsafe and highly congested spaces. The situa-
tion awareness solution should take into account data re-
ceived through relevant sensors, evacuee’s current men-
tal state and the capacity to follow the recommended
route based on the momentary GPS coordinates and
the actual area safety state, the evacuation infrastructure
complexity (e.g., through Google Services), sensor read-
ings and actual smart phone’s state (acceleration, veloc-
ity dynamics, orientation, etc.).
It uses smart phone sensors for knowledge extraction
and communicates with nearby smart space infrastruc-
ture. Evacuee’s personal route recommender system
(EPRS) is a CPS that works as an evacuee’s assistant that
mediates the interaction between the evacuee and the
Smart Space. The EPRS’s objective is that the evacua-
tion be safe in complex evacuation situations so it adapts
the evacuation route to the profile of the evacuee. More-
over, evacuee’s route recommender informs the evacuee
about evacuation safety conditions and its malfunctions,
battery, his/her performance, security alerts, crowded-
ness and related risks, alternative routes, etc.

• Smart Route Evacuation System (SRES) monitors
and manages the strategic behavior of the smart space
network and in the case of necessity, performs correc-
tive actions on the spaces in real-time. SRES informs
the evacuee’s route recommender about the state of the
evacuee’s physical environment, eventual contingencies,
and evacuation performance. It establishes a personal
evacuee profile record (based on personal data, presence
of mobility disabilities, affiliate ties with other evacuees
etc.). If necessary, it undertakes corrective actions on
the evacuees and minimizes the performance degrada-
tion during sudden changes of safety conditions. More-
over, it monitors in real time and acts upon human-factor
processes (presence of panic and related herding and
stampeding behaviors) and predicts possible such states.
If necessary, it reassigns routes in real-time to overcome
contingencies, e.g., accidents and overcrowding.

• Smart space is a Cyber-Physical System that integrates
a series of sensors for obtaining data that passes through
several levels of processing: data filtering by noise elim-



Figure 2: Proposed architecture for save evacuation routes
recommendation

ination, synchronization, abstraction at a semantic level,
and data stream reasoning and knowledge extraction.
The result of these processes is a situation awareness of
the evacuees present in the smart space and knowledge
sharing with other smart spaces and the smart route evac-
uation system. Some of the exemplary smart space situa-
tion awareness processes are: forecasting the hazard and
evacuation dynamics with the specific evacuees’ profiles
and hazard description, and networking with other smart
spaces in the system for optimal route computation and
contingency coverage. The identification of the evacua-
tion situation is possible through image recognition, fu-
sion of data received from different sensors,and sensor
knowledge extraction. Due to increased energy, compu-
tational and memory requirements, those operations are
performed in a distributed manner by infrastructure node
agents connected with a computational cloud.

There are services available at the overall architecture level
for knowledge extraction integrating the situation awareness
from the evacuees’ route recommenders, the network of smart
spaces, and the smart route evacuation system. These ser-
vices serve for knowledge fusion from different databases
and bottleneck routes’ resolution at the system’s level. They
also keep track and evaluate evacuees’ profiles based on their
historical data and present behavior. After knowledge-based
data fusion, safety classification of scenarios gives us numeric
values for each safety condition, Figure 2.

3.1 Proposed multi-agent system for safe
evacuation

The proposed multi-agent system model is composed of four
different agent categories:

• Evacuee agent is implemented on evacuees’ smart
phones within an evacuee’s route recommender and it
represents each evacuee in the evacuation process.

• Node agent represents a physical node of the smart
space network on which it is installed and controls the
evacuation flow on it. Node agents interact with their
neighboring node agents and in a distributed way mon-
itor and control smart space network and, if necessary,
compute the safest efficient evacuation routes for evac-
uees in a distributed way. Moreover, node agents are
situated in the smart space and serve as its computa-
tional nodes. Each node agent senses its assigned physi-
cal node and its incoming arcs. Furthermore, it can open
and close automatic exit doors and broadcast informa-
tion to evacuees within its realm.
Each node broadcasts its incoming arc travel times in
regular intervals such that any node in the network has
a complete information about arcs’ safety and costs. If
a node detects the outage of one of its incident incom-
ing arcs or neighbor nodes, it evacuates these areas and
informs of the accident all neighboring nodes to deviate
all traffic that has to be sent over this failed element.

• Origin agent is created on demand whenever there is at
least one evacuee present in the realm of a node agent.
It is a part of the smart route evacuation system that
interacts with the evacuee agent through the evacuee’s
route recommender, Figure 2. Origin agents perform the
shortest safe route computation for the evacuees posi-
tioned in their realm of influence. This computation can
be made in a centralized or distributed manner with in-
frastructure node agents.
Once when the safest efficient routes are computed, each
origin agent assigns them to its evacuees based on indi-
vidual evacuee’s characteristics (e.g., mobility disabili-
ties, presence of families with children, etc.). Evacuees
exchange the information only with their origin agent.
As evacuees move in the infrastructure, their assigned
origin agents change respectively.

• Evacuation coordinator agent represents a human
evacuation manager or management team that has a
broader knowledge of evacuation reasons and purposes.
Their role is the description of key performance indica-
tors based on the evacuation strategy.

No a priori global assignment information is available and
the information is exchanged among these four agent types
through neighbor to neighbor communication. In this way,
we obtain a dynamic communication network operating in a
multi-hop manner, which can recalculate evacuation routes
based on the actual infrastructure safety conditions, evacuee
congestion, and evacuation demand.

4 Finding safe and efficient evacuation routes
In this Section, we concentrate on finding the safest tempo-
rally efficient paths for each evacuee within the decision mak-
ing module of the evacuee’s route recommender. With this
aim, we consider a network of smart spaces in flow condi-



tions where flow represents people transit pattern at steady
state.

If real-time infrastructure information is available to evac-
uees and they can negotiate their routes (paths), it becomes
possible to provide a selection of safe fair routes considering
individual safety requirements. Therefore, we assume that
the building and evacuees are monitored by strategically po-
sitioned sensors like, e.g., cameras, beacons, etc. The moni-
toring permits us both to recognize the evacuees’ behavior in
respect to the suggested route and time window as to perceive
the congestion and safety conditions of the infrastructure.

Furthermore, we assume that the people flow demand (i.e.,
evacuation requests) is known at the beginning of the time
window. Based on the population density data, we deter-
mine the evacuation demand in the case of regional evacu-
ation, while in smart building evacuation, we use the number
of persons in each node to enumerate the requests.

In this way, each individual is seen as a unit element (par-
ticle) of the total people flow. We assume, furthermore, that
the variations of the evacuation requests are negligible in an
observed time window.

Starting from the above stated assumptions, let us define
the infrastructure from which the people need to evacuate.
Let G = (N,A) be a connected digraph representing the
smart space network where N is the set of n vertices rep-
resenting rooms, offices, halls, and in general, any portion of
space within a building or other structure, separated by walls
or partitions from other parts. In the case of larger spaces, for
simplicity, the same are divided into regions represented by
nodes completely connected by arcs a ∈ A, where A is the
set of m arcs a = (i, j), i, j ∈ N and i 6= j, representing
corridors or passages connecting nodes i and j. To simplify
the notation, we assume that there is at most one arc in each
direction between any pair of nodes.

Let O ⊆ N and D ⊆ N be the set of all origins and des-
tinations respectively. We assume that there are nO origin
nodes o ∈ O disjoint from nD destination nodes d ∈ D,
where nO + nD ≤ n. Here, origins are all areas with evac-
uees inside the smart space network while destinations are
their near safe exits.

In the definition of evacuation requests, we introduce ficti-
tious sink node d̂ ∈ N that is adjacent to all the destination
nodes (safe exits) by fictitious (dummy) arcs. In this way, we
assume that graph G includes (together with actual nodes)
also fictitious node d̂ and its incoming dummy arcs. Then, let
w ∈ W be a generic evacuation request from node o ∈ O

to fictitious sink node d̂, where W is the set of all evacuation
requests. Moreover, letR be a vector of cardinality nO repre-
senting evacuation demands from originsO towards fictitious
safe exit d̂, where Rod̂ = Rw entry indicates the demand of
evacuees in unit time period who request to leave origin node
o ∈ O to go to any of the safe exits d ∈ D and, hence, to
fictitious destination d̂.

Our objective is, thus, to safely evacuate all the evacuees
and if not possible, then as many people as possible within
the allotted time period. To this aim, we should find opti-
mal paths toward safe exits that minimize the evacuation time
considering safety of the evacuation areas and thus avoiding

the hazardous conditions that might result in fatalities and/or
panic.

Let Pw denote the set of available (simple) paths accept-
able in terms of duration cost for each evacuation request
w ∈ W from origin ow ∈ O to fictitious sink d̂. By ac-
ceptable in terms of duration cost, we mean the paths from an
origin o ∈ O to safe exits d ∈ D considering the upper bound
in respect to the minimum duration among the paths for that
origin. Furthermore, let PW be the set of all such paths.

Moreover, let us assume that safety status Sa is given for
each arc a ∈ A as a function of safety conditions that can be
jeopardized by hazardous conditions as, e.g., natural disaster
or terrorist attacks. We normalize it to the range [0, 1], such
that 1 represents perfect conditions while 0 represents condi-
tions impossible for survival, with a critical level for survival
0 < Scr

a < 1 depending on the combination of the previously
mentioned parameters. The data quantizing and fusion whose
result is the arc safety status is not a topic of this paper. More
details can be found in, e.g., Khaleghi et al. [2013]; Zervas et
al. [2011].

The safety optimization problem is related with minimiz-
ing the risks caused by possible threats present on the arcs
of the paths towards evacuees’ safe areas. If each constituent
arc a of path k, k ∈ P̄w, w ∈ W has safety Sa ≥ Scr,
then path k is considered to be safe. On the contrary, when
safety Sk on path k ∈ P̄w falls behind threshold value Scr, its
harmful effects may threaten the evacuees’ lives. Thus, path
k is considered unsafe and is jeopardized by the safety of its
constituent unsafe arcs Acr

k = {a : a ∈ k, Sa < Scr}.
We are concerned about the number of these unsafe arcs

and their safety values in the proposed paths. The proposed
paths k ∈ P̄w for w ∈ W should all satisfy safety conditions
Sk ≥ Scr. However, when such a path is not available, a path
with the maximal safety should be proposed where the travel
time passed in the safety jeopardized areas should be mini-
mized. Since arcs’ safety Sa can vary significantly within a
proposed shortest path, we introduce a normalized path safety
that maintains balance between the minimal and average arcs’
safety values:

Sk = |a∈k|

√∏
a∈k

Sa, ∀k ∈ P̄w, w ∈W. (1)

We want to find a path k ∈ P̄w for each w ∈ W that max-
imizes (1) and minimizes path’s evacuation time tk, where
tk =

∑
ta∈k and ta∈k is the travel time of each arc a ∈

k. Since the longest path problem is NP hard, we convert
the safety maximization to jeopardy minimization problem,
where jeopardy Uk of path k is defined as Uk = 1− Sk.

Then, the objective is to find a temporally efficient path
with minimized jeopardy. For this reason, we search for a
path with both minimized path’s jeopardy and the evacuation
time.

Overall path safety for the evacuation request of each ori-
gin agent can then be computed by a product of the con-
stituent paths’ safeties, Formula 2.

Sw = |k|

√∏
k∈w

S′k, ∀k ∈ P̄w, w ∈W, (2)



5 Routes’ safety optimization model

Route resilience to contingencies should be provided through
the computation of k- shortest paths in regular time intervals
such that evacuees may be simply redirected to a backup path
if the proposed path gets dangerous at some node. By com-
puting k shortest paths from each origin and any intermediate
node towards safe exits, we guarantee that the evacuees will
be given viable alternatives based on the real-time safety up-
dates. In this light, each origin agent computates k shortest
paths towards safe exits that comply with the requirements
on the maximal evacuation time. If an arc or node failure oc-
curs, the route of affected evacuees is changed locally by the
node agent that detects the failure.

In the case there are no available safe shortest routes for
some origin node, it remains isolated. To resolve this issue,
and to maintain the connectivity of origin nodes with safe ex-
its at all times, in the shortest path computation, we multiply
the travel time of unsafe arcs for which Sa < Scr by M−Sa ,
where M is a very large number. In this way, the unsafe arcs
will be included in the shortest paths only if there is no alter-
native path composed of safe arcs. Moreover, the number of
the unsafe arcs will be minimal and their safety value will be
maximal.

The dynamic component of the evacuation should be in-
cluded in the computation since the original demand gets
lower as the time passes. In this respect, we can assume that
an arc is loaded with flow until all the evacuees haven’t evac-
uated the arc.

In the computation of k shortest paths, we use Yen’s algo-
rithm. The time complexity of Yen’s algorithm is dependent
on the shortest path algorithm used in the computation of the
spur paths. For this purpose, we use Dijkstra algorithm. Dijk-
stra’s algorithm has a worse case time complexity of O(n2),
but using a Fibonacci heap it becomes O(m+ n log n).

After the shortest paths are found for each origin agent,
the latter can decide of the evacuees’ assignment to the
paths based on relevant personal characteristics that guar-
antee equality through an iterative auction. The negotiation
through auctions is local between each origin agent and the
evaccuees starting their travel at that origin, similar to Lujak
et al. [2014].

6 Conclusions

In this work we studied crowd evacuation coordination prob-
lem with the focus on smart spaces. We considered how route
safety affects the selection of evacuation routes and their re-
configuration in the case of contingencies. In this context, we
proposed an architecture for evacuation route safety optimiza-
tion in large smart spaces that recommends safe and efficient
situationally aware routes for evacuation.

If we consider multiple communicating open and closed
spaces, this evacuation coordination approach can be poten-
tially applied to different scales in emergency evacuation at a
building, district, and urban level. In the future work, we plan
to validate the model in relevant simulated scenarios.
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Abstract
Urban Traffic Control is a key problem for most big
cities. An inefficient traffic control system can lead
to increased traffic congestions that degrade city
quality metrics such as average travel time or city
pollution. Most common approaches focus on con-
trolling traffic by appropriately setting traffic lights.
Current systems in operation range from static con-
trol of traffic light phases to adaptive systems based
on numeric models. In this paper, we propose an au-
tonomic approach based on declarative automated
planning to generate control plans only when the
default behavior should be overridden. Planning
is complemented with plan execution control and
monitoring, replanning, as well as self-adaptive be-
havior using Relational Learning. Learning is used
to anticipate the appearance of congestions and cor-
rectly solve them. Our system outperforms static
approaches as well as a planning-based system that
recently won a competition on autonomic behavior
in Urban Traffic Control.

1 Introduction
Traffic efficient management and control in urban networks is
an important challenge for city authorities. They usually want
to achieve a variety of policy-based objectives, such as re-
ducing atmospheric pollution or mitigating the effects of un-
expected situations like accidents or road closure. There are
many ways to set the traffic lights programs, ranging from
early static off-line approaches, to most recent adaptive ap-
proaches that change the programs according to the state of
the city. The reader is directed to surveys in the area [Papa-
georgiou et al., 2007; Hamilton et al., 2013].

From a centralized perspective, Automated Planning (AP)
has been recently shown to perform well in this kind of
tasks [Gulic̀ et al., 2015; Vallati et al., 2016]. The main ad-
vantage of using AP is that the domain and problem descrip-
tions are specified in a declarative language. Thus, even traf-
fic engineers can easily include new actions, sensor informa-
tion or metrics. Also, these models can be automatically up-
dated by using learning techniques. In this paper we propose
an approach that integrates a planning system for control-
ling traffic lights with a learning system that predicts when

a street density is going to be high in the near future. In
those cases, our system anticipates future problems by gener-
ating new goals to the planning module and starts a planning-
execution-monitoring process. The proposed system can be
seen as an instance of a full autonomic (autonomous) sys-
tem, given that it incorporates many self-* properties, as
self-monitoring (continuous observation), self-diagnosis (de-
tects undesired behavior), self-optimization (planning), self-
healing (executes actions) and self-adaptation (learning).

The paper is organized as follows: the next section de-
scribes the system architecture that integrates learning with
AP; the third section formally defines AP tasks and describes
the traffic-control domain; the fourth section briefly describes
the learning system; the fifth section presents the experimen-
tal results; and the last section draws conclusions and outlines
future work.

2 Architecture
We propose to use a planning-execution-monitoring architec-
ture called PELEA to provide a framework that can integrate
the various components of our system [Guzmán et al., 2012].
Figure 1 shows a sketch of the architecture. At start, the Ex-
ecution module receives an AP domain and problem. Then,
it captures the current state of the world, state, and sets the
problem initial state. The initial goal set could be also set
by the Goal&Metrics Generation module. The Monitoring
module calls the Planning module to obtain a plan whose
actions are sent back to the Execution module. Once the ac-
tions are executed, the Monitoring module receives the nec-
essary knowledge (current state, problem and domain) from
the Execution module to initialize a new planning-execution-
monitoring cycle. If the execution did not produce the ex-
pected changes (reduction in traffic density in some streets),
it will result in the generation of new goals and a new initial
state for a new call to the planner. The Goal&Metrics Gen-
eration module combines these goals with possible external
ones (as the ones given directly by traffic controllers) to up-
date the problem. The environment can be substituted by a
Simulator in some domains, as the one we focus in this paper.

One of the greatest challenges in the proposed architecture
is the generation of new goals. Here, we propose to apply ma-
chine learning techniques to infer when new goals should be
generated to anticipate future problematic streets. In a train-
ing step, examples are generated by observing the traffic be-
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Figure 1: Planning and execution architecture that includes learning capabilities.

havior during some time periods, under different traffic con-
ditions. Then, a learning algorithm can generate a model from
those examples, such that given any new state it returns new
goals. We are assuming here that the learning process is per-
formed off-line, prior to the actual use of the AP-based sys-
tem, but it could also be done on-line. The following section
formally defines AP tasks and describes the Urban Traffic
Control (UTC) domain we are using on this work.

3 Planning Tasks
In order to represent planning tasks compactly, the AP com-
munity uses the standard language PDDL (Planning Domain
Description Language) [Fox and Long, 2003]. Most planners
automatically generate an instantiated planning task from the
PDDL declarative description of a domain D and a problem
P . The domain defines the predicates for representing states
and the actions that agents can perform. Figure 2 shows an
example of an action in the domain definition. The problem
describes the task to be solved at each reasoning step; i.e., the
objects involved (e.g., streets, traffic lights), the initial state
and the set of goals to achieve. Figure 3 shows a subset of a
problem definition. The planner will receive both the domain
and the problem files as input and it will try to find a solu-
tion plan for the given problem. In this case, the output of the
planner will be a set of actions to be performed over the traf-
fic lights, such that these actions override the default control
program for a certain time period. If the planner has solved
the congestion at the next reasoning step, the default program
will take the control again. Otherwise, the next actions of the
previously generated plan are executed.

This planning model assumes the world is deterministic
and the agent has full observability, among other assump-
tions. In most real-world environments, this is not the case.
Actions have stochastic outcomes (the traffic density is not
always reduced in the same way when setting a longer green
phase in a traffic light), and agents have partial observabil-
ity (they do not know what the density due to new vehicles

entering the city is going to be in the following time steps).
There have mainly been two ways to handle uncertainty. In
the first type of models, uncertainty is represented explicitly
in the planning model and planners reason with those stochas-
tic models [Bonet and Geffner, 2005]. In the second, planners
reason with deterministic world models and when execution
of some actions fails, the agent replans [Yoon et al., 2007]. In
this paper, we will use the second alternative given that, from
a practical perspective, it is good enough for the domain we
are focusing on.

4 Learning Traffic Behavior
In this section we define the task of learning when goals will
arrive; that is, predicting the density level of the streets so
we can anticipate their congestion, generating the appropiate
goals for the planner. We formulate this problem as a time
series prediction one, using Relational Learning in this case.
Relational Learning is a Machine Learning technique that can
capture the correlations between connected elements. In our
case, we conjecture that the structured layout of a city can in-
fluence the density levels of some streets based on the ones
that are connected to some others. Thus, it is a relational do-
main. Relational Learning also suits AP, because it allows in-
duction over structured examples that can include first-order
logical representations, like the ones used in PDDL.

4.1 Representation
The representation is based on a subset of the predicates we
use in the planning traffic domain. In order to represent the
time steps, we modify some of these predicates, adding the
corresponding time steps. The predicates used for the learning
task are shown in Table 1.

We distinguish two types of predicates: the static and the
dynamic ones. The static part of the city is represented by the
connection predicate, that indicates that a vehicle can move
from one street section to another. All the connection predi-
cates together represent the entire city network. The dynamic



(:action hm-green-to-all-ways
:parameters (?t - traffic-light ?c - crossing ?sin - street

?sout1 - street ?sout2 - street ?sout3 - street)
:precondition (and (goes-into ?sin ?c)

(goes-out ?sout1 ?c)
(traffic-lights-from-street ?t ?c ?sin)
(not (opposite-direction ?sin ?sout1))
(densityLevel ?sout1 moderate)...)

:effect (and (not (state-to-street ?t ?sout1 red))
(densityLevel ?sin low)...)

Figure 2: Part of an example description of a PDDL action.

(define (problem traffic1) (:domain traffic)
(:objects s1 ... s566 - street

c1 ... c30 - crossing
tl1 ... tl10 - traffic-light)

(:init (goes-into s1 c3)
(opposite-directions s5 s7)
(state-from-street tl1 s7 green)
(densityLevel s1 high)...)

(:goal (and (densityLevel s4 low)
(densityLevel s35 low) ...)))

Figure 3: Part of an example PDDL problem file.

Predicate Type
density(st,l) Dynamic

connection(st,st) Static
openX(tl,st) Dynamic

densityLX(st) Dynamic

Table 1: Predicates used in the learning task. X represents the
time step. L represents the density level.

part of the city is formed by the state of the traffic lights and
the density of the streets. The openX(tl,st) predicate repre-
sents a green traffic light tl located at street st at time step X .
In our approach, X can take the values from one to three (X
previous time steps, or time windows), but it is a parameter
that can be modified to extend or reduce the prediction hori-
zon. The densityLX(st) predicate indicates that a street st has a
density level L at time step X . L can take the values veryhigh,
high, moderate, low and verylow. The last predicate of each
example, density(st,l), represents the current density level l of
the street st. This will represent the class of each example.

4.2 Algorithms
We are using TILDE [Blockeel and De Raedt, 1998] to learn
relational decision trees. It receives two files as input: the set-
tings file, where the user can specify the algorithm parame-
ters, as well as defining the predicates and classes; and the
knowledge base file, where both the training and test data
are included. The output of the learning algorithm is a file
containing the resulting relational tree and its translation into
rules. It also contains the confusion matrix for the training and
test sets. An example output of TILDE is shown in Figure 4,

where A represents the example id and the other letters the
predicates’ arguments (B is the street whose density level,
C, we want to predict). A minus symbol predating a vari-
able means that it is new in the tree, while when the variable
appears alone, it has to be referenced before. The classes to
predict appear in the leaf nodes of the tree between brackets.
For example, in the model shown in Figure 4, a high den-
sity would be predicted for a street B in two cases: (1) if its
density was low two time steps ago, but there exists another
street D connected to B whose density was high three time
steps ago and was not low in the last time step; and (2) if its
density was not low neither two time steps ago nor one time
step ago.

density(-A,-B,-C)
densityLow2(A,B)?
+-yes: densityHigh3(A,-D)?

+-yes: connection(A,B,D)?
+-yes: densityLow1(A,D)?

+-yes:[low]
+-no:[high]

+-no:[low]
+-no:[low]

+-no: densityLow1(A,B)?
+-yes: [low]
+-no: [high]

Figure 4: Example of TILDE output.



5 Experiments and results
On this work we use SUMO [Behrisch et al., 2011], an open
source traffic simulator developed by the German Aerospace
Center (DLR). It allows to import or generate not only road
networks, but also traffic demand. And it also allows users
to define traffic lights control programs. We want to test first
if we are able to build a model to predict the appearance of
goals in advance, and then we try to apply the created model
to several urban traffic control scenarios.

5.1 Results on Learning Goals
We are using a real city network in our learning experiments;
a grid-like section of Houston downtown, shown in Figure 5.
It is composed of 35 junctions, 140 traffic lights and 164 street
sections. We have selected five particular street sections to
learn from (A to E). We chose these city points due to their
different traffic characteristics. C and D are street sections
close to a Job Center. B is a point between the Job Center and
the main exit of the city. E represents a street section far from
the main traffic, while A is a random point with no specific
features.

Figure 5: Benchmark network in SUMO. Models are created
for points A, B, C, D and E. We assume that a Job Center is
located on D. F corresponds to the main exit point of the city.

We have also defined a traffic demand that tries to emulate
the real traffic flow of a city for an entire week. So, we define
lower vehicles traffic at night, more traffic at rush hours, and
higher traffic during week days than in the weekend. The Job
Center is included, where most of the cars want to go dur-
ing the work hours and also a main exit point, to go out of
the city at the end of the workday. The rest of the routes are
randomly generated. The vehicles may enter the city by any
street section and can finish their trip in an inner (parking,
mall, office...) or outer point of the network. A summary of
the full traffic demand specification is shown in Figure 6.
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Figure 6: Summary of the generated traffic flows on weekdays
and weekends. The y axis represents the number of vehicles
that enter the network at each hour, in thousands, and the x
axis represents the hours.

Data is collected every five minutes for the learning task,
which means 2013 instances for the whole week. Five min-
utes is what we call “time step”, the sample frequency. We
have chosen this sample time as we want to collect traffic data
from an entire week, and, at the same time, we want to keep
a not very high number of instances so that TILDE is able to
handle them. In our experimental setting, a step in the simu-
lation corresponds to a second. Each instance stores the static
part of the city previously described, as well as the dynamic
component of the state in the last three time steps. We learn
one relational model for each street section shown in Figure 5,
and then we test with data of the other street sections.

We have also varied the density levels, both in the classes
to predict and the predicates used on each instance. We have
used two approaches. One is based on five density levels:
veryhigh, high, moderate, low and verylow. A second version
uses only two: high and low. All the generated models are
pre-pruned, limiting the creation of new branches when the
node has less than 10 instances.

In the first experiment, we generated five different models
using data from the five selected street sections and the five
density levels approach. And we tested these models in the
five street sections to check accuracy and generality of the
learned models. The results for this first configuration are on
Table 2.

We can observe that the accuracy is similar for all the street
sections except for B, whose behaviour seems to be more dif-
ficult to predict. A and E, the two points away from downtown
and the Job Center, present a similar behaviour as expected.

In the second experiment, the problem is simplified with
only two density levels both for the class and the state predi-
cates. The results for this last configuration are on Table 3.

We can observe that as we decrease the number of den-
sity levels, the complexity of the problem decreases too and
the prediction task becomes easier. With only two levels, the
density of a street knowing the state of the city in the last time



A B C D E
A 0.90 0.68 0.85 0.77 0.83
B 0.82 0.72 0.79 0.77 0.80
C 0.83 0.66 0.88 0.77 0.81
D 0.80 0.66 0.83 0.85 0.81
E 0.87 0.66 0.85 0.78 0.89

Table 2: Accuracy results using the model obtained with five
density levels. Each cell (i, j) represents the estimated accu-
racy of learning a model with the data extracted at point i in
the city and testing that model against the data collected at
point j.

A B C D E
A 0.99 0.94 0.99 0.97 0.99
B 0.99 0.95 0.99 0.98 0.99
C 0.96 0.93 0.99 0.97 0.99
D 0.96 0.93 0.99 0.98 0.99
E 0.96 0.93 0.99 0.97 0.99

Table 3: Accuracy results using two density levels for the
class and the predicates. Each cell (i, j) represents the esti-
mated accuracy of learning a model with the data extracted
at point i in the city and testing that model against the data
collected at point j.

steps can be predicted with a high accuracy, even in street sec-
tions that have very different behavior. The final model that
will be used in our architecture corresponds to the one learned
with the data of point B, which on average performs best. The
relational tree was shown in Figure 4.

5.2 Results on Traffic Management
Finally, we want to test whether a traffic control system would
improve its performance if it had some predictive model of
the traffic. To do so, we will use several simulation scenarios
where we vary the size of the network (medium and large),
the fluency of traffic (fluent or congested) and the evaluated
time period (an hour and a day).

When using the learned model, it predicts the density at
each street at each time step, using the previous X time steps
as input. If it detects a high density at any subset of the
street sections, it generates goals to lower the density of those
street sections. These new goals, together with the current
state of the traffic, create a PDDL planning problem that is
given as input to the planner. Therefore, the system is pre-
dicting the appearance of goals in the next X time steps, and
the planning process can anticipate to the congestions. We
will call this new approach Learning. In [Pozanco et al.,
2016], we show that if the system uses a short-horizon predic-
tion, having the same time steps for both building the model
and checking for goals is not that important. So, our system
checks for new goals every fifty seconds using the predic-
tion model built with the five minutes time step previously
described.

We compare our system with a Static one, that corre-
sponds to the default system used by SUMO. We also com-
pare our approach with a Reactive system, that acts locally
on each traffic light and sets a longer green phase on those

whose their corresponding street density is currently high.
We also compare with the AP approach proposed in [Gulic̀
et al., 2015], co-winner of the ARTS-COST competition on
Increasing the resilience of road traffic support systems by the
use of autonomics1. That planning system does not have any
learning component and only calls the planner when a vehicle
has been stopped for a long time. We will call it Planning.
This system is the starting point of our approach, so we use
the same planning domain and planner, LAMA [Richter and
Westphal, 2010]. The last system we introduce in the tests
combines the Planning approach and the Learning one.
It calls the planner when a goal (high density) is predicted or
the current density of a street is high. We will refer to it as
Combined.

We use the following metrics to measure the performance
of each system: the number of steps it takes all cars to reach
their destination; the total amount of C02 emitted by the vehi-
cles; the average waiting time (AWT); the average travel time
(ATT); and, if it applies, the number of planner executions
(PE) and the mean planner execution time (MPE). We choose
them simply for comparison, none of the systems explicitly
reasons on optimizing these metrics.

Experiments in a Medium-Sized City Network
We created a fluent traffic scenario for the first experiment by
introducing 5300 cars in 3600 steps in the same city network
we used in the learning goals experiments. The simulation
finishes if all cars reach their destination, or after 5000 steps.
The results are shown in Table 4. We can see that there is
no substantial difference when the traffic is fluid among the
different systems. But the Learning approach outperforms
the others on most metrics. So, when the traffic is fluent, one
expects that even the Static control program will perform
well. In this traffic situation, the time spent on average per
vehicle in a traffic light (AWT) is approximately half of the
total time spent in their complete travel (ATT). Given the size
of the example network, ATT is around three minutes, while
AWT is around a minute and a half. The number of plan-
ner executions is low in the Planning and Learning sys-
tems, and it becomes very high when using the Combined
approach. The number of times it calls the planner is much
higher than in the two other approaches, as expected.

Steps C02 AWT ATT PE MPE
Static 3969 1103 93 172

Reactive 4059 1137 100 181
Planning 4070 1117 95 175 22 10
Learning 3881 1090 88 167 15 10

Combined 4104 1193 115 197 61 10

Table 4: Performance of the different control systems with
a fluent traffic situation in a medium-sized city. Steps, AWT
and ATT are given in steps (seconds), while C02 is in kg.
MPE is in seconds.

In the second experiment, we test the systems performance
on a very congested traffic scenario using the same city net-
work. It was created by introducing 6000 cars in one hour

1https://helios.hud.ac.uk/cost/comp2.php

https://helios.hud.ac.uk/cost/comp2.php


(3600 steps). The results are reported in Table 5. The columns
report the same metrics as the one before.

Steps C02 AWT ATT PE MPE
Static - 2553 582 638

Reactive 4106 1262 119 202
Planning - 2187 435 506 48 11
Learning 4070 1265 121 204 46 10

Combined 4244 1301 128 212 68 11

Table 5: Performance of the different control systems with a
very congested traffic situation in a medium-sized city. Steps,
AWT and ATT are given in steps (seconds), while C02 is in
kg. MPE is in seconds.

As we can see, even if the Planning approach out-
performs the Static system, it performs worse than the
Reactive mechanism and the two other autonomic ap-
proaches. Both Learning and Combined can completely
solve the traffic congestion. The vehicles spend much more
time waiting on average than travelling in this scenario (rela-
tion between ATT and AWT). However, the Learning sys-
tem is able to reduce the waiting time to half of the travel
time, as in a fluent traffic situation. Thus, it is effectively con-
verting a congested situation into a fluent traffic scenario. The
reduction of the pollution achieved by Learning is quite
substantial too: half of the C02 levels of the static approach.
In fact, they are close to those generated in a fluent traffic sce-
nario. Reactive obtains practically the same results than
the Learning approach, even if it only acts locally at each
traffic light without considering the whole network.

Dense Traffic in a Large Size City Network
This experiment tests the scalability of the proposed model to
larger city networks. The benchmark network in this case is
composed of 130 junctions, 520 traffic lights and 566 streets.
This can be considered as a large network in relation to most
papers in the field, specially considering that our approaches
perform centralized planning. The network is shown in Fig-
ure 7. We introduce 13,000 cars in one hour in order to create
a dense traffic situation. As the city is bigger than the previous
one, a experiment will finish when all cars reach their desti-
nation or after 6,000 time steps. Table 6 reports the results.

Steps C02 AWT ATT PE MPE
Static - 6649 439 549

Reactive - 7676 605 709
Planning - 5520 341 468 50 46
Learning 5837 5231 321 445 47 44

Combined - 6279 518 633 64 54

Table 6: Performance of the different control systems with
a dense traffic situation in a large-sized city network. Steps,
AWT and ATT are given in steps (seconds), while C02 is in
kg. MPE is in seconds.

In this case, Learning outperforms the rest and it is the
only one that can finish the simulation before 6,000 steps.
The model we learned with the medium-sized urban network

Figure 7: Large city network used in the second type of ex-
periments.

is able to generalize to this larger city. Our system scales
quite well even in a large network; it can find a plan in less
than fifty seconds, the checking-for-goals sample period. The
performance of Planning is quite good in this case and it
almost solves the congestion. Thus, this only-planning ap-
proach works well when we have a reasonably high traffic
density (as in this experiment or in the first one), but not too
high (as in the previous experiment). The Reactivemethod
does not scale up well to the large city network. When trying
to locally reduce the congestion, it ends up generating traffic
jams and performing even worse than the default, Static.

Full day experiment
The last experiment focuses not only on trying to handle a
traffic peak, but also to test whether a system can deal with a
full day traffic flow. In these cases, the decisions spread over
time. We use the medium-sized city network and a traffic de-
mand specification similar to the one presented on Figure 6
for the week days. In this experiment we only measure the
AWT per hour. The other metrics could be irrelevant for the
24 hours case. The results are reported on Figure 8. Vehi-
cles routes remain static in SUMO. A car will always try to
reach its destination following the shortest path. If this route
is congested, the vehicle will not choose another one, but it
will stand still waiting for the route to be free. That is the
reason why, when using some systems, the network can get
congested at some time point and become congested for the
whole day. We can see this effect when a given curve in the
graphic reaches 200 s. When using this metric, a traffic sys-
tem performs better if the area under its curve is smaller.

As we can see, only our Learning system is able to fin-
ish the simulation properly. The AWT grows up in the morn-
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Figure 8: Average waiting time in the city network per hour.

ing, when the cars go to the Job Center, but it does not get
fully congested. The AWT remains around 80 s throughout
the morning and it starts growing again by the end of the
workday. The metric reaches a peak around 18:00 where the
AWT is 103 seconds at the most congested traffic situation
of the day, which is still a reasonable behavior. After that
time period, the system is able to reduce the congestion and
the AWT starts to decrease. The Reactive system, which
showed good performance in the medium-sized city network,
can solve the early morning traffic problem. It obtains similar
results to the ones of Learning until the end of the work-
day. However, it cannot deal correctly with the end of the day
traffic. The other systems can not face the morning rush hour.
Even if the Planning system is still better than the other
two, it does not solve the congestion.

6 Related work
The first UTC models in the 1950s and 1960s, were based
on fixed-time traffic lights control mechanisms. Actions were
predefined following an off-line optimization using historical
data of demand levels. TRANSYT [Robertson, 1969] is one of
the most well developed and widely used control systems that
uses these techniques. These approaches could even generate
“green waves”, simple coordination of neighbouring traffic
lights in order to increase the traffic fluidity. The problem of
early systems is that they can age rapidly due to the continu-
ous evolution of the traffic flows in a city. The benefits may
be lost in some years if the control plans are not updated. Our
proposed system overcomes this situation, as it not only can
react to the current traffic scenario, but it can anticipate and
adapt to future ones.

In the last years, the use of new and better sensor systems
has allowed engineers to implement traffic-responsive sys-
tems that use the data provided by the detectors in an on-line
way. These techniques range from centralized approaches, as
SCOOT [Bretherton et al., 1998] and SCATS [Lowrie, 1990]
to distributed ones as UTOPIA[Donati et al., 1984]. As most
other traffic-responsive systems, they use a mathematical
framework to compute the optimal time allocation of each

traffic light. A weak point of these systems is that they cannot
predict incidents and they do not deal well with them. Also,
their models are not defined declaratively. Thus, our models
are easier to update with new types of information, or new
metrics to be taken into account when optimizing.

Other AI-related approaches have appeared in recent years.
The main goal is to build semi- or fully autonomous systems
with little human assistance. Most of them address traffic
management from a multi-agent perspective. A single agent
acts over a single junction or subset of junctions and then
several agents collaborate, discuss and negotiate with the
rest [Ossowski et al., 1998]. In [Box and Waterson, 2012],
the authors propose a model based on logistic regression and
neural networks to learn over time how to better control the
traffic signals. Other approaches focus on multi-agent rein-
forcement learning [Kuyer et al., 2008], distributed geomet-
ric fuzzy systems [Gokulan and Srinivasan, 2010] or creat-
ing a multi-agent model predictive control [de Oliveira and
Camponogara, 2010]. New approaches for efficient UTC are
arising in the last years using vehicle communication as the
core of the control process [Ferreira et al., 2010]. But, these
methods are still far from being implemented in real cities and
controlling traffic lights remains the most widespread way to
handle urban traffic.

7 Conclusions and Future work
In this paper we have presented a dynamic approach for
UTC based on Automated Planning and Relational Learn-
ing. As we have shown, by adding a learning component
that can predict the city state to a planning system, we can
highly increase its autonomy. It can automatically generate
its own goals, in addittion to letting the planner starts the
planning process sooner. We have tested our model in sev-
eral traffic control scenarios, showing that the ability to an-
ticipate goals can lead to better control performance than us-
ing only static traffic lights programns. Our system also out-
performs the Planning system and overcomes its limita-
tions, as Planning needs to know when a vehicle has been
stopped for a long time. Instead, our model only needs the
street density levels, which are easier to obtain from current
sensor systems. By just knowing density levels, we are able
to model a wide variety of circumstances that affect traffic
behavior such as adverse weather conditions or different days
and hours. Also, since other types of incidents (e.g., road-
blocking or big accidents) indirectly affect the density levels,
we believe our approach could also work to alleviate conges-
tions caused by them.

In future work, we would like to integrate the ability to
learn how to anticipate goals with externally supplied goals
(e.g., by traffic controllers), reactively generated ones (e.g.,
reactively generating goals), or internally supplied ones (e.g.,
generated by internal motivations of the system). Although
the proposed system scales up, we would also like to apply
a multi-agent approach by dividing the city in sections in
which an agent can apply the system in an autonomous way.
We think this could lead to similar performance with lower
execution times. We would also like to compare our system
with other state of the art methods on traffic control, such as



model predictive control (e.g., SCOOT), or other AI-based ap-
proaches (e.g., reinforcement learning). Finally, we want to
test the proposed system in irregular city networks such as
European ones and build the learning model on-line in order
to show the system’s real-world applicability.
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Abstract
The characteristic of fast movement in high-speed
rail seriously affects the stability of vehicular wire-
less communication. Applying cognitive technolo-
gy to individual users often brings frequent channel
switch and inefficient blind learning. To address
these issues this paper proposes a novel concept of
Cognitive Base Station (CBS), which has the capa-
bility of forecasting spectrum holes and assigning
spectrum to individuals. We then give the model of
cognitive base station and evaluate the performance
in our simulation platform within high-speed rail
environment. The experiment results further prove
that the model can significantly improve the perfor-
mance of vehicular communication.

1 Introduction
With the development of era, the demand for rail transit is
rapidly increasing. When travelling on train, the passengers
always hope to enjoy better communication quality and faster
data access service. European Rail Traffic Management Sys-
tem (ERTMS) is a revolution in railways to guarantee the
communication, which is consist of European Train Control
System (ETCS) and a mobile-communications network opti-
mized for railways called GSM-R.

GSM-R is the Global System for Mobile Communications-
Railway in the worldwide and is dedicated to provide the bidi-
rectional radio bearer for the train signaling systems, which
operates in a 4MHz band (876-880 MHz for uplink and 921-
925 MHz for downlink) [Sniady and Soler, 2012]. It is possi-
ble to divide the authorized band into 19 channels of 200KHz
width in each GSM-R group. The rail line is covered with
GSM-R groups and each consists of many GSM-R cells. A s-
ingle GSM-R cell can use only few of the channels in a round
robin manner, because the same channel cannot be reused by
neighboring cells due to interference. Each cell is equipped
with a base station. The base station is made up of building
baseband unit (BBU) and radio remote unit (RRU). RRU is
∗Project supported by the National Nature Science Foundation

of China (No. 61471252) and the Natural Science Foundation of
Jiangsu Province (No. BK20130303).
†Corresponding Author: cwu@suda.edu.cn

always deployed outside along the railway and BBU is insid-
e. One BBU is connected to multiple RRUs. BBU and RRU
are used to process baseband signal and radio frequency sig-
nal, respectively. To ensure the communication between RRU
and passengers, two vehicular stations (VS) are installed on
the top and final carriages of the train. The network architec-
ture is illustrated in Fig. 1 [isheng Zhao et al., 2013], [Tian
et al., 2012]. The GSM-R system consists of base transceiver
stations (BTS) along the railway lines and embedded GSM-
R mobiles connected to antennas on the roof of the trains.
The train has to be permanently connected to the trains con-
trol center. This connection has a high priority level, and if
the modem connection is lost, the train stops automatically
[Dudoyer et al., 2012].

However, under the circumstance of high-speed railway
[Zhang et al., 2012], vehicular communication often shows
unstable, even sometime dreadful [Ai et al., 2014]. Usual-
ly, when the speed is up to 350 kilometers per hour, there
unavoidably arises some issues, such as Doppler shifts, fast
cell switching and the penetration loss [Zhou and Ai, 2014].
The Doppler shifts results from the relative motion between
a vehicle and a base station. Doppler Effect becomes another
pivotal factor degrading system performance, which increas-
es randomness of received signal [Liu et al., 2011], [Li and
Zhao, 2012], [Dybala and Radkowski, 2013]. The high speed
operation of the train leads to fast cell switching. As a train
moves across the footprint of the satellite beam, the receiv-
ing signal level may vary, especially towards the edge of the
beam, which significantly impacts service rates even causing
service drops [Li et al., 2013], [Alkayal and Saada, 2013].
The fully enclosed body structure with good sealing proper-
ty of the high-speed train results in penetration loss. Typi-
cally, the terminals inside the train connect to the base sta-
tions along the railway tracks via wireless links, in which the
large penetration loss will directly degrade the communica-
tion link quality and decrease the cell coverage [Zhu et al.,
2013], [Liu et al., 2012]. Furthermore, Federal Communi-
cations Commission (FCC) released the investigation on the
usage of spectrum In 2003. It suggested that the authorized
band in 3 − 6GHz range is less than 0.5% utilized on av-
erage. And so is the band below 3GHz, which is less than
35% [Commission and others, 2003]. Just based on these
viewpoints, it is necessary to introduce a novel architecture
for high-speed vehicular communication to address the issues
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from individual user’s high-speed movement along the rails
and the inefficiency in the spectrum usage.

In recent years, a lot of researchers used cognitive radio
(CR) to improve the performance of wireless communication.
The basic idea of CR networks is that the unlicensed devices
(also called cognitive radio users or secondary users) need to
vacate the spectrum band once detect the licensed devices (al-
so known as primary users). Simon HayKin defined the CR as
an intelligent wireless communication system that is aware of
its environment and uses the methodology of under-standing-
by-building to learn from the environment and adapt to sta-
tistical variations in the input stimuli [Haykin, 2005]. Letaief
presented a cognitive space-time-frequency coding technique
that can opportunistically adjust its coding structure by adapt-
ing itself to the dynamic spectrum environment [Letaief and
Zhang, 2009]. Soyeon Kim proposed a CR operational algo-
rithm for mobile cellular systems, which was applicable to the
multiple secondary user environment [Kim and Sung, 2014].
These results proved CR technology can significantly reduce
interference to licensed users, while maintaining a high prob-
ability of successful transmissions in a cognitive radio (CR)
ad hoc network.

There are few publications about applying CR to the field
of urban rail transit. Wu proposed a wireless cognitive model
for high-speed individuals’ spectrum management and show a
small performance improvement in wireless communication
[Wu et al., 2015]. Although using cognitive radio in high-
speed-railway has improved the performance, there are still
so many issues that are open to address:

(1) Most of the cognitive radio users usually sense in the

same environment and each user is independent. So they
compete each other for the spectrum resources, which
leads to blind learning and frequent conflicts.

(2) The rail transit contains a large number of CR user-
s. While every user sense the environment, the sys-
tem works with heavy workload and high computational
complexity.

(3) The operations of mutual competition and cooperation
between the CR users interfere with not only primary
users, but also themselves and their neighbors.

(4) Spectrum holes in each base station are different. It
would inevitably occur spectrum handoff.

For addressing the above issues, we try to propose a novel
model of cognitive base station in the paper. Our proposed
CBS attempts to use the authorized bands for railway without
interrupting PUs. The CBS model should satisfy the follow-
ing conditions:
(1) The CBS can forecast spectrum holes according to its

experience and assign spectrum to individuals within its
range of coverage. In this way, the computational com-
plexity of the entire network can be reduced.

(2) The rail transit runs daily over a fixed route according
to its timetable. The CBS can take the advantage of
these characteristics, cooperate with each other to fore-
cast spectrum holes on the whole route.

This paper is organized as follow. We first introduce the
concept of cognitive base station and its mathematical mod-
el in Section 2. Section 3 then applies the novel CBS model
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with RL into the scenario of high-speed rail, and propose the
cooperation mechanism of multiple CBS agents. The experi-
mental simulation results are given in Section 4. We conclude
this paper in Conclusion.

2 Cognitive Base Station Model
Our proposed CBS is deployed along the railway, which
works as a spectrum assigner. It learns from feedback re-
ceived through interactions with an external environment and
assigns spectrum to the passengers in the range of coverage.
We consider each CBS to be an agent, which has four spec-
trum management functions: spectrum sensing, spectrum
mobility, spectrum decision and spectrum sharing [Chkirbene
and Hamdi, 2015], [Lee and Akyildiz, 2012]. Fig. 2 gives
the steps of the cognitive cycle within the framework of CBS,
which is formed by the spectrum-aware operations. Each CB-
S agent uses reinforcement learning to operate spectrum man-
agement. All of the agents can sense the environment, obtain
its own current state about spectrum usage, and communicate
with each other for the purpose of cooperation. They then
make decision according to its own state and the whole net-
work situation, then use spectrum mobility to choose actions.
Finally, these CBS agents continue to send its new state to the
other neighbor CBS agents.

We assume that our cognitive radio network along high-
speed rail consists of a collection of CBS agents and CR user
agents. Each CBS agent has its own PUs and available spec-
trums. The CBS agents undertake decisions on choosing the
spectrum independently of the CR user agents in the range.
A choice of spectrum by the CBS agent i is essentially the
choice of the frequency represented by f i ∈ F . The CR
user agents continuously monitor the spectrum that the CBS
agent choose in each slot time. We assume perfect sensing,

in which, the CBS agents correctly infer the presence of the
PUs if the former lies within the PUs’ transmission range.

• Long-term Awareness of Spectrum Usage
Characterizing the spectrum bands based on their activi-
ty, and in particular, learning about the utilization of the
channel is a key function of the CR users. Online learn-
ing algorithms must be developed that allow the CBS a-
gents to continuously gather information about its radio
environment, and construct a utilization function. Apart
from simply classifying the spectrum as busy or avail-
able, it is beneficial if a probability distribution of the
anticipated transmission/silent durations of the PUs can
be derived. We propose a tightly integrated reinforce-
ment learning equipped link layer protocol to schedule
the transmissions between CBS agents and CR user a-
gents over time.
• End-to-End Learning

Distributed networks rely on multihop forwarding of
packets between a source-destination pair. Each CBS a-
gent on this path learns of its own spectrum environment
over time, and this information can be leveraged at the s-
tart and end points of the path to make optimal decisions
regarding the spectrum choices and routing options. As
an example, spectrum switching costs locally at a node
affects end-to-end delays. While spectrum characteris-
tics can be locally inferred, the specific choice of the
spectrum at each link to minimize intra-path switching
must be undertaken at the end points of the path. We
explore ways to share this learning and spectrum aware-
ness obtained by a node between its local neighbors, and
subsequently over multiple hops to the destination. The
cost of this learning and the benefits are investigated as
part of this project.

3 SPECTRUM MANAGEMENT BASED
COGNITIVE BASE STATION

3.1 The Q-Learning
Reinforcement learning, which is inspired by psychological
learning theory from biology [Waltz and Fu, 1965], enables
the agent to learn behavior through trail-and error interactions
with a dynamic environment [Sutton and Barto, 1998]. The
classical reinforcement algorithm is Q-Learning, the process
of which is as follows [Puterman, 1994]. On each step of
interaction the agent chooses an action according to the ex-
ternal environment based on its current state. As a result, the
action changes the environment and receives a reward. The
agent need to develop a policy, that maximizes the long-run
measure of reinforcement.

The classic reinforcement learning algorithm is formulat-
ed as follows. At each time t, the agent perceives its current
state st ∈ S and the set of possible actions Ast . The agent
chooses an action a ∈ Ast and receives from the environ-
ment a new state st+1 and a reward rt+1. Based on these
interactions, the reinforcement learning agent must develop a
policy π : S → A which maximizes the long-term reward
R =

∑
t γrt for MDPs, where 0 ≤ γ ≤ 1 is a discount-

ing factor for subsequent rewards. The long-term reward is
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Figure 3: The cognitive base station within the high-speed-rail transportation.

the expected accumulated reward that the agent expects to re-
ceive in the future under the policy, which can be specified
by a value function. In this way, the Q-learning can calcu-
late an update to its expected discounted reward, Q(st, at) as
follows:

Q(st, at) ← Q(st, at) +

α[rt + γmax
a

Q(st+1, a)−Q(st, at)]

where γ is the discount factor such that 0 ≤ γ < 1. The agent
stores the state-action values in a table Q [Wu et al., 2010],
[Jiang et al., 2011], [Bkassiny et al., 2013].

Recently the reinforcement learning has attracted increas-
ing interest in the machine learning and artificial intelligence
communities. Kadam etc. applied the Q-Learning into rout-
ing data in Wireless Sensor Network scenario to route data
efficiently from one source to multiple mobile sinks [Kadam
and Srivastava, 2012]. It turned out that the algorithm can
extend the network lifetime.

3.2 Application to Cognitive Base Station
We illustrate the high-speed railway environment with CBS
agents along the way in Fig. 3 . We further model a cogni-
tive radio network as consisting of a set of Cognitive Base
Stations, denoted CBS, a set of primary users, denoted PU ,
and a set of available frequencies, denoted SP . We assume
that the topological structure of a given network is fixed.

Spectrum holes vary due to the behavior of PUs, which
causes the change of environment. CBS agents can perceive
the states within the environment. The state of an CBS agent
is the current spectrum of its transmission. The state of the
multi-agent system includes the state of every CBS agent. We
therefore define the state of the system at time t, denoted st,
as

st = ( ~sp)t
, where ~sp is a vector of spectrums across all agents. Here
spi are the spectrum on the ith agent and spi ∈ ~SP . Nor-

mally, if there are m spectrums, we can using the index
to specify these spectrums. In this way, we have ~SP =
{SP 1, SP 2, ..., SPm}.

At a particular time and a particular state, the CBS will take
action according to learning results to either switch channel
or transmit. At time t we define at = k, where k is the action
that CBS chooses at time t and

k ∈ {switch to channel1, switch to channel2,

..., switch to channelm, transmit data}.

Once the CBS agent has detected any active PU, it would
take action to channel switching. We use the Q table to s-
tore state-action values. At time t, the state is spt and the
action is k, then we can calculate the value Q(spt, k) by the
above Q-learning formulas. If PU is detected, the CBS agent
would switch to the other available spectrum with the largest
Q-value.

The reward is the estimate for spectrum usage availablity
on a CBS agent. The different network situation results in
different rewards as follows.

• CR-PU interference: If a PU’s activity occurs in the
spectrum shared by any CR user, and in the slot same
selected for transmission, then a high penalty of −15 is
assigned. The intuitive meaning of this is as follows: We
can avoid the collisions among the CR users using the
mediation from the CBS agents. However, the concur-
rent use of the spectrum with a PU goes against the prin-
ciple of protection of the licensed devices, and hence,
must be strictly avoided.

• Successful Transmission: If none of the above condition-
s are observed to be true in the given transmission slot,
then packet is successfully transmitted from the sender
to receiver, and a reward of +5 is assigned, which is
found experimentally to give the best results.
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Once detected the primary user, a harsh punishment will be
given. Otherwise, a positive reward will be assigned. Fig. 4
illustrates the proposed process, and Algorithm 1 describes
our algorithm for implementing the Q-learning on CBS agent.

4 EXPERIMENTAL SIMULATION
4.1 Experimental Design
In this section, we describe preliminary results from applying
our reinforcement learning based approach to the cognitive
radio model. To detect the PUs correctly is the necessary
prerequisite. The overall aim of our proposed learning based
approach is to allow the CBS agents to decide on an optimal
choice of spectrum so that (i) PUs are not affected, and (ii) CR
users share the spectrum in a fair manner. These two rules are
to simulate the public’s behaviors in Urban Rail Transit En-
vironment. That is, those bands that are frequently occupied
by licensed users are rarely utilized because of open areas or
relatively closed environment, and the public can opportunis-
tically use band resources with a same probability.

Our novel CBS network simulator within the framework
of high-speed rail has been designed to investigate the effect
of the proposed reinforcement learning technique on the net-
work operation. The implemented ns-2 model is composed of
several modifications to the physical, link and network layers
in the form of stand-alone C++ modules. The PU Activity
Block describes the activity of PUs based on the on-off mod-
el, including their transmission range, location, and spectrum
band of use. The Channel Block contains a channel table
with the background noise, capacity, and occupancy status.
The Spectrum Sensing Block implements the energy-based
sensing functionalities, and if a PU is detected, the Spectrum
Management Block is notified. This, in turn causes the device
to switch to the next available channel, and also alert the up-
per layers of the change of frequency. The Spectrum Sharing
Block coordinates the distributed channel access, and calcu-
lates the interference at any given node due to the ongoing

Algorithm 1 Pseudo code of Q-learning on CBS
Main()
Initialize state st and action at and their ~Q value;
repeat

Q-learning(st, at, ~Q)
until all episodes are traversed

Q-with-Kanerva(st, at, ~Q)
repeat

Take action st, observe reward rt, get next state st+1

Get Q(stat) from the Q-table;
for all actions a* under new state st+1 do

Generate the state-action pair st+1at+1 from state
st+1 and action a*
Get Q(st+1at+1) from the Q-table;

end for
δ = r + γ ∗maxQ(st+1at+1)−Q(stat)

∆ ~Q = α ∗ δ
~Q = ~Q+ ∆ ~Q
st = st+1

if random probability ≤ ε then
for all actions a* under current state st do
at = argmaxaQ(stat)

end for
else
at = random action

end if
until st is terminal

transmissions in the network. The Cross Layer Repository
facilitates the information sharing between the different pro-
tocol stack layers.

We conduct our experiment in the following scenario: there
are 2 trains which take on 21 passengers for each and 5 CBS
agents aside the railway. The average speed of train is 10m/s.
We have 10 primary users in the range of each CBS. The ac-
tivity of primary users is based on ON-OFF model and each
primary user is assigned the spectrum randomly from 5 spec-
trums (small network) or10 spectrums (large network) . The
CBS agent senses the spectrum holes per 0.1 second and as-
signs available spectrum to CR user agent. The simulation
parameters are summarized in Table 1.

4.2 Experimental results
We compare the performance of our CBS with reinforcement
learning (CBS-RL) scheme with the CBS with Round-Robin
scheme (CBS-RR), which is a typical way in GSM-R sys-
tem. The Round-robin (RR) scheme employs the principle
that once a spectrum is not available, the agent switches to
next channel in equal portions and in circular order, handling
all switches without priority (also known as cyclic executive).
This method is simple, easy to implement, and starvation-
free. In our RL-based scheme, the exploration rate ε is set to
0.2, which we found experimentally to give the best results.
The initial learning rate α is set to 0.8, and it is decreased by
a scaling factor of 0.995 after each time slot.

Figure 5(a) shows an example about the distribution of
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Table 1: Simulation Parameters
Parameters Values
Topology size X:7000m Y:500m
Number of passengers 42
Number of primary users 50
Number of cognitive base station 5
Speed 10m/s
Number of spectrums 6
Bandwidth 2000000Hz
Simulation time 1000s

spectrums occupancy on the CBS with 5 spectrums. Spec-
trums occupancy on CBS follows the ON-OFF model: the
ON mode is in the normal distribution with the parameter
µ = 25, and the OFF mode is in the exponential distribu-
tion with the parameter β. the value of which is randomly
generated.

Figure 5(b) and 5(c) show the average rewards received by
CBS agent across all spectrums using the CBS-RL scheme.
The result in Figure 5(b) shows that after learning over 1000
epochs, Channel 5 receives the largest positive reward of ap-
proximately +5.5, while Channel 1, 2, 3 and 4 gets a reward
of approximately −11.8, +0.7, −5.1 and +3.3. The results
indicate that our approach pushes the CBS agents to gradual-
ly achieve higher positive rewards and choose more suitable
spectrum for their transmission. The results also indicate that
the reward tends to be suitable to the distribution of spectrums
occupancy. A similar trend is observed in Figure 5(c), with
Channel 10 receiving the highest average reward of approxi-
mately +5.2.

Figure 5(d) and 5(e) show the cumulative number of chan-
nel switching using CBS-RL and CBS-RR schemes. The
result in Figure 5(d) shows the average number of channel
switches for the small topology. We observe that after learn-
ing, the CBS-RL scheme tends to decrease number of channel
switching to 5, while CBS-RR keeps the channel switches
to approximately 12. For the large topology in Figure 5(e),
the CBS-RL scheme reduces the channel switches to 6, while
CBS-RR keeps the channel switches approximately 23. The
results indicate that our proposed CBS-RL approach can keep
the channel switches lower than the CBS-RR approach and
converge to an optimal solution.

5 CONCLUSIONS
To address the issues of frequent channel switches and inef-
ficient blind learning in high-speed rail, we propose a novel
concept of Cognitive Base Station, which has the capability
of forecasting spectrum holes and assigning spectrum to indi-
viduals. Our simulation results prove that after autonomous
learning, the CBS-RL scheme can forecast spectrum holes.
In this way, our proposed model can significantly improve
the performance of vehicular communication, which can de-
crease cell-switching and unsuccessful transmission.
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Abstract
We investigate the use of voting methods for mul-
tiagent decision-making in cooperative traffic ap-
plications. We consider a ride-sharing problem in
which passengers use committee elections to col-
lectively decide on sets of points of interest to visit.
In this paper, we propose an iterative voting pro-
tocol for the committee voting rules Minisum Ap-
proval and Minimax Approval. Using this proto-
col, voters can leave a group if their dissatisfac-
tion with the election result exceeds a threshold
value. We evaluate the rules for the ride-sharing
problem using an agent-based simulation. Our re-
sults indicate that for initial group sizes around 20,
both rules tend to require equal numbers of iter-
ations for dissatisfaction threshold values around
zero. We showed that Minisum Approval needs dis-
tinctly fewer iterations than Minimax Approval for
values between zero and half the size of the candi-
date set. In some cases, for values around half the
size of the candidate set, Minimax needs fewer it-
erations. For higher values, both rules need tenden-
tially the same number of iterations. When aiming
at minimising the number of iterations, we recom-
mend to apply Minisum Approval for threshold val-
ues between zero and half the size of the candidate
set. For higher values, we recommend to use Mini-
max Approval.

1 Introduction
There are diverse approaches for vehicle routing and ride-
sharing problems. In vehicle routing, the goal is to design
a low-cost route so that each node is visited by exactly one
vehicle. In ride-sharing, it is usually assumed that each pas-
senger has exactly one desired destination.

Here, we consider another approach for the situation that
the passengers of the shared vehicles submit their preferences

∗This research has been supported by the German Research
Foundation (DFG) through the Research Training Group Social-
Cars: Cooperative (De-)centralized Traffic Management (GRK
1931). The focus of the SocialCars Research Training Group is on
significantly improving the citys future road traffic, through cooper-
ative approaches. This support is gratefully acknowledged.

on all possible destinations. In this context, the question
arises how to agree on a common subset of destinations to
visit.

We propose to use committee voting rules to design an ini-
tial solution and to allow dissatisfied passengers to leave the
group and to apply iterative winner determination until all re-
maining passengers are satisfied with the selected subset of
destinations.

The trend in transportation systems goes towards automa-
tisation, i.e. non-automated vehicles will be replaced by au-
tonomous vehicles over time, increasing safety and decreas-
ing environment pollution.

Our model is motivated by a future scenario in which tradi-
tional urban traffic is replaced by autonomous vehicles (AVs),
where the city provides AVs for visitors of the city. Once a
visitor boards an AV, s/he transmits his/her preferences re-
garding the possible destinations etc. to the AV, e.g. via
smartphone app.

From the perspective of the urban traffic management,
pooling the visitors into as large groups as possible is desir-
able as it reduces energy consumption and increases safety.
Thus, we assume that the urban traffic management encour-
ages the visitors to group together in autonomous vehicles as
soon as they enter the intraurban area.

We assume that the visitors are grouped together in au-
tonomous shared vehicles (ASVs) provided by the city at pre-
fined boarding points, as proposed by Dennisen and Müller
[2015].

We focus on visitors who submit their preferences regard-
ing all possible destinations in the respective urban area.

This approach raises several questions.
1. How can the passengers of a shared vehicle agree on a

common route?
2. How should one deal with passengers who are not satis-

fied with the selected route?

1.1 Outline
The remainder of the paper is structured as follows. In Sec-
tion 2, the state-of-the-art is depicted, and in Section 3 the
research gap is described. Section 4 gives an overview on the
definitions, our solution approach and the voting architecture
used for the simulations. Section 5 describes an example sce-
nario. Section 6 includes the experimental settings, the results
and the discussion, and Section 7 concludes the paper.



2 State-of-the-art
There is a range of works on the areas Ride-Sharing, Vehi-
cle Routing and Transportation Systems. Here, we discuss a
selection of those works.

2.1 The Vehicle Routing Problem

According to the review paper by Laporte [1992], the Vehicle
Routing Problem (VRP) is defined as follows.

Input: G = (V,A) graph where V = {1, .., n} is a set of
vertices representing cities with the depot located at vertex
1, and A is the set of arcs. With every arc (i, j), i 6= j, is
associated a non-negative distance matrix C = (cij). In some
contexts, cij can be interpreted as travel cost or travel time.

The goal is to design a set of least-cost vehicle routes so
that

• each city except for the depot is visited by exactly one
vehicle

• all vehicle routes start and end at the depot

• some side constraints are satisfied

2.2 Dynamic ride-sharing

In the review article by Agatz et al. [2012], the authors re-
fer by dynamic ride-sharing to a system where an automated
system made available by a ride-sharer provider matches up
drivers and riders on short notice.

Most studies on ride-sharing consider one of the following
specific objectives when determining ride-sharing matches.

• Minimise system-wide vehicle-miles

• Minimise the system-wide travel time

• Maximise the number of participants

In ride-sharing, it is assumed that each rider wants to travel
from his/her origin to his/her destination.

2.3 Sharing Rides with Friends

One aspect which has been considered regarding ride-sharing
is the constraints of the social network connecting the com-
muters. Bistaffa et al. [2014] consider the Social Ridesharing
Problem, where a set of commuters, connected through a so-
cial network, arrange one-time rides at short notice. They
focus on the associated optimisation problem of forming the
cars to minimise the travel cost of the overall system, mod-
elling the problem as a graph constrained coalition formation
(GCCF) problem, where the set of feasible coalitions is re-
stricted by a graph, i.e. the social network.

They assume real-time ride-sharing, arranging one-time
rides with private cars and focus on providing an approach
that, given the desired starting points and destinations of a
community of commuters, can share cars to lower associated
transportation costs, i.e. travel time and fuel, while consid-
ering the constraints imposed by the social network that con-
nects such commuters.

2.4 Rural Flexible Transport Systems
Velaga et al. [2012] developed a passenger-centric agent-

based flexible transport systems (FTS) platform using argu-
mentation theory. Each passenger provides the following in-
formation:
• origin
• destination
• travel time window
• order of preference among: travel cost, number of

changes and journey length.
The first three items are requirements, i.e. conditions that

must be fulfilled for a journey to be a candidate.
The brokering subsystem gathers all the plausible journeys

and composes a certain number of allocations, i.e. an assign-
ment of passengers to sequences of vehicles.

The final step is to choose the globally preferred allocation
from this set. For this, Velaga et al. [2012] use a variation
of the Borda voting rule; each of the passenger agents votes
by assigning a rating to each candidate allocation, and the
allocation with the best rating wins. Velaga et al. [2012] do
not consider committee elections.

3 Research Gap
According to Laporte [1992], in the VRP, the objective func-
tion is usually dependent on travel time or travel cost, depend-
ing on the edges. In our approach, we focus on agreeing on a
common subset of POIs, disregarding the routing problem in
the first phase.

In the RFTS model by Velaga et al. [2012], the candidates
are a number of plausible assignments of passengers to jour-
neys, not the points of interest (POIs), i.e. the construction of
the journeys is independent from the voting process. In our
approach, the voting process is necessary for the construction
of the routes.

Bistaffa et al. [2014] do not consider the preferences of
passengers over several destinations, but assume that each
passenger has exactly one desired destination and generate
coalitions with minimal cost routes.

None of these approaches focuses on how to agree on a
common subset of destinations to visit based on the passen-
gers’ preferences over all possible destinations.

In this paper we propose that the passengers of a shared
vehicle agree on a common subset of destinations to visit
via committee election and to apply iterative winner deter-
mination until all remaining passengers are satisfied with the
selected subset of destinations, i.e. in each iteration, the
most dissatisfied passenger leaves the group and the remain-
ing votes are re-evaluated.

From the operative perspective, a small number of itera-
tions is desirable: On the one hand, the fewer iterations are
conducted, the more passengers are left and the better the ca-
pacity of the shared vehicle is utilised. On the other hand,
in each iteration communication between the visitors and the
chair is required, i.e. minimising the number of iterations re-
duces the communication expense.

Thus, in this paper, we focus on the following research
questions.



Assuming that visitors group together dependent on their
time of arrival (i.e. in a random fashion) and only change
to other shared vehicles at the starting point(s), decide on a
common route via commitee election:

1. How do different committee voting rules under an iter-
ative protocol compare regarding the number of itera-
tions?

2. Given a committee voting rule, how many iterations will
tendentially be conducted until the committee election is
terminated?

4 Definitions and Methods
4.1 Definitions
Election
Here, we follow the definition in Rothe et al. [2012]. An
election is defined as a tuple (C, V ) where C = {c1, ..., cm}
is the set of candidates and V = {v1, ..., vn} is the list of
votes over C. Each voter is represented via his/her vote which
specifies his/her preferences over the candidates in C. Which
form the votes take depends on the voting rule.

Voting Rule
Following Rothe et al. [2012], given a candidate set
C, a voting rule is a social-choice correspondence f :
{(C, V )|(C, V ) is a valid election} −→ P(C) which assigns
to each valid election (C, V ) a set of winning candidates. To
determine a unique winner, it can be necessary to apply a tie-
breaking rule.

Committee election
Analogously to the above definition, a committee election can
be defined as a tuple (C, V, k) with non-negative integer k ≤
m = |C|.

Committee voting rule
Analogously to voting rules, one can define committee voting
rules. For a given candidate set C and non-negative integer
k ≤ m = |C|, a committee voting rule is a function which as-
signs to each valid committee election (C, V, k) a set of win-
ning committees. To determine a unique winning committee,
it can be necessary to apply a tie-breaking rule.

Following the definition in Baumeister et al.
[2015], a committee voting rule is a mapping
g : {(C, V, k)|(C, V, k) is a valid committee election} −→
Fk(C) with Fk(C) the set of all committees from C of size
k.

Voting protocol
Here, we use the notion of voting protocols in the sense that
a voting protocol defines the communication processes be-
tween the agents involved in the election.

Voting mechanism
In the context of this paper, a voting mechanism consists of a
voting protocol and a voting rule or committee voting rule.

Committee voting rules for scenario
Both committee voting rules considered for the ride-sharing
scenario assume Approval vectors, i.e. votes from {0, 1}n,
where a “0” at i-th position stands for disapproval and a “1”
at i-th position for approval of the i-th candidate.

Following Brams et al. [2007a,b], the dissatisfaction of a
voter v with a selected committee com is measured via the
Hamming distance HD(v, com).

Minisum Approval Minisum Approval selects a commit-
tee for which the sum of the Hamming distances between all
votes and the committee is minimal. This corresponds to a
utilitarian approach.

Minimax Approval Minimax Approval as proposed
by Brams et al. [2007a,b]; Kilgour et al. [2006] selects a com-
mittee for which the maximum Hamming distance between a
vote and the committee is minimal. This corresponds to an
egalitarian approach.

4.2 Approach
Under the assumption that visitors of a city are encouraged to
conduct round-trips in shared vehicles provided by the city,
there is the question how the passengers of a shared vehicle
agree on a common route. We assume that the vehicles can
rank in size from taxi size to bus size.

We propose to use committee elections to agree on an ini-
tial solution. When considering the initial solution, it is pos-
sible that some passengers are dissatisfied. Such dissatisfied
passengers can be allowed to leave the shared vehicle at the
start point(s) and change to other vehicles. This leads to it-
erative winner determination. We propose to use an iterative
voting protocol as depicted in Figure 1. The figure depicts the
steps for the non-iterative protocol as described in Dennisen
and Müller [2015] in solid lines and the additional steps for
the iterative protocol in dashed lines.

Figure 1: Centralised iterative protocol



In the non-iterative protocol, the chair starts the election by
sending an election message to all voters and the voters
respond by submitting their votes to the chair. As soon as
the chair has received all votes, s/he computes the result of
the election according to the given voting rule and sends the
result to all voters.

In the iterative protocol, after receiving the result, the vot-
ers check via a dissatisfaction threshold if they are dissatisfied
with the result. Based on their (unaltered) votes, they submit
a satisfied or a dissatisfied message to the chair.
If there is at least one dissatisfied voter, the chair removes
the most dissatisfied voter and computes the result for the re-
maining voters. Otherwise, the election is terminated.

4.3 Voting Architecture

Figure 2: Voting Architecture

We decided to evaluate the behaviour of different voting
mechanisms via multiagent-based simulation. This allows for
testing diverse input combinations and later extension to dy-
namic traffic simulations.

As a voting architecture, we developed an adaptation of
J-MADeM, an agent-based architecture implemented in Ja-
son by Grimaldo et al. [2010]. Jason is an interpreter de-
veloped by Bordini et al. [2005], written in Java for an ex-
tended version of AgentSpeak, a logic-based agent-oriented
programming language that is suitable for the implementation
of reactive planning systems according to the Belief-Desire-
Intention (BDI) architecture.

Currently, in our voting architecture, two voting protocols
and two committee voting rules are implemented. The ar-
chitecture allows for extension to further voting protocols
and voting rules such as decentralised non-iterative protocols,
decentralised iterative protocols, the voting rules Condorcet
(based on pairwise comparisons), Borda and the committee
voting rule Minisum-Ranksum (based on positional scores)
as described in Baumeister and Dennisen [2015].

The architecture is structured as depicted in Figure 2. The
Jason Runtime handles the agent cycles and the communica-
tion between the agents. The chair and voter agents are lo-
cated in a parameterised environment. They receive the sim-
ulation parameters in form of initial beliefs and call the voting

protocol/rule; this is realised via customisation of the Agent
Architecture class.

Which modules in the Agent Architecture class are used
by the respective agent depends on the role of the agent. The
chair agent uses the election launcher module responsible for
starting the election, the votes manager module which col-
lects the votes and the winner determination module which
computes the result of the votes according to the voting rule.
The voter agents uses the voting module responsible for sub-
mitting votes.

5 Example scenario
Consider as example the following scenario. Four visitors
t1, t2, t3, t4 who want to visit Manhattan, NY form together
to a group at a predefined point s in Northern Manhattan.
Each of them submits his/her preferences regarding all possi-
ble POIs. Due to time constraints on the operative side, their
common route can only cover exactly three POIs. For sim-
plicity, we assume that there are six possible POIs: Guggen-
heim Museum (pG), MoMA (pM ), Times Square (pT ), Em-
pire State Building (pE), Flatiron Building (pF ) and China-
town (pC). The corresponding graph is depicted in Figure
3.

Figure 3: Graph for illustrating example

s pG pM pT pE pF pC

In the simplest model, the passengers of a shared vehicle
submit their preferences in form of approval votes, i.e. they
indicate approval of a candidate by assigning a “1” to it and
disapproval of a candidate by assigning a “0” to it.

In the illustrating scenario, we assume that the visitors sub-
mit their preferences as approval vectors. In this case, one
can apply the committee voting rule Minisum Approval. The
votes and the scores are depicted in Table 1.

Table 1: Approval scores for illustrating example
POI pG pM pT pE pF pC
t1 1 0 1 1 0 1
t2 1 0 1 1 0 0
t3 1 0 1 0 1 0
t4 0 0 0 1 1 1

Score 3 0 3 3 2 2

For committee size k = 3, the winning committee is K =
{pG, pT , pE}. Assuming that the shared vehicle drives from
North to South until it heads back to its starting point, the
shared vehicle would take the route s→ pG → pT → pE →
s, as depicted in Figure 4.

For approval vectors, the straightforward approach to mea-
sure the dissatisfaction with an elected committee is to con-



Figure 4: Resulting route

s pG pM pT pE pF pC

sider the Hamming distance between the respective vote and
the elected committee.

The Hamming distances between the votes and the elected
committee pG, pT , pE are depicted in Table 2

Table 2: Hamming distances for illustrating example
1 0 1 1 0 0 Hamming distance

t1 1 0 1 1 0 1 1
t2 1 0 1 1 0 0 0
t3 1 0 1 0 1 0 2
t4 0 0 0 1 1 1 4

Assuming dissatisfaction threshold t = 2, t4 leaves the
group and looks for another shared vehicle.

Table 3: Approval scores for illustrating example, second it-
eration

POI pG pM pT pE pF pC
t1 1 0 1 1 0 1
t2 1 0 1 1 0 0
t3 1 0 1 0 1 0

Score 4 0 4 3 1 1

In this case, the removal of the dissatisfied voter does not
alter the outcome of the committee election, so the route stays
the same.

6 Evaluation
We investigated the impact of the dissatisfaction threshold for
the visitors t, the number of POIs to be visited k and the num-
ber of offered POIs m on the number of iterations needed by
the voting rules Minisum and Minimax Approval.

6.1 Experimental Settings
Our simulations were conducted with the following technical
settings.

• Jason-1.4.2
• Java 1.8.0 65
• Windows 8.1
• HDF5 for storing input and output data
• R x64 3.2.3 for evaluation

As configuration parameters for the simulation, we have

• the number n = 20 of voters (visitors): n = 20 is ori-
ented towards bus sizes

• the number m of candidates (POIs)

• the size k of the committee to be elected

• the dissatisfaction threshold t

• the committee voting rules

• the voting protocol(s)

For each run, the votes are generated as follows: For each
position in each vote, a “1” or a “0” is selected with equal
probability, resulting in homogenous electorates.

In each run, the number of necessary iterations is saved.
We measured and compared the number of iterations un-

der the iterative protocol for Minimax Approval and Minimax
Approval for several input combinations (n,m, k, t).

In each simulation, we conduct 100 runs and mea-
sure the median of the numbers of iterations for Min-
isum and Minimax as well as the median of differences
iteration minisum − iterations minimax. In our sim-
ulations, we consider three different settings.

1. Vary the values for dissatisfaction threshold t

2. Vary the values for committee size k

3. Vary the values for number of candidates m

6.2 Results
Exploring the impact of dissatisfaction threshold t on
iteration numbers
In our first setting, we considered all possible values of dis-
satisfaction threshold t for number of voters n = 20, num-
ber of candidates m = 10, committee size k = 5, i.e.
0 ≤ t ≤ m = 10. The results are depicted in Figure 5.
The figure shows that the number of iterations decreases for
both voting rules with increasing dissatisfaction threshold t.
For values of t around 0, it is impossible to satisfy the voters,
so that both voting rules need 20 iterations, creating empty
groups. For smaller values of t above zero, i.e. for hard-
to-please voters, Minisum needs tendentially fewer iterations
than Minimax. For values of t above m/2 and near m/2, i.e.
for more tolerant voters, Minimax needs fewer iterations than
Minisum. For higher values, both rules need zero iterations.

Consider the input combination n = 20,m = 10, k =
5, t = 4. The boxplot for the differences between Minisum
and Minimax is depicted in Figure 6. The median of the dif-
ferences is −3, i.e. Minisum needs tendentially 3 iterations
fewer than Minimax for dissatisfaction value t = 3.

For t = 4, the Wilcoxon rank sum test with continuity
correction yields W = 988.5 and p-value < 2.2e − 16 <
0.05, i.e. we can reject the null hypothesis that there is no
statistical difference between the distributions.

Consider the input combination n = 20,m = 10, k =
5, t = 6. The boxplot for the differences between Minisum
and Minimax is depicted in Figure 7. The median of the dif-
ferences is 1, i.e. Minimax needs tendentially one iterations
fewer than Minisum.

For t = 6, the Wilcoxon rank sum test with continuity
correction yields W = 8734.5 and p-value < 2.2e − 16 <
0.05, i.e. we can reject the null hypothesis that there is no
statistical difference between the distributions.



0 2 4 6 8 10

−5
0

5
10

15
20

dissatisfaction threshold t

0 2 4 6 8 10

−5
0

5
10

15
20

dissatisfaction threshold t

0 2 4 6 8 10

−5
0

5
10

15
20

dissatisfaction threshold t

Minisum
Minimax
Difference

Figure 5: Median of iteration numbers for Minisum and
Minimax and median of differences (Minisum-Minimax) for
n = 20,m = 10, k = 5 against dissatisfaction threshold t.
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Figure 6: Boxplot of differences for n = 20,m = 10, k = 5,
t = 4

Exploring the impact of committee size k on iteration
numbers
In the second setting, we fixed the number of candidates m =
10 the number of voters n = 20, varied committee size k,
i.e. the number of effectively visited POIs and measured the
median of differences for dissatisfaction threshold values t =
5 and t = 6.

The results for t = 5 are depicted in Table 4 and Figure 8,
the results for t = 6 in Table 5 and Figure 9.

Table 4 shows that both voting rules need fewer iterations
for medium values of k, i.e. the closer k is to m/2, the fewer
iterations are needed. For t = 5, the median of the differences
between Minisum and Minimax is −1, i.e. Minisum needs
tendentially one iteration fewer than Minimax.

Table 5 and Figure 9 show a similar trend. Both voting
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Figure 7: Boxplot of differences for n = 20,m = 10, k = 5,
t = 6

rules need fewer iterations for medium values of k. Here,
Minimax needs one iteration fewer than Minisum for medium
values of k. For other values of k, both rules need tendentially
the same number of iterations.

Table 4: Medians for m = 10, n = 20, t = 5 and varying k
k Iterations Minisum Iterations Minimax Difference
1 6 7 -1
2 5 6 -1
3 5 5 -1
4 5 5 -1
5 4 5 -1
6 4 5 -1
7 5 6 -1
8 5 6 -1
9 7 9 -1

Table 5: Medians for m = 10, n = 20, t = 6 and varying k
k Iterations Minisum Iterations Minimax Difference
1 2 2 0
2 2 1 0
3 2 0 1
4 1 0 1
5 1 0 1
6 1 0 1
7 2 0 1
8 2 1 1
9 2 3 0

Consider the input combination n = 20,m = 10, k =
5, t = 6. The boxplot for the differences between Minisum
and Minimax is depicted in Figure 10. The median of the dif-
ferences is 1, i.e. Minimax needs tendentially one iterations
fewer than Minisum.

The Wilcoxon rank sum test with continuity correction
yields W = 8667.5 and p-value < 2.2e − 16 < 0.05, i.e.
we can reject the null hypothesis that there is no statistical
difference between the distributions.
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Figure 8: Median of iteration numbers for Minisum and
Minimax and median of differences (Minisum-Minimax) for
n = 20,m = 10, t = 5 against committee size k

Exploring the impact of number of candidates m on
iteration numbers
In the third setting, we fixed n = 20, k = 5, t =
bm/2c , dm/2e and measured the median of differences for
different numbers of offered POIs m = 10, 15, 20. The re-
sults are depicted in Table 6.

Table 6: Median of differences for m = 10, 15, 20, n =
20, k = 5, t = bm/2c, dm/2e

Minisum Minimax Difference
m = 10, k = 5, t = 5 4 4.5 -1
m = 15, k = 5, t = 7 6 6 0
m = 15, k = 5, t = 8 3 1 2
m = 20, k = 5, t = 10 5 4 1

Table 6 shows no clear relation between the number of the
candidates and the iteration numbers for Minisum and Min-
imax Approval. For m = 15, k = 5, one can again see the
influence of t on the numbers of iterations.

6.3 Discussion
Assuming shared vehicles with a capacity of 20 and numbers
of offered POIs up to 20, our results indicate that a favourable
constellation from operative perspective would be to offer two
times as many POIs as can be visited by a shared vehicle - the
voting rules need fewer iterations if the number of effectively
visited POIs lies around half the number of offered POIs.

The dissatisfaction threshold has an considerable impact:
For threshold values around 0, Minisum and Minimax tend to
need the same number of iterations. For higher values below
m/2, i.e. if the voters are hard to please, Minisum needs
distinctly fewer iterations than Minimax.
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Figure 9: Median of iteration numbers for Minisum and
Minimax and median of differences (Minisum-Minimax) for
n = 20,m = 10, t = 6 against committee size k
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Figure 10: Boxplot of differences for n = 20,m = 10, k =
5, t = 6

If k lies around m/2, Minimax needs tendentially fewer
iterations than Minisum for values of t close to m/2, i.e. for
more tolerant voters.

For higher values of t, the difference decreases until both
committee voting rules tend to need the same number of iter-
ations.

In practice, there are several motives for minimising the
number of iterations.

• Capacity utilisation: The fewer iterations are conducted,
the more visitors remain in the shared vehicle

• Communication expense: In each iteration, the visitors
have to communicate with the chair in order to indicate
if they are satisfied or dissatisfied.

In order to minimise the number of iterations, we recom-
mend to apply Minisum Approval for the case that it is ex-



pected that the visitors are hard-to-please. If you expect that
the visitors are more tolerant, we recommend to use Minimax
Approval.

So far, Computational Social Choice methods have been
largely subject to theoretical analysis. There are hardly any
attempts to use them in the engineering of socio-technical
multiagent systems such as traffic modeling and management.
The ride-sharing scenario is relatively simple but we believe
it is yet suitable as an experimental scenario due to its relative
generality and the relevance (and hardness) of the underlying
optimisation problems. The concept is applicable for non-
autonomous driving as well: In the case of non-autonomous
driving, one could equate the chair agent with the owner/
driver.

Our next step will be to reproduce our results for further
input combinations (n,m, k, t). Note that we conducted in-
vestigations for relative small numbers of available POIs. For
larger numbers of POIs, we aim to compare the properties of
Minisum Approval and Minimax Approximation algorithms.

In the setting considered in this paper, we used a a fixed
dissatisfaction threshold to determine the dissatisfaction of
the visitors. In a dynamic scenario, it would make sense to
let the visitors decide individually if they are satisfied or dis-
satisfied. To simulate this, one would need a stochastic model
to determine the dissatisfaction thresholds.

Furthermore, we will consider the situation that the voters
cannot only leave their initially assigned groups but change
to another groups.

Also, a challenge for future research is to study the run-
time performance of the voting mechanisms taking the time
requirements of collective decision situations in real traffic
into account.

7 Conclusion
In this paper, we investigated the usability of methods known
from tha area of computational social choice in future cooper-
ative traffic environments consisting of automated or human-
operated vehicles, able to communicate with each other, e.g.
using Vehicle-to-X communication technologies. In particu-
lar, we considered a ride-sharing scenario where visitors of a
city share vehicles with seating capacities similar to buses to
visit points of interest.

We proposed an iterative voting protocol based on the well-
known Minisum Approval and Minimax Approval committee
voting rules, allowing dissatisfied travellers to leave a group
and join a different one. Using an agent-based simulation,
we compared iterative Minisum Approval and Minimax Ap-
proval with respect to their convergence properties.

The main result is that iterative Minisum Approval outper-
forms Minimax approval in this respect for threshold values
higher than 0 and lower than m/2. If k lies around m/2,
there is a slight advantage to Minimax Approval for values of
t close to m/2.
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Abstract

Smart Roads (SRs) are systems that provide traffic-
related services, based on a combination of sen-
sor and actuator networks deployed in roads, vehi-
cles, and surrounding elements. They are complex
distributed systems that involve multiple heteroge-
neous components and technologies. This makes
their development a challenging and costly process.
Simulations are a key tool to deal with these issues,
as they allow developing and testing in fully con-
trolled environments with simplified software com-
ponents. Nevertheless, they still need to consider
multiple perspectives (e.g. experts and designers),
which frequently cause problems to understand and
validate them. Model-Driven Engineering of sim-
ulations appears as a solution. It uses models to
represent explicitly these perspectives, and trans-
formations to link them and generate new artifacts
(including code). This paper presents a framework
to develop simulations of SRs following this ap-
proach. Its base is an existing modeling language
related to road traffic which is adapted to specify
the aspects of these systems (i.e. sensors, networks,
and services), and their context (i.e. users, vehicles,
and their environment). A process guides its use
in the transition from abstract models to code sup-
ported by tailored tools. A case study on a system
to track vehicles using sensors in roads illustrates
its use.

1 Introduction
The availability of affordable sensors and actuators suitable
for traffic settings is leading experts to redesign the related
facilities. The goal is that they become smart environ-
ments, able to gather and analyze information, and react to
it [Figueiredo et al., 2001]. Intelligent Transportation Sys-
tems (ITSs) integrate these environments to provide services
like [Figueiredo et al., 2001] [Varaiya, 1993] vehicle track-
ing, congestion detection, or identification of road conditions.
In this context, Smart Roads (SRs) [Wang et al., 2006] are
systems where the key devices are those deployed in roads
and their elements.

The development of systems for SRs (and in general of
ITSs) presents multiple challenges [Figueiredo et al., 2001]
[Varaiya, 1993] [Wang et al., 2006]. First, these are com-
plex and distributed systems. They comprehend multiple and
heterogeneous software and hardware components. Their op-
erating conditions are changing and demanding, as they are
frequently deployed over wide geographical areas and partly
outdoors. Among other issues, this implies that they have to
deal with the failure and redeployment of components, en-
ergy saving, and limited and intermittent connectivity. Sec-
ond, they affect activities that involve living beings and un-
controlled environments, so carrying out realistic and exhaus-
tive testing is difficult and expensive.

Simulations help to mitigate the previous problems [Pur-
sula, 1999]. With them, experts can control and observe the
relevant variables of a problem, and designers perform an
incremental development of systems. However, simulations
also present some important drawbacks [Axtell and Epstein,
1994]. People involved in their development have different
backgrounds, e.g. authorities, traffic experts, systems design-
ers, or programmers of simulations and control. It is difficult
for them having a complete understanding of the simulation
at the different levels of abstraction and its multiple facets.
For this reason, there are frequent problems to validate that
simulation results correspond to the initial requirements.

Model-Driven Engineering (MDE) [Schmidt, 2006] can be
used to address these issues [Fuentes-Fernández et al., 2012].
In these developments, participants specify systems mainly
using models. Transformations perform recurrent modifica-
tions of models and other artifacts, and describe mappings
among them. In the case of simulations for SRs, traffic ex-
perts would model the abstract system (i.e. independently of
specific platforms), and designers would ground it to specific
devices and target simulation platforms. Part of the transi-
tion between both groups of models could be automated with
transformations. For instance, abstract sensors and actuators
usually correspond to certain classes in the target platform. In
this way, the development of simulations becomes an iterative
and incremental process of refining models and transforma-
tions where all the information is explicit. Since models have
a higher level of abstraction than code, and transformations
describe the relevant correspondences, this approach facili-
tates the exchange and discussion of information on simula-
tions and artifact reutilization.



The adoption of MDE to develop SR simulations needs
to have available an infrastructure that includes several ele-
ments. Domain Specific Modeling Languages (DSMLs) de-
fine the vocabulary to specify models in a determined con-
text. There must be also languages to describe transforma-
tions, though here both specific Transformation Languages
(TLs) and general-purpose programming languages are used.
Participants need tools to work with these elements, such
as model editors, transformation engines, or code genera-
tors. Finally, processes guide participants in developments
with these elements. This work introduces a DSML for the
high-level specification of simulations of SRs. Work with it
is based on a process with tailored tools.

The DSML is adapted from a previous one related to road
traffic [Fernandez-Isabel and Fuentes-Fernandez, 2015]. It is
formed by three clusters according to the context they con-
sider: a behavioral cluster, an environment cluster and an in-
teractive cluster. The first describes the profiles and behavior
of individuals, while the second takes into account the place
where the simulation occurs and its elements. The last one
uses elements commonly used by Agent-Oriented Software
Engineering (AOSE) [Argente et al., 2009] (i.e. goals and
tasks) and a perception, evaluation, action cycle to represent
the decision-making of individuals.

New primitives are introduced to model the main elements
of SRs. These are the sensors and actuators that provide
the interface of the system with the external world. That
world includes people, their vehicles, and the environment.
The environment in turn includes, at least, roads, signals,
and general conditions (e.g. weather, daytime, or type of
road). Part of these concepts are extracted from research in
related domains, including Agent-Based Modeling (ABM)
[Axtell and Epstein, 1994], traffic simulations [Fernandez-
Isabel and Fuentes-Fernandez, 2015], and sensor networks
[Fuentes-Fernández et al., 2009].

Most of elements in these problems are represented in the
DSML as model elements. These are related to the original
DSML or to SRs components, having the latter an internal
state, and an interface with methods to consult and manipu-
late them. Examples of components are sensors, actuators,
and vehicles. A particular type of element are the spots.
They represent components in the environment that can be
observed and manipulated by devices (i.e. sensors and actua-
tors). For instance, a tracking magnetic sensor can detect the
passing of a bodywork spot of a vehicle.

SRs elements with complex behaviors are modeled as
agents. They are defined in a similar way of individuals in-
volved in road traffic (i.e. in terms of the goals they pursue
and the information they have), and their capabilities to ma-
nipulate both their internal and the environment states.

The language also includes general mechanisms of inher-
itance between concepts and definition of instances of types
in the adaptation to SRs. They facilitate the modification to
different modeling needs through extensions of the language
and the specification of simulations using models.

The related tools are a model editor and a code genera-
tor. Experts use the first one to specify graphically models
compliant with the DSML. It is based on the INGENME
[Pavón et al., 2011] meta-editor. Designers and program-

mers use the generator (adapted from [Fernandez-Isabel and
Fuentes-Fernandez, 2015] and based on Eclipse [Steinberg et
al., 2008] frameworks) to map model elements to code tem-
plates. These templates are fragments of code with marks cor-
responding to primitives of the DSML. Then, the code gen-
erator reads the models and mappings, instantiates the tem-
plates, and generates the code of simulations.

The case study that illustrates this approach is the simu-
lation of the system in [Karpiriski et al., 2006]. That work
presents an architecture with road sensors to track vehicles.
This case study models the system and generates its code for
the JADE agent platform [Bellifemine et al., 2007]. This il-
lustrates how working in this way facilitates understanding
the different aspects of the simulation and reduces the effort
to code it.

The rest of the paper is organized as follows. Section 2
makes an introduction to MDE. Section 3 presents the DSML,
while Section 4 the development guidelines of the proposal.
Section 5 describes the support tools, and Section 6 applies
the framework to the case study of tracking vehicles. Then,
Section 7 compares the approach and its results with related
work. Finally, Section 8 discusses the conclusions and future
work.

2 Background
MDE [Schmidt, 2006; Kent, 2002] is an approach to software
development based on models and transformations. Mod-
els are specifications of information regarding the system to
build. Transformations are automated modifications of mod-
els and other artifacts to generate new products. In this con-
text, developers work specifying their models incrementally,
and running transformations to integrate models or perform
certain modifications (e.g. adding design information or gen-
erating code). All the information relevant for the develop-
ment is thus presented as models or transformations, so devel-
opers have it explicitly described. This improves traceability
between artifacts across development. Working effectively in
this way requires having support tools for certain tasks.

Models are described following Modeling Languages
(MLs) that establish their primitives and constraints, so all
developers can interpret them in similar ways. Model editors
support developers when specifying models, and guarantee
the compliance of models with their MLs. In order to allow
this functionality, MLs are defined formally. There are alter-
natives for this definition depending on the ML features and
the context and needs of its use. Domain Specific Modeling
Languages (DSML) [Luoma et al., 2004] are MLs oriented
only to one context.

Graphical graph-oriented MLs are the most popular ones
in contexts such as Software Engineering and graphical sim-
ulations. Their models specify graphs where entities are
connected by links, and all of them can have related prop-
erties. Metamodels are the most widely used means to
specify these languages [Steinberg et al., 2008]. The de-
scription of metamodels relies on meta-modeling languages
such as the Meta-Object Facility (MOF), Ecore [Steinberg
et al., 2008], or Graph-Object-Property-Relationship-Role
(GOPRR) [Smolander, 1993]. MOF is used by the Object-



Figure 1: Excerpt of the road traffic metamodel.

Management Group (OMG) to define standards such as the
Unified Modeling Language (UML). Ecore is almost aligned
with Essential MOF, a subset of MOF. It is supported by the
Eclipse communities related to MDE with a complete and
widely supported set of tools. GOPRR has a richer set of
primitives than the previous two languages, as it allows for in-
stance the direct definition of n-ary relationships. INGENME
[Pavón et al., 2011] is a framework for it.

The implementation of transformations has two main ap-
proaches. They can be implemented as modules in main-
stream programming languages; or they can be described
with specific transformation languages and executed by an
engine. The first approach reuses existing expertise and re-
sources, and it is usually more efficient. Examples of it
are INGENME [Pavón et al., 2011] and the traffic simula-
tion framework in [Fernandez-Isabel and Fuentes-Fernandez,
2015], both based on Java and XML. The second approach
makes easier to examine the mappings between the source
and target artifacts of the transformation. Examples of it are
Eclipse projects such as JET and ATL [Steinberg et al., 2008].

This work adopts GOPRR as its meta-modeling language.
Its tools are based on the INGENME MDE framework.

3 Domain specific modeling language
The foundations of the DSML for SRs is adopted from
another DSML focused on general purpose road traffic

[Fernandez-Isabel and Fuentes-Fernandez, 2015]. It is en-
hanced modifying its structure and introducing various ab-
stract entities. The model element is the main one. It allows
describing elements from road traffic (e.g. profile and knowl-
edge of individuals involved in traffic) and specific compo-
nents related to SRs (e.g. sensors and spots).

Regarding the naming, nodes are the meta-classes and links
are meta-relationships among them. Meta-relationships with
triangles represent inheritance and with filled diamonds ag-
gregation. The attributes and adornments of the previous el-
ements are meta-properties. It is specified with a GOPRR
metamodel, being this notation similar to that also used in
MOF and Ecore [Steinberg et al., 2008].

The original metamodel is introduced in Section 3.1 where
its structure and meta-classes are explained. The DSML ex-
tension developed to represent the SRs components is de-
scribed in Section 3.2.

3.1 Traffic DSML
The DSML is originally focused on modeling the behavior of
individuals involved in road traffic (i.e. drivers, pedestrians
and passengers). It is a flexible language that presents specific
mechanisms to ease its fitness to the large amount of theories
evaluated by traffic studies.

It is described by a metamodel [Steinberg et al., 2008]
which provides a set of meta-entities in order to represent the



Figure 2: Information and ModelElement related elements.

Figure 3: Environment and Container related elements.

notions, relationships, properties and explicit constraints.
Metamodel concepts are inspired in AOSE [Argente et al.,

2009] and are classified into three clusters. The mental clus-
ter (i.e. profile, knowledge and their components) is based on
[Shinar, 1978] and considers the features and internal state of
individuals. The environment cluster (i.e. environment, ve-
hicle and their respective components describes the elements
extracted from DVE model [Amditis et al., 2010]. The inter-
active cluster (i.e. evaluator, executor, goal and task) repre-
sents the decision-making of individuals. It includes a per-
ception, evaluation, and acting cycle.

Regarding the metamodel bedrock, it revolves around the
person notion (see Fig. 1). It symbolizes a kind of human
being involved in road traffic. According to their means of
transport and how they interact with them, these people can
take different roles (i.e. drivers, passengers, or pedestrians).
Thus, person are able to interact with an environment. This
interaction is immediate (for pedestrians) or indirect (in the
case of drivers and passengers). The information people have
is illustrated with the knowledge, while their features are rep-
resented by the profile. The purposes of people involved in
traffic are described by goals, and the actions to carry out
them by tasks. Evaluators study the information obtained
from the environment and decide how the individuals must
act according to it. Tasks for achieving their implicit instruc-
tions are picked up by an executor.

The metamodel uses inheritance hierarchies with the pur-
pose of providing notion specializations and a flexible struc-

ture. The main one is the general element from which the
model element and the general relationship extend (see Fig.
1). The first acts as a basis for the traffic DSML and the
SRs DSML parts and is extended to the behavioral element
and the meta-classes involved in the interactive cluster. The
behavioral element is the parent meta-class of the main el-
ements (i.e. not components) that compound the mental and
environment clusters. Component extended from it and is also
the parent of the components of both clusters. The second
supports introducing relations (e.g. affect or impact) between
the rest of entities that are extended from model element.

Another kind of hierarchies are considered in this part of
the metamodel. In the both mental and environment clus-
ters composition hierarchies are introduced between main el-
ements (e.g. profile or vehicle) and their respective compo-
nents (e.g. pcomponent or vcomponent). These components
can be decomposed into others of the same type, promoting
the creation of complex structures.

3.2 DSML extension to SRs
This module of the DSML is mainly focused on people mov-
ing in their vehicles in roads unless there are other elements
in the environment such as traffic signals, obstacles, and
weather. These elements can be observed with sensors, and
systems that can actuate on them using actuators. The DSML
makes of these concepts its core categories.

Elements are modeled in terms of the information they
manage. There are two basic types of information: facts are
internal to elements, and events can be perceived from out-
side.

The root concept that embraces both modules of DSML
is the ModelElement entity (see Fig. 2). In this case, it is
characterized in terms of an identifier, an internal state, an in-
terface compose of methods, and the events it can generate.
The internal state is a set of facts. A method is defined by
its parameters and results, which are information. It can also
have execution conditions defined in terms of their parame-
ters and the internal state of its model element. Methods can
be internal (only accessible from the component) or external
(accessible from other components).

The environment meta-class of the traffic DSML is related
to a set of elements over a map. These are the places, and
can be located in sections or junctions. Examples of places
are things in the environment, like the road surface or protec-
tive fence. Environment has attributes (e.g. AvailableArea) to
store the relevant information of the map. This latter is rep-
resented through a graph that describes the road sections that
link two junctions (one when the section in an entering or exit
point).

Places contain spots (see Fig. 3). These are the compo-
nents that sensors can actually observe and where actuators
can act upon. For instance, a vehicle have several spots, e.g.
the bodywork, the electronic system, or the engine. Sensors
and actuators constitute the interface of systems with the ex-
ternal environment. They run on containers attached to spots.
Besides this, a sensor is linked by the perceives relationship
to the spot it observes, and an actuator by the actuates re-
lationship to the spot it affects. In both cases, sensors and
actuators access to the external interface of the spot, i.e. they



use its external methods. For instance, a rain sensor runs in a
container of the bodywork, where it perceives the raindrops
from an abstract weather spot. The containers of a system
are linked through communication channels.

Beyond these elements, complex entities related to SRs are
modeled as agents. Typical agents are the controllers of sen-
sors and actuators. The control of components can be repre-
sented directly with their methods, but controller agents are
recommended when there are complex algorithms and com-
munication with other controllers.

Similarity to a person (see Fig. 1), an agent has an identi-
fier, and goals that it can achieve through tasks that manipu-
late information. As the environment of SR systems is unpre-
dictable, the execution of a task can fail or not to produce the
expected results. Thus, a goal defines satisfaction conditions
in terms of information to indicate when it has been fulfilled.

Tasks can be organized (or decomposed) into others ac-
cording to the traffic DSML (see Fig. 1). Also, they can be
linked to methods related to the information they produce and
consume. In this way, tasks can use methods of components,
including sensors and actuators.

Agents communicate among them using notifications.
These are a type of event addressed to a certain agent identi-
fier.

Agents behave internally following a perceive-reflect-act
cycle. First, they execute those tasks that imply access to
external components (e.g. sensors and other elements related
to SRs) to gather data. Then, they update their internal state,
both facts and goals. Finally, they pre-select for execution
those tasks that can satisfy some of their still non-fulfilled
goals. Among them, they choose one to actually execute.

The external elements that agents can access are those
linked to them using manages relationships. For controllers,
these relationship can be only with other elements in their
containers. In contrary, persons can relate only to sensors
and actuators from containers, or other elements outside con-
tainers like vehicles or components in the environment.

This part of the language also includes some general mech-
anisms applicable to most of the previous concepts. It sup-
ports inheritance of concepts and relationships to allow their
specialization. For instance, the concept of component can
have additional and different features according to the target
simulation platform.

4 Development guidelines
The framework to develop SR simulations provides guide-
lines to model using the previous DSML and support tools.
They include 11 activities. The process is decomposed in two
different stages. The first one (nodes 1-9) is focused on the
expert work and specifications with the proposed DSML. The
second one (nodes 10-11) deals with the design of simulation.
After concluding the first one with the specific infrastructure
of this work, the second part can be addressed with a MDE
methodology for general software development. Given that
our DSML oriented to SRs follows ABM [Axtell and Epstein,
1994], methodologies from AOSE are a suitable choice [Ar-
gente et al., 2009]. Both ABM and AOSE make of agents
their core concept. Though there are differences among spe-

cific works, most of them conceptualize agents in terms of
mental entities and communication capabilities, and consider
the existence in their environment of artifacts they can use.
This common core facilitates the transition from abstract to
design models with transformations.

The first stage is organized around the services that the SR
should provide. It starts identifying potential services pend-
ing to specify (activity 1). If there are any, work follows with
its definition in terms of the information it needs and it pro-
vides, and the actions it should take (activity 2). This infor-
mation and actions appear in elements of the system and its
environment that next activities specify.

The service interacts with spots, either observing or chang-
ing them. Experts identify them and their potential contain-
ers, and specify them as model elements (activity 3).

The service also communicates with spots using the sys-
tem sensors (described in activity 4) and actuators (in activ-
ity 5). These devices are initially specified as model elements.
In case that their functioning needs complex control or com-
munications with other containers, they also need controller
agents. Channels must be added for those containers that
need to be linked.

The spots identified in previous activities are located in el-
ements of the SR environment. These elements are places,
vehicles (considered in activity 6), persons (activity 7) and (in
activity 8) other components from environment (i.e. ecompo-
nents). All of them are specified as model elements. They
also have a location in the environment. Thus, these activities
also define the map and locate the places in it.

The last element to specify is the behavior of individuals
(in activity 9). It is defined in terms of the goals and tasks
adapting existing road traffic theories [Fernandez-Isabel and
Fuentes-Fernandez, 2015], and the steps of the perception,
evaluation and acting cycle. As people act on the environ-
ment, tasks to check the actual result of their actions and
update its information must be included (e.g. route path or
position in the environment).

When all the services have been identified, the process can
move to the design of the simulation. Transformations map
abstract to design models (activity 10). These transformations
can be reused when they are available from other projects
with the same target AOSE methodology. Then, the design
models act as the initial specification for the simulation in
that methodology (activity 11). For instance, our work can be
easily linked to the INGENIAS AOSE methodology [Pavón
et al., 2005]. The INGENME [Pavón et al., 2011] infrastruc-
ture our work uses is the same of INGENIAS, and both share
similar definitions of concepts such as agent, goal, task, and
fact.

5 Support tools
This MDE approach uses two development tools to achieve
the different steps of the process (see Section 4). A model ed-
itor based on INGENME supports the specification of models
compliant with the DSML. It is the main tool of the first stage.
For the second stage, most of AOSE methodologies have
their own tailored model editors and transformation tools.
Here, the last steps of code generation are achieved with a



Figure 4: Excerpt of the simulation model for the system to track vehicles. Stereotypes indicate DSML types.

code generator adapted from [Fernandez-Isabel and Fuentes-
Fernandez, 2015]. Then, designers specify graphically the
mappings from elements in models to classes in the target
platform. The generator outputs the simulation code from
this information.

The INGENME model editor is based on INGENIAS
methodology. It present a graphical canvas where models
can be captured. The resulting outcome can be exported as
a XML file. It promotes the modularity of the proposal and
the ability to maintain the independence among the different
artifacts created.

The code generator is a graphical tool implemented in Java
which provides an engine to generate source code from a
model specification. In this case, the specification comes in
form of XML file from the model editor. This tool is mainly
focused on easing the work to developers. In order to that, it
provides an intuitive navigation through the elements of the
models, and uses multiple wizards to guide the users in the
achievement of the most complex tasks. It also takes as input
a metamodel, code templates compliant with it and libraries
from the target simulation platform. The templates support
the preliminary automated code generation while the libraries
can be used to adapt the simulation platform to the models
requirements. To achieve it, the tool offers the possibility
of creating new classes (empty or extended) through which
producing a new simulation platform specialized in specific
models [Fernandez-Isabel and Fuentes-Fernandez, 2015].

6 Case study
This section applies the previous framework (see Sections 3
and 4) to develop the simulation of one of the services for SRs
described in [Karpiriski et al., 2006]. It is a vehicle tracking
service based on magnetic sensors located in nodes of cat eyes
every few meters in road borders. These sensors are able to

perceive car passing. Nodes know their relative order and dis-
tance to others. They make up an ad-hoc network to exchange
information, so they can determine the position and speed of
vehicles.

The first stage of the process generates the abstract model
of the simulation with the DSML. Fig. 4 shows part of it.

Activities 1 and 2 identify the services the SR offers. The
definition of the problem points out only to the tracking vehi-
cle service. Activity 3 identifies the spots related to it. There
are two. The sensors are placed in eye cats in the road bor-
ders. These sensors track the passing of vehicles sensing their
metal, for instance in their bodywork. Activities 4 and 5 con-
sider the related sensors and actuators. There are magnetic
tracker sensors, but no actuators. The specification of car ve-
hicles in activity 6 does not consider any particular feature of
them. In the proposed DSML, decisions regarding maneuvers
are placed in persons. Activity 7 models them. The original
work does not introduce any specific model of drivers. The
problem also identifies elements in the environment (see ac-
tivity 8) and models them in particular as ecomponents (see
Section 3.1) or places (e.g. road borders).

The previous first round allows identifying the main con-
cepts of the problem, and their types and relationships. A sec-
ond round is focused on their state and functionality. Given
that individuals with driver role and their actions trigger most
of activities in the system, the analysis starts with them.

A simple path-following behavior is proposed for persons
with driver role. Following a perception, reflect and acting
cycle (no evaluation is considered), there is a first step of cal-
culating position and a second of moving. The first one corre-
sponds to goal got info and task sense, and the second to goal
ended route and task move (see Fig. 4). Sense generates the
fact perceived position consulting the method toSense. This
fact is compared with the fact route to determine if the car has



arrived to its destination. That is the satisfaction condition of
goal ended route. If the goal is unfulfilled, the task move can
be triggered. It calls a method toMove that updates the car
and its fact position.

In the system, several elements do not have specific state
or methods, as only their location is relevant. This is the case
of road border and eye cat. In order to have a precise location
of sensors, road borders are modeled as multiple elements of
this type, each one with its own location.

The eye cat spot has node containers for the sensors and
controllers of the system. The magnetic tracker sensor trig-
gers events when it perceives a car. Its magnetic controller
has a task pass car to sense that event (see Fig. 4), and gener-
ates through the toPass method a car passed event addressed
to a central tracking controller (not shown in the diagram).
This would implement the services for end users described
in [Karpiriski et al., 2006]. Given the constraints imposed
by the DSML, the model needs to introduce a tracking node
container for this last controller. In order to enable commu-
nication between controllers in different containers, these are
connected with a road channel.

The previous discussions has not considered the map. The
studied work focuses on two-way single carriageways. With
the DSML, these correspond to junctions that connect at least
two sections, one for each direction. Crossroads are junctions
that connect more sections. The previous model elements (ve-
hicles and road borders) are placed in them.

These steps complete the first stage and the abstract model
of the simulation. Activity 10 maps the abstractions of that
model to those of INGENIAS [Pavón et al., 2005]. Then,
activity 11 follows the steps of this methodology adding the
design information required for the JADE platform [Bellifem-
ine et al., 2007]. There are several entities of the DSML with
direct mappings to JADE: agent to agent and task to behavior.
Others need to be mapped to specific ad-hoc classes. This is
the case of the model elements, facts, goals, spots, sensors
and actuators. Their implementation only requires attributes
and methods to get and set their values, as agents manage the
updates of the simulation state.

7 Related work
The presented framework is mainly related to the modeling
and development of SRs. This section discusses existing al-
ternatives for them.

Under the label of SRs literature presents a variety of
complex heterogeneous systems [Figueiredo et al., 2001]
[Varaiya, 1993] [Wang et al., 2006]: they provide different
services, for a wide range of users, and integrating multiple
devices. Nevertheless, several common elements can be ab-
stracted in most of them [Varaiya, 1993] [Wang et al., 2006]
[Sun et al., 2006]. There are sensors and actuators embed-
ded in an environment that includes roads and their elements,
weather, vehicles, and sometimes people. Vehicles and peo-
ple are usually modeled focusing on their movement. In the
case of simulation [Kotusevski and Hawick, 2009], works
offer more complex models of vehicles and people moving,
with paths to follow and principles of movement (e.g. colli-
sion avoidance or observe traffic norms). These elements are

considered in the proposed DSML, though the use of com-
ponents, agents, and information makes possible setting up
richer models than in other works. The DSML also offers
extension mechanisms frequently disregarded in other works.

In most cases, there is no information about the adopted
development process (see for instance the already mentioned
works). However, this is a key aspect to evaluate approaches
regarding, for instance, ease of adoption and modeling or
costs. When there is some information on that [Pursula, 1999]
[Kotusevski and Hawick, 2009], it usually shows approaches
with a manual transition from abstract models to code, and
focused on the later. The advantages of MDE in this con-
text were pointed out in the introduction: explicit definition
of all the information related to that transition, which facil-
itates its discussion and reutilization, and support tools for
it. There are already some works in this line in the context
of traffic studies [Fernandez-Isabel and Fuentes-Fernandez,
2015] [Vangheluwe and De Lara, 2004]. Their main differ-
ences with our work are their focus and purposes (general
traffic versus SRs) and the use of infrastructures less adopted
than ours (in [Vangheluwe and De Lara, 2004] graph rewrit-
ing grammars for transformations), which hinders their adop-
tion.

8 Conclusions and future work
This paper has introduced a framework for the model-driven
development of simulations of SRs. It is based on a DSML
and tailored standard infrastructures.

The DSML adopts a previous one focused on road traf-
fic that integrates concepts from studies and simulations of
traffic [Fernandez-Isabel and Fuentes-Fernandez, 2015]. It
is adapted through ABM concepts (e.g. agents) [Axtell
and Epstein, 1994] and elements related to sensor networks
[Fuentes-Fernández et al., 2009]. Based on a general concept
of model element (could be a modeling entity or a component
with state and an interface that manipulates information), it
introduces new concepts related to sensors, actuators, spots
in the environment and vehicles. A higher level of abstrac-
tion comes from agents, which are used to describe complex
controllers.

The framework also proposes a development process based
on this DSML. It comprehends a specific first stage to spec-
ify the abstract models of simulations, and connects with an
AOSE MDE methodology [Argente et al., 2009] for the low
level design and code generation. A model editor based on
INGENME [Pavón et al., 2011] and a code generator sup-
ports it. This latter is a graphical engine based on wizards
that allow guiding users in some of the complex steps of the
development process.

The case study has shown how a simulation can be speci-
fied to a large extent with the DSML, including the behavior
of its components. Only algorithms to manipulate informa-
tion are demoted to code templates. This approach focus de-
velopment efforts on models and transformation, which can
be reused more easily than code.

The previous work has still several open issues. The SR
module of the DSML needs extensions to consider aspects
such as time or specific constraints. There are studies on



these issues but further work is required to integrate them.
The process needs to incorporate additional advice on how to
use the DSML and deal with the design. In particular, that de-
sign should be consistent with the expected semantics of the
DSML. Finally, additional experiments are needed with other
works and target platforms to validate the approach. Specifi-
cally, the combination of road traffic theories and services for
SRs taking advantage of the potential of the DSML described
here (it is a general purpose traffic DSML adapted to SRs) is
another important next step to consider.
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