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  Abstract 

It is likely that driver drowsiness will gain in significance as automation increases. 

However, as long as the automation system is unable to deal with every kind of 

traffic situation, it will still be necessary to get the driver back into the loop or, for 

example, to initiate a minimum risk manoeuvre should the transfer of the driving 

task to the driver fail. This article assumes that drivers are not yet allowed to sleep 

during an automated drive (AD). To date, it is unknown how the system should react 

in the case of elevated drowsiness. To evaluate this, participants (N = 31) 

subjectively assessed various options of a driver-state related strategy and of a 

system-based strategy before and after a tiring simulated AD. Assessments revealed 

that reducing the maximum speed was the best rated system-based option and that a 

targeted use of non-driving related tasks was the driver-state related option that was 

most widely supported. This article provides initial insights into the acceptance of 

various strategies for managing drowsiness during an AD from a user perspective. 

Further research is needed to evaluate the efficacy and safety outcomes for different 

strategies. 

  Motivation 

Driver drowsiness plays an important role in vehicle safety because an increase of 

drowsiness is often associated with a decline in driver performance (e.g., Sagberg, 

1999). So far, the study results have provided a mixed picture. Some researchers 

found no influence of drowsiness or automation duration on take-over performance 

(Feldhütter et al., 2017; Schömig et al., 2015; Jarosch et al., 2017), whereas others 

found a negative influence of drowsiness on the lateral acceleration during the 

transition (Goncalves et al., 2016) and on the time until situation awareness was 

reached after the transition (Vogelpohl et al., 2017). Despite these partially 

contradictory results, this study assumes that drivers will not be allowed to sleep 

during an AD as it was found that drowsiness, which Johns (1998) describes as “a 

transitional state between wakefulness and sleep”, can already negatively influence 

take-over performance and the subsequent driving performance. Hence, strategies 

are needed to manage driver drowsiness during an AD. 
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Key elements of a strategy in the context of drowsiness and automated driving 

Various definitions of the term “strategy” exist. Drucker (2006, p. 352) described 

strategic decisions as follows: “They involve either finding out what the situation is, 

or changing it, either finding out what the resources are or what they should be.” 

Rumelt (2013, p. 2) described the key elements of strategic working as “discovering 

the critical factors in a situation and designing a way of coordinating and focusing 

actions to deal with those factors”. Based on those strategy definitions, the 

following concept presents the derived key elements of various strategies for dealing 

with drowsiness during an AD (see figure 1).  

analysis of the present situation 
(including drivers‘ resources and system limits)

identification of critical factors 

concerning driver performance

preparation 

strategy

various options to deal with the 

crucial factors

system-based 

strategy

various options to deal with the 

crucial factors

strategies

driver-state related 

strategy

various options to deal with the 

crucial factors

 
Figure 1. AD and drowsiness: Elements of a strategy and relation between different strategies 

Analysis of the present situation 

In order to assess the current situation, knowledge of the system state and of drivers’ 

drowsiness states is needed. Hence, a driver monitoring system (DMS) is needed for 

assessing driver’s drowsiness state. The technical system is understood as an 

Automated Driving System (ADS) according to the SAE (2016) and supplemented 

by a DMS. The system must be able to detect system limits, to initiate a request to 

intervene (RtI) and to return the driving task. For example, a motorway exit or a 

stationary object in front of the ego vehicle may represent system limits (Bahram et 

al., 2015). Further, it is assumed that driver drowsiness will also represent a system 

limit as long as drivers are not allowed to sleep during an AD. Reaching a system 

limit leads to a RtI. This article does not consider any further sensor or hardware 

failures. 

Identification of critical factors 

Two types of critical driver reactions might occur when drowsy drivers need to take 

over control from an automated system. On the one hand, drowsy drivers might need 

more time for a sufficient understanding of the current situation as found in a driving 

simulator study (Vogelpohl et al., 2017). On the other hand, drowsy drivers might 

also react in a startled or surprised way in the event of an unexpected take-over 

situation or RtI. Effects of being startled or surprised have already been observed in 

the field of aviation (Martin et al., 2012). In addition, it has been assumed that the 
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consideration of startle effects are of great importance, especially when the 

automation mode changes unexpectedly (Jacobson, 2010). 

Strategies to deal with drowsiness 

In order to derive strategies for managing driver drowsiness in the context of 

automated driving, a fundamental understanding of the underlying mechanisms is 

necessary. As a result, the four-process model developed by Johns (1998) is 

presented. This model consists of a total “wake” and a total “sleep” drive. Both 

types of drive inhibit each other. The wake drive consists of a primary and 

secondary wake drive. It is assumed that, in most cases, the secondary wake drive 

will determine whether the driver will fall asleep. A person’s ability to avoid falling 

asleep may be strongly influenced by emotional and cognitive inputs (Saper et al., 

2005) and by motivational aspects (Rowley, 2006). However, the secondary wake 

drive can change within seconds (Johns, 2000). Overall, during automated driving, 

the secondary wake drive can determine whether drivers will fall asleep, depending 

on human behaviour and the type of input. The options of a driver-state related, a 

system-based and a preparation strategy are presented below. 

Driver-state related strategy 

A driver-state related strategy is used to minimise drivers’ drowsiness. Various 

drowsiness countermeasures during manual driving were intensively studied under 

certain conditions (e.g., Oron-Gilad et al., 2008; Davidsson, 2012; Gaspar et al., 

2017). Nevertheless, the possibilities for minimising drowsiness during a less 

automated drive are limited. However, during an AD, more motivating tasks can be 

offered, which help drivers to avoid falling asleep or at least extend the period in 

which drivers’ drowsiness state is acceptable. This consideration is supported by a 

study showing that the nature of non-driving related tasks may significantly 

influence participants’ drowsiness level (Jarosch et al., 2017). In addition, 

drowsiness did not further increase when a non-driving related task (quiz) was 

executed, whereas high levels of drowsiness were observed when participants did 

not have to execute any motivating non-driving related task (Schömig et al., 2015). 

However, the reactivation potential of various non-driving related tasks has not yet 

been sufficiently investigated. In addition, a driver-state related strategy should not 

be condescending to drivers by limiting them to a few specific non-driving related 

tasks during a longer AD. Further research is thus needed in order to investigate the 

reactivation potential of various non-driving related tasks when drivers are already 

experiencing drowsiness. This raises the question of how often and at which 

drowsiness level a reactivation would be useful and accepted by the users. 

Furthermore, it needs to be taken into account that measures against sleepiness are 

no longer effective at higher drowsiness levels, as they are no longer executed by 

drivers (Hargutt, 2002, p.196). Thus, the drowsiness management concept allows a 

single exceedance of a critical drowsiness level (DLx) accompanied by the offer of 

the driver-state related strategy. If this strategy fails and DLx is exceeded on one 

more occasion, driver’s drowsiness level is considered a system limit (see figure 2). 
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System-based strategy 

In contrast to the driver-state related strategy, which was intended to impact the 

driver’s drowsiness level, the system-based strategy is aimed at ensuring vehicle 

safety. If there is any uncertainty about whether a driver may safely retake control, 

the system can try to reach a service station in order to give the driver the chance to 

recover. In addition, the system might not perform lane changes any longer in order 

to be prepared, should a minimal risk condition need to be reached. The ways of 

achieving a minimal risk condition may differ, depending on the type of system 

failure (SAE, 2016): 

It may entail automatically bringing the vehicle to a stop within its current 

travel path, or it may entail a more extensive maneuver designed to remove 

the vehicle from an active lane of traffic and/or to automatically return the 

vehicle to a dispatching facility. (p. 9) 

A speed reduction could increase the time available for a take over and decrease the 

intensity of the deceleration if it is necessary to stop the vehicle. The adjustment of 

speed under consideration of a constant deceleration as a strategy was calculated and 

illustrated by Bahram et al. (2015). In addition, the system can return the driving 

task to the driver in order to avoid a further increase in driver drowsiness during the 

AD. Consequently, drivers would be responsible for driving the vehicle safely after 

the transition. However, such a sudden RtI might be unexpected and could lead to 

startled or surprised reactions. A preparation strategy might be appropriate to reduce 

unwanted driver reactions.  

Preparation strategy 

One preparation strategy aims at reducing surprise factors and at reactivating the 

driver as well as possible within a short period of time. Therefore, suitable driver-

state related and system-based options are performed simultaneously. This strategy 

is executed if the system limit is drowsiness and no other system limit (e.g., sensor 

failure) exists. For instance, drivers can obtain specific information on the current 

situation (such as speed limits) and they can also be asked to check the mirrors in 

order to obtain a sufficient overview of the situation before taking over control. 

Furthermore, additional system-based options should be performed to enhance 

overall safety. 

The findings and considerations reported were grouped into the following 

drowsiness management concept (see figure 2). In this concept Part A represents the 

technical system. Part B shows the developed state machine.  
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A drowsiness management concept in the context of automated driving 

Assumptions: Drivers are not yet allowed to sleep during an automated drive.

The usage of the system is limited to motorways.

Driver Monitoring System

(DMS)

Automated Driving System

(ADS)

Part A: Technical system

estimation of the current 

drowsiness level

responsible for the 

dynamic-driving task

Part B: State machine

driver-state related strategy

DLa = DLx
DLa > DLx

first time?
DLa ≥ DLx

system limit?

immanent reaction

necessary?

yes

yes

yes

no

no

no no

system is 

active?

driver is responsible 

for the dynamic-driving task

yes no

preparation 

strategy
DLa > DLx

request to intervene

driver regained control? MRM

take-over performance

system-based 

strategy

Du? 

sufficient take-over performance?

appropriate strategy

adaption of the strategies, the 

request-to intervene or of the 

DLx  

adaption of DLx

no

no

no

no

no

yes

yes

yes

yes

yes

DLa = actual drowsiness level

DLx = drowsiness level that should not be exceeded

Du   = driver is unresponsive  

Figure 2. Framework for a drowsiness management concept 
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  Method 

Sample 

The sample consisted of 31 employees of the AUDI AG (females: n = 12 and males: 

n = 19). On average, participants were 31 years (SD = 8) old. Data of one participant 

were excluded from the analysis due to constantly narrowed eyes, which made an 

assessment of the drowsiness level impossible. Data of another participant could not 

be used for the analysis of subjective assessments of the system-based strategy due 

to missing data. 

Test vehicle, test track, drowsiness generation and assessment 

A right-hand drive vehicle equipped with pedal and steering-wheel dummies (see 

figure 3) was used to simulate an AD in a real traffic environment. The study was 

conducted on the A9 autobahn in Germany from Lenting to the Nürnberg-Ost 

intersection and back again, representing a maximum test drive duration of 1h 

30 min. Participants were informed that the automated system was simulated by an 

investigator. During the test drive, a curtain separated and hid the driver 

(investigator) from the participant. The adaptive-cruise control and lane-keeping 

systems were not used during this study. The maximum speed was 130 km/h. In 

addition, lane changes were performed very cautiously. Participants were not able to 

intervene in the real driving process at any time.  

  

Figure 3. Test vehicle 

In order to generate drowsiness, participants were asked not to drink caffeinated 

beverages for 5 hours prior to the examination. Furthermore, relaxing music was 

played during the simulated AD. Participants were informed that they should avoid 

closing their eyes and falling asleep during the entire test drive. To assess 

participant’s drowsiness level, four cameras were integrated into the test vehicle and 

displayed on one screen at the back seat. Two investigators sitting in the rear 

assessed the participant’s drowsiness level every two minutes during the test drive. 

The observer rated sleepiness scale used was originally developed by Wierwille and 

Ellsworth (1994). For further information see also Weinbeer et al. (2017). 



 subjective assessment of different strategies to manage drowsiness 11 

The test drive was completed when the end of the test route was reached or when 

participants had reached the highest drowsiness level on the Wierwille and Ellsworth 

scale (1994) and had performed subsequent response-time tasks. 

Purpose of the study and questionnaire 

This study aims to gain initial insights into the acceptance of various options of a 

driver-state related and of a system-based strategy. These different options are 

presented in tables 1 and 2. These collections are derived from different existing 

measures and supplemented by some of the options that are possible due to the 

vehicle automation. These were assessed on a five-point Likert Scale: 1 (strong 

support), 2 (some support), 3 (neither support nor rejection), 4 (some rejection) and 

5 (strong rejection). 

 

Table 1. Options of the driver-state related strategy 

Options of a driver-state related strategy (DSRS) 

“Imagine that your drowsiness level increases constantly during a highly-automated drive. In order to 

keep the system going as long as possible, your drowsiness level needs to be kept at a low level. Please 
rate how far you would support or reject the following adjustments.” 

DSRS-O1: The vehicle opens the window slightly in order to allow fresh air into the vehicle. 

DSRS-O2: The vehicle emits a scent to stimulate you. 

DSRS-O3: The vehicle increases the volume of the radio. 

DSRS-O4: The vehicle moves the seat into an upright position. 

DSRS-O5: The vehicle adjusts the interior lighting. 

DSRS-O6: 
The vehicle offers a specific selection of non-driving related tasks (for example a 

quiz) during the automated drive. 

 

Table 2. Options of the system-based strategy 

Options of a system-based strategy (SBS) 

“Imagine that your drowsiness level increases constantly during a highly-automated drive. In order to 

ensure your safety the system adapts at a certain drowsiness level. Please rate how far you 
would support or reject the following adjustments.” 

SBS-O1: 
The vehicle ceases to change lanes and drives on the right lane so that the vehicle can 

come to a safe stop on the hard shoulder should you fall asleep. 

SBS-O2: 
The vehicle hands the driving task back to you. After that the system will no longer 
be available. You take full responsibility for the subsequent drive without the system.  

SBS-O3: 
The vehicle drives to the next rest area. The system will be available again after a 

break, depending on your level of drowsiness.   

SBS-O4: 
The vehicle reduces the maximum speed to give you more time to take control in 

case of a request to intervene.  

SBS-O5: 
The vehicle drives without any adjustment. When it recognises that you have fallen 
asleep, it brakes, coming to a stop on the hard shoulder.  

SBS-O6: 
The vehicle drives without any adjustment. When it recognises that you have fallen 

asleep, it brakes, coming to a stop on the lane you are in. 
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In addition, evaluations were conducted into whether suffering drowsiness led to a 

change in the subjective assessment of the driver-state related and system-based 

strategies. These strategies and the 5-Point-Likert Scale were translated from 

German into English in order to present the results. The preparation strategy is not 

evaluated in this study as it represents a combination of the driver-state related and 

system-based strategy. Participants were also asked to declare the option that they 

would accept most from the driver-state related and system-based options. In 

addition, participants were asked to declare the most effective driver-state related 

option. 

The collections of the driver-state related (see table 1) and system-based options (see 

table 2) were assessed before (S1) and after the test drive (S2) (see table 3). 

Table 3. Experimental design 

Test procedure 
Subjective 

assessment 

RtI in dependence of the drowsiness level Subjective 

assessment DL 1 DL 4 DL 6 

Group A 

n = 16 
S1 

(before the 
test drive) 

Group A 

(DL1) 

Group A 

(DL4) 

Group A 

(DL6) 
S2 

(after the 
test drive) 

Group B 

n = 15 
x 

Group B 

(DL4) 

Group B 

(DL6) 

 

Furthermore, the effectiveness of the drowsiness manipulation procedure and the 

influence of different drowsiness levels on take-over-time aspects were assessed in 

this experimental setting. As the presentation of these results is beyond the scope of 

the present article, the results are reported in a separate paper (Weinbeer et al., 

2017). 

  Results 

Driver-state related strategy (DSRS) 

 

Figure 4. Subjective assessments of various options of a DSRS (M𝑒𝑎𝑛 ± 1𝑆𝐷) 

The mean values of the options assessed before and after the test drive are presented 

in table 4. After the test drive a targeted offer of non-driving related tasks (e.g., a 

quiz) received most support (see figure 4). Due to the multiple comparisons, the 

significane level was adjusted to p < .008. A Wilcoxon signed-rank test revealed no 
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significant differences between the ratings before and after the test drive for the 

options of a DSRS. 

When asked which type of option would be most widely accepted, DSRS-O6 was 

seen to be most popular, with 26% mentions before the test drive and 30% after it. 

Participants also assessed DSRS-O6 as the most effective option with 30% mentions 

before the test drive and 40% after it. These results are presented in tables 5 and 6. 

Table 4. Subjective assessment of various options of a driver-state related strategy 

N = 30 DSRS-O1 DSRS-O2 DSRS-O3 DSRS-O4 DSRS-O5 DSRS-O6 

Before the 

test drive 

M 2.93 3.27 2.90 2.23 1.97 2.43 

SD 1.46 1.11 1.21 1.28 1.13 1.46 

After the 
test drive 

M 2.73 3.40 2.60 2.23 2.23 2.00 
SD 1.46 1.19 1.16 1.07 1.17 1.20 

 z -1.90 -1.27 -1.70 -0.04 -2.14 -2.41 

 p-value .058 .206 .089 .971 .033 .016 

Table 5. Which driver-state related adjustment would you accept most? - Place 1 

N = 30 DSRS-O1 DSRS-O2 DSRS-O3 DSRS-O4 DSRS-O5 DSRS-O6 

Before the test drive 16.7% 6.7% 10.0% 20.0% 20.0% 26.7% 

after the test drive 16.7% 6.7% 13.3% 20.0% 13.3% 30.0% 

Table 6. Which kind of DSRS-O do you believe is most effective (most reactivating)?  

- Place 1  

N = 30 DSRS-O1 DSRS-O2 DSRS-O3 DSRS-O4 DSRS-O5 DSRS-O6 

Before the test drive 23.3% 0.0% 20.0% 20.0% 6.7% 30.0% 

after the test drive 33.3% 3.3% 6.7% 10.0% 6.7% 40.0% 

System-based strategy 

The mean ratings of the different options of a system-based strategy before and after 

the test drive are presented in table 7.  

 

 

Figure 5. Subjective assessment of various options for a SBS (Mean±1𝑆𝐷) 

After the test drive, SBS-O4 (reduction in maximum speed) was given most support, 

followed by SBS-O1 (no further lane changes and a move to the slow lane). The 

Wilcoxon signed-rank test revealed no significant difference between the ratings 

before and after the test drive for the options of a SBS (adjusted significance level 
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p < .008). SBS-O1 was most widely accepted with 37.9% mentions before the test 

drive and 31.0% afterwards. After the test drive, support for SBS-O4 and SBS-O3 

(rest area) was the same. These results are presented in table 8. 

Table 7. Subjective assessment of various options for a system-based strategy 

N = 29  SBS-O1 SBS-O2 SBS-O3 SBS-O4 SBS-O5 SBS-O6 

Before the 

test drive 

M 2.14 2.93 2.38 1.97 3.41 4.79 

SD 1.27 1.19 1.29 1.05 1.45 0.41 

After the 
test drive 

M 2.21 3.34 2.55 2.17 3.45 4.72 
SD 1.18 1.23 1.33 1.14 1.33 0.59 

 Z -0.25 -1.96 -0.79 -1.26 -0.18 -0.63 

 p-value .799 .049 .431 .207 .858 .527 

Table 8. Which kind of system-based adjustment would you accept most? - Place 1 

N = 29 SBS-O1 SBS-O2 SBS-O3 SBS-O4 SBS-O5 SBS-O6 

Before the test drive 37.9% 10.3% 17.2% 20.7% 13.8% 0.0% 
after the test drive 31.0% 10.3% 24.1% 24.1% 10.3% 0.0% 

 

Discussion and limitations 

Of the driver-state related options, DSRS-O4 (upright seat position), DSRS-O5 

(interior lighting) and DSRS-O6 (targeted offer of non-driving related tasks) 

received the most support (see table 4). The differences between these options were 

small when subjects were asked whether they support or reject these adaptions. 

However, when asked which of these options one would accept most, DSRS-O6 was 

mentioned most frequently (30%) and rated to be the most effective by 40% of the 

sample. Based on these results, it can be concluded that offering non-driving related 

tasks in order to provide the automated driving system as longs as possible would be 

widely accepted. However, further research is needed in order to investigate various 

non-driving related tasks and the effectiveness of these in reality.  

On average, SBS-O4 (reduction of the maximum speed) obtained most support at 

the end of the test drive (see table 7). However, when asked which of the system-

based options would be most widely accepted, SBS-O1 (no further lane changes and 

a move to the slow lane) was selected more frequently (31.0 %) than SBS-O4 

(24.1%). SBS-O3 (rest area and break) was also mentioned by 24.1% of the sample. 

The options SBS-O5 (vehicle comes to a stop on the hard shoulder if the driver falls 

asleep) and SBS-O6 (vehicle comes to a stop on the current lane if the driver falls 

asleep) were rejected by the majority of participants. However, it needs to be 

considered that the different system-based options also represent different levels of 

escalation. The present results show that higher levels of escalation were rejected by 

the majority of the participants representing the user perspective. However, the 

evaluation may be dependend on the point of view. For instance, the perspective of 

other road users (e.g., driver of the following vehicle) may differ from the users’ 

perspective regarding the appropriate system-based option. Therefore, further 

research should focus on the comparison of the different perspectives. In case of 

contradicting evaluations system developers face a dilemma: on the one hand, they 

must develop systems that are safe and accepted by users, on the other hand, they 

must develop automated driving systems that are safe and accepted by other road 
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users. Consequently, a holisitic view is needed for developing safe and accepted 

systems. 

As the assessment of the driver-state related and system-based options were very 

similar before and after the test drive, it can be assumed that experiencing 

drowsiness did not essentially influence the subjective ratings of the different 

options.  

The drowsiness management concept developed presents a framework for managing 

driver drowsiness during an AD. However, it must be borne in mind that this 

concept expects the DMS to be able to assess the drowsiness level consistently and 

reliably. Hence, it is necessary to take the performance of a DMS into account 

because an incorrect timing of the different strategies could lower their 

effectiveness. Further research is needed to derive the requirements for driver 

monitoring systems and to identify the critical drowsiness level. In addition, it is 

necessary to investigate whether (and to what extent) this critical drowsiness level 

differs between drivers. 

Conclusion 

In this article, a drowsiness management concept illustrates the relationship between 

a driver’s drowsiness level and possible strategies to deal with it. Subjective 

assessments revealed that a specific offer of non-driving-related tasks has the 

potential to be an accepted driver-state related option. However, further research is 

needed to investigate various non-driving related tasks and their real effectiveness. 

In the case of a system-based strategy, a reduction in maximum speed, an adjustment 

of driving behaviour (no further lane changes and driving on the slow lane) or a rest 

at a service station were rated highest. In contrast, a minimum risk manoeuvre that 

would stop the vehicle on the emergency or ego lane was rejected by the majority of 

participants. These results demonstrate that from a users’ perspective higher levels 

of escalation should be avoided. However, the perspective of other road users still 

remains unclear. Therefore, it needs to be investigated whether and to what extent 

this perspective differs compared to the users’ perspective. Further, the idea of a 

preparation strategy, the drowsiness management concept developed and the safety 

outcomes regarding the take-over and the subsequent driver performance for the 

strategies derived need to be assessed.  
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Eye movements and verbal communication as indicators 

for the detection of system failures in a control room task  
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Germany 

  Abstract 

In modern control rooms, operators need to monitor visual information representing 

large technical systems. Operators usually monitor together in teams in order to 

detect abnormal system behaviour in time. It remains an open question which 

performance indicators are valuable for assessing a team member’s capabilities of 

detecting abnormal system behaviour. The present study investigates the value of 

monitoring behaviour and communication behaviour for predicting the performance 

results of subjects attempting to detect system failures while executing a control 

room task. A simulation of a generic control room was implemented in order to 

enable synchronized measurement of monitoring processes in teams. The monitoring 

behaviour was measured by tracking the eye movements of the team members while 

they were monitoring for system failures. Simultaneously, the communication 

behaviour between team members was recorded. Eye-tracking data and 

communication data were analysed including the interaction with team members’ 

performance in detecting system failures in time. Data from 21 three-member teams 

indicate that there are significant differences in communication and to some extent 

in eye-movement, between operators who detect system failures in time and those 

who fail to do so. The findings are discussed in the context of personnel selection 

and training team members in control rooms. 

  Introduction 

This paper presents an eye-tracking study that investigates the monitoring and 

communication behaviour of operators while collaboratively supervising the 

dynamic processes of a control room simulation. In this study, monitoring behaviour 

was measured using eye tracking. By tracking the operator’s eye movements, the 

visual attention processes while gathering relevant information as well as detecting 

abnormal system behaviour could be visualized. Furthermore, recording verbal 

communication behaviour between team members makes it possible to indicate the 

coordinative processes while monitoring together. By specifically investigating how 

monitoring and communication behaviour can be used to predict the performance of 

operators attempting to detect system failures, the goal is to provide initial 

indications for selecting and training operators in control room teams. 
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Collaborative monitoring in control room teams  

The control room is an example of a working environment where operators 

supervise complex and dynamic processes together. Control rooms can be found 

particularly in domains where safety is of critical importance, such as airport 

operational centers, air traffic control centers, nuclear power plant control and 

military control centers, where human error can have severe consequences (Hauland, 

2008; Salas et al. 2008). As monitoring is one of the core tasks in control rooms, 

teams of operators are required to monitor the system appropriately (Sharma et al., 

2016). In control rooms, not only is the individual situation awareness relevant, but 

also the situation awareness of the team. Through interactions, operators in a team 

can dynamically modify each other’s perceptual and active capabilities (Gorman et 

al., 2006). However, when monitoring a system, it is essential that team members 

work together effectively and cooperatively (Cooke et al., 2000; Salas et al., 2008). 

In order to coordinate their activities in such “centers of coordination,” not only do 

individuals have to be aware of their own situation, but they must also be aware of 

their team members’ situation (e.g. Suchman, 1997).   

The importance of communication in control operations has been stressed by 

Carvalho et al. (2007). Communication as a “meta-teamwork process that enables 

the other processes” (Papenfuss, 2013, p. 319) provides indications for the 

coordinative activities while monitoring. Cooke et al. (2013) stressed that, especially 

in critical situations, “it is not only critical that teams correctly assess the state of the 

environment and take action, but how this is accomplished (p. 279)”. As a 

consequence, recording the quality and degree of a team’s communication provides 

insight into how the group deals with critical situations.  

  Measuring collaborative monitoring  

A variety of studies support the idea that eye movements offer an appropriate means 

for measuring the efficient and timely acquisition of visual information (e.g. Findlay 

& Gilchrist, 2003; Underwood et al., 2003; for an overview see Holmqvist et al., 

2011). Based on this research, eye movement parameters that reflect the human 

monitoring performance have been identified (Grasshoff et al., 2015; Hasse & 

Bruder, 2015). Bruder et al. (2014) investigated the link between these eye 

movement parameters and the monitoring behaviour of experts, compared the 

monitoring behaviour of experts with novices (Bruder et al., 2013), and used eye 

movements to research differences in monitoring behaviour resulting in detected 

automation failures and behaviour resulting in missed failures (Bruder & Hasse, 

2016).  

While the results of previous studies give valuable insight into eye movements 

during the process of monitoring individually, the present study focuses on 

collaborative monitoring behaviour in a team task.  In this context, monitoring 

behaviour leading accurate failure detection will be compared with monitoring 

behaviour that leads to missed failures. Additionally, the communication behaviour 

while monitoring will be taken into account. The following research questions will 

be addressed: What are valuable performance indicators in a team task with respect 
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to communication quality and monitoring behaviour that differentiate between 

accurate failure-detection and missed failures?  

Method 

An empirical study was undertaken requiring collaborative monitoring while 

performing a control room team task.    

Simulation of a generic control room  

In the present study, the simulation of a generic control room, called ConCenT 

(Generic Control Center Task Environment), was used to enable synchronized 

measurement of monitoring processes in teams (Schulze-Kissing & Bruder, 2016). 

ConCenT replicates different control room tasks by simulating the production 

processes of several technical facilities spread over three locations, which are 

supervised by a team of three human operators. It simulates four different tasks: 

monitoring the distributed production processes, reporting system deviations 

(failures), diagnosing the sources of deviations and remedying the deviating 

processes by deciding between two alternative choices. These four tasks have to be 

managed within a team of three operators. Since this paper presents findings 

concerning the monitoring task and the reporting task, these two tasks are described 

in more detail. Figure 1 shows a screenshot of the monitoring screen of ConCenT.  

 

Figure 1. Monitoring screen of ConCenT containing the displays of nine production facilities 

and three power stations, which are distributed over three locations 

In the monitoring and reporting task, each team member had to observe nine of 27 

gauges in total and three joint power station gauges with the objective of reporting 

deviations from standard processes within a time span of four seconds. Each of the 

27 gauges represented the production processes of a single production line. 

Deviations could be recognized when one of the black arrows, indicating the current 

value on each of the 27 gauges, exceeded or fell below the tolerance range (marked 

green). Before a deviation occurred, a specific constellation of production processes 

indicated this kind of critical situation. Critical situations could only be identified 

when the distributed information on the production processes was communicated 
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between team members. As a consequence, the team was able to anticipate 

deviations in the production. Sharing all relevant information on the production 

processes therefore helped identify critical situations and anticipate as well as helped 

report any system deviations.  

Eye tracking system 

Each participant was seated in front of a 24-inch LCD computer display at a distance 

of approximately 60 cm. Eye movements were recorded remotely by using the Eye 

Follower System manufactured by LC Technologies, Inc. The system operated at 

120 Hz and was combined with the simulation tool ConCenT to ensure that both 

systems used the same timestamp. The fixation-detection algorithm was set with a 

minimum sample for fixation detection of six gazes on a particular screen point – 

within the deviation threshold of 25 pixels.  

Sample  

The study was conducted with a sample size of N = 63. Of this total, 41 individuals 

were applicants for air traffic control training (ATC) at DFS (German Air Traffic 

Control), while the remaining 22 individuals were students and graduates from 

different universities. All participants were between 18 and 34 years old (M = 21.57, 

SD = 3.39) and 47.6% were female (52.4% male). ATC participants were recruited 

with a personal call from DLR (German Aerospace Center), Hamburg, and 

compensated €25 for their participation in the 2.5hrs experiment. Students were 

recruited via social media and with flyers posted on the campus of the University of 

Hamburg.  

Procedure 

The three participants in each team performed the experiment at the same time, each 

with a separate computer and eye tracking system. A room divider was installed 

between the participants to prevent direct communication and eye contact. Written 

instructions introduced participants to their general tasks as operators working in a 

control center, and explained their specific responsibilities while monitoring the 

system, diagnosing errors and solving problems. Following this, each team was 

guided through a practice scenario that lasted about ten minutes. Throughout the 

practice scenario, participants familiarized themselves with how to anticipate, detect 

and report deviations from standard processes in time. After the practice scenario, 

participants confirmed their understanding of the monitoring procedure and the other 

required tasks. The test scenario began with the ramp-up of the gauges and ended 

after 72 minutes. A manipulation check was done, and participants were required to 

complete a questionnaire regarding their attitudes towards teamwork. Finally, 

participants were asked to give their impressions of the study. 

Design and measurements 

The present study investigates the relationship between team members monitoring as 

well as communication behaviour and their capabilities of detecting system 

deviations. The dependent variables included the monitoring behaviour (tracking eye 

movements) and the quality of communication. The quasi-independent variable was 
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the performance level (deviation reported successfully vs. deviation missed). These 

two groups (cases of successful detection of deviations and cases of missed 

deviations) were created post-hoc. A deviation was successfully reported if a 

participant clicked on the button “Diagnose” next to the gauge within the 

corresponding time frame (4s). Each of the six deviations could either be detected (= 

successful detection of deviation) or not detected (= missed).  

Measuring monitoring behaviour and communication quality 

Eye movements were recorded while monitoring the distributed production 

processes as well as reporting system deviations. Afterwards, they were 

synchronized with the logged simulation events before and during the occurrence of 

deviations. At first, twelve areas of interest were defined for each team partner (A, 

B, C): nine gauges for the production processes and three gauges for the power 

stations. For each of the six deviations in the test scenario, AOIs were predefined 

according to where an operator’s attention should be allocated within the interval 

before and while a deviation occurred. It was defined in advance, which gauges must 

be monitored to anticipate system deviations and this decision was based on the 

information necessary for detecting critical situations.  

Regarding the timely allocation of attention on relevant AOIs when detecting 

deviations, four successive monitoring phases were defined (1. identification phase, 

2. verification phase, 3. anticipation phase, 4. detection phase). Within each of these 

four monitoring phases, the team member had the opportunity to share their 

information in order to allocate their attention in an ideal way. In the first two 

phases, identification and verification, the team member had to share their 

information to find out whether or not there was a critical situation. In the third 

phase (anticipation), they had to anticipate the gauge where the deviation could 

happen. In the last phase (detection), the deviation could occur and had to be 

reported. The eye tracking parameters on the relevant AOIs were analysed for each 

monitoring phase, team partner and deviation. 

The relative fixation count (rfc) was calculated in terms of the predefined, relevant 

AOIs for each of the four monitoring phases. The rfc is defined as the ratio between 

the number of fixations on relevant AOIs and all fixations within a given time span. 
Relative parameters ranged from 0 to 1, with 0 indicating that no eye movements fell 

on predefined AOIs within a time period, and with 1 indicating that all eye 

movements fell on the predefined AOIs within that time period. 

During the test scenario, the verbal communication of each team member was 

recorded. An audio file logged the identities of each speaker, the content of the 

information exchanged, and the duration of this communication. Each audio file was 

analysed with respect to the necessary communication in all six intervals before a 

system deviation. This analysis provided the basis for determining the quality of 

communication. For each of the four monitoring phases, participants could score on 

a scale from 0 (no communication or wrong communication of necessary 

information) to 1 (right communication/no communication needed) in each of the 6 

intervals before a system deviation. 
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Results 

Data from 52 subjects were reported, each of whom experienced six deviations 

within the test scenario. Data were excluded from the reported results when a 

scenario was not completed due to technological problems (18.1%), if they failed the 

manipulation check the manipulation check was not passed (4.8%), and when eye 

movement data were missing or showed major inconsistencies (3.2%). For 

communication analyses, additional data were excluded when no communication 

was recorded by the system (14.8%). In sum, eye-tracking data, communication data 

and deviation-detection data from 212 deviations were included in the statistical 

analyses. On a scale from 0 to 6, an average of 4.33 (SD = 1.37) deviations were 

reported with an average response time of 2.17 seconds (SD = 0.56; see Table 1 for 

a detailed overview). 

Table 1. Descriptive performance data (N = 52)  

 Deviation detected Response time 

Deviation n % M SD 

1 25 48.1 2.79 0.74 

2 25 48.1 2.68 0.76 

3 44 84.6 1.95 0.70 

4 42 80.8 2.01 0.87 

5 42 80.8 2.00 0.67 

6 47 90.4 1.76 0.70 

All   2.17 0.56 

 

Looking at the eye tracking data, the attention allocation of the test subjects implies 

that in the case of successful detection of deviations, relevant AOIs were focused on 

more intensively if the deviation was detected successfully (see Figure 2, which 

shows the second deviation in the test scenario as an example).  

 
 

Figure 2. Comparison of attention allocation in a case of successful detection of deviation 

(left) and a missed deviation (right), illustrated by the eye tracking data (N = 52) during the 

anticipation phase of the second deviation in the test scenario (marked yellow) 

A variance analysis with repeated measurement was conducted to compare the main 

effects of monitoring phase and the interaction effect between monitoring phase and 

performance in detecting deviations on the relative fixation count. The factors 

PHASE (four levels: identification, verification, anticipation, detection) and 

DETECTION (two levels: detected, not detected) were defined and analysed. See 

Table 2 for descriptive data of the eye tracking parameter. Multivariate tests showed 
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a significant effect for PHASE [F (3, 240) = 5.038, p < .005; Wilk's λ =.94, partial ε² 

= .059]. It could be shown that subjects fixated relevant AOIs most frequently 

within the identification phase (1) and the verification phase (2). No significant 

effect of the interaction between PHASE and DETECTION [F (3, 240) = 2.297, p = 

.078; Wilk's λ =.97, partial ε² = .028] on eye tracking parameter was found. Post hoc 

tests indicated that accurate deviation detection is only related to a higher frequency 

of fixations on relevant AOIs during the anticipation phase [t(305)=-2.22, p<.05)]. 

Concerning the identification phase, verification phase and detection phase, 

differences between cases of accurate and missed deviation detection were not 

significant [p > .05]. The interaction of DETECTION and PHASE on relative 

fixation counts on relevant AOIs is shown in Figure 3 (left). 

Table 2. Descriptive data for the eye tracking parameter (relative fixation count) and 

communication quality parameter in the four monitoring phases (rows), separately for 

deviations detected and deviations NOT detected (columns). 

 Deviation detected  Deviation NOT detected 

 M SD M SD 

Relative fixation counts     

Identification (1) 0.47 0.25 0.51 0.20 

Verification (2) 0.48 0.26 0.44 0.28 

Anticipation (3) 0.45 0.23 0.37 0.19 

Detection (4) 0.44 0.20 0.38 0.18 

Communication quality     

Identification (1) 0.99 0.11 0.86 0.38 

Verification (2) 0.47 0.50 0.31 0.47 

Anticipation (3) 0.74 0.44 0.55 0.50 

Detection (4) 0.15 0.36 0.25 0.44 

Following, a variance analysis with repeated measurement was conducted to 

compare the main effects of monitoring phase and the interaction effect between 

monitoring phase and performance in detecting deviations on communication 

quality. The factors PHASE (four levels: identification, verification, anticipation, 

detection) and DETECTION (two levels: detected, not detected) were defined and 

analysed. See Table 2 for descriptive data of the communication quality. 

Multivariate tests showed a significant effect for PHASE [F (3, 320) = 336.142, p < 

.001; Wilk's λ =.24, partial ε² = .759]. It could be shown that subjects communicated 

accurate information most frequently during the identification phase (1) and 

anticipation phase (3). The interaction between PHASE and DETECTION [F (3, 

320) = 5.457, p < .005; Wilk's λ =.95, partial ε² = .049] on communication quality 

was found. Post hoc tests showed that accurate deviation detection is related to 

higher communication quality during the identification phase [t(98.11)=-3.20, 

p<.05)], verification phase [t(182.43)=-2.42, p<.05)] and anticipation phase 

[t(152.92)=-3.61, p<.05)], but not during the detection phase [p > .05]. The 

interaction of DETECTION and PHASE on communication quality is shown in 

Figure 3 (right). 
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Figure 3. Interaction effects of detection * time unit (estimated mean values) on the 

communication quality as the relative frequency of correctly communicated information (left) 

and on the relative fixation counts on relevant AOI (right)  

Discussion and further research 

The present study investigated the role of monitoring behaviour and communication 

behaviour as performance predictors for the detection of failures (=deviations) in a 

control room team task. To the subjects were given the task of monitoring dynamic 

processes in a team of three operators with the objective of anticipating and 

detecting deviations from standard processes by communicating relevant 

information adequately. To summarize the results, data from 21 three-member teams 

indicate that there are significant differences in communication and to some extent 

in eye-movement, between operators who detect system deviations in time and those 

who miss the deviations. This is shown by the fact that successful failure detection is 

related to a higher frequency of communication and focusing attention on relevant 

information during the anticipation phase.  

Comparing the predictive value of communication quality and monitoring 

behaviour, the relationship between the frequency of monitoring relevant 

information and the detection of system deviations is clearly weaker than the 

relationship between the frequency of communicating relevant information and the 

detection of system deviations. However, in the case of successful failure detection, 

relevant information is monitored more frequently shortly before the deviation 

occurs when the automation failure should be anticipated. This is quite 

understandable, because monitoring relevant information within the anticipation 

phase is only possible if the subject has identified the critical production system 

together with the team partners, thus leading to successful detection of system 

deviations in time.  

Contrary to prior expectations, no substantial relationship between successful 

deviation detection and monitoring behaviour within the identification phase, 

information phase and detection phase was found. Besides this, the effect sizes on 

eye tracking parameters are small. These may be due to the fact that technical 

problems lead to losses of eye tracking data, but also to certain methodological 

shortcomings of predicting deviation detection by means of the eye movements of 

human operators. Further research will improve the reliability of eye-movement 
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indicators by adjusting the definition of information that is relevant for detecting 

deviations.  

With respect to communication behaviour, the differences between detected and 

missed automation failures were highest when the system deviation could be 

verified, which happened in the second monitoring phase. This result implies that 

successful failure detection is highly related to adequate communication of relevant 

information at the beginning of an upcoming situation. A deviation can only be 

detected in time if the team members communicate the relevant information and 

identify the critical production system together with the team partners.  

Predicting the detection of system failures in a team task within a dynamic setting 

using eye tracking and communication quality is an innovative strategy that enables 

the development of new approaches for personnel selection and training. Learning 

from the differences in monitoring and communication behaviour between 

successful and unsuccessful failure detection will be helpful in selecting successful 

trainees and providing them with appropriate training. Especially the monitoring and 

communication patterns related to successful detection may be useful in order to 

give trainees direct feedback on their own monitoring behaviour or to demonstrate 

“correct” monitoring behaviour.  

Further research is replicating this study with a larger sample of 48 teams and prior 

technical problems are being reduced, which will lead to a significant gain in the 

volume of data. In contrast to the study reported here, in further research the effect 

of team coordination within a monitoring task is systematically investigated by 

comparing the monitoring behaviour of communicating teams to a control condition 

where all channels for oral communication are blocked.  
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  Abstract 

In the future, raising automation levels in vehicles is an imaginable scenario. 

However, there will be situations, which cannot be handled by the automation and 

the driver should take-over the driving task within a specific time budget. With a 

level 3 system (according to SAE), the driver no longer has to monitor the driving 

environment and, therefore, could perform other non-driving related tasks; 

consequently, leading to lower situation awareness (SA) and possibly worse take-

over performance. In this paper, two versions of new visual advanced driving 

assistance systems are presented, which display subliminal information about the 

system states and confidence levels of the automation system. The goal is to increase 

the SA during automation and improve the take-over quality while allowing the 

driver to perform secondary tasks without distraction and annoyance. In this mixed 

design experiment, 32 participants performed a visual-motor task on a smartphone 

under 20 min automated driving with either one or another version of the new 

advanced driver-assistance systems (ADAS). Relative to baseline, the results 

showed some trends to significant improvements in the take-over quality and eyes 

on road time, especially for young or inexperienced drivers. The reported systems 

are currently in the process of being patented. 

  Introduction 

Highly automated driving is currently one of the most discussed innovative topics 

and likely to become a series product within the next few decades (Gold, 2016). The 

development of driver assistance systems was based on the premise that the driver is 

continuously in the control loop supported by technical systems to conduct the 

driving task, which corresponds to level 1 and level 2. From level 3 automation 

(SAE) on, the driver does not have to monitor the vehicle while driving constantly 

(SAE J3016, 2016), which means the driver can conduct non-driving related tasks 

and be out of the control loop. Non-driving related tasks (NDRT) are for example 

eating, texting, talking, relaxing and so on (Pfleging, Rang, & Broy, 2016), which 

may lead the driver to divert attention from the driving scenery. This out-of-loop 

scenario may cause loss of awareness of the state and processes of the system 

(Endsley, 1995).  
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However, level 3 automation systems require the driver to react appropriately if the 

systems request this when reaching their system limit (SAE J3016, 2016), so called 

“take-over request” (TOR). Since situation awareness (SA) is critical to effective 

decision making and human performance in dynamic systems (Endsley, 1993), it is 

reasonable to help the driver’s mental model of the current system states and traffic 

situation to be updated, in other words, gain a higher SA, which supports an 

appropriate reaction in this time restricted situation. 

  Situation Awareness 

Situation Awareness is a critical research theme in many domains, which involves 

human performance in dynamic or complex systems. It is widespread and exists in 

the military, air traffic, automobile driving and many more. There is no absolute 

definition and model of SA yet. Three different definitions and their associated 

theoretical perspectives dominate (Stanton & Young, 2000): 

1) Three-level model (Endsley, 1995) 

2) Perceptual cycle model (Smith & Hancock, 1994) 

3) Activity theory model (Bedny & Meister, 1999) 

The main difference lies in whether the SA refers to the process employed or to the 

product derived as a result of this process. The three-level model from Endsley 

comprised of three hierarchical levels describes SA as a product (Endsley, 1995). On 

the other hand, Smith and Hancock (1994) suggest the perceptual cycle model and 

define SA as adaptive, externally directed consciousness, which defines SA as a 

generative process of knowledge creation and informed action taking, not a snapshot 

of the agent's current mental model. Bedny and Meister proposed that SA is part of 

cognitive activity that is intensely dynamic (Bedny & Meister, 1999).  

  Measurement of SA 

Salmon, Stanton, Walker, and Jenkins (2009) listed several SA measurement 

methods: SA requirements analysis, freeze probe technique, real-time probe 

technique, self-rating technique, observer-rating techniques, performance measures 

(direct / indirect), process indices (eye tracking), team SA measurefas.  

Performance measures allow an indirect assessment of SA, which may be hits, crash 

avoidance during a simulated driving task or detection of hazardous events 

(Gugerty, 1997). Those measures are simple to obtain and are non-intrusive as they 

are generated through the natural flow of the task. It may be that efficient 

performance is achieved despite an inadequate level of SA, or that deficient 

performance is achieved regardless of a high level of SA. This has to be taken into 

account (P. Salmon, Stanton, Walker, & Green, 2006). Process indices involve 

recording the process in order to develop SA during the task under analysis, e.g. eye 

movement during task performance (Smolensky, 1993). The data can be used to 

assess which situational elements the participant fixated upon during task 

performance, and has been extensively used in SA assessment exercises (P. Salmon 

et al., 2006). The use of an eye-tracking device in the field is difficult but 

recommended for simulator studies. However, the disadvantage of “look but do not 
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see” phenomenon should be considered (Brown & Great Britain. Department for 

Transport., 2005) 

  Goal 

In the experimental study, different countermeasures to the loss of SA were 

developed, implemented and evaluated. The stimulation used should raise the SA of 

the driver to a certain level, which ensures a better take-over performance (red 

arrows in Figure 1). The stimulation should carry certain information to the drive, 

but it should not be a warning and not be annoying. The scenario is a level 3 

automation (SAE J3016, 2016), which is defined as conditional automation. 

 

Figure 1. SA drops during automated driving and the stimuli should help the driver have 

higher SA (modified from Toyota Motor Europe NV/SA) 

  Method 

  Stimuli Design 

Visual, auditory, tactile, and haptic stimuli are applied to interactions between 

human and machine (Schenk & Rigoll, 2010).  

To rate the suitability of a specific modality of a stimulus in the vehicle, Hoffmann 

and Gayko (2012) used the following categories: “content of information”, 

“coverage rate”, and “forgiveness rate”. In this work, a heuristic approach with 

various additional categories was conducted with two ergonomic experts. In addition 

to those mentioned above, the following categories are introduced concerning the 

usage and design purpose of the stimuli. These factors are the “perceptibility”, 

“interpretability”, “limitability”, “interference potential”, and “localisability”. Table 

1 shows the evaluation result. 
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Table 1. Heuristic evaluation of modalities of a stimulus 

 

As evaluated in the Table 1, the visual channel can display very detailed and various 

information at once. It can be modified in many ways like varied colours, sizes or 

brightness, therefore “content of information” is [++]. The coverage is good overall 

but the visual capacity or visual attention might be limited by one or another 

scenario, therefore “coverage rate” is [+]. False alarms are quite forgivable because 

they are not as intrusive as other modalities. On the other hand, most visual stimuli 

can even be seen on the periphery and will be perceived, therefore “forgiveness rate” 

is [o]. The relevance or significance of information displayed can be perceived in 

most ways; in some use cases, the periphery would be ignored though, therefore 

“perceptibility” [+]. Since visual stimuli are modifiable in a lot of ways (format, 

brightness, colour, animation, etc), it can be designed with a very high 

interpretability, therefore “interpretability” is [++]. The period (time) as well as the 

area (space) of the stimuli can be designed very precisely with clear boundary, 

therefore “limitability” is [++]. The driver can decide to look or not or even ignore 

the given stimuli. Still, he/she will be peripherally stimulated in most cases by one 

or more visual stimuli, therefore “interference potential” is [+]. The feedback 

pointing at a specific scenario can be directly linked to events outside well in most 

cases. Still, the position of stimuli influences and limits its localisability, therefore 

“localisability” is [+]. As a result, visual stimulus is the suitable balance between 

information carrier and subliminal stimuli. 

Furthermore in the literature, visual stimuli have some advantages over other 

modalities: the foveal perception (driving scene for the driver) will not be restricted 
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by the stimuli in the periphery (Posner, 1980; Wickens, 2008). Visual perception in 

the periphery does not need direct transition of attention (Maier, Kathrin ; Sacher, 

Heike ; Hellbrück, Jürgen ; Meurle, Jürgen ; Widmann, 2011), which is on the 

primary task. Information can be transmitted without an explicit concentration on 

the stimuli (Utesch, 2015). Ambient light can catch the user's attention and raise 

awareness for an upcoming event unobtrusively (Müller, Kazakova, Pielot, Heuten, 

& Boll, 2013). Additionally, visual stimuli can be ignored on request so that the 

stimuli could not be annoying. As a result, visual stimuli have been chosen 

considering the requirements of raising the SA and not being annoying. 

In this work, as a visual stimulus, an LED bar at the bottom of the windscreen is 

chosen and implemented from the bottom of the left A-pillar to the bottom of the 

right A-pillar of the static driving simulator (Figure 2). The 0.15 Hz pulse is defined 

as the basic pulse, which should generate a calm and natual felling and corresponds 

to the frequency of the calm, natual human respiratory (9 times/minute) (Lehrer, 

Vaschillo, & Vaschillo, 2000). 

There are three different configurations of the stimuli:  

 1) Pulse Only (PO): the frequency of the pulse is 0.15 Hz, the colour is white. 

(Figure 2) 

 2) Pulse Event (PE): the frequency and colour of the pulse depends on the 

confidence level of the automation system. When the system is at its:  

a. …high confidence level: the pulse is 0.15 Hz in white. (Figure 2) 

b. …medium confidence level: the pulse is 0.50 Hz in white. (Figure 2) 

c. …low confidence level: the pulse 0.50 Hz in blue. (Figure 3) 

 3) Take-over Request (TOR): the frequency of the pulse is 1 Hz, the colour is 

red. (Figure 4) 

 

Figure 2. White pulse, 0.15 Hz or 0.5 Hz 
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Figure 3. Blue pulse, 0.5 Hz 

 

Figure 4. Red pulse, 1 Hz 

  Hypothesis  

The visual stimuli  

1) …will be accepted by the participants in terms of modality, position, colour 

and frequency.  

2) …will improve the reaction time (RT) after a take-over request. 

3) …will increase the minimal time to collision (TTCmin) to a dangerous 

obstacle. 

4) …will improve the manual driving directly after the take-over. 

5) …will enhance the SA by increasing the eyes on road time/frequency. 

  Experimental Set-ups 

To examine the hypothesis, a mixture within-between experiment was conducted. 

Two configurations of the stimuli are the between factors and the within factors are 

with stimuli or the baseline without stimuli. The sequences of all variance were all 

counterbalanced (Table 2).  

Table 2. Experimental Design and counterbalancing  

 

(n=16) Baseline Pulse Only

(n=16) Baseline Pulse Event
Between     

Within  
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The experiment was conducted in the static driving simulator consisting of a 

complete vehicle mock-up. Seven projectors provided a front view of about 180 

degrees as well as the views of all mirrors. The simulation software SILAB from 

WIVW (Würzburger Institut für Verkehrswissenschaften GmbH) was used to create 

the driving environment. The SILAB logs all relevant driving parameters and allows 

the LED-strip as well as the Dikablis 2 eye-tracking system to be controlled. 

 

Figure 5. Static driving simulator 

  Tracks 

To minimalise the learning effect, two different tracks and TOR scenarios were 

built. On the other hand, parameters like traffic density, time budget of the TOR and 

possible take-over manoeuvre are kept identical to ensure the comparability. Both 

tracks are 16 minutes long, the automation takes around 15 minutes. The route 

consisted of three parts (Figure 6). “Boring scenarios” simulates a monotony drive 

with occasional overtaking traffic as well as one overtaking scenario of the ego-

vehicle. The second part has higher traffic density including manoeuvres around 

mobile construction vehicles. The third part contained a take-over scenario caused 

by system boundaries, in which the first hint of the danger appears when Time To 

Collision (TTC) is 7s while the TOR occurs with two-beep tone when TTC = 6s and 

the entire danger shows up.  

 

 

Figure 6. Test tracks with 3 parts and a TOR scenario 
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  Non-Driving Related Tasks (NDRTs) 

Pfleging et al. (2016) identified several NDRTs that people will conduct in 

transportation. Apart from those, standard NDRTs are considered in this work 

concerning their controllability, reproducibility and clear separation of necessary 

modal resource. Table 3 shows the summary of some standard NDRTs and their 

characteristics.   

Table 3. Analysis of standardised NDRTs 

 
 

The Surrogate Reference Task (SURT) (ISO/TS 14198, 2012) is a visual-motoric, 

user-paced task with various levels of difficulty, which was chosen in this 

experiment to simulate the daily smartphone usage. The participants should report 

an unusual item (target) in an array of similar items (distractor), usually an array of 

symbols, forms, colours or words. The similarity, which can be manipulated, 

influences the time for the participants to react. The more similar the distractors are 

to the target, the longer the reaction time is mostly. For the participant to be able to 

select the target, the display is divided into evenly distributed vertically arranged 

rectangular areas. The target is placed in one of those areas (ISO/TS 14198, 2012). 

This simulates a common use case of using a cell phone. To encourage participants 

to engage in the NDRT instead of monitoring automation, a real-time scoring bar 

was implemented on the screen, which shows the current performance of the user.  

  Measurements 

Regarding the analysis of the SA measurement earlier, in this driving simulator 

study, performance and eye-tracking are evaluated as well as the acceptance of the 

subjects through questionnaires. The evaluation metrics include eye-tracking data 

before take-over scenarios, take-over time (Reaction Time (RT)), take-over quality, 

which consists of minimal Time To Collision (TTCmin) and Standard Deviation of 

Lateral Position (SDLP).  

Visual Motoric Acoustic Haptic Verbal Cognitive User System

SuRT X X         X  

CTT X X           X

n-Back-Task     X     X X   X

20-Questions Task     X     X X  X  

Shape-sorter ball   X       X X  

DRT (Visual) X X       X   X

DRT (Haptic)   X   X   X   X

DRT (Acoustic)   X X     X   X

Pointing Task X X X         X

Counting/Calculating X   X   X X X X

Cognitive Task X   X   X X   X

Modality Paced
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  Results 

The total number of participants in the study is 35. Because of technical problems 

during the experiment, there are 32 data sets available. As for eye tracking, due to 

technical failures on marker recognition, camera focusing and pupil detection, only 

22 out of the 32 data sets could be analysed. There is no statistical significance (α = 

0.05) found in terms of TOR performance and eyes on road time (EoRT), since most 

participants had already performed very well. Nevertheless, in case of 0.5 < p < 0.1, 

tendency to significance is reported. 

Participant statistics 

There were 7 female and 25 male participants. Average age was 25.63 years (SD = 

4.43). All participants had a valid driving licence, mean = 8 years (SD = 4.10). 56% 

of them had already taken part in an experiment with a driving simulator, 22% even 

multiple times. 44% of the participants drove maximum 5,000 kilometres per year. 

25% had between 5,000 and 10,000 kilometres; 22% between 10,000 and 20,000 

kilometres. 60% had advanced or expert level knowledge of HAD/ADAS.  

Driving Performance 

  Reaction Time (RT) 

The reaction time is defined as the period, which starts from the TOR and ends with 

the first conscious engagement of the driver. Conscious engagement is present when 

the steering is turned (left or right) more than 2 degrees or the brake pedal is pushed 

over 10 % of its maximum. 

Comparing the mean RT of the baseline groups with both stimuli groups combined. 

No significant difference was found (p = 0.2). However, there is a descriptive 

smaller mean and smaller SD, which suggests a lower variance (Figure 7 left). 

Generally, most participants performed already very well in terms of reaction time 

(around 2 seconds) in the baseline. 

The mean RT of the PO group showed a tendency to be significantly faster than its 

baseline (p=0.095). Additionally, the standard deviation is smaller. For the PE 

group, no significant difference was found (p=0.98) (Figure 7 right). Furthermore, 

PO helped 3 out of 4 “worst performers” (25
th

 percentile) to get better, furthermore 

PE helped all the “worst performers” to improve their RT.   
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Figure 7. Comparison of RT. Left: PO and PE combined as LED; right: PO and PE groups 1 

In addition, six sub-groups are built according to the participants’ self-reported 

characteristics of themselves to compare the RT:  

1) LED noticed or not: whether they have noticed the changing pattern of the 

Stimuli;  

2) Driving simulator experience; 

3) Drive experience; 

4) Age; 

5) Practical experience with Active Cruise Control (ACC)/ Lane Change 

Assistance (LCA); 

6) Knowledge about ADAS/ Highly Automated Driving (HAD).  

Because of the small number of subgroups, only the combined stimuli (PO+PE) are 

compared with the combined baseline. The stimuli showed a clear positive effect 

(less RT) for those participants: 

1) …who have not actively noticed the stimuli. They also had a lower eyes on 

road time (EoRT), which means the stimuli had positively affected them in a 

subliminal way.  

2) …who are younger (16-25 years old) and have less driving experiences 

(<5,000km/year). 

Additionally, some small positive effects were found for participants with less 

simulator experience and no practical experience or knowledge about ADAS and 

HAD. 

  Minimal Time To Collision 

The minimal time to collision is defined as the minimum value of all the TTC values 

within the measured time interval, for each time frame of measurement: 

                                                           

1 All error bars in the diagram in this work are standard deviations. 
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𝑇𝑇𝐶 =
𝒗𝒆𝒈𝒐 − 𝒗𝒐𝒃𝒔𝒕𝒂𝒄𝒍𝒆

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑡𝑜 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒
  (𝑤ℎ𝑒𝑛 𝒗𝒆𝒈𝒐 > 𝒗𝒐𝒃𝒔𝒕𝒂𝒄𝒍𝒆) 

In cases of vego ≤vobstacle, TTC = ∞. Having a lower minimal TTC complies with a 

bad take-over performance (higher danger). 

In this work, the measurement interval starts from the TOR until the last moment 

when the centre of the car crosses the lane mark, if there is a lane-change 

manoeuvre, which is demonstrated as the red arch in Figure 8. 

 

Figure 8. Demonstration of the calculation of TTCmin  

Comparing the TTCmin performance of the combined baselines with both stimuli 

combined, no significant difference was found (p = 0.87) (Figure 9 left). For the 

same reason as the RT, participants could not improve much since with a TTCmin > 2 

s the performance is already very good and they are far from danger. 

For the specific analysis, TTCmin of the PO group showed no significant difference 

(p = 0.37) to the baseline, but a higher mean and a much smaller SD (Figure 9 right). 

Additionally, no significant difference for the PE group was found (p = 0.31), but a 

slightly lower mean with similar SD, which indicates even a negative effect of the 

PE stimuli. The explanation could be that participants reported that they 

misunderstood the stimuli as a warning system, which will warn them in any 

dangerous case, which may lead to over trust, and a delayed reaction to the danger, 

therefore smaller TTCmin. 

In the “best/worst performers” analysis, PO increased all TTCs to at least 2 s: “worst 

performer” (TTC < 2 s) all got better and passed the 2 s TTC mark. Some good 

performers got worse but only because they were already at a very good level (still > 

2 s TTC). PE helped the worst performing participants (TTC < 2 s) to get better or 

not worse. However, most good performing participants (TTC > 2 s in the baseline) 

got worse, one participant had below 1 s TTC and one crashed in the PE condition.  
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Figure 9. Comparison of TTCmin. Left: PO and PE combined as LED; right: PO and PE 

groups 

Like the subgroup analysis of the RT, the stimuli showed again a positive effect to 

TTCmin for: 

1) …those who have not actively noticed the stimuli (≈subliminal). 

2) …those who are younger (16-25 years old) and have less driving experiences 

(<5,000km/year). 

Additionally, some smaller positive effects were found for participants 

with less simulator experience and no practical experience or knowledge about 

ADAS and HAD. Slightly negative effects were found for participants with much 

driving experience and theoretical and practical knowledge of ADAS and HAD. 

This could be due to participants considering the PE (and PO) as a warning system, 

since they were familiar with many ADAS systems as they claimed. 

  Standard Deviation of Lateral Position (SDLP) 

SDLP, an index of ‘weaving’, is a stable measure of manual driving performance 

with high test–retest reliability (Verster & Roth, 2012). The lateral position in this 

work is a value of the distance d (Figure 10) between the centre of the ego vehicle 

and the middle of the driven lane. Since it’s not meaningful to calculate the SDLP 

when lane changing, the measurement intervals therefore start after the lane change 

process has finished, which is defined when the centre of the ego vehicle is at first 

closer to the middle of the 2
nd

 lane than 0.1 m. The measurement will last for 5 

seconds due to the length of an overtaking process. 



 improving driver’s situation awareness 41 

 

Figure 10. Demonstration of the calculation of SDLP 

In the SDLP analysis, n=17 because it includes only those who changed lane to the 

middle lane in both trials (for baseline and PO, n=7; for baseline and PE, n=10). 

Between the baseline and stimuli (PO/PE combined), there was no significant 

difference (p = 0.27) (Figure 11 left). Still, the descriptive mean of the SDLP with 

the stimuli is smaller and the SD is slightly smaller too (Figure 11 left). 

 

Figure 11 Comparison of SDLP. Left: PO and PE combined as LED; right: PO and PE 

groups.  

The PO condition showed a descriptive lower mean of SDLP with lower variance 

but no significance, which is similar to PE (Figure 11 right).   

Both stimuli conditions showed a tendency towards better manual driving directly 

after TOR but there is no significance due to the number of participants. 
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Eye-tracking 

As showed in Figure 12, three different Areas Of Interest (AOIs) were investigated:  

 

Figure 12. Demonstration of AOIs 

1) Blue area: road, driving scene. This is to check the eyes on road time 

(EoRT). 

2) Purple area: Tablet screen of NDRT: Sony Xperia Z Ultra, 6.4 inches tablet. 

This is to check how well they engaged in the NDRTs. 

3) Yellow area: left side mirror. This is to check the quality of the take-over 

manoeuvre, how well they check the left lane before changing lane. 

The first measurement interval starts from activation of the automation until the 

TOR (about 14 min). The second measurement interval starts from the TOR and 

lasts 10 seconds under the consideration of period including take-over manoeuvre 

and over-taking manoeuvre. The third measurement is the time until the first glance 

on the road after TOR. The recorded data are the following three: 

1) Total glance time in [%] or [sec] is defined as the sum of all time on a 

specific AOI. 

2) Mean glance duration in [sec] is the mean time of each glance on a specific 

AOI. 

3) Number of glances is the total number of glances on a specific AOI. 

Generally, 13 out of 22 participants’ percentage of EoRT increased to a meaningful 

level with LED, 5 of them did not change much. There are four participants that 

looked much less at the road with the LED, which had all the same LED conditions 

as the first trial, which may be probably due to a strong sequence effect. 

It is found that the participants looked more often and longer at the road in the 

second trial regardless of being with or without stimuli. Because of this “sequence 

effect”, only the eye tracking data from first trials of each participant will be 

investigated. 

In Figure 13 (left), there is a tendency to a significant longer “mean glance duration 

on the road” (p = 0.07). The total glance time on the road shows a higher mean but 
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no significant difference (Figure 13 (middle)), 3 participants as outlier (16.3%; 

22.3%; 31.4%) are out of consideration. Finally, the mean of the number of glances 

on the road increased as well but without significance (Figure 13 (right)), 1 

participant as an outlier (340) is out of consideration. These facts indicate with 

stimuli, participants tend to watch longer for each glance and longer in total and 

more often at the driving scene, which is a way to gain higher SA. 

 

Figure 13. Comparison eyes on road data in three aspects, PO and PE combined 

This is also supported in Figure 14, both stimuli (PO and PE) increased mean glance 

duration, as well as the total glance time and number of glance. 

 

Figure 14. Comparison eyes on road data in three aspects, PO and PE separated  
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In addition, novice (< 5,000 km / year) and young drivers (16-25) showed no change 

in glance patterns, seem not to be affected by the stimuli while experienced (both 

5,000-10,000 km and > 10,000 km groups) and older drivers (26-37) increased their 

mean glance duration on the road by using the stimuli and therefore they had a better 

chance to gain higher SA. That might because of the over-trust (in automation) of 

young and less experienced driver due to less expertise of dangerous situations. 

Furthermore, as expected, eye tracking data does not correlate well with driving 

performance. Participants with bad RT did not have lower EoRT than those who 

performed well. The “Look but not see” problem occurred. 

Subjective Evaluation 

A questionnaire after each experiment about the colour, position, frequency, and 

visual modality of the stimuli indicates that: 

1) Colour: 93.75% of participants rated white for the constant stimuli in the 

“automation mode” as (very) proper, 62.5% of participants are for the blue 

stimuli when events occur, finally 100% rated red very proper for the TOR. 

When alternatives were asked, it’s reported green could replace white, and 

yellow could be used instead of blue, because they understood the stimuli as a 

warning system, and therefore they were strongly influenced by the traffic light 

colour concept. 

2) Frequency: In the PO condition, 87.5% of participants rated the frequency of 

0.15 Hz for the white pulse at least as properly designed; 93.75% rated the 1 

Hz red pulse at least as proper. In the PE condition, 75% of participants rated 

the frequency of 0.15 Hz for the white pulse (high confidence) at least as 

properly designed; 68.75% are for the 0.5 Hz white pulse (medium 

confidence); 68.75% are for the 0.5 Hz blue pulse (low confidence); 100% 

rated 1 Hz of the red pulse (TOR) at least as proper.  

3) Modality: 94% prefer visual modality in such application. 

4) Position: 88% think that the applied position of stimuli (as Figure 3-5) is 

(very) proper.  

5) Acceptance: 75% of participants would wish to have such a system (PO as 

well as PE) in an automated vehicle. Reasons such as the system supports them 

to understand the situation; helps to build trust; allows passengers also to be 

aware of the system states regardless of the weak and ignorable intensity of the 

stimuli were mentioned for PO. Reasons such as the feedback of events helps 

build the trust, which would relieve the driver from the monitoring task, was 

mentioned. 

  Limitations 

Due to the small number of participants (n=32) and many test variances of concepts 

(baseline, PO and PE) on different conditions (track 1 and track 2), the results are 

not statistically significant. The stimuli itself could be regarded as warning system, 

but then too weak, too regular and too general as warning. Due to its position, the 

stimuli may not be perceived when the driver conducts NDRTs. The PO version 

might be perceived as monotonic and therefore be superfluous and useless. 
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  Conclusion 

There is no statistical significance in terms of TOR performance. However, the 

stimuli did help the worse drivers to shorten the gap. Specifically, the stimuli 

(PO+PE): 

1) ...had a high acceptance in terms of the modality, position, colour and 

frequency. 

2) ...helped bad performers to improve with the RT and increase the TTC. 

3) ...showed a positive effect (better RT and TTC) in this sample for 

participants who reported having not noticed the LED (≈ subliminal), having 

less simulator experience and no practical knowledge about ADAS and HAD 

compared with those who had. 

4) ...improved the manual driving directly after the take-over (SDLP).  

5) ...increased the mean glance duration, eyes on road time and number of 

glances. 

It seems that in this study the PO condition was slightly better than the PE one. This 

might be due to participants misinterpreting the stimuli as a warning system (and not 

a likelihood information), which might lead to over-trust. 

Overall, the stimuli showed a high potential to raise driver’s SA and to improve 

possible take-over performance without annoying the driver. Adding an additional 

modality such as auditory or haptic for a multi-modal approach might improve the 

performance even more. 
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  Abstract 

 

In a working context, conflicts between working safe and working fast can lead to 

deliberate violations of safety rules. Modern computer-human interfaces can create 

new opportunities to reduce these violations by influencing the user. Technologies 

deliberately used to influence attitudes and/or behaviour of users are called 

persuasive technologies and often make use of nudging strategies. In a randomized 

experiment, 90 participants had the task to collaborate with an industrial robot in a 

conflict between meeting the safety instructions and monetary incentives for 

working fast. An intervention group received emotional computer generated 

feedback on their safety behaviour, while a control group did not. Violations 

committed by the participant during and after the intervention were measured as 

well as intention towards the safety behaviour. Results show that participants 

receiving feedback on their behaviour committed only half as many violations as 

participants in the control group, a tendency that was also visible after the 

intervention ceased. Interestingly, subjective behaviour intention was nearly 

identical between the groups, which hint to a less deliberate form of behaviour 

impact of the feedback. Results suggest considering nudges as complementary 

action to promote safe behaviour at work besides giving information and penalising.  

 

  Introduction 

 

Concerning occupational safety and health, there is a gap between extensive 

knowledge about hazards, regulations to minimize these and their implementation in 

operational practice. One level, where safety regulations are to be applied, is the 

individual level, where the reasons for safety violations are divergent. 

Reason (2008) classifies “unsafe acts” in unintentional errors, like slips and 

mistakes, and intentional violations, which are based on a conscious decision to act 

against the regulation. These conscious deviations often pose an especially high risk, 

because they commonly form a habit and will most likely be repeated in every 

similar situation. 
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Modern man-machine systems, especially in the area of man-robot interaction, 

create an increasing degree of direct collaboration with interlocking working steps 

between user and machine. Therefore, on the one hand these interfaces evoke new 

demands for safe individual behaviour, while on the other hand they may have the 

potential to provide assistance by facilitating safe behaviour. 

The second aspect is especially true for those oriented to the technology vision of 

ambient intelligence, characterized by Aarts and De Buyter (2009) by the central 

features of context awareness, personalization, adaptive behaviour and anticipation. 

In a working environment, these systems are called adaptive work assisting systems 

(AWAS; Windel & Hartwig, 2012). These features possibly enable the system to 

reduce violations by (1) being aware of the behaviour of the user, (2) evaluating it 

autonomously regarding violations and (3) presenting evaluative feedback or 

reminder that change the user’s behaviour. Such computer interfaces, purposely 

designed to change the behaviour of the user, can be subsumed under the term 

persuasive technology (Fogg, 2002). 

Persuasive technology is a technology-based form of nudging. This concept by 

Thaler and Sunstein (2009) encompasses any form of choice architecture that 

changes the behaviour of a person in a predictable way without forcing choice or 

economic incentives. The concept relies on the assumption that human decision-

making is influenced by cognitive biases based on cognitive boundaries, routines 

and habits. Nudges use these mechanisms to influence decisions in an intended 

direction (Hansen, Skov, & Skov, 2016). 

In a predecessor study on work assistance systems (Hartwig & Windel, 2013), a 

manually triggered anthropomorphic agent was proved to be effective to influence 

user’s behaviour, using different emotional facial expressions. In the present study, 

the same virtual agent is implemented in a work assistance system to autonomously 

improve individual safety behaviour in a man-robot-collaboration setting. To gain 

insights into the best form of assistance, different types of persuasive strategies were 

applied: persuasive feedback that reacts to the participants’ behaviour and a 

persuasive reminder that occurs at the moment the target behaviour becomes 

relevant. Therefore, we first hypothisized these forms of persuasive interventions to 

reduce safety violations when working in a man-robot interaction simulation 

compared to a control group that receives no persuasive assistance. Furthermore, the 

study aims at identifying the psychological mechanisms of the intended behaviour 

changes by investigating attitude towards behaviour and subjective social norm 

concerning the safety behaviour as two key sources for behaviour decisions in the 

theory of planned behaviour (TPB; Ajzen, 1991). 

  Method 

The study sample included 90 participants, 45 men and 45 women. The participants 

were on average 24.5 (SD = 3.33, range 20-34 years) years old at the time of the 

investigation. All participants were students, recruited at nearby universities. In a 

randomized experiment the work task to assemble circuits in collaboration with an 

industrial robot was given to all participants. This task required the positioning of 

empty plug boards and the corresponding components in specific holders (Figure 1). 
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Afterwards, the participants started the robot, which autonomously connected the 

individual parts and then tested the assembled electric circuit for operability. This 

procedure was repeated 14 times, assembling one operational plug board each.  

The behaviour of the participants during the working phase of the robot was the 

primary dependent variable. All subjects were instructed to wait after starting the 

robot until it finished the assembling and the testing. Then the participants received 

a safety clearance message and are allowed to proceed with the next plug board. 

Figure 1. Participant placing the components. 

Working within the robots reach prior to the security clearance is recorded by a light 

barrier installed in the workplace and counted as a safety violation. The recording is 

done unnoticed by the participants. The instruction explains this working sequence 

as a necessary safety procedure to avoid collisions with the moving robot. In fact, 

the implemented work system is designed for direct collaboration with the user, so 

there is no actual threat, regardless of the participant’s behaviour. However, 

constituting a credible threat in the experimental setup is crucial to simulate a 

realistic decision for or against safety behaviour. To simulate the surrounding that 

often leads to safety violations in operational practice, a financial bonus of €10 for 

fast task completion is promised the participants. 

Since violating the waiting process and prematurely working on the subsequent 

board was speeding up the working task substantially, a conflict between profitable 

and safe behaviour was created, as it exists in operational practice as well. 

Participant’s safety behaviour as the primary dependent variable was measured by 

recording the number of plug boards on which safety violations were committed. 

Safety violations were operationalised as reaching into the work area of the robot 

before the safety clearance. This action was recorded automatically by a laser barrier 

installed in the experimental set-up. 

Participants were able to commit safety violations on all 14 plug boards at most. 

Furthermore, the variables "Attitude towards Behaviour" and “Perceived Social 

Norm” were measured as two of the deterministic antecedents for behaviour 

according to the TPB to gain first insights into the psychological mechanisms of 
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behaviour change. A questionnaire was created according to Ajzen’s (2002) 

guidelines, the wording of the items matching the specific behaviour. 

As independent variables, the participants received different interactive assistant 

systems that should animate them to wait for the safety clearance. The control group 

worked on the task without any assisting system. The group "Reminder" was 

reminded by an anthropomorphic virtual agent (see Figure 2) to wait for safety 

clearance each time they start the robot. In the group "Feedback" the same agent 

giving negative feedback was presented every time the participant worked prior to 

the security clearance of the active robot. In addition, positive feedback was 

presented to participants after the fourth and tenth plug board, if they had not 

committed any violation until that point. Positive Feedback was given by the same 

virtual agent, showing a friendly emotion, underlined by an affirmative text message 

“Very good! You complied with the safety clearance.” 

Figure 2. Anthropomorphic agent. 

  Results 

The first hypothesis assumed a difference in the number of safety 

violations/premature intrusions between the different experimental conditions. 

Figure 3 shows the mean number of boards in which safety violations were 

committed. The mean value in the “Feedback” condition was M = 2.69 (SD = 3.17), 

in the “Reminder” condition M = 4.71 (SD = 5.65) and in the “Control Group” M = 

4.91 (SD = 5.12) violations. The results of the one-factorial analysis of variance 

showed no significant differences between the number of boards with violations and 

the experimental groups F (2, 65) = 1.59 p > .05. Therefore, Hypothesis 1 was 

declined. 
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Figure 3. Number of violations in the different groups. Error bars reflect Standard Error of 

the mean. 

Hypothesis 2 investigated differences between the experimental groups concerning 

the attitude and perceived social norm towards the safety behaviour. The average 

attitude towards safety behaviour of the feedback group was M = 17.13 (SD = 4.19), 

of the reminder group M = 19.86 (SD = 3.84) and of the control group M = 16.96 

(SD = 4.42), see Figure 4.  

Figure 4. Average attitude and social norm towards safety behaviour. Error bars reflect 

Standard Error of the mean. 

With regard to social norm towards safety behaviour, average score of the feedback 

group was M = 11.22 (SD = 2.52), of the reminder group M = 11.19 (SD = 2.62) and 

of the control group M = 10.54 (SD = 2.12). 

To examine this hypothesis, two one-way analyses of variance were performed. The 

results show there was no significant difference between the three tested 

experimental groups with regard to the setting concerning attitude towards 

behaviour F (2, 65) = .04, p > .05 and concerning social norm F(2, 65) = .58, p > 

.05. Thus, hypothesis 2 showed no differences between the experimental groups 

regarding attitude towards safety behaviour or corresponding social norms. 
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  Discussion 

The presented experiment investigated the effects of different persuasive techniques 

on safety behaviour and subjective attitudes. The results show a substantially higher 

number of violations in the control group than in the two intervention groups where 

behaviour was assisted by different persuasive strategies. However, the statistical 

inference shows no significant result of the Anova concerning the safety violations, 

which indicates that the treatment had no effect on participant’s behaviour. This 

result is in contrast to a predecessor study (Hartwig & Windel, 2013) and therefore 

hints more at a failure of the experimental setup rather than an overall 

ineffectiveness of the persuasive strategies which were used in both studies. Finally, 

there is also a probability of an existing systematic difference between the groups 

that the anova failed to detect (2nd type error), which is here neglected for the 

benefit of conservative hypothesis testing.  

The different results of the two studies may partly be caused by the different test 

setting including a more realistic working task and the industrial robot. Looking at 

the absolute numbers, even the control group committed only a third of all possible 

safety violations, creating a ceiling effect. The low number of violations might be 

caused by the participants’ unfamiliarity with industrial robots, resulting in a quite 

cautious behaviour. This could have been counteracted by a more intense training or 

recruiting participants experienced in working with robots. This, however, was not 

possible without exposing the cover story, as even moderate expertise in working 

with collaborative robots would reveal that there was no real danger because of the 

robot’s integrated safety measures. Regarding future studies, the conflict between 

safe behaviour and the incentive for quick work should therefore be intensified by 

realistic conditions regarding the time constraints in everyday work, causing less 

cautious behaviour and more safety violations without the persuasive intervention.  

 

A surprising finding is the discrepancy between the subjective personal perceptions 

towards safety behaviour and the actual behaviour. The numerical lowest violations 

occur in the feedback group, while the most positive attitude towards the behaviour 

is measured in the reminder group. Our initial assumption was that the persuasive 

techniques would change the subjective attitude and social norm, which in turn leads 

to less safety violations, but the data show no indication for this causal chain. The 

psychological mechanisms remain unknown for the time; subsequent studies should 

therefore put great attention to the psychological mechanisms that cause the intended 

behaviour change. Only by understanding why persuasive technology works, it will 

be possible to identify potential applications and limits of persuasive assistance 

systems that may contribute in safer behaviour at work. 
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Abstract 

Several studies documented the detrimental effects of microgravity during 

spaceflight on human motor control (e.g., during aiming tasks). In addition to 

parabolic flight, water immersion has been used for simulating microgravity effects 

on earth. Until now, however, the validity of partial or full water immersion setups 

as test environments to explore effects on sensorimotor performance has not been 

tested. In the present paper, the results of three empirical studies were compared 

using the identical aiming task paradigm during forearm water immersion (N = 19), 

full body water immersion (N = 22), and during spaceflight (N = 3 astronauts). In 

line with prior research, slower aiming motion profiles were found during 

spaceflight (2 weeks in space) compared to the terrestrial experiments. Astronauts 

required substantially more time to approach target areas and for matching the 

targets precisely in space. Average motion speed and speed variance decreased 

significantly. Intriguingly, the same overall effect pattern was evident in both partial 

and full water immersion, although the effect sizes tended to be smaller. Altogether, 

results indicate that water immersion is a valid form of weightlessness simulation. 

However, effects solely present during spaceflight (such as vestibular dysfunction) 

additionally contribute to performance losses. 

  Introduction 

Until today, the human capabilities and skills are crucial and indispensable for the 

success of many space missions. Onboard the ISS, astronauts perform challenging 

tasks such as manual docking of spacecraft, or control of complex robotic systems 

including the Canadarm 2. Candidates undergo an extremely strict selection process, 

and are intensively prepared for reliable performance, even under the adverse 

conditions of space flight. In Earth orbit, the effect of the gravitational force no 

longer acts on the human body, as a centrifugal force is generated by the orbiting 

spacecraft leading to a state of microgravity. As one of the most demanding aspects 

of space flight, human physiology (including the vestibular, cardiovascular, 

musculoskeletal, and sensorimotor systems) has to adapt to the novel condition of 

weightlessness which usually takes up to six weeks (Kanas & Manzey, 2008). 

Astronauts therefore receive extensive trainings during parabolic flights or 

underwater exercises to prepare for sensorimotor tasks during space flight. These 

environments, simulating the conditions of space flight, are not only important for 
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astronaut training but also for scientific research on sensorimotor performance in 

weightlessness. During parabolic flight, the aircraft is in free fall condition for 20-

25s per parabola, causing short-term weightlessness. While under such conditions, 

space flight conditions can be achieved. Experiments are interrupted during each of 

the 30-60 parabolas by hypergravity (1.8g) and 1g episodes. Some subjects 

experience space motion sickness. In research on sensorimotor performance, water 

immersion studies have been conducted to simulate weightlessness by neutral 

buoyancy of the human body. Some key advantages include longer experimental 

periods, larger sample sizes, a higher control of experimental conditions and lower 

costs. However, the conditions substantially deviate from space flight conditions: 1) 

the gravitational force is unchanged (i.e., the vestibular system is not affected); 2) 

increased ambient pressure (e.g., 1.6 bar in 6m depth) leads to cognitive impairment 

in depths greater than 6m (e.g., Hancock & Milner, 1982); and 3) body motions are 

damped due to the dynamic viscosity of water. 

In the present paper, the validity of water immersion studies for simulating the 

effects of microgravity on the human sensorimotor system is explored. There is only 

anecdotal evidence in prior research on the effects of water immersion vs. 

microgravity. Wang and colleagues (2015) compared general wrist and trunk 

activities in full water immersion and parabolic flight and reported divergent activity 

patterns. Whiteside (1960) investigated the sensorimotor performance during an arm 

pointing task during in water immersion (up to the neck) vs. parabolic flight and 

reported different results for the two setups - based on data from one subject. In a 

prior study of the authors (Weber et al., 2016), the effects of full water immersion 

and space flight were investigated with a zero-order manual pursuit tracking task 

and documented similar degradations of tracking accuracy. Yet, the experimental 

setups were not identical (simulation vs. real telerobotic task) and only one astronaut 

participated in the space experiment.  

In the current series of studies, the impact of weightlessness during space flight, 

partial water immersion, and full body water immersion are compared using the 

same sensorimotor task. For the current experiments, an aiming task paradigm was 

chosen, as sensorimotor degradation for rapid, aimed motions has been reliably 

found in several empirical studies. Using a paper-and-pencil aiming task, Ross 

(1991) found at least a trend for longer movement times and significantly higher 

positional error during parabolic flight compared to 1g. Bock et al. (1992) also 

documented that subjects consistently overshot targets when performing aimed arm 

movements during parabolic flight. Crevecoeur et al. (2010) found that compared to 

normal gravity, motions slowed down during parabolic flight with lower peak 

velocities and higher movement durations during arm movements along the sagittal 

plane while holding a manipulandum. In the experiment of Newman and Lathan 

(1999), aiming performance was explored during an 8-day space mission with a 

joystick and a trackball as input devices. Compared to terrestrial performance, 

aiming times increased for both devices in microgravity. Results from three 

cosmonauts, performing pointing arm movements after 10, 140 and 172 days in 

space also revealed higher motion times, lower peak velocities and accelerations in 

all phases of the mission compared to the 1g baseline as reported by Berger et al. 

(1997). Similar kinematic changes during spaceflight (4-18 days in space) have been 
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documented by Sangals and his colleagues (1999) during a joystick controlled 

aiming task.  

There have been several explanatory approaches for the general slowing of aimed 

movements in microgravity: 1) a distortion of human proprioception due to the 

reduced muscle resting tone (no anti-gravity stabilization is required) and hence 

changed muscle spindle activity (Lackner & DiZio, 2000), 2) an underestimation of 

limb mass due to the absence of weight (but not mass), see Bock et al. 1996, and 3) 

inadequate internal movement models (e.g., Crevecoeur et al., 2010). 

Theoretically, all of the described mechanisms should be active during water 

immersion. The buoyant force counterbalances the gravitional force reducing the 

limb weight – in case of perfect balance – to zero. If the main mechanism behind the 

degradation of aiming performance is solely due to the weight change of the human 

limbs, it should also occur during partial immersion, with the respective limbs 

immersed in water. When controlling a hand-held joystick, for instance, multi-joint 

interactions involving the trunk, shoulder, upper and lower arm as well as the wrist 

occur. Berger et al. (1997) hypothesized that the slowing effect may be due to the 

attempt to reduce reaction forces on the trunk, which is difficult to stabilize in 

weightlessness. Provided that multi-joint and multi-limb destabilization additionally 

contributes to the reported overall effect, larger performance decreases should be 

observed during full body immersion compared to partial immersion. Researchers 

also suggested that the impairment of the vestibular system could play a crucial role 

for sensorimotor degradation in space (e.g., Mierau et al., 2008). Then, additional 

performance losses should be evident during space flight compared to water 

immersion. These assumptions are tested in a forearm vs. full body water immersion 

vs. space experiment with the same aiming task paradigm.      

Methods 

  Study 1: Forearm water immersion 

Sample. In the first study, N = 19 naïve subjects (4 females, 15 males; 1 left-, 18 

right-handers) with an average age of M = 23.1 (S.D. = 1.16) years participated.  

Apparatus. An underwater qualified joystick (2 axes, max. workspace of ± 20° each 

axis) with a padded armrest and an elbow strap was positioned in a 50x70 cm basin 

(see Figure 1). For all of the following studies, all GUI positions could be reached 

with max. deflections of ± 8 degrees on both axes (resulting in 2 cm motions at the 

upper joystick end). Thus, anterior/posterior motions could be performed without 

any (bio-)mechanical restrictions (wrist deflection, elbow motion on armrest). Please 

note that the hydrodynamic drag is about 15.8 g during aiming motions in the 

transversal plane (estimated with a CDA value of 0.36, see Goldstein, 1969, and an 

average arm speed of 3 cm/ sec, 6 cm/sec at the hand and 0 at the elbow). The elbow 

strap was designed and attached in a way that allowed unrestricted movement, but 

also guaranteed a similar arm position for all subjects. The software ran on a real-

time PC with a sampling rate of 50 Hz for data recording. The experimental GUI 

had the size of 20.6 x 17.7 cm for all experiments, displayed here on a 17” LCD 

monitor.  
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Figure 1. Underwater joystick, experimental setup, and experimental GUI. 

Experimental task and design. On the experimental screen, crosshairs with black 

lines were shown on a grey background. Subjects had to move the circular cursor to 

the starting point at the centre of the crosshairs. Upon reaching the centre, the 

starting position had to be held for 2 sec, until the aiming task was started. There 

were four different target ring positions at the intersection points between the black 

circle and the vertical and horizontal axes (see Figure 1). The centre of the ring had 

to be matched as quickly as possible and held for 0.5 sec. Then, subjects had to 

move back to the start position, whereby the next aiming task was started. The order 

of the four target positions was randomly chosen. Each subject performed the 

experiment in filled (22° C water temperature) vs. empty basin, while the order of 

both conditions was counterbalanced across subjects.  

Procedure. Subjects were seated at the water basin with a 70 cm distance to the 

monitor, positioned their right arm on the joystick armrest, attached the elbow strap 

and grasped the joystick. Subjects were instructed about the experimental task and 

procedure online. In the “Water” condition the complete joystick and the subjects’ 

right forearms were fully immersed in the water. In the “Dry” condition the same 

setup was used in the empty basin. The two conditions were performed on different 

days, with a maximum interval of 8 days between both sessions. In each session, 

subjects performed a training trial with four aiming tasks prior to the main 

experiment. Subjects wore ear protectors to avoid any acoustical disturbances during 

the experiment. After completing an experimental condition, participants rated the 

physical effort during the experimental task (“How physically demanding was the 

last task?”; 20-point Likert scale ranging from “very low” (1) to “very high” (20), 

adapted from the NASA-TLX questionnaire; Hart & Staveland, 1988).  

  Study 2: Full body water immersion 

Sample. N = 22 subjects, naïve to the experiment (3 females, 19 males; 2 left-, 19 

right-handers; M = 27.8 (S.D. = 8.0) years of age) participated in the following 

study. All of them had at least basic diving experience.   

Apparatus. The same underwater joystick as in Study 1 was used for this 

experiment. The joystick and a water-proof 15” LCD monitor (70 cm distance to 

subjects’ head) were installed in an aluminium frame (see Figure 2). The experiment 

was conducted in an upright position and body posture was stabilized by a foot strap 
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and an additional holding grip for the left hand. In the underwater condition, the 

frame was set on the bottom of the 5 m deep pool. The average water temperature 

was 27° C. Oxygen was provided via a hose connected to a compressed air bottle on 

deck, i.e., divers did not have to wear a SCUBA jacket during the experiments.  

 

Figure 2. Full water immersion setup. 

Experimental task and design. The same experimental task and GUI as in Study 1 

was used for Study 2. For the underwater condition, however, the window size was 

scaled down by 1/3 due to the refractive index (1.33) of the diving mask, leading to 

a magnification of object sizes. Following the same rationale as Study 1, subjects 

had to complete a “Dry” and a “Water” condition on different days (max. interval of 

8 days), with both conditions being counterbalanced across individuals.  

Procedure. In general, the same procedure was realized as in Study 1. In the “Dry” 

condition, the frame was located on deck and subjects wore ear protectors. Before 

starting with the underwater sessions, each subject put on a 7 mm short sleeves 

neoprene suit to avoid hypothermia, a conventional diving mask (prepared with anti-

fog spray) and a belt with individually adjusted diving weights to achieve neutral 

buoyancy.    

Study 3: Space flight 

Sample. The subjects were three male cosmonauts (42, 45, and 53 yrs.; two with 

space mission experience).  
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Apparatus. A space qualified joystick (2 axes, max. workspace ± 20°, 100 Hz 

sampling rate) was installed onboard the Russian Zvezda service module of the ISS 

(see Figure 3). The positional resolution of the ISS joystick was higher compared to 

the unterwater joystick, i.e., more fine-grained motions were recorded.  

The body stabilization was similar as in Study 2: foot straps on the module “bottom” 

and an additional grip for the left hand. The experimental GUI window was 

displayed on the 15.4” TFT display of the laptop.  

 

Figure 3. DLR space qualified joystick and experimental setup onboard the ISS. 

Experimental design and procedure 

All of the three cosmonauts performed the same experiments as in Study 1 and 2 

during a pre-mission training session three months before their mission launch, 

onboard the ISS (exactly after 2 weeks in space), and a post-mission session, two 

weeks after completing their half-year space missions. The same procedure 

(instruction, experimental workflow, and questionnaire) as in Study 1 and 2 was 

carried out.  

Results  

The complete aiming motion was split up into two functionally meaningful task 

segments for a more detailed analysis: a gross motion part and a fine motion part. We 

recorded the gross motion part from initial motion onset (> 20 pixels (px) distance 

from start), from experiement start until reaching the target zone. The gross motion 

part was deemed completed after an interpenetration of 20 px into the target ring. 

Subsequently, slower and more finely graded motions were performed until the target 

position was precisely matched with a threshold of 3 px. 

For all subtasks the required times were recorded. Additionally, kinematic parameters, 

i.e., the mean motion speed and the standard deviation of motion speed, were 

computed for the gross motion part, since effects of water immersion or microgravity 

should be most evident in the gross aiming motion. For Study 2 the data from one 

subject was omitted in the subsequent analyses due to the occurrence of several 

interruptions during the underwater session (problems with the diving mask).  
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The following statistics were calculated for each measure: arithmetic mean, standard 

deviation (in parentheses), p-value of the paired samples t-test, percentage change, and 

effect size (Hedges’ g).    

Table 1. Performance measurements for Studies 1-3 

Study/  

Measure  

Dry/ 

1G 

Water/  

µG 

Sign. 

(t-test) 

Rel. Change/ 

Effect Size g 

Study 1 (n =19) Forearm Water Immersion 

Gross Motion Time   [s] 0.351 (0.091) 0.482 (0.210) p < .01 +37.3%/ 0.79 

Fine Motion Time     [s] 1.772 (0.317) 1.847 (0.361) ns. + 4.2%/ 0.22 

Gross Motion Speed  [px/s] 844.2 (171.5) 706.9 (209.5) p < .01 -16.3%/ 0.70 

Max Gross M. Speed [px/s] 1782.2 (685.0) 1408.2 (517.5) p < .01 -21.0%/ 0.60 

SD Gross M. Speed   [px/s] 568.7 (190.6) 432.9 (229.5) p < .01 -23.9%/ 0.63 

Physical Demand      [1-20] 3.684 (2.110) 3.474 (1.926) ns. -0.06%/ 0.10 

Study 2 (n = 21) Full Body Water Immersion 

Gross Motion Time   [s] 0.361 (0.165) 0.442 (0.156) p < .05 +22.4%/ 0.49 

Fine Motion Time     [s] 1.675 (0.499) 2.223 (0.688) p < .01 +32.7%/ 0.89 

Gross Motion Speed  [px/s] 747.1 (225.6) 636.5 (164.3) p < .05 -14.8%/ 0.55 

Max Gross M. Speed [px/s] 1762.6 (562.6) 1510.3 (502.8) p = .06 -16.7%/ 0.46 

SD Gross M. Speed   [px/s] 591.4 (221.9) 507.3 (193.6) p < .10 -16.6%/ 0.40 

Physical Demand      [1-20] 3.833 (3.148) 4.167 (2.915) ns. + 8.7%/ 0.11 

Study 3 (n = 3) Space Flight/ Microgravity 

Gross Motion Time   [s] 0.308 (0.057) 0.432 (0.152) -- +40.3%/ 0.86 

Fine Motion Time     [s] 2.359 (0.213) 3.017 (0.662) -- +27.9%/ 1.07 

Gross Motion Speed  [px/s] 746.7 (93.0) 632.6 (106.7) -- -15.3%/ 0.91 

Max Gross M. Speed [px/s] 2035.0 (520.2) 1453.5 (232.7) -- -28.6%/ 1.15  

SD Gross M. Speed   [px/s] 667.1 (174.6) 470.8 (116.9) -- -29.4%/ 1.06 

Physical Demand      [1-20] 4.0 (1.323) 9.0 (3.464) -- +125%/ 1.53 

  

Comparing the performance measures in the “Dry”/ “1g” conditions across the three 

studies revealed no substantial differences, except for the fine motion times in 

Studies 1 and 2 vs. 3. The higher baseline level for the space flight experiment can 

be explained by the higher positional accuracy of the space joystick, making it more 

difficult not to exceed the 3 px threshold.   

The gross motion times in all of the three studies were significantly increased in the 

“Water” or “Microgravity (µG)” conditions compared to the “Dry” or “1g” 

conditions. Large effect sizes were obtained for partial immersion (g = 0.79) and the 

space study (g = .86), while the corresponding effect size in the full immersion study 

only reached a moderate level (g = .49). Regarding the fine motion times, similar 

significant increases due to water immersion or microgravity were found in the full 

immersion study (g = 0.89) and the space study (g = 1.07), whereas no significant 

effect (and only a small effect size of g = .22) was evident in the partial immersion 

study.  

A highly consistent result pattern was found when analysing the gross motion speed, 

which decreased significantly in all studies, with moderate effect sizes in the partial 

and full immersion study (g = .70 and g = .55) and a large effect size in the space 

study (g = .91). Consistently, the maximum speeds decreased in all studies with 
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moderate effects during water immersion (g = .60 and g = .46), as well as a large 

effect in the space study (g = 1.15). Please note, however, that the conventional level 

of significance was not reached in the full immersion study (p = .06). Consistently, 

the standard deviation of speed decreased in all studies. Results yielded significantly 

lower values and a moderate effect size for partial immersion (g =.63), and a large 

effect for the space study (g = 1.06). Again, no significant effect was observed for 

the full immersion study, where only a small effect size was found (p <.10; g = .40). 

Finally, the subjective rating on physical demand during the aiming tasks was 

explored. Here, we found no effects of water immersion at all, but a large effect size 

when comparing space and terrestrial conditions (g = 1.53).   

Discussion 

In three empirical studies, the effects of weightlessness on aimed arm movements was 

investigated during forearm water immersion, full body water immersion in 5m depth 

and during spaceflight after 2 weeks in space.  

In all of the three setups, the same result pattern for rapid, gross arm motions is 

evident: weightlessness caused significantly longer motion times (+22–40%), lower 

maximum (-17–29%), mean speeds (-15–16%) and speed variance (-17–29%). This 

overall pattern is consistent with prior research, which demonstrates that sensorimotor 

control is substantially degraded in weightlessness, resulting in decelerated motion 

profiles. The magnitude of this effect varies individually, as reported by Bock (1998). 

Maybe, different individual vulnerability to weightlessness also factor into the smaller 

effect sizes found in the full body immersion study.  

 

Regarding fine motion, longer times are required in all setups, although large effects 

are only evident during full immersion (+33%) and space flight (+28%), while only a 

minimal effect emerges for partial immersion (+4%). Mean motion speed and variance 

of speed are also reduced for this aiming phase, as indicated by additional analyses. In 

the target zone, gross arm motion has to be decelerated abruptly and several motion 

reversals have to be performed until matching the target precisely. A plausible 

explanation for the above results can be that multi-limb coordination or stabilization 

play a significant role during these dynamic positional corrections. In the case of full 

immersion or space flight, the complex coordination of the inertial load and reactive 

forces of all limbs and joints involved is more difficult and thus the dynamic impulses 

are reduced.  

Interestingly, the weightlessness of the human forearm seems to be sufficient to induce 

a slowing of gross aiming motion. It could be argued that this effect is a direct result of 

water viscosity. There are several facts contradicting this assumption: 1) the CDA 

values for forearm motions in the sagittal plane (top and bottom aim) should be 

substantially lower than the corresponding values for arm motions in the transverse 

plane (left and right aim). However, no significant differences regarding maximum 

speeds for the both movement planes of the immersed forearm are found, 2) there is no 

significant correlation (r = 0.03) between the subjects’ maximum speed in the “Dry” 

condition and the decrement of maximum speed in the “Water” condition, 3) the 

overall result pattern is very similar to the space flight results. 
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As discussed in the introduction, cognitive impairment may affect performance during 

full body immersion due to higher ambient pressure (1.5 bar in the present study). 

Moreover, it has been discussed that a higher cognitive load e.g. due to increased 

general stress level during a space mission has a detrimental effect on sensorimotor 

performance (Manzey et al., 2000). In additional analyses, we did not find any 

significant changes of response times in weightlessness, which would be an indication 

of reduced cognitive resources.  

Comparing the water immersion setups with space flight revealed two main 

differences: 1) sensorimotor degradation is even more pronounced in space, with large 

effect sizes for all the performance measures and 2) the subjectively rated physical 

effort was significantly higher in space compared to the terrestrial sessions. Seemingly, 

the changed gravitational state further contributes to the degradation motor control. 

Lackner and DiZio (1992) emphasized that muscle spindle activity is also modulated 

by vestibular activity. The additional vestibular dysfunction explains the stronger 

effects during spaceflight and might also be the reason for higher physical efforts 

astronauts have to expend to stabilize their motions. Other studies investigating force 

production with an isometric joystick (i.e., the joystick is not deflected) successfully 

demonstrated that the changes of proprioception due to weightlessness can also be 

shown during water immersion (exaggerated peak and end forces; Dalecki, 2013). 

However, the specific effects attributed to vestibular dysfunction (higher initial forces) 

could not be documented in the underwater condition.   

Altogether, promising results could be gathered showing that the general effect 

direction of weightlessness on sensorimotor performance can be effectively simulated 

by water immersion. Even for rapid aiming tasks - requiring joystick deflections - the 

water immersion analogue is able to simulate key aspects of space flight, making it a 

valuable tool for future research. 
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  Abstract 

Conditional automated driving (CAD) functions will be one of the key technologies 

promising comfort and efficiency in personal transportation. This work addresses the 

importance of a user-centered and variable Human-Machine-Interface (HMI) for 

CAD in consideration of different levels of trust. The question arises as to how the 

level of trust, presumably caused by system-experience with an automated system, 

modulates information needs. The variable HMI-concept was tested with a panel of 

47 subjects in a driving simulator. Effects on system evaluation in terms of 

experience with a conditional automated system (between; system-inexperienced vs. 

system-experienced users) and the HMI (within; maximal-HMI with higher 

informational content vs. minimal-HMI with lower informational content) were 

examined. The gaze behaviour showed that the system-experienced users trusted the 

system more and monitored the system less frequently than the system-

inexperienced users. System-experienced users focused on a non-driving-related task 

more often than system-inexperienced users. Even though, both user groups trusted 

the system more using the maximal-HMI than using the minimal-HMI, it is 

assumed, that long-term use will modulate the level of trust and the resulting 

information needs. This study supports the idea of adaptability of the HMI 

depending on the level of trust and the information needs. 

  Introduction 

Besides the need for security (Benmimoun, Zlocki, Aust & Faber, 2011) and 

comfort, the wish for a flexible mobility rises. With technical progress in sensor 

technology as well as digitalization, a flexible mobility as promised by conditional 

automated driving will be possible in the near future (Federal ministry for traffic and 

digital infrastructure, 2015). When using such a new technology, it is unclear how 

the human and the machine will interact to prevent misunderstandings. Especially 

during initial contact, the HMI might adopt the role of a teacher, introducing the user 

into the system. The user has to become familiar with his task as some kind of a co-

driver, trusting the system’s ability to safely perform the main driving task. Trust in 

automation (Lee & See, 2004) represents an important factor while interacting with 

the vehicle (Beggiato, Hartwich, Schleinitz, Krems, Othersen & Petermann-Stock, 
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2015; Hergeth, Lorenz, Vilimek & Krems, 2016). This fact stresses the importance 

of a trustworthy human-machine-interface (HMI) (Bendewald, Stephan, Petermann-

Stock & Glaser, 2015). The HMI should be user-orientated and therefore guarantee 

system transparency, predictability and comprehensibility for all upcoming 

manoeuvres (Beggiato et al., 2015). To match the users’ requirements, Nielsen 

(1993) recommends the distinction between two user groups: people, who have 

never interacted with a conditional automated system before (system-inexperienced 

users, SIUs) versus people, who have already got to know such a system (system-

experienced users, SEUs). Using such an automated system requires trust in 

technology (Lee & See, 2004), while for trust in technical systems, system 

experience plays a major role (Muir, 1994). It is assumed that trust in the system is a 

result of system experience. Hergeth et al. (2016) observed that higher trust in the 

automated vehicle results in reduced control gazes while focusing on a non-driving-

related task (NDRT). In general, system users tend to focus on a NDRT more often, 

if they trust the system (Beggiato et al., 2015). In contrast, SIUs are expected to have 

a higher need to monitor and control the system than SEUs. Results of a driving 

simulator study (Beggiato et al., 2015) demonstrated that this user type wishes to 

have detailed system relevant information especially while initially getting in 

contact with the system. If users are informed about any system decision, they are 

able to understand those decisions, match them with the environment and develop a 

system comprehension. To guarantee this transparency, detailed as well as redundant 

information concerning system decisions and manoeuvres should be available. It is 

assumed that the users will expect this information in the instrument cluster (FPK) 

and in the Head-up Display (HUD), which are seen as usual information sources to 

fulfil the main driving task.  

In contrast to SIUs, SEUs are expected to already possess a developed system 

understanding. They might have less uncertainty trusting the system’s ability to 

safely perform the main driving task compared to SIUs. Beggiato et al. (2015) and 

Hergeth et al. (2016) claim that by the gain of trust in the automated system, the 

need to control is shrinking. Hence, SEUs do not want to monitor the system as 

strongly as SIUs. Concluding from the participants’ statements of the driving 

simulator study of Beggiato et al. (2015), users want to have the possibility to obtain 

system relevant information concerning system decisions, manoeuvres and status, 

but do not want to be confronted with these at any time. SEUs might use the chance 

to give away the main driving task to turn towards a NDRT, like the infotainment.  

The question arises as to how a standardized HMI serves different types of users: a 

user, who has never interacted with an automated system before versus a user, who 

has. This paper focusses on a user-centered HMI-concept for conditional automated 

driving. The special feature of this HMI-concept is the scalability, which allows 

adjusting to the user’s level of trust and his need for information. Hence, the 

objective of the present research was to examine how the HMI meets users’ 

requirements best. Specifically, this driving simulator study addresses the control 

behaviour and the information needs of two different user groups driving 

conditionally automated. It is assumed that SIUs will monitor the system stronger as 

they have little trust in the system and therefore wish for detailed and redundant 

system information. SEUs, however, are expected to prefer reduced information and 
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a comfortable sitting position to enjoy NDRT since they trust the system more. This 

was realised by examining the effects on system evaluation in terms of experience 

with a conditional automated system and the HMI.  

  Experimental user study 

  Experimental setup and design variations 

The experimental setup consisted of a static driving simulator with an AUDI mock-

up of the Group Research of Volkswagen Aktiengesellschaft, equipped with an 

automatic gear and three projection screens 3.5 m in front of the mock-up. The 

projections screens’ width were 3.05m each and the resolution of the projector was 

1920 x 1200 pixels. A field of view of 140° was covered. The simulation was 

implemented with the software Virtual Test Drive (VTD) and was projected onto 

three screens.  

The study was conducted using a 2x2-mixed factors design with the factors system 

experience and HMI with two characteristics each. Participants differed in system 

experience (between-subjects factor): users, who had never interacted with a 

conditional automated system before (SIUs) versus users, who have already got to 

know such a system (SEUs). The SEUs took part in a previous study for conditional 

automated driving, where they learned how to activate and deactivate this automated 

system. Furthermore, they attended a separate training, where they received a 

detailed system description and practiced to operate the two HMIs. All participants 

tested two HMIs for conditional automated driving (within-subjects design) in 

randomized order, which were designed to fit the respective user group’s needs. 

There was the maximal-HMI with detailed as well as redundant system relevant 

information, which supports monitoring the system, potentially appropriate for the 

SIUs. In contrast to this, the minimal-HMI with rather reduced system relevant 

information, allowing the user to lean back due to moveable hardware elements. 

Effects of experience with a conditional automated system and the HMI on system 

evaluation were examined. For this evaluation, data of trust, control behaviour and 

information needs were gathered.  

User-centered HMI-concept for conditional automated driving 

To take the individual level of trust and the resulting information needs into account, 

the Volkswagen Group Research has developed a user-centered HMI-concept for 

conditional automated driving. The special feature of this human-machine-interface 

is the scalability, which allows adjusting to the user’s need by varying the amount of 

information in the different displays (see figure 1) and the sitting position while 

driving in conditional automation. The comfortable sitting position is realised with 

the movement of hardware elements: the steering wheel will move towards the 

instrument panel and the driver seat (inclusively the operating element for the 

infotainment) will move backwards for a bigger legroom. This concept is a further 

development of the HMI shown in the test vehicle Jack (Bendewald, Stephan, 

Petermann-Stock & Glaser, 2015). Concerning the HMI, this paper’s scope is on 

display content and the movement of hardware elements. The purpose of other HMI 
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elements is explained in a detailed potential analysis of this HMI-concept 

(Bauerfeind, 2016). 

 

Figure 1. The amount of system relevant information on different displays is scalable. 

Since it is assumed that the needs of SIUs and SEUs differ, it was necessary to 

develop two different HMIs: The HMI for the SIUs (maximal-HMI, see figure 2, 

picture 1) and the one for the SEUs (minimal-HMI, see figure 2, picture 2). Each 

HMI contains a certain amount of system relevant information on different displays 

and the adjustment of scalable hardware.  

The maximal-HMI, which potentially serves the need of the SIUs, contains detailed 

as well as redundant system information, especially located in the HUD and the 

FPK. Except for the steering wheel, the hardware elements will not move, enabling 

the user to stay in his driving position able to monitor the system. The movement of 

the steering wheel conveys the system status automated driving: By moving away 

from the driver, the system seems to announce the taking over of the main driving 

task. To remind the driver of taking back control, the steering wheel moves towards 

him. In contrast, the minimal-HMI, which should be appropriate for the SEUs, gives 

the chance to turn away from the main driving task to enjoy NDRTs. The user will 

be presented with reduced system relevant information. Since the user’s attention is 

expected to be on the infotainment in the centre console display, this user type might 

enjoy receiving system relevant information close to this area. This is why the rear 

mirror, as the nearest display to the infotainment, serves as an informing display. 

With moving hardware elements (driver seat and steering wheel) the SEUs are 

provided with a comfortable sitting position to enjoy NDRTs. 
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Picture 1: maximal-HMI 

 

 

Picture 2: minimal-HMI 

 

Figure 2. System relevant information on three different displays (FPK, HUD and rear 

mirror) in the two HMIs: the maximal-HMI (with detailed and redundant information, picture 

1) and the minimal-HMI (reduced information, picture 2). Other HMI elements are explained 

in the detailed HMI specification (Bendewald et al., 2015) and in the potential analysis 

(Bauerfeind, 2016). 

  Procedure 

All participants were presented with the two HMIs in a randomized order. The 

driven interstate route of 25 km with other traffic was the same for both HMIs. The 

gaze behaviour was measured with an eye-tracking system from Ergoneers GmbH 

using the software Dikablis 2.5 (Ergoneers GmbH, 2016). After receiving the 

instruction how to activate and deactivate the system without getting further 

information about the content of the different displays, all participants fulfilled two 

short trainings. Before the main drive, participants were informed to have the 

possibility to watch videos on the infotainment display. 

The participants were confronted with either a scenario that included an accident, 

which was the cause for a take-over request (TOR) or the TOR was triggered due to 

an obstacle on the street. It was randomly choosen which HMI was tested with 
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which scenario. The participants started driving manually to the interstate, where the 

system became available and could be activated to fulfil the complete driving task. 

Due to other road users, participants experienced lane changes done by the 

automated system. In the middle of a 15 minutes drive, the system asked for a take-

over by the participant because it could not handle the upcoming situation on its own 

(obstacle on the street or an accident). This TOR consisted of visual information in 

the FPK and a voice output one minute and also 15 seconds prior to the take-over. 

Participants were told that they had to take over the driving task and exit the 

interstate manually in the end of each session. After testing each HMI, participants 

completed the questionnaire Trust in technical systems on a 4-point likert scale 

(Wiczorek, 2011). This questionnaire listed a total of 16 items and Cronbach’s 

Alpha was α=.91 for both HMIs. In the end of the study, the participants created 

their desired HMI for conditional automated driving. To facilitate this, a cockpit 

template was used that allowed participants to place cut-out pictures of system 

relevant information (system status, velocity, manoeuvre announcement, other 

vehicles, traffic lanes). By doing so, participants could personalise the cockpit, so 

they could demonstrate where they prefer to receive the different information. 

Furthermore, they indicated the desired movement of hardware elements. Choosing 

between the maximal- and the minimal-HMI, participants could also select their 

preferred HMI. They could also abstain from this decision. 

  

  Participants 

The sample included 47 drivers, who were recruited from the test driver pool of 

Volkswagen Group Research. There were 24 SIUs (42% female) and 23 SEUs (44% 

female). The SIUs’ mean age was 37.7 years (SD = 11.9 years; min = 22, max = 59) 

and the SEUs’ mean age was 39.5 years (SD = 9.7 years; min = 22, max = 58). All 

participants were employees of the Volkswagen Aktiengesellschaft. The participants 

drove an average of 19298 km per year. Most of the participants had gained 

experience with an Adaptive Cruise Control (ACC), and a Cruise Control (CC) (see 

table 1). Most of the SIUs had not driven with Heading Control (HC).  

Table 1. Percentages of user groups’ experience with the driver assistance systems “Adaptive 

Cruise Control”(ACC), “Cruise Control” (CC) and “Heading Control” (HC) 

 ACC CC HC 

SIUs 67 71 42 

SEUs 70 65 65 

 

  Results 

  Trust in the conditional automated system: subjective data 

Subjective data of 47 participants were analysed using repeated measures Analysis 

of Variance (rmANOVA) to examine the effects of experience with a conditional 

automated system and the HMI on trust in the system. Data revealed that SEUs 

trusted the conditional automated system more than SIUs, F(1, 45) = 8.47, p = .006, 
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ηp
2
 =.16. The system was rated as more trustworthy when participants drove with the 

maximal-HMI than with the minimal-HMI, F(1, 45) = 5.11, p = .029, ηp
2
 = .10.  

  Control behaviour: gaze data 

The aim was to investigate whether SIUs showed a stronger control behaviour than 

SEUs. Areas of interest had to be determined (see figure 3) to compute the 

participants’ percentage distribution of gazes. 

 

Figure 3. Areas of interest for the investigation of gazes. For the analysis of control 

behaviour, just the gazes on the street and in the FPK are reportet. Control gazes into mirrors 

are descriped in the detailed potential analysis (Bauerfeind, 2016). 

One participant had to be excluded from the gaze analysis due to technical issues. 

Thus, gaze data of 46 participants were analysed using t-tests for independent 

samples (Mann-Whitney-test in case of missing normal distribution) to examine 

whether SIUs showed a stronger control behaviour compared to SEUs. There is a 

tendency that SIUs monitored the FPK more than SEUs (see figure 4 & table 2). 

Furthermore, SIUs monitored the street significantly stronger than the SEUs, in case 

of driving with the minimal-HMI. There is no difference in gaze frequency between 

the two user groups when using the maximal-HMI.  

Gaze data showed that SEUs watched the infotainment in the infotainment display 

more often than SIUs; especially while driving with the minimal-HMI (see table 2). 

This tendency could also be observed while driving with the maximal-HMI.  
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Figure 4. Average percentage distribution of gaze frequencies into different AOIs while 

driving in conditional automation for the two user groups and for the two HMIs. Control 

gazes into mirrors are descriped in the detailed potential analysis (Bauerfeind, 2016).  

Table 2. Results regarding gaze frequencies for both user groups into different AOIs for the 

two HMIs.  

 SIUs SEUs      

 M (SE) M (SE) t U z p r 

 Maximal-HMI  

FPK 16.03 (1.85) 11.23 (1.15)  187.00 -1.69 .090 -.25 

Street 51.89 (2.78) 43.89 (4.36) 1.55   .131 .25 

IT 13.07 (2.54) 24.29 (4.41)  187.00 -1.69 .090 -.25 

 Minimal-HMI  

FPK 9.51 (1.05) 7.03 (0.92)  182.00 -1.80 .071 -.27 

Street 45.29 (2.94) 34.61 (3.96)  157.00 -2.35 .019 -.35 

IT 14.36 (2.20) 25.88 (3.51) -2.83   .007 -.42 

Note. SIU = system-inexperienced users, SEU = system-experienced users, IT = infotainment, 

M (SE) = mean with standard error, t = t-tests for independent samples (in case of normal 

distribution), U = Mann-Whitney-test (in case of missing normal distribution), for a simplified 

comparison just the means are reported. 
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  Desired HMI  

The aim was to examine what the user groups’ ideal HMI would look like 

concerning system relevant information and the movement of hardware elements. 

Descriptive data analysis of the desired HMI revealed that both user groups had a 

similar need for information. Half of all participants asked for rather detailed system 

relevant information while driving in conditional automation: 50% of the SIUs and 

52% of the SEUs wanted to be informed about the current driving environment 

(other vehicles, traffic lanes). In regard of redundancy, information about the system 

status should be available on several displays according to most of the participants 

(67% of the SIUs, 70% of the SEUs). 58% of the SIUs (30% of the SEUs) also 

asked for redundant information about the current velocity. 79% of the SIUs and 

74% of the SEUs liked the rear mirror as an informing display, even though 63% of 

the SIUs asked for a free mirror half without any information. 52% of the SEUs 

could imagine the rear mirror to serve as a full display.  

Results made clear, that in comparison with SIUs, SEUs were more open for the 

movement of hardware elements while driving in conditional automation. The 

majority of all participants asked for the movement of the steering wheel (58% of 

the SIUs, 78% of the SEUs). Concerning the driver seat’s flexibility (including 

operating element) the two user groups had different demands. In contrast to the 

33% of SIUs who were against it, 61% of the SEUs asked for this movement to have 

a comfortable sitting position while driving in conditional automation. 

In the end of the study, participants could choose their preferred HMI. They could 

also abstain from this decision. Results revealed that the majority of the SIUs (75%) 

liked the maximal-HMI most. In contrast, there was no tendency for the SEUs: 39% 

of this user group preferred the minimal-HMI and 43% chose the maximal-HMI. 

  Discussion and conclusions 

The aim of this research was to investigate the effects on system evaluation in terms 

of experience with a conditional automated system and the HMI. This driving 

simulator study addresses the control behaviour, presumably caused by a lower level 

of trust and the information needs of two different user groups driving conditionally 

automated. 

With regard to trust, SEUs trusted the conditional automated system more than the 

SIUs. Hence, these results support the findings of Muir (1994), who states that 

system experience plays a major role concerning trust in a technical system. The 

maximal-HMI with detailed system relevant information was rated as more 

trustworthy and more transparent as the minimal-HMI. It needs to be taken into 

account that in this study system experience was obtained by participating in a 

previous study based on this HMI, a seperate training, and a detailed system 

description. Therefore, SEUs did not have long-time experience with this system. 

The question is whether SEUs’ evaluation will change after having driven the 

minimal-HMI for a longer time. They might prefer the minimal-HMI, because 

detailed and redundant information might not be seen as transparent and clear 

anymore, but rather as annoying (Beggiato et al., 2015). This can only be explored 

in long-term studies. In general, it has to be considered that participants might rate 
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the system more trustworthy while driving in a simulator rather than driving in a real 

car. They might feel more secure driving in a simulation than being exposed to a real 

traffic situation. 

Concerning the control behaviour, SIUs were looking at the FPK more often than 

SEUs to monitor the system. This behaviour was shown for both HMIs. Concerning 

gazes to the street, just the minimal-HMI made a difference: SEUs watched the 

street driving with this HMI much rarer than SIUs. One reason could be that SIUs 

observed the street since there were minimal information on the displays. Another 

explanation is that the minimal-HMI’s aim to convey the possibility of turning away 

from the driving task to a NDRT succeeded. The SEUs accepted this HMI and made 

use of this option. These results are consistent with the findings of Hergeth et al. 

(2016), who declares that higher trust in the automated vehicle leads to reduced 

control gazes while focusing on a NDRT.  

In general, SEUs trusted the system more and showed a weaker control behaviour 

than the other user group. Nevertheless, all participants had similar information 

needs in this study. Both user groups asked for system transparency, predictability 

and comprehensibility. Information about the system status should be available on 

several displays according to most of the participants. Half of all participants 

preferred rather detailed system relevant information, which is requested for the 

initial contact with the system (Beggiato et al., 2015). It has to be discussed whether 

these results might be attributable to the user training applied to the members of the 

SEU group. This training might have been too short to gain a sufficient level of 

system experience, which has to be taken into account when interpreting these 

results. Nevertheless, the user groups’ statements concerning the movement of 

hardware elements differed: SEUs were more open for the movement of hardware 

elements while driving in conditional automation compared to SIUs. An explanation 

might be that SIUs associate this movement with a loss of control. Instead of 

enjoying a comfortable sitting position while driving in conditional automation, 

SIUs might feel less secure by taking back the driving task while sitting leaned back. 

Thus, this training applied to the SEUs already had an impact on users’ demands. 

Descriptive data analysis showed that in contrast to the SIUs, who preferred the 

maximal-HMI, the SEUs did not show such a tendency. They rather wished for an 

HMI individually customized. The SIUs enjoyed to be led by the maximal-HMI, 

which had proved to be a suitable introduction for using a conditional automated 

system for the first time. 

With regard to the methodology, one of the advantages of this experimental setup 

with a driving simulator is the high level of situation standardization. It could be 

guaranteed, that every participant experienced similar conditions. Furthermore, the 

implementation of a prototypical HMI-concept is easier to realise in a mock-up than 

in a test vehicle.  

 

These results help to understand differences concerning the interaction between 

different user types and an automated system. Especially during initial contact, the 

HMI should be transparent in system decisions, which allows the user to gain trust 

in the technology. Overall, this study recommends the distinction between user 



 an HMI-concept for different users 77 

groups with different levels of system experience while developing an HMI for 

conditional automated driving. Furthermore, the idea of adaptability of the HMI 

depending on the level of trust and the need for information is suggested.  
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  Abstract 

Loud music in the operating room may lead to missed alarms and deleterious patient 

outcomes. A music volume controller that integrates operating room music with 

vital sign data from the anaesthesia monitor was tested in a clinical environment 

with twenty-one anaesthesiologists and nine operating room personnel.  Background 

music volumes were reduced or silenced based on flexible algorithms for heart rate, 

oxygen saturation or blood pressure. After implementation, study participants 

completed a survey to assess the performance and usefulness of the device.  The 

results indicated the music volume controller was functional and clinically useful 

and may promote patient safety. 

  Introduction 

Music is an integral part of surgery today.  While studies have demonstrated that 

music reduces surgeon stress and improves the speed and quality of surgical 

closures, there is evidence that music poses a distraction hazard and contributes to 

intraoperative noise pollution which may mask an impending emergency (Lies & 

Zhang, 2015).
 
The American College of Surgeons (ACS), the American Society of 

Anaesthesiologists (ASA) and the Association of periOperative Registered Nurses 

(AORN) and The Joint Commission (TJC) have issued independent statements 

regarding distraction and noise in the operating room (ACS, Statement on 

Distractions in the Operating Room, 2016, AORN, Position on Managing 

Distractions and Noise, 2015, ASA, Statement on Distractions, 2015, TJC, 

Minimizing Noise and Distractions in the OR and Procedural Units, 2017). 

The acoustics in the operating room are generally poor and noise levels frequently 

exceed Occupational Safety and Health Administration (OSHA) safe exposure 

standards.  Powered orthopaedic saws and drills, forced air warmers, fluid collection 

suction systems, clanging metal instruments, conversation, electronic equipment and 

music all contribute to high levels of noise pollution.  In one study, the noise in the 

operating room measured over 100dB for 40% of the time during orthopaedic and 

neurosurgery procedures, levels comparable to those of a busy freeway (Katz, 2014).
 

The signal-to-noise ratio required for speech discrimination in the operating room is 

greater both because hard flat walls cause sound reverberation and surgical masks 

preclude lip reading.  As a result, communication is challenging and conversations 
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routinely exceed ambient noise levels.  The addition of music helps surgeons ignore 

distracting sounds, but raises the overall level of ambient noise in the room and 

further impairs communication, alarm detection, and cognitive processing 

(Stevenson, 2013). As operating rooms have evolved from cassette players at the 

head of the bed to central streaming music systems, anaesthesiologists have a lesser 

degree of control of the acoustic environment in the operating room (Schlesinger, 

2015).
  

The current state of practice entails the anaesthesiologist perceiving the 

pitches and tones of the anaesthesia monitor (e.g. pulse oximetry) over the noise in 

the room, recognizing there is a problem, and requesting the circulating nurse to 

interrupt his or her duties to turn the music down or off.  In an emergency that 

requires clear communication, delays in minimizing noise can be critical (Weldon, 

2015). 

We hypothesized that building intelligence into the operating room music system 

was feasible and would be useful to the anaesthesiologist and operating room 

personnel.  As an example of an intelligent audio system, modern car stereos now 

restrict the volume of music until seatbelts are fastened.  The precondition of an 

acceptable pulse oximetry measurement for operating room music could be 

compared to that of the fastened seatbelt for a car. Similarly, a car's radar, lasers, and 

cameras can detect an impending collision and integrate with the vehicle's braking, 

steering and audio systems as a mitigating 'pre-crash system'.  A slowing heart rate, 

diminishing blood pressure, or declining oxygen saturation could be deemed an 

'impending collision' that requires a quieter environment for the surgical team to 

communicate and concentrate on the patient.  Our objective was to test a system 

with both preconditions and automatic music volume reductions based on user-

controlled thresholds for heart rate, systolic blood pressure, and oxygen saturation in 

a clinical environment. 

  Methods  

The study was approved by the Providence Saint Patrick Hospital Joint 

Investigational Review Board and written informed consent was obtained from 

patients.  The study involved the use of one music volume controller in one 

operating room at Saint Patrick Hospital.  The music controller (CanaryBox™, 

Canary Sound Design LLC, USA) was interfaced with a Philips Intellivue™ 

monitor using the RS232 data port and connected to a music source and the 

operating room audio system (Figure 1).  

The study was designed to assess the preferences and experiences of the 

anaesthesiologist and operating room staff after using the music controller for one 

day.  As usual, music selection and listening volumes were at the discretion of the 

surgeon and operating room staff.  The target sample size was 30 users for a 

minimum of one day.  All patient and cases were eligible for inclusion. 
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Table 1. The vital sign ranges for music volume adjustments and “time-in-zone” delays to 

prevent nuisance triggers 

 Full volume Half volume Music off 

Oxygen 

saturation 

(SpO2) % 

90 ≤ SpO2 85 ≤ SpO2 < 90 

 

 SpO2 < 85 

SpO2 delay   20 seconds 10 seconds 

Heart Rate (HR) 

bpm 

50 ≤ HR ≤130  40 ≤ HR  <50, or  

130 < HR ≤150  

 

HR < 40, or 

HR > 150  

HR delay  20 seconds 10 seconds 

Systolic Blood 

Pressure (SBP) 

mm Hg 

80 ≤ SBP ≤ 170  

 

70 ≤ SBP <80, or 

170 < SBP ≤ 190 

SPB < 70, or 

SPB > 190 

SBP delay  60 seconds 30 seconds 

 

Figure 1. Music Volume Controller Interfaced with Anaesthesia Monitor. The photo shows 

the position of the music volume controller next to the anaesthesia monitor. The heart rate of 

49 beats-per-minute triggers a music volume reduction and this is indicated by a colour 

change on the controller screen from green to yellow. 
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The device parameters were adjustable so they could be customized to the patient 

and the procedure.  Default settings of the device for adult patients were as follows: 

1) music at full volume if oxygen saturation (SpO2) >90% and heart rate (HR) 

between 50 and 130 beats per minute and systolic blood pressure (SBP) between 

80mm Hg and 170mm Hg; 2) music at half volume if SpO2 between 85 and 90%, or 

HR between 40 and 50bpm or 130 and 150bpm, or SBP between 70 and 80mmHg or 

170 and 190mm Hg; and 3) music off if SpO2 85%, or HR <40 or >150bpm, or SBP 

<70 or >190mm Hg.   To minimize nuisance triggers delay periods ('time in zone') 

were set for SpO2 and HR at 10 seconds for full mute events and 20 seconds for half 

volume events.  For SBP, delay periods were set at 30 seconds for full mute events 

and 60 seconds for half volume events.  All volume changes were gradual (fade-

in/fade-out) to not startle the surgeon (Strickland, 2015). 

Following clinical use, anaesthesiologists and staff were asked to complete a survey 

assessing performance and usefulness of the music controller. 

  Results 

The target sample size of 30 users was reached and included 21 anaesthesiologists 

and 9 operating room personnel.  Table 1 - shows the results of the survey including 

a condensed selection of written responses to open ended questions.  Twenty-nine 

participants responded that they would use the controller again. 

Table 1. Survey Data:  Responses from 21 anaesthesiologists, 6 nurses, 1 surgeon, 1 surgical 

technician, and 1 physician assistant. 

How much did your room use the music volume controller? 

Number of hours Number of responses 

>4 23 

2-4 6 

<1  

 

How did the volume controller function? 

Rating Number of responses 

well 27 

okay 3 

poorly 0 

 

Sample of written responses 

What worked well? What did not work well? 

Music stopped when O2 sat went to 80% 

Liked the ability to mute and suspend 

Silenced music when SpO2 was disconnected 

Responded appropriately to bradycardia 

Intuitive, easy to use 

Turned off music during hypotension 

 

Hard to hear a 50% reduction in music 

Would like default profiles - adult, paediatric 

Needs better fixed presets 

Pandora™ 'timed out' - thought it was 

controller 
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  Discussion 

A majority of anaesthesiologists feel music is a distraction if a patient is having 

anaesthetic-related problems, so it is important for the anaesthesiologist to have the 

ability to quickly and easily minimize this source of intraoperative noise (Strickland, 

2015).
 
This study tested the feasibility of implementing a volume controller that 

reduces or silences music automatically based on adjustable vital sign algorithms.  

Based on experiences of thirty users, the system was found to be functional and 

clinically useful.  Limitations of the study include majority of anaesthesia over 

surgical clinician response and involvement of only one hospital.  Future research on 

integrated operating room music in a multicentre trial may be useful to assess the 

effects of automated noise reduction on clinical performance and patient safety. 

  Disclosure footnote 

Dr. MacDonald is the developer of CanaryBox™ and co-founder of Canary Sound 

Design, LLC.  
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  Abstract 

In everyday road traffic, communication between road users plays an important role 

– especially in traffic situations where cooperation is necessary. In order to ensure 

successful future communication between human road users and autonomous 

vehicles, the communication between human road users must be better understood 

and modeled for automatic traffic. A relevant parameter in the analysis of 

cooperative scenarios is gaze behaviour. In contrast to e.g. mental workload, no 

specific parameters have been identified for analyzing cooperative scenarios so far. 

As a method, on a traffic-training-center, two experiments were conducted for 

cooperative situations implementing a narrow-passage (N=21) and a specific t-

junction-scenario with three road users (N=20) to investigate cooperative behavior. 

In both experiments, the subjects were confronted with offensive or defensive 

approaching behaviours and the decision-making behaviour was investigated. Aim 

of the analysis was to identify relevant gaze parameters for cooperative scenarios. 

The results show that for different scenarios different parameters become relevant. 

For a complex scenario saccadic parameters are more important than fixation 

parameters. In contrast fixation-metrics show higher importance in simple scenarios.  

  Introduction 

 Cooperation between road users is necessary for maintaining the traffic flow 

(Benmimoun et al., 2004). Generally, cooperation occurs in situations in which it is 

not clear who is allowed to drive first. Specifically in city situations cooperation is 

needed, e.g. at equal narrow-passages or with specific trajectory combinations of 

road users in t- or x-junctions (figure 1).  

  a.   b.   c. 

Figure 1. Examples of deadlock situations.a. narrow passage, b. t-junctions, c. x-junction  
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In every of the three situations (figure 1) the road users approach simultaneously 

which creates a deadlock. In Germany in particular, the traffic regulations demand to 

negotiate who drives first if the situation is not regulated by the traffic law (§ 11(3)). 

Hoc (2001) defines a situation as cooperative if at least two agents are involved in a 

way in which both have similar goals and can interfere with the resources and 

procedures of the other agent. Furthermore, the agents try to solve the problem with 

the goal to facilitate their own actions. In a cooperative situation the cooperation-

partners are forced to solve the problem within the situation. 

Cooperation between road users is only partially well investigated and there exists 

much research for cooperation between car drivers and vulnerable road users (e.g. 

Witzlack, 2016). But there is still a lack of research addressing cooperation between 

car drivers, in particular regarding the eye-tracking parameters. 

Imbsweiler et al. (2016) conducted an observation study to identify interactive and 

cooperative behavior at three different intersections in which the described situations 

could occur. They were able to define six different kinds of approaching behaviour 

for the t-junction-scenario and for the narrow-passage (table 1 and 2). The 

approaching behaviour was classified into offensive and defensive depending on the 

resulting order of driving: When a person displays an offensive behaviour, he or she 

is more likely to drive sooner than the cooperation partner. Defensive behaviour on 

the other hand promotes sooner driving of the cooperation partner  

Table 1. Approaching behaviour for the narrow-passage. 

Approaching 

behaviour 
Driver behaviour Behaviour classification 

1 Driver stops distinctively Defensive behaviour 

2 Driver stops and uses the flasher Defensive behaviour 

3 Driver decelerates and uses the 

flasher 

Defensive behaviour 

4 Driver maintains speed Offensive behaviour 

5 Driver accelerates Offensive behaviour 

6 Driver decelerates Offensive behaviour 
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Table 2. Approaching behaviour for the t-junction. 

Approaching 

behaviour 

Position of 

drivers 
Driver behaviour Behaviour classification 

1 

3 
Driver 1 decelerates, stops 

and use the flasher 
Defensive behaviour 

1 or 2 
Driver 2 direcetion 

indicator and stops 

2 

3 
Driver 1 decelerates and 

stops 
Defensive behaviour 

1 or 2 
Driver 2 2 direcetion 

indicator and stops 

3 

1 or 2 
Driver 1 decelerates and 

indicate 

Defensive behaviour 

1 or 2 

Driver 2 decelerates, 2 

direcetion indicator and use 

the flasher 

4 

3 
Driver 1 maintains the 

speed 
Offensive behaviour 

1 or 2 
Driver 2 direcetion 

indicator and decelerates 

5 

3 Driver 1 decelerate 

Offensive behaviour 
1 or 2 

Driver 2 2 direcetion 

indicator and decelerate 

6 

1 or 2 
Driver 1 decelerates and 

2direcetion indicator 

Offensive behaviour 

1 or 2 

Driver 2 direcetion 

indicator, than decelerates 

and  

 

In order to initiate the cooperation-process the road users have to communicate. 

Risser (1985) distinguishes between implicit and explicit communication. Implicit 

communication refers to the driving behaviour and includes the acceleration, 

deceleration, trajectory or the position on the street of a road user. In contrast, 

explicit behaviour refers to communication signs like hand gesture, direction 

indicator or light flash. Ba et al. (2015) investigated the explicit communication 

signs for interactive scenarios by using eye-tracking data and focusing on fixation-

metrics. Their results indicated that in interactive scenarios the fixation time, mean 

fixation duration, and frequency is higher when the interaction partner uses a 

communication sign. Furthermore, a signal helps to underline the intention in an 

interactive or cooperative scenario. But the sign depends on the context. The 

investigated scenarios included different kinds of overtaking scenarios in the city 

and on the motorway. These scenarios are not comparable to the presented scenarios 

from our study. Furthermore, only the fixation metrics in general were investigated. 

In the context of human-robot-interaction more research on communication is 

conducted. Sakita et al. (2004) could show that in human-robot-interaction the last 

fixation is an important cue for an operator’s intention. Most studies in the human-
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machine-interaction context address mental load (e.g. Schneider, 2017) or fatigue 

(Manzey & Lorenz, 1997) though.  

Apart from mental load or fatigue there exists no scientific base for eye-parameters 

which are important for analyzing cooperative situations. A further challenge is that 

cooperative scenarios can be as short as five seconds. An analysis of the behaviour 

over the time is indeed possible but the results of the analysis of e.g. mental 

workload cannot be transferred in any simple way. As for deadlock situations we 

could only find empirical results regarding the perception of road users (Imbsweiler 

et al., 2017). 

Imbsweiler et al. (2017) investigated the equal narrow-passage in an experiment and 

analyzed the subjective perception. They found out that road users feel more 

confident to drive first and assess the cooperation-readiness higher if the opponent 

drives in a defensive way. In this case, no situation was longer than 15 seconds. The 

results show that the subjects feel more confident if they could drive first. The 

narrow-passage is one of the simpler deadlock situations in contrast to the t-junction. 

The present paper refers to the following research questions: Is it possible to identify 

eye-tracking parameters which indicate a specific behaviour in short cooperative 

situation? Is there a difference between simple and complex cooperative situations? 

  Method 

Two experiments have been conducted. The design of the experiments is mainly 

similar, while once addressing a narrow-passage, and once a t-junction-scenario. 

  Subjects 

42 subjects aged from 20 to 28 years were recruited for the experiments. Of these 

N=22 subjects drove the equal narrow-passage and N=20 subjects drove the t-

junction-scenario. The subjects, mainly students, drove between 20 km and 500 km 

per week (M=141.82, SD=156.11). For their participation, a financial compensation 

was granted. There were N=5 examiners (male=3, female=2) involved as 

confederates at an average age of 23.00 years (SD=2.24 years). 

  Material 

The test-vehicle was a VW Passat 2.0 TDI Variant equipped with lidar sensor 

(Velodyne VLP-16), eye-tracking cameras (SmartEye Pro 5.9) and CAN-recording. 

The confederates drove a Ford Fiesta and a VW Passat for the t-junction. For the 

narrow-passage the usage of the car was randomized. The confederates used scripts 

to interact with the subjects. These scripts were based on the observational study and 

are described in table 1 and, in more detail, in Imbsweiler et al. (2016). For the 

experiments a survey was conducted. It consisted of questions on a seven-point 

Likert-Scale and addressed the cooperativeness of other drivers as well as the overall 

cooperation-intensity of the situation. Furthermore, it was asked how confident the 

participants were to pass first, second or third – in the case of the t-junction. 
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Additionally they were instructed to rate the risk of a potential accident and they 

completed the abridged version of the NEO-FFI (Borkenau & Osterdorf, 1993). 

  General procedure 

The experiments were conducted at a traffic-training-center. There were at least 

three examiners involved: one examiner (EX-1.1) drove the participating car in the 

narrow-passage-scenario, whereas two examiners (EX-1.1/1.2) were involved in the 

t-junction-scenario. Another examiner (EX-2) was placed in the rear of the test-

vehicle to monitor the measurement and to take care of instructing the participant. 

Another examiner (EX-3) monitored the whole experimental situation from an office 

located at the training centre. If the timing of an approaching behaviour did not work 

well, the examiners, especially EX-3, requested to repeat the cooperation. Both for 

the narrow-passage and the t-junction six behaviour scripts were available (table 1 

and 2), which were divided into offensive and defensive scripts.  

At the beginning of the experiments the subjects had drive a standardized course to 

become acquainted with the car. Then the eye-tracking system was calibrated. For 

the t-junction every position was driven two times and every script was repeated 

depending on the position of the subject (figure 1). The same procedure was applied 

for the narrow-passage, only differing in terms of the number of positions that had to 

be tested (figure 1). 

  Specific procedure for EX 1.1 and 1.2 

The examiners had to work through six different driving scripts, which regulated 

how to behave at the narrow-passage or the t-intersection, respectively. After every 

script the examiners assessed the situation. With a dictaphone the examiners rated 

the following aspects on a seven-pointed Likert-scale: the implementation of the 

script, the cooperation-readiness of the subject, and the cooperation-intensity. 

Additionally they had to record the communication signs given by the subjects and 

the order of driving. After all situations EX-1.1, 1.2, and EX-2 had to answer an 

overall survey for all situations, including the overall cooperation-readiness, the 

overall cooperation-intensity, and the perceived driving style of the subject. 

  Data analysis 

In a first step the eye-tracking data were analysed in a 2x6 repeated measurement 

ANOVA, with factor 1 regarding the passage and factor 2 regarding the scripts for 

the narrow-passage. For the t-junction the data was analysed in a 2x4 repeated 

measurement ANOVA.  

In order to detect a systematic pattern, the significant parameters were then clustered 

by a fuzzy-method (Hatzinger, Hornik & Nagel, 2011). It was expected that some 

parameters behave in similar ways to each other during different behaviour scripts 

making it possible to distinguish between those scripts. The fuzzy-approach has the 

advantage that every variable is allocated with a specific weight to every cluster. 

Thus it is possible to estimate how strong the cluster and variables are.  
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The software R 3.4.1 and the package “cluster” (Maechler, 2017) was used. 

Additionally the question was addressed with which survey variables the parameters 

correlate. The research question follows an explorative approach. 

For the eye-tracking parameters various variables, describing in detail, fixations, 

saccadic eye-movements, or blinks were analyzed (table 3): 

Table 3. Table of eye-tracking parameters.

 

  Results 

The analysis of the data focuses on the results of the narrow-passage first, while the 

outcome for the t-junction is presented next. 

To reduce the amount of data only the parameters significant in the ANOVA will be 

reported and summarised. The alpha error accumulation was considered. As the 

physiological data did not follow a normal distribution outliers ± 2 SDs were 

replaced by the mean value of each condition to prepare a box-cox transformation. 

Values ± 2 SDs were measurements of low quality (below 75 % of the quality-

index). Then the parameters were box-cox transformed (Box & Cox, 1964), using 

the box-cox-function of the “MASS”-package (Ripley et al., 2017) of R-Studio. 

  Narrow-passage 

The parameters of the narrow-passage with significant results in the ANOVA are 

reported in table 4. Only significant variables are reported.  

Parameter 

category
Parameter

Blink-Parameters 

(B)

Nearest Neighbor Index (Di Nocera et al. (2006) (NNI,1), Percentage closure of eyes (Lal & Craig, 2001) 

(PERCLOS,2), blink duration in ms (3) , blink rate (4)

Pupil Diameter 

Parameters (PD)

pupil-diameter (5), the mean pupil diameter (6), the median of the pupil diameter (7), the frequency of the pupils 

diameter (8), the amplitude of the pupil diameter (9), the highest peak of the pupils diameter (10)

Fixation-

Parameters (FX)

Fixation-durations metrics (maximum, mean, median) (11,12,13), the sum of the fixations (14), the ratio between 

fixation and saccades (15)

Saccadic-

Parameters (SC)

saccades-velocity metrics (mean, max, median) (16, 17, 18), saccades-amplitude-metrics (mean, maximum, median) 

(19, 20, 21), saccade-duration-metrics (mean, maximum, median) (22, 23, 24, 25), Saccade sum (26)
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Table 4. Significant parameters of the narrow-passage.  

 

Bortz (2005) categorized the effect of the partial-eta-square as low for <.1, as middle 

for >.25, and as high for > .4. Thus, only parameters with a high partial-eta-square> 

.040 were considered (table 4).  

For determining the appropriate number of clusters, the “pamk” function of the 

package “fpc” was used (Henning, 2015), which refers to the theory of Duda and 

Hart (1973). The pam function searches for representative objects or medoids in the 

data set which minimize the sum of dissimilarities (Henning, 2015). As there are 

three different kinds of eye-metrics, fixations, saccadic eye-movements, and blinks, 

it is reasonable to assume that there are also three clusters. The results of the cluster 

analysis also show three clusters, two of which can be allocated to fixations 

(Cluster-3) and saccades (Cluster-2). Cluster-1 cannot be allocated to a parameter 

category. The Dunn coeffient is high with a value of .84. 

Category Parameter DF SSn F p Partial-eta-square

B NNI 5 .476 2.674 <.05 .067

B PERCLOS 5 2.401 10.002 <.05 .144

B Blink-Duration 5 5.602 7.860 <.05 .129

B Blink-Rate 5 49.264 3.857 <.05 .069

PD Diameter-Frequency 5 141.528 2.604 <.05 .047

PD Diameter-Peaks 5 6.414 2.347 <.05 .048

FX Fixation-Duration-Mean 5 4.884 2.459 <.05 .039

FX Fixation-Sum 5 .035 10.965 <.05 .234

FX Fixation-Saccade-Ratio 5 1.378 2.377 <.05 .038

SC Fixation-Saccade-ratio Sum 5 1.836 2.544 <.05 .051

SC Saccade-Amplitude-Maximum 5 1.176 5.243 <.05 .089

SC Saccade-Amplitude-Mean 5 .269 3.028 <.05 .014

SC Saccade-Duration-Median 5 547.416 3.069 <.05 .051

SC Saccade-Sum 5 .001 13.259 <.05 .235
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Table 5. Fuzzy-analysis-membership-coefficients for the narrow-passage. 

 

For every cluster one typical plot is presented (figure 2-4): Cluster-1 summarises 

very different kinds of parameters and thus, it is difficult to be interpreted 

reasonably. As it reveals only weak effects, this cluster shall not be regarded further 

and it is referred to as “noise cluster” (figure 2).  

 

Figure 2. Mean-graph of the cluster-1 parameters for the narrow-passage. 

Cluster-2 consists of saccadic parameters with middle effect sizes (figure 3), 

whereas cluster-3 summarises various fixation metrics with both strong and weak 

effects (figure 4). 

Category Parameter Membership coefficient 1Membership coefficient 2 Membership coefficient 3

FX NNI (1) .99 .01 .00

B Blinkduration (3) .97 .02 .01

SC
Saccade-Amplitude-Maximum 

(20)
.96 .03 .01

B Perclos (2) .08 .86 .07

B Blinkrate (3) .15 .73 .12

SC
Saccade-Duration-Median 

(24)
.01 .89 .10

SC Saccde Sum (26) .01 .78 .21

FX Fixation Sum (14) .00 .00 1

FX Fixation-Saccade Ratio (16) 0 0 1
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Figure 3. Mean-Graph of the Cluster-2 Parameters of the narrow-passage. 

 

Figure 4. Mean-Graph of the Cluster-3 Parameters of the narrow-passage. 

Finally, in order to get a complete picture for the narrow-passage-scenario, the 

significant eye-tracking parameters are correlated with the survey data (table 6). 
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Table 6. Correlation-Matrix: eye-tracking parameters and survey data for the narrow-

passage. 

 

It can be seen that there is no correlation between the variable “confidence of 

driving” and any other parameter, the variable “accidental risk” correlates with the 

Diameter-Peaks (r=.146, p< .05) and with the saccade amplitude-maximum (r= –

.157, p< .05). The variable “cooperation-readiness” correlates with the Diameter-

Frequency (r= –.133, p< .05), Diameter-Peaks (r= –222, p< .05), and Fixation-Sum 

(r= –.145, p< .05). 

  t-junction 

The statistical procedure for the t-junction data was the same with the exception that 

only the left turning positions were analysed and script-5 and -6 will be ignored 

because they belong to position-3. Position-3 is the going straight position and 

requires different eye movements. 

  

Category Parameter Confidence of driving Accidental risk Cooperation-ReadinessCooperation-Intensity

FX NNI -.140 -.128 .049 -.140

B Perclos .030 -.005 .138 -.130

B Blinkduration .072 .005 -.115 -.155

B Blinkrate .037 -.053 .067 .095

PD Diameter-Freq -.014 -.062 -.133* -.005

PD Diameter-Peaks -.077 .146* -.222** -.109

FX
Fixation-Duration-

Mean
.108 -.076 .002 -.125*

FX Fixation-Sum .059 -.089 .145* .089

FX
Fixation-Saccade 

Ratio
-.640 .109 -.091 -.179**

FX
Fixation-Saccade ratio

Sum
-.039 .074 -.016 -.006

SC
Saccade-Amplitude-

Maximum
.103 -.157* .005 .157*

SC
Saccade-Amplitude-

Mean
-.120 .036 -.062 -.029

SC
Saccade-Duration-

Median
.037 -.032 .030 -.229**

SC Saccade-Sum -.530 -.140 -.700 -.106

p <.000 ***, p < .001 **, p < .005*, p <

.01.
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Again the analysis starts with the ANOVA. Only significant results are summarised 

in table 6. 

Table 7. Significant eye-tracking parameters of the t-junction as given by an ANOVA. 

 

In the next step, the results of the cluster analysis will be presented. Thereby a model 

with two clusters was tested, which was based on the before mentioned “pam”-

function (table 7). 

Table 8. Fuzzy-Analysis-Membership-Coefficients for the t-junction. 

 

The mean-graphs are presented for the two different clusters (fig. 4 and 5). 

Category Parameter DF SSn F p Partial-eta-square

FX NNI (1) 3 2.836 2.929 .05 .005

FX Fixation-Duration-Mean (12) 3 6.175 2.920 .05 .029

FX Fixation-Sum (14) 3 1.608 3.532 .05 .038

FX Fixation-Saccade Ratio (15) 3 .001 2.907 .05 .029

FX Fixation-Saccade Ratio Sum (16) 3 .020 2.956 .05 .045

SC Saccade-Amplitude-Maximum (20) 3 1.462 5.535 .05 .074

SC Saccade-Amplitude-Mean (21) 3 .291 3.043 .05 .031

SC Saccade-Duration Mean (22) 3 .002 1.716 .05 .056

SC Saccade-Duration Median (23) 3 .006 3.275 .05 .043

SC Saccade Velocity Maximun (17) 3 .002 5.489 .05 .066

SC Saccade Velocity Median (18) 3 .009 2.893 .05 .020

SC Saccade-Sum (26) 3 6.157 3.768 .05 .040

Category Number Parameter Membership Coefficient 1 Membership Coefficient 2

Saccadic 20 Saccade-Amplitude-Maximum 1.00 .00

Saccadic 16 Fixation-Saccade Ratio Sum .29 .71

Saccadic 22 Saccade-Duration Mean .00 1

Sacadic 23 Saccade-Duration Median .01 .99

Saccadic 17 Saccade Velocity Maximum .02 .098

Saccadic 26 Saccade-Sum .00 1.00
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Figure 4. Mean-Graph of the Cluster-1 parameters of the t-junction. 

 

 

Figure 5. Mean-Graph of the Cluster-2 parameters of the t-junction. 

Analogous to the analysis of the narrow-passage, finally, the result of the correlation 

analysis is presented (table 8). 
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Table 9. Correlation-Matrix: eye-tracking parameters and survey-Data. 

 

  Discussion 

First, the outcome of the narrow-passage and t-junction shall be discussed, then 

implications will be derived. Due to the large amount of significant results it may be 

assumed that the eye-tracking parameters seem to be quite meaningful in general. 

Based on the partial-eta-square value, nine of the 14 parameters could be considered 

for a further cluster analysis. The resulting clusters show that in cooperative traffic 

situations different aspects are relevant. In cluster-1 it becomes apparent that the 

NNI, maximum amplitude of a saccade, and blink duration reveal a similarity. In 

general, the values are lower for the offensive scripts than for the defensive scripts. 

This might be due to the fact that within the offensive scnearios the subjects had to 

initiate driving maneuvers themselves and not only react on the behaviour of the 

cooperation partner as it is the case within the more defensive maneuvers. Moreover 

the lowest manifestation occurs in script-5, which allows the clearest interpretation 

of the behaviour for all subjects. Cluster-1 is interesting because the parameters 

cannot be allocated to one parameter-category. 

Cluster-2 consists of the variables PERCLOS, median saccade duration, and sum of 

the saccades. For this reason, it may be concluded that the saccadic parameters 

behave in a similiar way. The lowest manifestation is in script-4 (maintain speed), 

the highest manifestation in script-2 (Decelerate and using the flash of headlight). 

Furthermore the defensive scripts show higher values in general. It can be assumed 

that for the narrow-passage there are more and longer gaze movements within 

defensive scripts than within offensive scripts. For the parameter PERCLOS the 

opposite holds true – if the eye is closed, it will not be possible to use gaze. To sum 

up it can be said that cluster-2 is the saccade cluster. 

Category Parameter Confidence
Acciden

t risk

Cooperation-

Readiness 1

Cooperation-

Readiness 2

Cooperation-

Readiness 3

Cooperation-

Intensity

FX NNI .013 .031 -.152 .061 -.110 -.833**

FX Fixation-Duration-Mean .025 .000 -.88 .030 -.070 -.201**

FX Fixation-Sum -.125 -0.320 .027 .096 -.040 .091

FX Fixation-Saccade Ratio -.077 .051 .012 .248** -.120 -.085

FX
Fixation-Saccade Ratio 

Sum
-.027 -.085 .087 .077 -.020 .154*

SC
Saccade-Amplitude-

Maximum
-.155* .083 .088 .184* -.009 .085

SC Saccade-Amplitude-Mean .066 .100 .026 .173 -.207 .060

SC Saccade-Duration Mean .168* .035 .053 .050 -.108 .032

SC Saccade-Duration Median .144* .057 .105 .020 -.060 .085

SC
Saccade Velocity 

Maximun
.054 -.053 -.044 -.149 .057 .210

SC Saccade Velocity Median .044 .013 .100 .074 -.060 .052

SC Saccade-Sum .086 -.078 .125 .055 .037 .141*

p <.000 ***, p < .001 **, p < .005*, p < .01.
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Cluster-3 contains the parameters sum of fixations and the fixation-saccade-ratio. 

Both parameters are very similar to cluster-2 and show the same pattern: There is a 

lower manifestation in the offensive scripts and a higher manifestation in the 

defensive scripts. When a driver takes a more active role, both the sum and the 

duration of saccades and fixations are reduced; for a more passive driver the 

opposite holds true. Furthermore cluster-3 shows for the effect sizes one important 

point: The fixation-saccadio ratio (η²p=.051) has in contrast to the sum of the 

fixation (η²p=.234) a very weak effect size. 

The correlations between the eye-tracking parameters and the assessment of the 

situation by the subjects show one interesting abnormality. Most of the eye-tracking 

parameters do not correlate with the subject’s assessment except the variable 

cooperation-intensity. It correlates in a negative way with the mean of the fixation-

duration, fixation-saccade ratio and the saccade-duration median and in a positive 

way with the saccade amplitude maximum. This means the more cooperative a 

situation is perceived, the fewer fixations and saccades are to be observed. Thus, a 

clearer communication leads to a faster understanding of the situation and in 

consequence, the drivers do not have to look longer and more intensively to several 

objects. This pattern is found in the saccadic parameters as well.  

Within the t-junction-scenario a lot of significant results were observed, too; 

although only few of them reveal at least a middle sized effect. As most of the 

parameters show only a very small effect, the results should not be considered 

further and thus, only a two cluster analysis was reported. Cluster-1 contains the 

NNI and partially the fixation-saccade-ratio. For the offensive scripts corresponding 

patterns could be observed. The values are higher for script-3 than for script-4, but 

for the defensive scripts opposite holds true. Unfortunately, for cluster-1 it is not 

possible to draw conclusions. 

Cluster-2 contains the mean and median of the saccade duration, maximum of the 

saccade velocity and sum of the saccades. The saccade duration parameters show 

similar patterns. Furthermore in script-3 and 4 they do not show any differences. In 

the offensive scripts the subjects have to react, to stop and not to drive first. So they 

can concentrate on what the other driver is doing. The maximum of the saccade 

velocity and the allocated sum show a similar pattern regarding differences between 

offensive and defensive scripts. Nevertheless, there is a small difference because in 

script-4 they show the same manifestation as the defensive scripts. This pattern 

should be tested for other parameters within future research. 

Moreover the results of the correlation analysis show on one side the same effect as 

the narrow-passage regarding the cooperation-intensity. But there is a further 

correlation pattern. If the drivers feel more confident in making their decision when 

to drive, the saccade duration is higher. It seems like it is easier for road users to 

make a decision if they have more time to go from one fixation to the next. 

Correspondingly, there is a negative correlation between confidence of driving and 

maximum saccade amplitude which underlines the explanation. If the data of the 

narrow-passage is compared to the t-junction-scenario, it can be seen that in both it 

is possible - on the base of the eye-tracking data - to distinguish between situations 

in which the participant drives first or the cooperation partner. Furthermore, there is 
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a negative correlation between the cooperation-intensity and fixations duration and 

saccade duration. If a road user does not have to look long at an object the situation 

is clearer and so the perceived cooperation-readiness seem to be higher. Moreover 

the t-junction shows that there is a correlation between confidence of driving and 

saccade duration. It should be mentioned that an unsystematic behaviour of various 

variables is from the methodological point of view critical. The results should be 

seen as tendency and not as hypothesis-tested results.  

The main differences between the narrow-passage and the t-junction are that in the t-

junction-scenario the subjects had to turn left and concentrate on two opponents in 

contrast to the narrow-passage with two obstacles and a straight driving direction. 

Because of these characteristics the t-junction is more complex than the narrow-

passage and takes longer overall to master. This leads to the results of the fixation 

parameters being more important for the narrow-passage than the saccadic 

parameters. For the t-junction the saccadic parameters are more important. 

Furthermore it is possible to see if a road user had to react or act based on the 

eyetracking data.  

  Conclusion 

It can be said that it is possible to identify specific eye-tracking parameters for 

different driving behaviours. Furthermore it was shown that not every significant 

parameter is a “good” parameter because the effect sizes are spreading very widely. 

Moreover it is possible to distinguish between simple and complex scenarios. For 

complex short cooperative traffic scenarios the saccadic parameters seem to be more 

important and for simple scenarios the fixation parameters seem to be more 

important. More studies should test this pattern. 

Acknowledgments 

This project has been funded within the priority program 1835 „Cooperatively 

Interacting Automo-biles “by the German Research Foundation (DFG). The authors 

thank the project partners for the fruitful cooperation. Furthermore thank the authors 

Simon Stache for helping with the clusteranalysis.  

  References 

Ba, Y., Zhang, W., Reimer, B., Yang, Y., & Salvendy, G. (2015). The effect of 

communicational signals on drivers' subjective appraisal and visual attention 

during interactive driving sce-narios. Behaviour & Information 

Technology,34(11),1107–1118. 

https://doi.org/10.1080/0144929X.2015.1056547 

Benmimoun A., Neunzig, D. & MAAG, C. (2004). Effizienzsteigerung durch 

professionelles/partnerschaftliches Verhalten im Straßenverkehr (No. 181). 

Frankfurt/Main Forschung-dvereinigung Automobiltechnik e. V. 

Borkenau, P, Ostendorf, P. (1993). NEO-Fünf-Faktoren Inventar nach Costa und 

McCrae.: Handanweisung. Göttingen: Hogrefe. 



100 Imbsweiler, Wolf, Linstedt, Hess, & Deml 

Box, G.E.P & Cox, D.R. (1964). An analysis of transformations. Journal of the 

Royal Statistical Society Series B 26(2). P. 211–252. 

Di Nocera, F., Terenzi, M., & Camilli, M. (2006). Another look at scanpath: 

Distance to nearest neighbour as a measure of mental workload. In D. de 

Waard, K.A.Brookhuis, & A. Toffetti (Eds.), Developments in human factors 

in transportation, design, and evaluation, (pp. 295–303). Maastricht, the 

Netherlands: Shaker Publishing. 

Duda, R.O. & Hart, P.E. (1973). Pattern Classification and Scene Analysis. Wiley, 

New York. 

Henning, C (2015). Flexible Procedures for Clustering. R Foundation for Statistical 

Computing, Vienna, Austria. URL http://www.R-project.org/ 

Hoc, J.M. (2001). Towards a cognitive approach to human–machine cooperation in 

dynamic sit-uations. International Journal of Human-Computer Studies, 54(4), 

509–540. https://doi.org/10.1006/ijhc.2000.0454 

Imbsweiler, J., Ruesch, M., Palyafári, R., Deml, B. & Puente León, F. (2016). 

Entwicklung einer Beobachtungsmethode von Verhaltensströmen in 

kooperativen Situationen im innerstädti-schen Verkehr. In 32. VDI/VW-

Gemeinschaftstagung Fahrerassistenzsysteme und auto-matisiertes Fahren, 

Wolfsburg, 8-9 November 2016. 

Imbsweiler, J., Palyafári, R., Puente León, F. & Deml, B. (2017). Untersuchung des 

Entscheidungsverhaltens in kooperativen Verkehrssituationen am Beispiel 

einer Engstelle. at-Automatisierungstechnik, 65, 477-488. 

https://doi.org/10.1515/auto-2016-0127.  

Lal, S. K. & Craig, A. A. (2001). A critical review of the psychophysiology of 

driver‘s Fatigue, Biological Physiology, 55, 173-194. 

Maechler, M. (2017). Finding Groups in Data'': Cluster Analysis Extended 

Rousseeuw et al. R Foundation for Statistical Computing, Vienna, Austria. 

URL http://www.R-project.org/  

Manzey, D., & Lorenz, B. (1998). Mental performance during short-term and long-

term spaceflight. Brain Research Reviews, 28(1-2), 215–221. 

https://doi.org/10.1016/S0165-0173(98)00041-1 

Ripley, B., Venables, B., Bates, D. M., Hornik, K., Gebhardt, A. & Firth, D. (2017). 

Support Functions and Datasets for Venables and Ripley's MASS. R 

Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-

project.org/ 

Risser, R. (1985). Behaviour in traffic conflict situations. Accident, Analysis & 

Prevention, 2(17), 179–197. 

Schneider, M. (2017). Blickbasierte Beanspruchungsmessung : Entwicklung und 

Evaluation eines Kalibrierungssystems zur individuellen Bewertung der 

mentalen Beanspruchung in der Mensch-Technik-Interaktion. PhD dissertation, 

Karlruher Institut für Technologie, urn:nbn:de:swb:90-700251 

Sakita, K., Ogawara, K., Murakami, S., Kawamura, K., & Ikeuchi, K. (Eds.) (2004). 

Flexible cooperation between human and robot by interpreting human intention 

from gaze information -, Proceedings. 2004 IEEE/RSJ International Confer. : 

Vol. 4: IEEE. 



 eye-tracking parameters within cooperative traffic scenarios 101 

Witzlack, C., Beggiato, M., & Krems, J. (2016). Interaktionssequenzen zwischen 

Fahrzeugen und Fußgängernim Parkplatzszenario als Grundlage für kooperativ 

interagierende Automati-sierung. In VDI (Eds.). Fahrerassistenz und 

automatisiertes Fahren, VDI-Berichte 2288 (p. 323-336). Düsseldorf: VDI-

Verlag. 





In D. de Waard, F. Di Nocera, D. Coelho, J. Edworthy, K. Brookhuis, F. Ferlazzo, T. Franke, and A. 
Toffetti (Eds.) (2018). Proceedings of the Human Factors and Ergonomics Society Europe Chapter 2017 

Annual Conference. ISSN 2333-4959 (online). Available from http://hfes-europe.org 

Modelling driver styles based on driving data 

Peter Mörtl, Andreas Festl, Peter Wimmer, Christian Kaiser, & Alexander Stocker 

VIRTUAL VEHICLE Research Center 

Austria 

  Abstract 

Driving styles are habitual ways of driving that are characteristic for groups of 

drivers and represent an important topic of research for advanced automation in the 

vehicle of the future. Relatively little knowledge exists concerning the connection 

between driving styles and the underlying cognitive-psychological aspects of the 

driver. To better understand this connection, we investigate driving style indicators 

in a driving simulator and create a cognitive model of the underlying cognitive-

psychological processes that we compare with the empirical data. The cognitive 

model produces steering behaviour that approximates the lateral deviations of 

human drivers while also producing similar rates of steering wheel direction 

reversals. These results confirm the utility of this approach for representing 

individual driving styles and states for advanced vehicle automation. 

  Introduction 

Research in driving styles has a long tradition and recently experienced a new focus 

of interest because modern automotive technologies have become smart enough for 

personalised in-vehicle interventions. The term driving style has been defined by 

(Sagberg, Selpi, Piccinini, & Engström, 2015) as a “habitual way  of  driving, which 

is characteristic for a driver or a group of drivers”.  Driving styles also stay 

constant for a given driver across different driving contexts. Global driving styles 

combine multiple driving indicators (such as aggressive, calm, or careful driving) 

and specific driving styles are measured by one or two indicators.  

While there are many driving metrics, there are currently few models that tie them to 

their underlying psychological processes. Such models would be important because 

of several reasons. First, they may allow tying multi-sensory observational data 

streams together to inform driver state inferences. Second, such integrative models 

could be used in virtual safety assessments to represent the human driver. Such 

virtual safety assessments are needed to determine whether higher levels of 

automated driving are safe because repeated extensive real-world studies would take 

too long and be too cost-intensive. And third, such models could be used to better 

personalise automated driving so that the self-driving car has knowledge of the 

human driver and adjust to his or her style. Also, personalised in-vehicle support 

could detect a need for intervention based on observing the driving behaviour for 

fatigue or distraction. The detection of such driver states depends on representing the 

driver’s individual driving style which is the focus of this paper. 
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In this paper we first briefly describe some driving style indicators. Then we 

describe an empirical study to collect driving data in a driving simulator and 

investigate four driving style metrics: steering, speed, acceleration, and distance 

keeping. We then describe the development of a psychological driving process 

model to predict lateral lane deviations and compare them to human participants. We 

validate the model for one of the four driving metrics, the steering metric, and 

describe the results. 

Specific driving styles 

Steering behaviour represents a thoroughly investigated driving style metric. Li et al. 

(2017) use measures of entropy and variation in timely sequences of steering wheel 

angles to estimate driver drowsiness. Fairclough & Graham (1999) measured 

steering wheel reversal (SWR) differences between a control group and partially and 

fully sleep-deprived drivers in a simulator study. They find a reduction of SWR 

from about 15 to 11 per minute for the sleep-deprived group compared to the control 

group (see also McLean & Hoffmann, 1975). Thiffault & Bergeron (2003) examined 

the influence of fatigue on various steering measures including the mean steering 

angle amplitude, frequency of larger steering wheel movements, and their standard 

deviation. Otmani et al. (2005) investigated the influence of fatigue on the mean 

steer wheel angle changes and found that they amount to about between 0.5 and 5 

degrees, averaged over 1 to 10 min driving periods. Similarly, Yan, Radwan, & Guo 

(2007)) and Ungoren & Peng (2005) report that individual drivers differ in their 

steering behaviour.  

Another well investigated specific driving style metric are driving speed and 

accelerations. Ericsson (2000) reports on traffic dependent as well as individual 

differences in driving speed, for example between males and females (see also 

Brundell-Freij & Ericsson, 2005; Ericsson, 2001 who also investigated driving 

acceleration). Af Wåhlberg (2007) investigated the variability and amount of driving 

accelerations and found that they could serve as precursors of accidents (see also Af 

Wåhlberg, 2008; af Wåhlberg & Dorn, 2007). Bagdadi & Várhelyi (2011) 

investigated jerky driving as predictor of accidents, see also (Murphey, Milton, & 

Kiliaris, 2009). Desai & Haque (2006) investigated pressure on the acceleration 

pedal as individual parameters for driver alertness.  

Another field of specific driving style metrics is the headway distance to the vehicle 

ahead (see, e.g. Shinar & Schechtman, 2002). Taieb-Maimon (2007) and Taieb-

Maimon & Shinar (2001) investigated the impact of training on improving inter-

vehicular distance.  

Data Collection 

We collected driving data in a non-motion based driving simulator. After an initial 

warm-up, 16 participants drove a car with automatic transmission on a curvy road of 

10 km length. The road segment was extracted from satellite imagery recreated in 

the simulator and eight metres wide. Participants were between 20 to 60 years old, 

12 were male and four female. All had driver licences and drove between 5,000 and 

20,000 km per year. Participants completed two scenarios on two different roads.  
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In the first scenario (“driving and passing scenario”), they could select their driving 

speed and encountered oncoming traffic approximately every 25 seconds. They 

encountered slower vehicles that they could pass if desired. Participants were 

encouraged to drive as close as possible to how they drove in the real world. When 

passing a vehicle they were asked to indicate their intent to pass by actuating a lever 

on the left side of the steering wheel. In a second scenario (“steering only scenario”), 

participants only steered their vehicle that drove at a constant speed of 90 km/h. 

There were no opportunities to pass other vehicles. The order of the scenarios was 

randomized and counterbalanced so that 50 % of the participants experienced 

scenario 1 before scenario 2 and vice versa to avoid order effects. 

Before the simulation started, participants completed a questionnaire (see Table 1) 

that assessed some aspects of their general driving style. After completion of both 

driving scenarios they completed a short questionnaire about their driving. The 

response scale to all questions was a 7-item Likert scale. 

Table 1. Questionnaire items 

General Driving Style Scenario Specific Driving 

I frequently pass cars. I frequently passed cars. 

I usually do not have to brake prior to curves. I usually did not have to brake prior 

to curves. 

I sometimes cross red lights. I think that I drove safely. 

People say that I am a safe driver. I think that I drove very carefully. 

I usually drive very carefully. I drove as fast as was possible. 

I sometimes drive as fast as possible. I was braking hard at least once. 

I never “chase” yellow lights. I drove “sportily”. 

I often have to brake hard.  

When driving, cars often pass me. 

People say that I am a “sporty” driver. 

 

Driving style characterisation 

We first present the results of the observed driving style metrics for scenario 1 

where participants could freely choose their speed. Driving data during periods of 

free driving (i.e. without a vehicle ahead) were separately analysed from periods 

when they had to adjust their speed because of a vehicle ahead. The road of 10,000 

m was divided into 100 segments that were each 100 m long. The first segment was 

removed because all drivers accelerated the vehicle. Each of the remaining segments 

was classified for each participant either as following another car (if it came within 

50 m of the vehicle ahead), as driving freely, or overtaking a car. Only free and 

following driving segments were considered further in the analysis. Following 

driving metrics were investigated: 
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1. Count of the steering wheel direction reversals per second over “free” and 

“following” segments. 

2. Mean vehicle speed in the “free” driving segments. 

3. Mean following distance in the “following” driving segments. 

4. Count of accelerations in all “free” and “following” segments. 

Figure 1 shows the identified variability of the four driving metrics that differed 

considerably between them.  

 

Figure 1. Driving metrics for Study 1. 

Several of the metrics correlate with each other: The faster drivers accelerated more 

frequently, however only when driving freely (i.e. r=0.23, p < 0.001 when driving 

freely but only r=0.09, p > 0.1 when following). Drivers who drove faster also more 

frequently reversed the steering wheel direction (r=0.21, p < 0.001) regardless 

whether they followed or drove freely. When following a vehicle, people who kept 

more distance to the vehicle tended to reverse the steering wheel direction more 

frequently (r = 0.18, p < 0.001) and tended to drive faster (r=0.29, p < 0.001). No 

other correlation among the driving metrics reached significance. Also, we found no 

correlation between driving metrics and the participants’ responses on the 

questionnaires. 
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Figure 2. Correlations between driving metrics. 

To determine to what extent these variations reflect just random noise or differed 

statistically between drivers and road segments, we utilised a two-way random 

effects model (Searle, Casella, & McCulloch, 1992), which is a special case of the 

linear mixed effects model: 

 

 

Formula 1. Two-Way Random Effects Model. 

where the indices i and j indicate the drivers and road segments and the variables are 

defined in the following way: 

 

No interaction (𝛼𝛽)𝑖𝑗 is included because each driver drove each road segment only 

once. That means we had to assume that the drivers responded equally to each road 

segment. 

The results of this analysis are shown in Table 2. The variances of all random effects 

are highly significant, indicating statistically significant differences in the driving 

metrics among the drivers and the road segments. Knowing the driver and the road 

segment reduces the overall random noise as indicated Table 2. For example, the 
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variance for the driving metric “median distance to the next vehicle” reduces from 

15.06 m to 6.6 m when subtracting driver and road segment effects. 

Table 2. Driving style metric variability 

  

Median 

Distance to 

Next Vehicle 

(m) 

Mean Vehicle 

Speed / sec 

Steering 

Wheel 

Reversals / 

sec 

Acceleration 

Count 

Driver 5.5510* 2.4920* 0.2033* 0.3270* 

Road Section 2.8630** 2.4700* 0.2126* 0.4254* 

Residual 6.6450 2.7960 0.5173 1.3250 

Total 15.0590 7.7580 0.9332 2.0774 

* p < 0.001; ** p < 0.01 

In Figure 3 the proportions of the explained variances are compared with each other. 

We find that the greatest amount of overall variation is explained by the driver’s 

median distance to the next vehicle (36.86%). This is somewhat expected because 

distance keeping should more or less reflect a conscious decision by the driver. Road 

characteristics also contribute significant variability though the driver influence is 

almost double of the road segments. Road and drivers explain about equal variances 

of the mean vehicle speed, similar is the case for SWRs. In terms of number of 

accelerations, knowing the road segment has a bigger impact on reducing the overall 

variance than knowing the driver. 

 

 

Figure 3. Relative contribution of the variances within each driving metric 
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Cognitive Modelling Architecture 

There are many cognitive modelling approaches that have been applied to driving 

(e.g. Anderson et al., 2004; Bubb, Bengler, Grünen, & Vollrath, 2015; Deml, 

Neumann, Müller, & Wünsche, 2008; Kieras & Meyer, 1997; Laird, Newell, & 

Rosenbloom, 1987; Lewandowsky & Farrell, 2011; Liu, Feyen, & Tsimhoni, 2006; 

Salvucci, 2006) and it is beyond the scope of this paper to provide an overview. 

Primarily we were searching for a general purpose, modular architecture that would 

help to represent human psychological processes for engineering tasks. For this we 

came to utilise a cognitive modelling architecture that we describe in more detail in 

Moertl, Wimmer, & Rudigier (2017). In this approach we adopted the basic 

elements of the human cognitive architecture by Card, Moran, & Newell (1986), the 

Model Human Processor (MHP) and adapted it to specific driving tasks, see figure 

4. 

 

Figure 4. Cognitive modelling architecture. 

In the context of the driving task, the MHP cognitive processor receives information 

from the perceptual processor about the external world and executes motoric tasks to 

control the vehicle. Each process takes a certain execution time and, dependent on 

serial or parallel processing, determines the overall task duration and timing of 

interactions. The central cognitive task is to determine the next driving action. In the 

model that we utilised in this study all tasks were executed serially but could also be 

executed in parallel. The transfer of information into memory and from memory 

involves buffers. However, in the simple model that we utilise in this study all the 

information was visually available in the environment and therefore did not require 

the use of explicit buffers. 

Steering Modelling Method 

With this model we implemented Salvucchi’s steering model (see Salvucci, 2006; 

Salvucci & Gray, 2004) where steering is a direct result of perceptual fixations of 

certain points on the road ahead and the amount of time between subsequent 

environmental scans. The amount of time between scans is directly proportional to 

the number of steering corrections and inversely proportional to their size. 

Therefore, the more time is dedicated to steering and perceiving, the higher the 

number of control actions and the smaller their size. On the other hand, if only 
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limited time is available for perceiving and steering such as when multitasking and 

searching for signs or talking on the cell phone, the less frequent should be the 

steering control actions and the larger their size.  

The model that we implement based on Salvucchi’s work uses perceptual 

information that is available to human drivers when driving. The model has received 

empirical validation from visual occlusion experiments where human drivers drove 

in a driving simulator while some areas of the visual scenery were obscured (Land & 

Horwood, 1995; Land & Lee, 1994). This steering model utilises both a far point 

and a near point that are both ahead of the driver’s own vehicle: the near point is a 

constant distance ahead and is located in the middle of the driving lane. The far 

point is further ahead and consists alternatively of the tangent point of an upcoming 

curve, the vanishing line of a straight road segment, or a vehicle that is driving 

ahead. The far point is intended to allow steering the vehicle into and out of curves 

whereas the near point helps to centre the vehicle on the driven lane.  

We implemented this steering model in our cognitive architecture by only 

considering three cognitive processes that are executed in turn: a perception, a 

cognitive, and a motoric process. Each process was assumed to take 50 ms see e.g. 

(Card et al., 1986), so that one full cycle of steering updates takes 150 ms. We also 

updated the main parameters of the model: Whereas  Salvucci (2006) suggested the 

three model parameters as kfar = 16, knear = 4.0, and kl was 3.0 we adjusted them to 

kfar = 1.6, knear = 0.4, and kl =0.09 to achieve better performance. 

Results 

Comparison lateral performance 

We compared the steering quality of human participants with the psychological 

driver model in scenario 2. The red solid line in Figure 5 shows the lateral deviations 

of the model versus the 90 percentile of human steering over the whole 10 km. The 

model was 79.4 % of the time within the human driving boundaries and correlated 

on average with r = 0.36 with the human drivers. 

 

Figure 5. Comparison of lateral deviation between humans and psychological steering model. 
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Comparison steering wheel reversals  

Given that the psychological model steered similar to human drivers, we compared 

the number of SWRs between humans and the model. It is important to note that we 

did not specifically attempt to fit SWR: we only fitted the model to the lateral lane 

deviations by adjusting the above mentioned three model parameters. Figure 6 

shows the results for both scenarios 1 and 2. The bars indicate the mean number of 

steering wheel reversals per minute for our 16 participants. The blue line indicates 

the steering wheel reversals of our psychological driving models. On the left, drivers 

controlled speed and were passing other cars (scenario 1) whereas in the right figure, 

they only steered the vehicle (scenario 2). The roads were different between 

scenarios 1 and 2.  

  

Figure 6. Comparison of steering wheel reversals between humans and model in two 

scenarios.  

The results indicate that the psychological model produced very similar amounts of 

SWR to our human participants in both scenarios. All their counts fell within one 

standard deviation of the human participants. The model was similarly accurate in its 

steering wheel reversals in both scenarios as it produced, similar to human drivers, 

relatively more SWRs on scenario 1 (84.3 SWR/min for the model versus 85.7 SWR 

/min for the human) than on scenario 2 (71.0 SWR/min for the model versus 77.0 

SWR/min for the human drivers). This indicates that by modelling the underlying 

cognitive processes the model was able to match human performance on two 

different dimensions despite having been fit only on lateral lane deviations. 

Conclusions 

The results of our study indicate that knowledge of the individual driver and road 

segment could explain up to 64% of the overall variability of the investigated 

driving metrics. The remainder of the variance apparently represents random 

fluctuations that would exceed driver modelling. This knowledge helps bound the 

expectations of how well driving models can approach real human driving.  

After review of relevant literature we derived a relatively simple and modular 

cognitive modelling architecture in which we implemented as first step a 

psychologically plausible steering algorithm by Salvucci (2006). With some 
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moderate amount of fitting that basically consisted of adjusting the model’s three 

critical steering parameters, the model not only resembled the lateral driving 

deviations of our 16 human participants but also approximated their rate of steering 

wheel direction reversals. This demonstrates the principal benefit of models that not 

only represent outcomes but underlying structure for the applications in the vehicle 

of the future: new and valid behavioural predictions can be derived from the model 

structure rather than having to base each prediction on an extensive learning process 

of stimulus-response. Such power of generalization is essentially missing in pure 

machine learning algorithms but seems crucial to better fit the contextual needs of 

the driver and help allow for inferential processes to ascertain whether a system is 

safe. 

Much remains to be done to establish psychological driver modelling as a standard 

tool for human-centred automotive developments. First we will need to confirm that 

our psychological models are not only valid for simulation studies but also for real 

world driving. Then we need to test how the psychological model can be adapted to 

capture individual driver styles and states, such as, for example, driving distraction. 

Finally, we will extend our modelling to other driving aspects, specifically braking, 

distance keeping, and speed selections.  
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  Abstract 

Auditory feedback produced by driver assistance systems can benefit safety. 

However, auditory feedback is often regarded as annoying, which may result in 

disuse of the system. An auditory headway feedback system was designed with the 

aim to improve user acceptance and driving safety. The algorithm used a graded 

approach, which means that it delivered a more urgent warning if the time headway 

was smaller. In an on-road test, we compared this design with a conventional binary 

headway warning system. Participants drove a test vehicle on the highway, once 

with our graded feedback and once with conventional feedback. User acceptance 

was assessed through a questionnaire and interview. An inspection of the time 

headway distributions suggested that participants responded to the auditory feedback 

for both systems. There were substantial individual differences in time headway, and 

extremely short headways were rare. These findings suggest that long-term 

naturalistic trials are needed to assess the safety-effectiveness of graded auditory 

feedback. 

Introduction 

Car driving is safer than ever before (Stipdonk, 2017). The growing number of 

advanced driver assistance systems (ADAS), such as forward collision warning 

systems (FCW), may contribute to a further reduction of accidents. Auditory 

feedback is an attractive modality for in-vehicle warning systems because auditory 

feedback interferes little with the visually demanding driving task and can convey 

informative messages with different levels of urgency (Bazilinskyy & De Winter, 

2015; Stanton & Edworthy, 1999).  

ADAS often employ auditory feedback. Typically, the momentary safety margin 

(e.g., time to collision [TTC] or time headway [THW]) is used as an index to 

determine when feedback should be provided to the driver. A disadvantage of such 

discrete auditory warnings is that they may annoy the driver due to their saliency, 

repetitiveness, or binary nature without a clear indication of the reason for issuing 

feedback (Gonzalez et al., 2012; Parasuraman et al., 1997).  
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There is a balance between delivering feedback and maintaining user acceptance: if 

the decision threshold (criterion) is set so that auditory warnings are provided late, 

the warnings may be ineffective because the driver is caught by surprise or has little 

time to respond. Conversely, if the decision threshold is set so that warnings are 

provided early, the driver may become annoyed by the frequent warnings, and 

he/she may ignore or disable the warning system (Parasuraman & Riley, 1997). 

According to Sarter (2005), graded notifications, defined as “notifications that 

consist of signals that are proportional to the degree of urgency” are a promising yet 

underutilized means of supporting operators. Indeed, auditory warnings are 

sometimes not well-accepted (Parasuraman & Riley, 1997; Parasuraman et al., 1997; 

Wiese & Lee, 2004). 

Several approaches exist to improve the acceptance of warning systems. One 

strategy is to provide individualization through adaptable or adaptive settings based 

on the driver’s behaviour and driving style (e.g., Wang et al., 2013). Although this 

may improve acceptance, varying thresholds may also be a source of confusion for 

the driver. Providing the driver with information about why the warning is given, or 

providing clues that allow the driver to resolve the situation before the warning is 

triggered may also benefit acceptance. 

The Dutch Institute for Road Safety Research (SWOV) sees any headway under 2.0 

s as unsafe (SWOV, 2012), whereas the National Highway Traffic Safety 

Administration (NHTSA) reports that headways under 1.2 s are unsafe (NHTSA, 

2004). In practice, however, drivers may adopt considerably shorter headways: 

highway observations showed that many drivers adopt a THW below 1 s 

(Hoogendoorn & Botma, 1997; Brackstone & McDonald, 2007; Treiber et al., 

2006). An increase of minimal headway may improve safety (Ohta, 1993; Saffarian 

et al., 2017), whereas a reduction of variance of headway stabilizes traffic flow on 

the highway (Xie et al., 2008; Ye & Zhang, 2009). 

In this study, we designed a new type of auditory feedback system and compared it 

to a conventional system. We propose auditory feedback that becomes more urgent 

(and therefore having a higher potential for annoyance) when the level of risk 

(operationalized in terms of three THW stages) is higher. An on-road measurement 

was conducted to pilot-test whether the system worked as it should, and how drivers 

responded to it. 

Methods 

Auditory feedback design: Survey study 

As a first step to develop a feedback system based on headway, we performed an 

online survey among the student community and family members (N = 69). This 

survey compared user preferences for different types of earcons informing about the 

time headway. The sample consisted of 50 males and 18 females (one person 

preferred not to specify their gender). They had a mean age of 26.2 years (SD = 

11.8). 
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Figure 1. Spectrograms of Earcon 1 (left), Earcon 2 (centre), and Earcon 3 (right) from the 

online survey. 

The respondents were asked to select the most suitable earcons for warning that the 

distance to lead vehicle is too short. They did this by ranking three selected earcons 

according to their preference. The earcons consisted of melodies that were assumed 

to be non-annoying. Figure 1 shows the spectrograms of the three sounds. The 

sounds were provided in three short clips (Figure 2). Each clip showed the same 

dash camera clip in which the driver was approaching another car. All earcons stood 

out from the highway traffic noise. The first earcon (Earcon 1) was a 900 ms three-

note climbing tune (440 Hz, 523 Hz, 659 Hz), each note lasting 300 ms. The second 

and third earcons consisted of a two-note melody (330 Hz, 370 Hz), both tones 

lasting 500 ms. In Earcon 2 the lower frequency tone was presented first, followed 

by the higher frequency tone. In Earcon 3, the higher frequency tone was presented 

first, followed by the lower frequency tone. The earcon was provided when the 

THW in the video was approximately 0.5 s. 
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Figure 2. Video used in the online survey to study preferences for types of earcons informing 

about the headway (headway about 0.5 s). 

The results are shown in Table 1. 68.1% of the respondents selected Earcon 1 as 

their first preference. Choices of the participants were assigned with ratings, where 

the first choice received 3 points, the second choice 2 points, and the third choice 1 

point. The earcon with the highest rating (i.e., Earcon 1) was selected for use in the 

on-road study.  

Table 1. Left: Reported orders for offered earcons. Right: rating of the earcons, where the 

first choice gets 3 points, second choice 2 points, and third choice 1 point.  

Order or preference Percentage  Earcon Rating 

Earcon 1 – Earcon 2 – Earcon 3 44.9%  Earcon 1 171 

Earcon 1 – Earcon 3 – Earcon 2 23.2%  Earcon 2 132 

Earcon 2 – Earcon 3 – Earcon 1  14.5%  Earcon 3 111 

Earcon 2 – Earcon 1 – Earcon 3 5.8%  

Earcon 3 – Earcon 1 – Earcon 2 5.8%  

Earcon 3 – Earcon 2 – Earcon 1 5.8%  

A question on the preferred headway at which to receive warnings was also asked. 

Participants were asked to rank the headways at which the cautionary warning 

should be given. Again, three videos were provided (same video as with Earcons 1–

3), in which a neutral beep was played at three different THWs in this order: 0.5 s, 

0.8 s, and 1.2 s. As above, choices of the participants were assigned with ratings, 

where the first choice received 3 points, the second choice 2 points, and the third 

choice 1 point. The results are shown in Table 2. The most preferred option was 

Timing 1 (0.5 s). Timing 2 (0.8 s) was almost as popular as Timing 1 (157 and 175 

points, respectively). Timing 3 (1.2 s) was the least popular (82 points). In summary, 

the results suggest that feedback that is provided early is not preferred by 

participants. 

Table 2. Left: preferred orders for headway timings. Right: rating of the earcons, where the 

first choice gets 3 points, second choice 2 points, and third choice 1 point. 

Order or preference Percentage  Timing Rating 

Timing 1 – Timing 2 – Timing 3 59.4%  Timing 1 175 

Timing 1 – Timing 3 – Timing 2 2.9%  Timing 2 157 

Timing 2 – Timing 3 – Timing 1 4.3%  Timing 3 82 

Timing 2 – Timing 1 – Timing 3 27.5%  

Timing 3 – Timing 1 – Timing 2 1.4%  

Timing 3 – Timing 2 – Timing 1 4.3%  
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Conventional auditory feedback on headway 

A Conventional feedback system was implemented. It produced an urgent sound 

(hereafter referred to as ‘Sound 2’) if the THW was smaller than 0.6 s. This sound 

was the same as Earcon 1 from the online survey, but the timbre was a square wave 

instead of a sine wave to convey a stronger sense of urgency. 

Graded auditory feedback design 

The above findings were used in the design of a 3-stage headway alerting system. A 

cautionary warning (Sound 1, identical to Earcon 1 from the online survey) was 

given the first time the THW dropped below 0.8 s. After this, between 0.8 s and 0.5 

s (Stage 1), the informative message “Following distance too short” (Voice 1) in 

Dutch was played every 8 s. Based on recommendations from a previous survey on 

auditory in-vehicle interfaces (Bazilinskyy & De Winter, 2015) and an online 

experiment on the qualities of voice-based displays for cars (Bazilinskyy & De 

Winter, 2017), a computer-generated female voice was used for the voice-based 

warning. The 8 s timer was reset when the THW became larger than 1.0 s.  

If the THW dropped below 0.5 s, another cautionary warning was provided once 

(Sound 2). As pointed out above, Sound 2 was identical to Sound 1, but had a more 

urgent sounding timbre. Between 0.5 and 0.3 s (Stage 2), an urgent voice (Voice 2) 

told the driver every 5 s in Dutch with Belgian accent to “Increase headway”.  

If the THW was shorter than 0.3 s (Stage 3), an imminent 659 Hz 300 ms alarm 

(Sound 3) was issued every 0.7 s until the THW increased. Figure 3 shows the 

spectrograms of the three sounds. 

 
Figure 3. Spectrograms of Sound 1 (left), Sound 2 (centre), and Sound 3 (right) from the 

Graded auditory feedback. 

A suppressing algorithm was implemented to reduce the occurrence of alarms in 

Stages 1 and 2. This algorithm suppressed all warnings (except in Stage 3) if the 
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filtered THW (moving average over five preceding samples; i.e., 0.5 s of data) was 

increasing. This suppressing algorithm was implemented in the Graded system only. 

Sound feedback was provided only if at the moment of crossing the THW threshold 

(i.e., ≤ 0.8 s for Stage 1, ≤ 0.5 s for Stage 2, ≤ 0.3 s for Stage 3) the THW was within 

that threshold at least 0.5 s before. This additional filter suppressed feedback if the 

threshold was crossed only briefly, causing a maximal time delay of 0.5 s. This 

additional filter was present in both the Graded system and the Conventional system. 

 

Figure 4. Visualisation of the Graded headway feedback system. 

Procedures of the on-road experiment 

The auditory feedback was implemented in Python and installed on a Raspberry Pi 

computer in a Volvo C30. Measurements on driving speed, the status of turning 

lights, the position of gas and brake pedals, steering angle, THW were obtained 

through a Mobileye system. All sounds were played through the JBL GO 

loudspeaker. The leading car was a Nissan Micra. 

Twenty people participated in the experiment over the course of three days. The 

sample consisted of 13 males and 7 females. They had a mean age of 20.5 years (SD 

= 1.6). Five participants indicated to have driven less than 1,000 km in the past 12 

months, 12 participants reported 1,001–5,000 km, and 3 participants reported 5,001–

15,000 km. Participants provided written informed consent and were informed that 

the study involved auditory feedback, that the feedback is not necessarily perfect, 

and that they should remain attentive to the road. Participants were further asked to 

drive as they normally would. The participants then took place in the test vehicle 

together with two observers.  

The participants drove a total of 14 km on a Dutch highway (A13, from the 

Molengraaffsingel in Delft to the Schieveensedijk in Rotterdam, and back). When 
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this road was congested, a track of similar length was driven on the A4 or N470. The 

driver was not informed about the route but was instructed to follow a car, driven 

with a normal driving style by one of the authors. Each drive took approximately 15 

minutes and was divided into two parts of equal length. Half of the participants 

started with the Conventional system enabled, and the other half started with the 

Graded feedback system enabled. Halfway, the feedback system was changed from 

the Graded feedback system to the Conventional system, or vice versa. The driver 

was notified of the system change. When the car had returned to its starting location, 

the driver was asked to complete a questionnaire to measure acceptance of both 

systems (Van der Laan et al., 1997). The acceptance questionnaire measured two 

variables, namely the satisfaction and the usefulness of the systems. The participants 

were also interviewed on how they had experienced the two systems. It consisted of 

open questions that first identified which differences the participant had noticed 

between the two systems, and then asked their opinion regarding the used warnings 

and their timing. 

Results 

During the experiment, 11 out of the 20 participants (9 males, 2 females, mean age = 

20.9, SD age = 1.5) drove with a headway close enough to receive feedback from 

both systems (i.e., at least once in each of the two drives). Only the results of these 

11 participants will be considered here. The average time that participants drove 

faster than 50 km/h was 294 s (SD = 123 s, min = 159 s, max = 586 s) for the 

Conventional system and 286 s (SD = 141 s, min = 208 s, max = 682 s) for the 

Graded system.  

Table 3 provides an overview of the number of times that feedback was provided per 

condition, for the 11 participants combined. It can be seen that the full potential of 

the Graded feedback system was not tested. That is, participants rarely drove close 

to the lead vehicle, and therefore Voice 2 was uttered only three times. Sound 3 was 

provided only once, possibly because of a misdetection or another vehicle cutting in. 

Further analysis showed that while driving speed exceeded 50 km/h, the filter of the 

Graded system suppressed Sound 1 on 7 occasions, Voice 1 on 8 occasions, Sound 2 

on 11 occasions and Voice 2 on 3 occasions. In other words, the filter appeared to be 

effective in not providing feedback when the driver was already responding. 

Table 3. Number of times that a particular feedback was provided. 

 Conventional system Graded system 

Sound 1 0 times 52 times 

Voice 1 0 times 20 times 

Sound 2 49 times 11 times 

Voice 2 0 times 3 times 

Sound 3 0 times 1 time 



122  Bazilinskyy et al. 

Note. The working mechanism of the Graded system is illustrated in Figure 2. The 

Conventional system provided feedback at a THW of 0.6 s. Only driving speeds greater than 

50 km/h were considered. 

Figure 5 shows a distribution of the recorded THW for both systems. These results 

tentatively indicate that the systems affected THW, as THWs higher than 0.6 s were 

relatively prevalent for the Conventional system whereas THWs higher than 0.8 s 

were relatively prevalent for the Graded System. In other words, the THW 

distribution is consistent with the fact that the Conventional system provided 

feedback at a THW of 0.6 s, whereas the Graded System gave its first beep at a 

THW of 0.8 s. We refrained from statistical testing due to the relatively small 

sample size. One issue that we observed was that there were large individual 

differences in following distance (Figure 6), where some participants received 

considerably more feedback than others.  

Self-reported acceptance 

Figure 7 shows the results of the acceptance questionnaire. The magenta markers 

represent the two systems that were tested herein. The other markers correspond to 

previous experiments in which participants were provided with a warning (take-over 

request) indicating that they had to take over control from automated driving 

(Bazilinskyy et al., 2017). Both the Conventional and Graded Systems received 

mediocre ratings on the scale from −2 to 2.  

 

Figure 5. Distribution of time headway (THW). Time headway is defined as the distance 

headway divided by the own vehicle’s speed. A distribution was calculated per participant 

and then averaged over the 11 participants. Only driving speeds above 50 km/h were 

considered. The vertical blue and dashed red lines represent the threshold for providing the 

first feedback in the Conventional and the Graded system, respectively. 
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Figure 6. Percentage of time that participants drove at a time headway (THW) smaller than 

0.6 s. Only driving speeds above 50 km/h were considered. It can be seen that there were 

substantial individual differences.  

 

Interviews 

The participants were asked questions about how they experienced the two systems, 

and about their attitude towards the occurrence and selection of sounds. Seven (out 

of eleven) participants preferred the Graded system over the Conventional system, 

two preferred the Conventional system, and two accepted neither system. Five 

participants reported they would like to receive feedback at a shorter THW for the 

Graded system and one driver would have preferred a shorter THW for the 

Conventional system. Four participants mentioned that they had experienced a delay 

in the feedback of the Graded system and regarded this as a negative aspect. Two 

participants reported trouble in understanding the spoken voice, and one participant 

reported a negative attitude towards the use of voice for headway warning systems. 
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Figure 7. Self-reported usefulness and satisfaction of the tested systems (magenta square and 

circle) in comparison to previous auditory, visual, and vibrotactile warnings tested in driving 

simulators. TOR = Take-over request. 

Discussion 

We designed an auditory feedback system that provided feedback based on THW 

stage and time spent in a stage (Figure 4). A filter was added to ensure that no 

feedback was provided when the headway was already increasing. We expected that 

our design would yield better acceptance than a conventional system that provided 

binary feedback when a single THW threshold was exceeded. 

Our algorithm was pilot-tested on a public road. Results suggest that participants, on 

average, did respond to the feedback, as shown from the THW distribution (Figure 

5). However, we also found that the experimental design was not suitable to properly 

test the system as participants hardly entered the more dangerous stages. Long-

lasting naturalistic driving tests are needed to examine the effect on the THW 

distribution and the occurrence of hazardous situations (e.g., low time to collision 

values) (cf. Shinar & Schechtman, 2002). In particular, the topic of individual 

differences deserves further examination. Some participants may hardly ever receive 

feedback, whereas others tend to drive at short headways for a significant portion of 

their driving time.  

The filter reduced the number of warnings in the Graded system, especially those 

following a lane change. However, the interviews revealed that some drivers 

perceived ‘delayed feedback’ of this system. This delay may have been caused by 

the filter, which suppresses warnings after a cut-in by another vehicle if the headway 

already increases, but can trigger a late warning if the headway stops increasing 

while the THW is still small. The benefits of fewer warnings may, therefore, have 

caused a reduction in predictability. 

The results showed that self-reported acceptance was relatively low as compared to 

previously tested systems that warn drivers about an impending collision in a driving 

simulator (Figure 7). It is possible that drivers accept systems that warn them of an 

imminent threat, but they may be less accepting towards warnings while they are 

already alert in a regular car following task (as in the present study). Furthermore, it 

is possible that drivers may be more accepting towards visual or vibrotactile 

feedback than to auditory feedback, or that simulator-based research yields higher 

acceptance ratings than on-road research. Future research could be directed towards 

more refined algorithms that minimize the likelihood of nuisance alarms while 

retaining a high acceptance. 
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  Abstract 

Unmanned Aerial Vehicles (UAVs) equipped with electro-optical sensors, e.g. 

visual and infrared cameras, are increasingly used in military, security and search 

and rescue contexts. Lately, active (laser) sensors have emerged as powerful 

imaging devices, combining accurate and high-resolution three-dimensional 

measurements with night-time capabilities. The increasing availability of active 

sensors raises important human factors’ questions, e.g. regarding what spatial 

resolution is required for users to recognize objects. This paper describes the 

outcome of a study of the relation between resolution of 3-D data and the possibility 

for humans to recognize different objects. We designed an experiment where the 

participants watched video sequences from a simulated UAV-mounted LIDAR 

(Light detection and ranging) sensor. Participants had to recognize vehicles of 

different types and point resolution, and to report their confidence level. The main 

conclusion is that about 100 points on the vehicles are required for users to 

recognize vehicles with a distinct shape or with no other vehicles of the same type. 

For recognizing a vehicle among others of similar appearance and size about 1000 

points is required. The results show that the recognition ability deteriorates with 

lower number of points but that the variations between different vehicles are large. 

The results also show that at low resolutions participants become more precarious 

(lower confidence estimations) and take longer time to respond. 

  Background 

Recognizing people, vehicles and objects is an important task in many civil and 

military contexts. Often electro-optical sensors, such as visual and infrared cameras, 

are used to facilitate the work (Schueler & Woody, 1992). Significant advances have 

been made recently in automatic object recognition, enabled by break-through in 

computational and sensor technology and fuelled by applications in robotics, the 

automotive industry and consumer electronics. Automatic solutions are required 

when actions have to be taken very quickly or when the amount of data is too much 

for humans to process. However, in many applications a human operator is better 

suited to make decisions, e.g. in order to get acceptable performance or for legal 

reasons. 

In this work, we consider the case of using an Unmanned Aerial Vehicle (UAV) to 

collect sensor data for reconnaissance purposes. UAVs allow for exploring larger 

areas compared to using ground vehicle-mounted sensors (Fahlström & Gleason, 
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2012; Grönwall, Tolt, Lif, Larsson, Bissmarck, Tulldahl, Henriksson, Wikberg, & 

Thorstensson, 2015). Without the restrictions of platform movement imposed by 

ground properties, the UAV offers advantages in terms of viewing certain areas from 

different angles, thereby providing a more complete data set.  

A typical task could be to search for a vehicle (or person) or to ensure that there are 

no vehicles (or people) within an area. In the first task it is necessary to find a 

specific vehicle, while in the second task it is sufficient to find any vehicle. Overall, 

it is not always clear what seeing a person or object means. In research it is 

necessary to define the situation and task to analyse human performance in different 

settings. One way to analyse observers’ ability to perform visual tasks is to use the 

Johnson criteria (Donohue, 1991; Johnson & Wolfe, 1985; Sjaardema, Smith, & 

Birch, 2015), which is often used by scientists who study the capability of sensors. 

An important differentiation is made between detection (an object is present), 

orientation (direction of the present object), recognition (type of object can be 

discerned, e.g. recognize the difference between a human and car) and identification 

(a specific object can be discerned, e.g. type of car or identify a specific person) 

(Pinsky, Levin, Yaron, & Schuberth, 2016. 

The Johnson criteria propose in detail how many pixels (originally line-pairs) an 

object needs to contain to make the classification possible. Other criteria, such as the 

National Interpretability Rating Scales (NIIRS) (Irvine, 1997; NIIRS, 2017) could 

also be used to measure the quality of images and performance of imaging systems 

that has scales for visible, radar, infrared and multispectral stimuli (NIIRS, 2017). 

NIIRS is used to assign a number (level 1-9) which indicates interpretability of an 

image. However, often these measurements (e.g. Johnson criteria and NIIRS) do not 

provide reliable and valid results since they do not take into account user variability. 

Therefore, experiments with naïve and expert users are necessary. Also, there are a 

variety of other factors that must be considered, e.g. contrast between objects and 

background, atmospheric disturbances, number of objects in the picture, light, 

contextual clues, colour, and type of optics in the sensor. Moreover, performance is 

affected by resolution, type of task, the experience of the participants and their level 

of training for the specific task, motivation, and the relative importance between 

quick decisions and correct results. In order to assess and evaluate a specific sensor 

in a specific setting, it is recommended to conduct experiments with users.  

In this study a three-dimensional laser sensor that generates point clouds was in 

focus (Grönwall, Tolt, Lif, Larsson, Bissmarck, Tulldahl, Henriksson, Wikberg & 

Thorstensson, 2015; Isa & Lazoglu, 2017; Lif, Tolt, Larsson & Lagebrant, 2016). 

The point clouds consist of enormous amount of data in three-dimensions that are 

hard to handle for users and to handle these large quantities methods must be 

developed, preferable automatic methods (Hron & Halounová, 2015; Waldhauser, 

Hochreiter, Opteka, Pfeifer, Ghuffar, Korzeniowska & Wagner, 2008). If handled 

correct, these point cloud can help users recognize objects. However, it is hard to 

recognize objects from static point clouds, but if you twist and turn the cloud or look 

at a video sequence it is significantly easier to interpret the information. Even if the 

user cannot see the real object, dynamic point clouds can give some understanding 

of what is seen. This knowledge originated in the discoveries about biological 
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motion found by the Swedish researcher Gunnar Johansson in the 1970s (1973). He 

discovered that by presenting only a few light points placed on the body's joints a 

person that performed activities could be recognized (Johansson, 1973, 1975). In 

biological motion, a few points can be used because they are placed on the body's 

joints, but how many points that are needed to detect, recognize and identify a three-

dimensional vehicle when the points are randomly distributed over the vehicle is 

unclear.  

The purpose with the current experiment is to investigate how many points in a point 

cloud are required for vehicle recognition in a dynamic setting. This information can 

be used to increase the understanding of which objects that can be detected with a 

specific three-dimensional laser sensor at a given distance. 

Method 

A laboratory experiment was conducted to investigate the ability to recognize 

vehicles presented in the form of point clouds with different resolution. The 

participants were given the task to watch video sequences and recognize which of 

ten different vehicles was visualized. The participants also estimated how confident 

they were at their response on a scale from 0% to 100% in steps of 10%. Their 

response time (RT) was also registered. 

  Design 

A within-group design with four resolutions × five vehicles was conducted in two 

experiments, with different vehicles and different resolutions for each experiment. 

Each vehicle was presented four times for each resolution for each participant, and 

based on this; a mean value was calculated and used in the subsequent analysis. The 

experiments were conducted so that the participants did not experience two separate 

experiments. This meant that the participants recognized each stimulus from ten 

possible vehicles. 

  Participants  

Twelve participants (three women and nine men) participated in the experiment. All 

had adequate vision with or without correction. 

  Apparatus 

The video sequences were presented on a 21.5 inch widescreen display (Dell SX 

2210) with a resolution of 1920 × 1080 pixels. A PC with Windows 7, Intel® 

Core™ 2 Duo processor with 3 GHz and 4 GB of RAM was used to register answers 

and measuring response time. 

  Stimuli 

Synthetic video sequences were generated for ten vehicles (Figure 1) by a sensor 

simulation system to simulate a real situation captured by a 3-D imaging laser 

system. Point clouds with different resolutions were generated along a predefined 
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path in a straight line along the road where the vehicles were located, 50 meter to the 

right and at 50 meter above the ground (Figure 2). Data were filtered into four 

different resolutions for each vehicle. There were five civilian vehicles (Volvo V70, 

Vera Cruz, Toyota pickup, minibus and Isuzu Truck) and five military vehicles 

(Leopard 122, Combat vehicle 90,   Ural truck, Patria Sisu and Galten). To give the 

reader an understanding of the vehicles presented in the videosequences a high 

resolution example is depicted in Figure 1.   

 

Figure 1. High resolution example of Leopard 122. 

Each vehicle was dynamically presented where a simulated unmanned aerial vehicle 

flew in an arc around the current vehicle for five seconds according to Figure 2. The 

flight always started by visualizing the front of the vehicle and ending when the 

position was from the side of the vehicle. 

 

Figure 2. Flightpath and camera orientation from simulated UAV in an arc from vehicle front 

to vehicle side during five seconds. 
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The simulations were performed using a combination of tools. First, the laser scans 

obtained from the UAV motion (see above) was acquired by simulation, by ray 

casting towards surface models of the vehicles, and a surrounding, quite flat road 

segment. Then, the obtained, dense 3D point image was down sampled by a filter, 

resulting in uniform point clouds at desired resolutions. No noise was added in the 

simulation in order to keep the number of parameters in the experiment tractable.  

Five of the ten vehicles were used in experiment 1 while the remaining five vehicles 

were used in experiment 2. Refer to Table 1 for details about resolution and actual 

number of points for each vehicle at different resolutions. 

Table 1. Vehicles, their belonging to experiment, and resolution indicated in points/m2 (*) and 

total number of points (**) for each vehicle for the different resolutions. 

Experiment 1 

Vehicle type Resolution 1 Resolution 2 Resolution 3 Resolution 4 

Galten 6.3*/309** 1.6*/84** 0.7*/23** 0.3*/9** 

Leopard 6.3*/509** 1.6*/101** 0.7*/58** 0.3*/13** 

Patria 6.3*/324** 1.6*/83** 0.7*/36** 0.3*/8** 

Toyota 

Pickup 

6.3*/225** 1.6*/62** 0.7*/18** 0.3*/7** 

Vera Cruz 6.3*/160** 1.6*/42** 0.7*/15** 0.3*/6** 

Experiment 2 

Vehicle type Resolution 1 Resolution 2 Resolution 3 Resolution 4 

Isuzu truck 25.0*/309** 2.8*/144** 1.0*/63** 0.4*/20** 

Minibus 25.0*/785** 2.8*/92** 1.0*/23** 0.4*/10** 

Combat        

vehicle 90 

25.0*/1196** 2.8*/123** 1.0*/49** 0.4*/17** 

Ural truck 25.0*/1385** 2.8*/166** 1.0*/69** 0.4*/21** 

Volvo V70 25.0*/564** 2.8*/74** 1.0*/14** 0.4*/8** 

  

  Procedure 

After welcoming the participants individually and briefing them about the 

experiment purpose and procedure they received written information and had the 

opportunity to ask questions to the experiment leader. Then an introduction was 

given to make sure that the participants were familiar with the situation and test 

material. They were introduced to the stimuli material during five minutes of 

training. The participants watched the videos and answered by first pressing the 

space button whereby the response time (RT) was recorded, then selecting one of the 

ten vehicles (recognition) and finally stating how confident they were (Figure 3).  
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Figure 3. Response window with selection of vehicle and confidence estimation. 

Participants were instructed to give priority to answering correctly over fast 

responses. Since the task was mentally demanding the experiment was divided into 

six separate blocks of five minutes each with the possibility to rest in-between 

blocks. The order of the conditions for both experiments was randomized to avoid 

training effects. This means that the participants did not perceive the experiments as 

separate parts but as one experiment. The whole procedure took about 40 minutes to 

complete. No feedback was given to the participants during the experiment. 

  Results 

The results include statistical analysis of recognition, confidence estimation and 

response time. Data were analysed with a two-way ANOVA (Hays, 1994) with 

resolution × type of vehicle. Tukey HSD were used for post hoc testing (Green & 

D’Oliviera, 1982). Data from experiment 1 and 2 were analysed separately. Notice 

the non-linear scale of the x-axis (all figures), which was a necessary compromise to 

make the figures readable.  

  Experiment 1 

Four resolutions were used (6.3, 1.6, 0.7 & 0.3 points/m
2
) for five different vehicles 

(Galten, Leopard 122, Patria, Toyota pickup and Vera Cruz). Average values were 

calculated for each participant for each condition. 

  Recognition 

The ability to recognize vehicles was measured by the proportion of correct answers 

and the analysis was performed by an ANOVA repeated measures. The results show 

a main effect for type of resolution F(3, 33) = 24.52, p < .001 and type of vehicle 

F(4, 44) = 18.29, p < .001, and a significant interaction effect between resolution 

and vehicle F(12, 132) = 4.69, p < .001 (Figure 4). 
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Figure 4. Mean and standard error of mean for proportion recognized vehicles. 

Tukey post hoc test shows a significant difference (from the main effect of 

resolution) between 1.6 and 0.7 points/m
2
 (p< .001). There is also a significant 

difference (from the main effect of vehicle) showing that the ability to recognize 

Vera Cruz was significant lower than the other vehicles (p< .05) and the ability to 

recognize Leopard 122 was significant higher than Toyota pickup and Vera Cruz. 

The post hoc test from the interaction effect between resolution and vehicle shows 

that there were no significant differences between vehicles at 6.3 and 1.6 points/m
2
. 

However, at 0.7 and 0.3 points/m
2
 the recognition is significant lower for Vera Cruz 

than for the other vehicles (p< .001). At 0.7 points/m
2
 the recognition is significant 

higher for Leopard 122 than for the other vehicles (p< .01) and significant higher 

than for four of the five vehicles (not for Galten) at 0.3 points/m
2 
(p< .01).  

  Confidence estimation 

The participants’ confidence (0-100% confident) was measured and the mean values 

were used for analysis and performed with ANOVA repeated measures. The results 

shows a main effect for type of resolution F(3, 33) = 114.01, p < .001 and type of 

vehicle F(4, 44) = 53.31, p < .001, and a significant interaction effect between 

resolution and vehicle F(12, 132) = 16.78, p < .001 (Figure 5). 
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Figure 5. Mean and standard error of mean for confidence estimations. 

Tukey post hoc test show a significant difference (from the main effect of 

resolution) between each resolution where the participants’ confidence decreases 

with decreasing resolution (p< .05). The confidence estimation for Leopard 122 is 

stable for all resolutions (above 90%), but confidence estimations for the other 

vehicles drastically drops from the highest to the lowest resolution.  

  Response time 

The participants’ response times were measured and the mean values used for 

analysis and performed with ANOVA repeated measures. The results showed a main 

effect for type of resolution F(3, 33) = 137,25, p < .001 and type of vehicle F(4, 44) 

= 113,51, p < .001, and a significant interaction effect between resolution and 

vehicle F(12, 132) = 13.16, p < .001 (Figure 6). 
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Figure 6. Mean and standard error of mean for response time. 

 

  Experiment 2 

Four resolutions were used (25.0, 2.8, 1.0 & 0.4 points/m
2
) for five vehicles (Isuzu 

truck, Minibus, Combat vehicle 90, Ural truck & Volvo V70). Average values were 

calculated for each participant for each condition. 

  Recognition 

The ability to recognize vehicles was measured by proportion correct answers and 

analysis was performed by ANOVA repeated measures. The results show a main 

effect for type of resolution F(3, 33) = 63.0, p < .001 and type of vehicle F(4, 44) = 

17.72, p < .001, and a significant interaction effect between resolution and vehicle 

F(12, 132) = 5.80, p < .001 (Figure 7). 



136 Lif, Bissmarck, Tolt, & Jonsson 

25.0 2.8 1.0 0.4

Resolution (points/m2)

0

10

20

30

40

50

60

70

80

90

100
P

ro
p

o
rt

io
n

 c
o

rr
e

c
t 

(%
)

 Isuzu truck
 Minibus
 Combat vehicle 90
 Ural truck
 Volvo V70

 

Figure 7. Mean and standard error of mean for proportion recognized vehicles. 

 
Tukey post hoc test showed a statistical difference (from main effect of resolution) 

between 25.0, 2.8 and 1.0 points/m
2
 (p< .001). There was also a significant 

difference (from main effect of vehicle) that showed that the ability to recognize the 

minibus and Volvo V70 was lower than the other three vehicles (p< .05). Also, the 

ability to recognize Combat vehicle 90 was higher than the other vehicles (p < .05). 

The analysis of the interaction effect shows that the ability to recognize the Ural 

truck gets significant lower between 2.8 and 1.0 points/m
2
, and also between 1.0 and 

0.4 points/m
2
 (p< .001), and for Isuzu truck between 2.8 and 1.0 points/m

2
 (p< .001). 

A similar decrease in ability to recognize the minibus and Volvo V70 occurs 

between 25.0 and 2.8 points/m
2
 (p< .05). 

 
  Confidence estimation 

The participants’ confidence (0-100% confident) was measured and the mean values 

were used for analysis and performed with ANOVA repeated measures. The results 

show a main effect for type of resolution F(3, 33) = 155.84, p < .001 and type of 

vehicle F(4, 44) = 75.99, p < .001, and a significant interaction effect between 

resolution and vehicle F(12, 132) = 6.53, p < .001 (Figure 8).  
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Figure 8. Mean and standard error of mean for confidence estimations. 

Tukey post hoc test shows a significant difference (from the main effect of 

resolution) between each resolution where the participants’ confidence decreases 

with decreasing resolution (p< .001). Even though there are differences between 

vehicles, the overall trend is similar. 

  Response time 

The participants’ response time was measured and the mean values used for analysis 

and performed with ANOVA repeated measures. The results show a main effect for 

type of resolution F(3, 33) = 50.83, p < .001 and type of vehicle F(4, 44) = 28.65, p 

< .001, and a significant interaction effect between resolution and vehicle F(12, 132) 

= 7.24, p < .001 (Figure 9).  
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Figure 9. Mean and standard error of mean for response time. 

Tukey post hoc test shows a statistical difference between the three highest 

resolutions (p< .001) where response time increases with decreasing resolution. The 

response time varies between vehicles, but at 25 points/m
2
 participants respond 

faster for Isuzu truck and Combat Vehicle 90 than for the other three vehicles (p< 

.005). 

 

  Discussion and conclusions 

The purpose of this study was to investigate the ability to recognize vehicles 

presented in the form of point clouds with different resolution (0.3-25.0 points/m
2
). 

The results clearly show that the ability to recognize vehicles deteriorates when the 

number of points in the point cloud decreases, but the variation between vehicles is 

high. The results also show that the participants become more uncertain (lower 

confidence estimation) and that they take longer time to respond (RT) the lower the 

resolution is. 

The ability to recognize vehicles is depending on whether the vehicle has a 

distinctive look and how many other vehicles that has similar appearance. Leopard 

122 was the easiest vehicle to recognize and even at a resolution of 0.3 points/m
2
 

participants recognized over 95% of the vehicles with confidence estimations over 

95%. This is a remarkably high and probably due to the fact that Leopard 122 is the 

only vehicle with a distinct gun barrel. This result should therefore be interpreted 

with caution, because in a context of multiple vehicles with barrels it would 

probably be much harder to recognize this vehicle. Recognition for 90% correct or 
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higher requires a resolution of about six points/m
2
 when the vehicle has a 

characteristic appearance or if there are no vehicles of similar appearance. To 

recognize vehicles with similar appearance (e.g. Volvo V70 and Vera Cruz) 25 

points/m
2
 are required to get a 90% correct or higher classification. Since the 

purpose of this experiment was to investigate how many points are required for 

vehicle recognition, the results were also analysed relative to the number of actual 

points (instead of points/m
2
) for each vehicle and each resolution. By analysing all 

the mean values of the vehicles where the participants had 90% correct or higher, the 

following conclusions were drawn for a rule-of-thumb; 

1) Approximately 100 points on the vehicle/object/target are required to 

recognize vehicles that have a characteristic appearance or do not have 

other vehicles that are similar. 

2) Approximately 1000 points on the vehicle/object/target are required to 

recognize vehicles when there are similar vehicles (such as multiple 

civil vehicles of similar appearance and size). 

In practical operational terms, this means that about 1000 points are needed to 

recognize vehicles in situations where there are similar vehicles. Especially in civil 

environments, there are many different similar vehicle models that make recognition 

and identification problematic. Even though the number of vehicle models is fewer 

in military environments, many of the vehicles have similar appearance that makes 

recognition problematic. These conclusions apply provided that information comes 

from a mobile platform like an unmanned aerial vehicle and that video sequences or 

other similar dynamic information is presented for the users. Stationary visualisation 

of vehicles probably requires significantly more points than a dynamic visualization 

as in this experiment. Numbers given from this experiment should be considered as 

approximate values (100 and 1000 points for vehicle recognition as stated above) 

since it will vary depending on the vehicle type and the number of similar vehicles. 

Also, this experiment should be repeated with other vehicles and possibly different 

resolutions. 

Although this study gives a good idea of how many points that are required to 

recognize different vehicles, many questions remain unanswered. One such example 

is to investigate the number of points required for identification rather than 

recognition and another example is how to visualize point clouds to increase realism 

and thereby possibly improve participants’ performance. Many other factors, such as 

sensor noise and partial occlusion of the target, should also be taken into account in 

future experiments. It would also be interesting to investigate how different design 

tools affect participants' performance, such as a grid on the ground to facilitate the 

understanding of size. 
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  Abstract 

Personality has an important influence on the variability in human decision making. 

Little is known whether intensive training and a highly-procedural environment can 

alleviate the influence of personality on decision making. Here, we address this issue 

by investigating the influence of impulsivity as personality factor on decision 

making among airline pilots. We showed that impulsivity modulated pilots’ 

indecisiveness in uncertain decision scenarios as well as pilots’ self-reported 

compliance to airline guidelines in real life. This result suggests that the personality 

factor impulsivity is a profound trait that continues to have an influence through 

intensive training and highly-procedural decision situations.  

  Introduction 

There is a great variability of human behaviour in response to uncertainty. It is well 

documented that personality influences decision preferences and actions (Byrne, 

Silasi-Mansat & Worthy, 2015; Sutin & Costa, 2010; Hirsh, Morisano, & Petersen, 

2008). In high-risk environments, such as in commercial aviation, individuals often 

have to make critical decisions under uncertainty and time pressure without 

compromising safety. For example, a pilot has to decide whether to continue a 

landing approach - keep action plan - or to discontinue an approach – change action 

plan. In order to decide, a flight crew, composed of a Captain and a First Officer, 

should integrate and respect a list of defined airline guidelines, the approach criteria. 

Approach criteria are technical values such as correct speed, wind, vertical glide 

path, etc. This particular decision moment is one of the most dynamic and incident-

sensible flight phases in aviation (U.S. Department of Transportation, 2015). Here, 

pilots have to make rapid decisions under time pressure by proving their adaptation 

skills (Dehais, Behrend, Peysakhovich, Causse, & Wickens, 2017). When approach 

criteria exceed guidelines, pilots should discontinue the approach by changing the 

current action plan. Surprisingly, in more than 97% of this type of situation pilots 

kept their action plan and did not adapt it although it would have been required by 

airline guidelines (IATA, 2016). Due to the dynamic character and the operational 

consequences, this type of decision is complex. Much is known about contributing 
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factors, such as financial incentives and emotions (Causse, Dehais, Péran, Sabatini, 

& Pastor, 2013), lack of airline policy and time pressure (IATA, 2016), 

overconfidence (Goh & Wiegmann, 2001), or safety implications due to the rarity of 

the event in real life (Dehais et al., 2015; BEA, 2013). However, the understanding 

of the psychology of non-compliance to airline guidelines lacks.  

Pilots are a very homogenous population since they follow a complex selection 

process that requires a high level of executive functions (O’Hare, 1997) and a stable 

personality (Childester, Helmreich, Gregorich, & Geis, 2009). An individual's 

personality could be described as result of constant interactions between inherited 

genetic influence, epigenetic effects, and social environment (Montiglio, Ferrari, & 

Réale, 2013). However, flight crews do not compromise the same individuals. A 

consequence of the worst air disaster in history, the Tenerife airport crash of two 

airplanes in 1977, was to reduce subjective decisions of the part of pilots (McCreary, 

Pollard, Stevenson, & Wilson, 1998). This was also the birth of the earlier concept 

of crew resource management (CRM): a set of mandatory training procedures with a 

focus on interpersonal communication, leadership and decision-making in the 

cockpit (Helmreich, Merritt, & Wilhelm, 1999). In this accident, the KLM Captain 

released the brakes and the airplane crashed into another airplane, even though the 

First Officer was reading back the ATC clearance to the tower. The KLM Captain 

made a quick and autocratic decision, although he had seemed to be pace and non-

autocratic before. Among other causes, human factors analyses argued that his 

personal leadership appeared to change – possibly due to his hierarchical status in 

the cockpit, his responsibility in the company, and the stressful environment under 

time pressure (McCreary et al., 1998). The question is, do personality factors persist 

in highly-trained individuals and in highly-procedural situations, such as in airline 

pilot decision making? One hypothesis could be that an intensive training and a 

highly-procedural environment reduce the influence of personality on decision 

making. Or alternatively, personality is a profound trait which influence cannot be 

reduced by intensive training and a highly-procedural environment. We addressed 

this issue among airline pilots making decisions during landing approach scenarios. 

The focus was on impulsivity as personality factor.  

Impulsivity is a multi-dimensional personality construct that is frequently described 

as “a predisposition toward rapid, unplanned reactions to internal or external stimuli 

without regard to the negative consequences of these reactions to the impulsive 

individuals or to others” (Moeller, Barratt, Dougherty, Schmitz, & Swann, 2001). 

For example, impulsive individuals are more likely to choose immediate-smaller 

over larger-delayed rewards; demonstrated via decision preference (Bialaszek, Gaik, 

McGoun & Zielonka, 2015), physiological activity (Korponay, Dentico, Kral, et al. 

2017), and brain activity (Garavan, Ross, Murphy, Roche, & Stein, 2002). One area 

of significant importance to the measurement of impulsivity is executive function 

and decision making (Stanford, Mathias, Dougherty, Lake, Anderson, & Patton, 

2009). Executive control is characterized as the capacity to coordinate thoughts and 

to perform non-automatic actions for the purpose of adaptation to stimuli (Koechlin, 

2016). Individuals with executive deficits, e.g. cognitive impairment, tend to score 

higher on impulsivity (Stanford et al., 2009). Garavan et al. (2002) found a positive 

correlation between cognitive impairment and anterior cingulate activation in the 
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“Go/noGo task”; which measures impulsive control behaviourally. Importantly, 

cingulate activation is crucial to inhibition tasks, where deliberative responses are 

more appropriate than automatic responses. The “Wisconsin Card Sorting Test” 

(WCST) assesses cognitive flexibility, which is part of executive functioning and 

can be described as the ability to switch between different task sets and to decide 

flexibly.  Cheung, Mitsis, and Halperin (2004) used this test demonstrating that 

motor impulsivity explained significant parts of the performance variance of 

cognitive flexibility. Two studies among general aviation pilots showed that 

perseverative errors on the WCST (Causse, Dehais, Arexis, Pastor, 2011a) as well as 

flight experience, motor impulsivity, and updating capacity could predict landing 

decision relevance (Causse, Dehais, & Pastor, 2011b). Indeed, in the second study 

the pilot’s ability to detect meteorology degradation during the decision making 

process was measured. It was found that general aviation pilots with a higher motor 

impulsivity score showed less adaptation skills by continuing the current action plan. 

Although impulsivity is often characterized as a negative and dysfunctional state, it 

has been shown that being impulsive can be positive and more adaptive in simple 

decision tasks (Dickmann, 1990). Importantly, the decision context plays a crucial 

role to an individual’s response behaviour (Maule, Hockey, & Bdzola, 2000). 

Analysing a pilot’s individual decision in a questionnaire – a non-dynamic context - 

can be useful to improve the understanding of the decision-relevant information and 

the interpretation of airline guidelines. In this study, we investigated the influence of 

impulsivity along with other factors such as flight hours, hierarchy, and prior airline 

career on individual pilot decision-making in a questionnaire.  

  Material and methods 

  Participants and demographic information  

Forty randomly-selected airline pilots (age-range 32-65 years) from the same airline 

participated in this study. The planning department of an airline randomly chose 

these pilots from the pilot pool. Afterwards, we contacted these pilots by e-mail in 

order to ask for their agreement. Nationalities represented in our sample included the 

following: France (n = 38), and Belgium (n = 2). French was their native language. 

Table 1 resumes the demographic characteristics of this sample size. Captains were 

significantly older (t(38) = 4.46, p < 0.001) and had more flight hours (t(38) = 4.69, 

p < 0.001) than First Officers in this sample size. Half of the airline pilots reported 

having worked for at least another airline prior to their current employment. The 

percentage of pilots with a military career was 10%. All participants were paid for 

their participation by their airline and gave written consent prior to the experiment. 

Confidentiality was guaranteed.  

Table 1. Demographic characteristics of this sample size 

Participants (n) 

 

Gender, Male 

% (n) 

Age, years 

M (SD) 

Flight experience, hours 

M (SD) 

All (40) 

Captain (24) 

93 (37) 

96 (23) 

47.9 (7.4) 

51.4 (5.6) 

11613 (4142) 

13633 (3355) 

First Officer (16) 88 (14) 42.7 (6.8)    8581 (3317) 
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  Barratt Impulsiveness Scale (BIS-11) 

The BIS-11 (Patton, Stanford, & Barratt, 1995) is a self-report measurement of 

impulsivity with three sub traits: attentional impulsivity (e.g. “I don’t pay 

attention”), motor impulsivity (e.g. “I act on the spur of the moment”) and non-

planning impulsivity (e.g. “I say things without thinking”). The questionnaire’s 

instructions ask subjects to indicate how often description of impulsive behaviour 

pertain to themselves on a 4-point-Likert scale. Lower questionnaire scores indicate 

lower levels of impulsivity. The BIS has good internal consistency (Cronbach’s 

Alpha = .83) and test-retest reliability (Spearman’s rho = .83) (Stanford et al., 2009). 

In this sample size, internal consistency was computed and considered acceptable 

(Cronbach’s Alpha = .73). 

  Landing questionnaire 

Participants considered eighteen decision scenarios. The order of these scenarios 

was randomized across participants. For each scenario, participants were asked:  

“Based on the following information, would you continue the approach?” They 

could reply “Yes”, “No” or “I don’t know”. We manipulated the presence of 

uncertainty in the landing decisions (uncertain vs. certain continue approach or 

discontinue approach). All decision scenarios were chosen from an airline’s real 

event database. Prior to the experiment, we asked five experts - all flight instructors 

- to evaluate the chosen landing scenarios. All flight instructors agreed on 12 certain 

(8 continue, 4 discontinue the approach). The remaining 6 scenarios were labelled as 

uncertain (at least two instructors chose the opposite of the three others). 

Information complexity was reduced to three main approach criteria (localizer 

deviation, glide slope deviation, and airspeed) and two additional decision criteria 

(wind, weather conditions).  For each scenario, the type of approach and the airport 

were identical. The information relevant for landing decisions was either within the 

airline guidelines (certain/continue the approach), out of the airline guidelines 

(certain/discontinue the approach) or at thresholds of airline guidelines 

(uncertain/continue or discontinue the approach). Certain decisions to continue 

required all criteria to be within airline guidelines. Certain decisions to discontinue 

occurred when at least one criterion was out of airline guidelines. Uncertain 

decisions (to continue or discontinue) occurred when at least one criterion was at 

threshold. After the 18 landing decisions, pilots were asked in an open question if 

they had ever taken a decision that was not in line with airline procedures (non-

compliance).  

  Experimental design 

The experiment was performed within a period of 30 days. All participants replied to 

the questionnaires after a full-flight simulator training. Each participant was seated 

separately in a room with paper and pencil. Pilots were told that the experiment was 

part of a research project aiming to better understand their evaluation of approach 

criteria. Afterwards, they were asked to complete the paper-and-pencil version of the 

BIS-11. Finally, they gave demographic information (Figure 1). They had no time 

restriction to complete the questions. The experiment duration was between 30 and 

80 minutes. Figure 1 shows the protocol timeline.  
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Figure 1. Protocol timeline.  

  Results 

  Statistical analysis 

Normality of variables was evaluated using Kolmogorov-Smirnov-Test. Normally-

distributed variables were: impulsivity and flight hours. Descriptive statistics 

summarized pilots’ approach decisions of all 18 scenarios. If sample sizes were 

small, Fisher’s exact test for categorical variables - instead of chi-square statistics – 

was used. T-tests compared the pilots’ level of impulsivity to normative data of 

other studies. Linear regression was used to describe pilots’ indecisiveness during 

uncertain approach scenarios. Logistic regression was performed in order to encode 

pilots’ self-reported compliance to airline guidelines in real life. A p-value .05 was 

considered significant. Statistical tests were performed two-tailed. 

  Uncertainty rating in approach decisions  

We first analysed whether pilots rated the approach scenarios in the same way as 

pilot experts. Table 2 shows that 93% of the participants agreed on the decision to 

continue the approach in the certain/continue scenario. In the certain/discontinue 

scenario, 90% of participants made the decision to discontinue the approach. In the 

uncertain scenarios, 54% of the participants decided to continue, whereas 35% 

decided to discontinue the approach. 11% of the participants expressed their 

indecisiveness. Fisher’s exact test confirmed significant differences between both 

certain/continue scenarios and uncertain scenarios (p < .001), certain/discontinue 

scenarios and uncertain scenarios (p < .001) as well as certain/continue and 

certain/discontinue (p < .001).  

Table 2. Mean of decision agreement with expert judgement for the three types of scenarios 

Decision agreement  

in % 

Certain/continue Certain/discontinue Uncertain 

Continue 93 4  54 

Discontinue 3 90 35  

Indecisiveness 4  6  11 

 

BIS-11 impulsivity scores 

Next, the pilot’s mean impulsivity score (M = 51.9, SD = 5.4) was compared to other 

studies. Therefore, we calculated the impulsivity t-value of different studies by 

comparing it to the impulsivity t-value of this experiment. Table 2 shows that pilots 

scored significantly lower on the BIS-11 than healthy controls of two studies (Patton 
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et al., 1995; Spinella, 2007). There were no significant differences between the adult 

sample size of Stanford et al.’s study (2009) and this study.  

Table 2. Comparison of BIS-11 impulsivity scores between the reference study and other 

studies 

Study authors Reference 

study 

Patton et al. 

1995 

Spinella . 

2007 

Stanford et al. 

2009 

Sample type 

N 

Pilots 

40 

Male undergraduates 

130 

Adults 

700 

Adults 

1577 

M (SD) 51.9 (5.4) 64.9 (10.1) 64.2 (10.7) 62.3 (10.3) 

|t|, p < .05 2.02 > 2.41 * > 2.27 * < 1.93 

 

Linear regression: encoding indecisiveness during uncertain approach scenarios 

More than half of the participants (52.5%) expressed at least once their 

indecisiveness during all 18 landing scenarios. They were named indecisive pilots in 

the analysis. Pilots, who never expressed their indecisiveness during all scenarios, 

were labelled decisive pilots. Chi-square test revealed that the percentage of 

expressed indecisiveness (indecisive vs. decisive pilots) did not significantly differ 

by hierarchy (Captain vs. First Officer) (χ
2
 (2) = 0.1, p < .69, φ = .01, n = 40). An 

independent t-test was conducted to compare the level of impulsivity and the 

number of flight hours in decisive vs. indecisive pilots. There was a significant 

difference in the impulsivity scores between decisive pilots (M = 53.61, SD = 5.6) 

and indecisive pilots (M = 50.10, SD = 4.5); t(38) = -2.1, p < .03, Cohen’s d = .69). 

There were no significant differences regarding the flight hours between the decisive 

(M = 11481, SD = 3644) and indecisive pilots (M = 11758, SD = 4730); t(38) = -.08, 

p = .83, Cohen’s d = .06). In order to gain a more precise understanding of the level 

of indecisiveness, we then calculated an indecisiveness score that was defined as the 

number of times a pilot expressed indecisiveness during all uncertain approach 

scenarios. Next, a linear regression analysis was conducted to predict this 

indecisiveness score using flight hours, impulsivity, hierarchy and prior airline 

experience. Together, these measures explained 27 % of the variance in the 

individuals’ indecisiveness score (F(4,35) = 3.2, p < .02). Individually, impulsivity 

(t = -2.02, p < .05) and flight hours (t = 2.00, p < .04) were significant (see Figure 

1). These results suggest that the number of flight hours influenced positively (β = 

.40) the level of indecisiveness, whereas the level of impulsivity (β = - .31) 

influenced negatively the level of indecisiveness.  



 impulsivity decision making under uncertainty 147 

 

Figure 1. Standardized betas and standard errors for all factors of the model 

Logistic regression: encoding self-reported compliance to airline guidelines in real 

life 

A logistic regression was conducted to encode pilots’ self-reported compliance to 

airline guidelines in real life (compliers vs. non-compliers) for 40 airline pilots using 

flight hours, impulsivity, hierarchy, and prior airline experience as predictors. A test 

of the full model against a constant only model was statistically significant, 

indicating that the predictors as a set reliably distinguished between compliers and 

non-compliers of airline procedures in real life (χ
2 

(3) = 11.47, p < .001, n = 40). 

Nagelkerke’ R square was .364. Prediction success was 64.9 %. The Wald criterion 

demonstrated that impulsivity (p < .02) made significant contributions to prediction 

(see Figure 2).  

 

Figure 2. Standardized betas and standard errors for all factors of the model 
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  Discussion 

  General discussion 

The aim of this experiment was to investigate the influence of impulsivity among 

other factors - flight experience, hierarchy, and prior airline experience - on airline 

pilot decision making. In line with expert ratings, participants strongly agreed on 

decisions that were well-defined by airline guidelines. Nevertheless, we explored the 

existence of response uncertainty in the questionnaire when airline guidelines 

allowed interpretation: half of the pilots expressed at least once indecisiveness 

despite the existence of airline guidelines. Pilot experts reported that airline 

guidelines were theoretically applicable in the questionnaire scenarios. Indecision 

may be an indicator of (a) evaluation difficulty of the situation and decision 

complexity due to outcome uncertainty, (b) a lack of information or (c) non-

familiarity with decisions (Anderson, 2003; Rassin, 2007). Further; pilot experts 

emphasized that indecisiveness in a dynamic situation could be described as 

momentary persistence in the current action plan.   

It was pertinent to study the influence of impulsivity as personality factor on pilot 

decision making. Impulsivity predicted decisions in real life (self-reported 

compliance to airline guidelines) and decisions in this static questionnaire (uncertain 

approach scenarios).  

Self-reported compliers of airline guidelines in real life were less impulsive than 

non-compliers. Previous research has shown a link between impulsivity, punishment 

and reinforcement sensitivity (Gray, 1987; Martin & Potts, 2004). Potts, George, 

Martin, and Barratt (2005) measured sensitivity to punishment among individuals 

with low and high impulsivity BIS-11 scores. They found reduced behavioural 

inhibition among participants with higher impulsivity scores. Martin and Potts 

(2009) demonstrated in a risky choice paradigm with electroencephalography that 

low impulsive individuals – in contrast to high impulsive individuals – were more 

sensitive (i.e. larger error-related negativity)  to the consequences of high-risk 

choices. This is in line with the findings of this experiment. It is possible that self-

reported non-compliers of airline guidelines in real life are less sensible to possible 

punishments of the airline. Qualitative data suggested that non-compliers of airline 

guidelines in real life reported having taken a decision that was not within guidelines 

for a positive reason, i.e. in order to avoid a worst-case scenario. The question arises 

if, in this case, a little bit more impulsivity may be functional. Dickmann (1990) 

describes functional impulsivity as behaving rapidly with positive outcomes.  

The exploratory variables of indecisiveness in the approach scenarios were flight 

hours and impulsivity. Both factors are independent. This means that impulsivity 

persists despite intensive training and a highly-procedural environment, whereas 

flight hours can be acquired. More experienced pilots expressed more indecisiveness 

than less experienced pilots. Previous research has shown that experience improves 

performance in aviation studies (Harkey, 1996; Taylor, Kennedy, Noda, & 

Yesavage, 2007), especially when decision making is concerned (Wiegmann, Goh, 

& O'Hare, 2002). More experienced pilots recognize the uncertain character of the 

decision situation and its complexity by delaying their decision. They might aim to 
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acquire more information in order to make a more appropriate decision. In addition, 

less impulsive pilots expressed more often their indecisiveness than decisive pilots. 

Delaying action options is the opposite of making rapid, unplanned decisions, which 

is positively correlated with self-reported motor impulsivity on the BIS-11 

(Baumann & Odum, 2012).  

The randomly-chosen airline pilots represent a low impulsive population in 

comparison to normative data. Can training and environment modify the influence of 

personality on decisions? In a literature review, Baumeister, Gailliot, DeWall, and 

Oaeten (2006) argue that ego depletion moderates the effect of personality traits on 

choice behaviour. If an individual’s ability to self-regulate behaviour is depleted, 

desires may have a stronger impact on actions. Therefore, the ability of self-

regulation may suppress individual differences in behaviour. Montiglio et al. (2013) 

emphasize the link between the social context and the prevalence of certain 

personality traits by the term behavioural flexibility.  

  Limitations and future research  

One limitation is that participants were instructed to make their decisions in a non-

dynamic environment. In real life, decision parameters are dynamic and may evolve 

over time since they depend on pilots’ technical skills and actual weather conditions. 

Importantly, deviation detection of parameters (context updating) is therefore 

another challenge prior to the actual decision. Thus, pilots had no time restriction for 

responses and approach decisions were reversible, contrary to dynamic situations. 

Under time pressure in the real world, potential consequences of their actions may 

be valued differently as in a questionnaire. Next, this experiment focused on 

individual decision making under uncertainty. Although this type of decision has a 

low-procedural interdependence character, i.e. each pilot in the cockpit is allowed to 

make the decision; at least two pilots are physically present in a cockpit: Both pilots 

exchange information concerning the decision. Future field studies in a full-flight 

simulator might confirm the static results by investigating the influence of hierarchy 

and personality factors on uncertain and dynamic decisions.   

  Conclusion 

Despite the existence of guidelines, the complex selection process of an airline pilot, 

the intensive training and the highly-procedural environment, a personality factor –

impulsivity- mainly accounted for decision making differences among individuals. 

Impulsivity modulated pilots’ indecisiveness in the questionnaire scenarios and 

pilots’ self-reported compliance to airline guidelines in real life. Results emphasize 

that personality is a profound trait which influence on decision making cannot be 

removed by intensive training and a highly-procedural environment.   

  Acknowledgements 

This paper originates from an interdisciplinary project that was supported by Air 

France. We thank Jérôme Rodriguez for technical support. We would also like to 

express our sincere gratitude to all airline pilots who participated in this research.  



150 Behrend, Dehais, & Koechlin  

  References 

Anderson, C.J. (2003). The Psychology of Doing Nothing: Forms of Decision 

Avoidance Result From Reason and Emotion. Psychological Bulletin, 129, 

139–167. 

Baumann, A.A. & Odum, A.L. (2012). Impulsivity, risk taking, and timing. 

Behavioral Processes, 90, 408-14. 

Baumeister, R.F., Gailliot, M., DeWall, C.N., & Oaten, M. (2006). Self-regulation 

and personality: how interventions increase regulatory success, and how 

depletion moderates the effects of traits on behavior. Journal of Personality, 

74, 1773-801.  

BEA. (2013). Study of aeroplane state awareness during go-around (Report: No. 

FRAN-2013-023). Paris, France: Author. 

Bialaszek, W., Gaik, M., McGoun, E., & Zielonka, P. (2015). Impulsive people have 

a compulsion for immediate gratification – certain or uncertain. Frontiers in 

Psychology, 5, 515.  

Byrne, K., Silasi-Mansat, C., & Worthy, D.A. (2015). Who chokes under pressure? 

The big five personality traits and decision-making under pressure. Personality 

and Individual Differences, 74, 22-28. 

Causse, M., Dehais, F., Arexis, M., & Pastor, J. (2011a). Cognitive aging and flight 

performances in general aviation pilots. Aging, Neuropsychology, and 

Cognition, 18, 544-561. 

Causse, M., Dehais, F., & Pastor, J. (2011b). Executive functions and pilot 

characteristics predict flight simulator performance in general aviation pilots. 

The International Journal of Aviation Psychology, 21, 217-234. 

Causse, M., Dehais, F., Péran, P., Sabatini, U. & Pastor, J. (2013). The effects of 

emotion on pilot decision-making: A neuroergonomic approach to aviation 

safety. Transportation Research Part C: Emerging Technologies 33, 272-281. 

Cheung, A. M., Mitsis, E. M., & Halperin, J. M. (2004). The relationship of 

behavioral inhibition to executive functions in young adults. Journal of 

Clinical and Experimental Neuropsychology, 26, 393–404. 

Childester, T.R., Helmreich, R.L., Gregorich, S.E., & Geis, C.E. (2009). Pilot 

personality and crew coordination: implications for training and selection. 

International Journal of Aviation Psychology, 1, 25-44. 

Dehais, F., Behrend, J., Peysakhovich, V., Causse, M., & Wickens, C.D. (2017). 

Pilot flying and pilot monitoring’s aircraft state awareness during go-around 

execution in aviation: a behavioural and eye-tracking study. The International 

Journal of Aerospace Psychology, 27, 15-28. 

Dickmann, S.J. (1990). Functional and dysfunctional impulsivity: personality and 

cognitive correlates. Journal of Personality and Social Psychology, 58, 95-102. 

Garavan, H., Ross, T.J., Murphy, K., Roche, R.A.P., & Stein, E.A. (2002). 

Dissociable executive functions in the dynamic control of behavior: Inhibition, 

error detection and correction. Neuroimage, 17, 1820-1829. 

Goh, J. & Wiegmann, D.A. (2001). An investigation of the factors that contribute 

pilots’ decisions to continue visual flight rules flight into adverse weather. 

Proceedings of the Human Factors and Ergonomics Society 45th Annual (pp. 

26-29). Santa Monica, CA: Human Factors and Ergonomics Societytime p.  



 impulsivity decision making under uncertainty 151 

Gray, J. A. (1987). Perspectives on anxiety and impulsivity: A commentary. Journal 

of Research in Personality, 21, 493–509. 

Harkey, J. A. Y. (1996). Age-related changes in selected status variables in general 

aviation pilots. Transportation Research Record: Journal of the Transportation 

Research Board, 1517(-1), 37-43. 

Helmreich R.L., Merritt A.C., & Wilhelm J.A. (199). The evolution of crew resource 

management in commercial aviation. International Journal of Aviation 

Psychology, 9, 19–32. 

Hirsh J.B., Morisano D., & Peterson J.B. (2008). Delay discounting: Interactions 

between personality and cognitive ability. Journal of Research in Personality, 

42, 1646–1650. 

IATA (2016). Unstable Approaches: Risk Mitigation Policies, Procedures and Best 

Practices (Report ISBN 978-92-9229-317-8, No. 2). Montreal-Geneva: 

International Air Transport Association. 

Koechlin, E. (2016). Prefrontal cortex function and adaptive behavior in complex 

environments. Current Opinions in Neurobiology, 37, 1-6.  

Korponay, C., Dentico, D., Kral, T., Ly, M., Kruis, A., Goldman, R., Lutz, A., & 

Davidson, R.J. (2017). Neurobiological correlates of impulsivity in healthy 

adults: Lower prefrontal grey matter volume and spontaneous eye-blink rate 

but greater resting-state functional connectivity in basal ganglia-

thalamocortical circuitry. Neuroimage, 157, 288-296. 

Martin, L & Potts, G. F. (2004). Reward sensitivity in impulsivity. Cognitive 

Neuroscience and Neuropsychology, 15, 1519–1522. 

Martin, L. & Potts, G. (2009). Impulsivity in decision-making: An event-related 

potential investigation. Personality and Individual Differences, 46, 303-308. 

Maule, A.J. Hockey, G.R., & Bdzola, L. (2000). Effects of time-pressure on 

decision-making under uncertainty: changes in affective state and information 

processing strategy. Acta Psychologica, 104, 283-301. 

 McCreary, J., Pollard, M., Stevenson, K. & Wilson, M. B. (1998). Human factors: 

Tenerife revisited. Journal of Air Transportation World Wide, 3, 23-32. 

Moeller, F.G., Barratt, E.S., Dougherty, D.M., Schmitz, J.M., & Swann, A.C. 

(2001). Psychiatric aspects of impulsivity. American Journal of Psychiatry, 

158, 1783-1793. 

Montiglio, P.O., Ferrari, C., & Réale, D. (2013). Social niche specialization under 

constraints: personality, social interactions and environmental heterogeneity. 

Philosophical Transactions of the Royal Society of London. Series B, 

Biological Sciences, 8, 20120343. 

O’Hare, D. (1997). Cognitive ability determinants of elite pilot performance. Human 

Factors, 39, 540-52. 

Patton, J.H., Stanford, M.S., & Barratt, E.S. (1995). Factor structure of the Barratt 

Impulsiveness scale. Journal of Clinical Psychology, 51, 768–764. 

Potts, G. F., George, M. R., Martin, L. E., & Barratt, E.S. (2005). Reduced 

punishment sensitivity in neural systems of behavior monitoring in impulsive 

individuals. Neuroscience Letters, 397, 130–134. 

Rassin, E. (2007). A psychological model of indecisiveness. The Netherlands 

Journal of Psychology, 63, 2–13. 

Spinella, M. (2007). Normative data and a short form of the Barratt Impulsiveness 

Scale. International Journal of Neuroscience, 117, 359-368. 



152 Behrend, Dehais, & Koechlin  

Stanford, M. S., Mathias, C. W., Dougherty, D. M., Lake, S. L., Anderson, N. E., & 

Patton, J. H. (2009). Fifty years of the Barratt Impulsiveness Scale: An update 

and review. Personality and Individual Differences, 5, 385-395. 

Sutin, A.R. & Costa, P.T. (2010). Reciprocal influences of personaliy and job 

characteristics across middle adulthood. Journal of Personality, 78, 257-288. 

Taylor, J., Kennedy, Q., Noda, A., & Yesavage, J. (2007). Pilot age and expertise 

predict flight simulator performance: A 3-year longitudinal study. Neurology, 

68(9), 648. 

U.S. Department of Transportation. (2015). Safety alert for operators, roles and 

responsibility for PF and PM (Report No.15011). Washington, DC: Flight 

Standards Service. 

Wiegmann, D., Goh, J., & O'Hare, D. (2002). The role of situation assessment and 

flight experience in pilots' decisions to continue visual flight rules flight into 

adverse weather. Human Factors, 44, 189. 

 



In D. de Waard, F. di Nocera, D. Coelho, J. Edworthy, K. Brookhuis, F. Ferlazzo, T. Franke, and A. 
Toffetti (Eds.) (2018). Proceedings of the Human Factors and Ergonomics Society Europe Chapter 2017 

Annual Conference. ISSN 2333-4959 (online). Available from http://hfes-europe.org 

Innovative cockpit touch screen HMI design using 

Direct Manipulation 

Marieke Suijkerbuijk, Wilfred Rouwhorst, Ronald Verhoeven, & Roy Arents 

Netherlands Aerospace Centre (NLR) 

Amsterdam, the Netherlands 

  Abstract 

As a widely-used and proven technology, touchscreens are entering the cockpits of 

civil aircraft. As part of the project ACROSS (Advanced Cockpit for Reduction Of 

StreSs and workload), NLR designed an innovative cockpit display with touch 

interaction for Tactical Flight Control; changing the aircraft’s (vertical) speed, 

heading and/or altitude. In current cockpit configurations, the controls for this auto-

pilot (AP) functionality are spatially separated from the visualization of the 

parameters they adjust, introducing aspects of physical and mental workload. In this 

paper, the Human Machine Interface (HMI) design process of eliminating this 

physical gap and creating an intuitive interaction by means of Direct Manipulation 

(DM) is described. DM is characterized by manipulating graphical objects directly 

on the position where they are visualized in a manner that at least loosely 

corresponds to manipulating physical objects. It has the potential to be highly 

intuitive, and less prone to error. Therefore, the HMI design was hypothesized to 

reduce pilot’s workload and simultaneously increase Situational Awareness (SA).  

The concept is evaluated using NLR’s flight simulators. Experiment results showed 

that the Tatical Flight Control design concept has great potential, but the interaction 

implementation needs further improvement, since it increased the pilot’s workload, 

especially under turbulent conditions. 

  Introduction 

This project aimed to research novel technologies to reduce the workload levels for 

flight crews in civil aircraft. Amongst other things a way to reduce crew workload 

during tactical flight control is researched.  

 

  Tactical flight control 

Two methods are discerned for flying an aircraft from point A to point B; strategic 

and tactical flight control. In a strategic approach, the aircraft is automatically 

guided along a predefined trajectory between A and B. In a tactical approach, the 

flight crew sets speed, heading, altitude and/or vertical speed to accomplish a 

desired flight manoeuvre, in general using the auto-pilot (AP) system.  
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  Direct manipulation & touch screens 

The term Direct Manipulation (DM) was introduced by Shneiderman (1982). Since 

then it has been widely adopted as a successful Human Machine Interface (HMI) 

design style. The idea behind DM is to create a direct intuitive interaction with 

visually presented objects in a manner that at least loosely corresponds to 

manipulating physical objects. A well-known example is drag-and-drop 

functionality in file systems.  

The introduction of touch screens enabled a very high sense of DM; a user is able to 

manipulate visual objects in a way they recognize from the physical world, like 

moving, resizing and rotating an image with the use of their fingers. Touch screens 

are not novel technology in everyday’s live, but they are in a cockpit; especially for 

use in main piloting tasks. According to Avsar et al. (2016a, 2016b), Boeing (2016), 

Gauci et al. (2015) and Gulfstream (n.d.), touch screens are gradually entering the 

cockpit of business and civil transport aircraft.  

In tactical flight control the input devices for setting the heading, speed, altitude or 

vertical speed are spatially separated from the visual representation of the chosen 

values. An example is shown in the cockpit of an A320, shown in Figure 1 (flight 

deck picture taken from Meriweather (n.d.)). The pilots use knobs (pushable, 

pullable and rotatable) on the centre of the glare shield to set a desired speed, 

heading, altitude or vertical speed. The chosen values are numerically displayed 

above the knobs. Besides, they are also graphically presented (within the orange 

indicatory circles) on the two displays in front of the pilot’s eyes; the Primary Flight 

Display (PFD) and the Navigation Display (ND). These are two of the main displays 

during flight; a pilot continuously scans these displays as they indicate the most 

important variables for safe flight. Since crew procedures mandate that values 

inputted using the knobs on the glare shield are visually verified on the PFD and/or 

ND, the input and output of the AP system have become spatially separated. This 

creates an additional aspect in mental and physical workload. Using rotary buttons to 

set target values for the (vertical) speed, heading and altitude has no correspondence 

to manipulation of physical objects and is therefore not necessarily intuitive. Using 

DM for this task is hypothesized to reduce workload and simultaneously increase 

Situational Awareness (SA). NLR has designed and evaluated a touch screen HMI 

for control of the auto-pilot using DM. 

  Design phase 1 

As a first step in the design, a single pilot crew experiment was set up in NLR’s 

fixed based flight simulator APERO, hosting an Airbus A320-alike aircraft model. 

With the DM philosophy in mind a solution was searched for manipulating the AP 

variables at the place where they are graphically presented; the PFD and the ND. 

Manipulating the variables at the scales leads to complications since the range of the 

scales is limited. To prevent these complications, and to stay close to the use of the 

rotary knobs on the glare shield, it has been decided to use interaction wheels. 
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Figure 1. Location of auto-pilot input device (top, on glare shield) and graphical presentation 

(bottom, in front of pilots) 

For every AP input variable to be adjusted, a wheel was created. These wheels were 

placed next to the graphical presentation of the variable at hand. By dragging the 

wheels one could adjust the target value; the graphical indicator next to the wheel 

changed position and value so the user directly got feedback. The wheels were 

developed in such a way that a gentle dragging resulted in a small adjustment of the 

value and a swipe resulted in a large adjustment of the value. In this first phase the 

vertical speed was left out of the design for reasons of simplicity. In Figure 2 the 

final design of phase 1 is presented. The HMI was displayed on a 10” tablet 

positioned in front of the pilot, fixated on a stand as shown in Figure 3. As can be 

seen, the PFD and the ND are also presented just as in the normal cockpit. The AP 

panel on the glare shield however, was covered. The tablet solely functioned as the 

input device to the AP system for adjustment of speed, heading and altitude. 
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Figure 2. HMI design phase 1 using touch wheels 

 

Figure 3. APERO flight simulator with the HMI presented on a tablet 

Within the project, besides adjusting the auto-pilot input variables also some other 

cockpit controls were transferred to the touch HMI. The pilot was able to 

extend/retract the landing gear, adjust the flaps/slats setting and select an ND-range 

(in ARC-mode only) via a pinch-zoom gesture. Furthermore a novel interaction 

function was developed for choosing a new runway on the destination airport (see 

Rouwhorst et al., 2017). Since on a 10” tablet the amount of pixels is limited, it was 

decided to let the user decide which display would get emphasis and was magnified 

in the centre of the tablet. This can be seen in Figure 4; at the bottom of the tablet 

there are miniatures of the four optional central displays: the PFD, the ND, the gear 

indicator and the flaps/slats indicator. By touching one of the miniatures, the 



 innovative cockpit HMI design 157 

selected display was magnified in the centre of the screen. The chosen miniature was 

highlighted with a green border. 

 

Figure 4. The user decides which display gets emphasized 

As can be seen from Figure 4, the three scales for speed, heading, and altitude, 

which are normally attached around the PFD, were permanently present, no matter 

what display was chosen to be centrally emphasized. The idea behind this design 

decision was that the pilot should always be able to adjust the target speed, heading 

and altitude values, regardless of the active centre display. The three scales were 

placed near the edges of the touch screen. In this way the operator received some 

physical support from the tablet hardware; for example he could grab the tablet on 

the left side and use his thumb to change the target speed value.  

With today’s use of the knobs on the AP panel on the glare shield not only can the 

target value of the selected variable be adjusted, the pilot can also decide to change 

the flight mode from strategic to tactical and vice versa. In Airbus terminology the 

two modes are called managed (strategic) and selected (tactical) mode. In the 

graphical presentation on the PFD and the ND these two modes are distinguished by 

colour: magenta for managed mode and cyan for selected mode. This mode 

switching functionality had to be transferred to the tablet HMI as well. It was 

decided to use toggle switches for that purpose: for every wheel two switches were 

presented (see Figure 2). When the user adjusted the target values in such a way that 

it fell outside the range of the scale, the value was numerically presented on such a 

switch above (if higher than the maximum value on the scale) or under (if lower than 

the minimum value on the scale) the scale. The switches are coloured in 

correspondence of the active mode. To toggle between modes, the switch could be 

dragged towards the inactive side (resulting in a colour swap). In the toggle switch 

design an important rationale was admitted; sliding a toggle towards the centre of 

the display resulted in a switch towards strategic mode. Sliding a toggle outwards 

resulted in a switch towards tactical mode. The idea behind this was copied from the 

AP-panel of the A320, where a knob push results in strategic mode and a pull results 
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in tactical mode. Pushing the knob can be interpreted as giving control to the aircraft 

(strategic) and pulling the knob can be seen as taking control in your own hands 

(tactical). On the tablet HMI sliding the toggles towards the centre display area gave 

control to the aircraft and sliding it outwards gave control to the user.  

  Evaluation phase 1 

The HMI design was evaluated both subjectively and objectively by ten airline pilots 

during various descent & approach scenarios. Detailed results on all designed items 

can be found in Rouwhorst et al. (2017). Here only the main results concerning the 

new auto-pilot HMI design are presented. 

In general, the touch screen as input device was well received. Positive about the 

design was that building up and maintaining SA appeared to be just as effortless as 

in a conventional cockpit, and for some pilots even less effortless. This AP tablet 

HMI design did not lead to a faster, more efficient operation and subjective 

workload increased with 3 points on a 0-150 Rating Scale Mental Effort (RSME) 

scale (Zijlstra (1993)). This was caused by the fact that setting a specific value 

turned out to be rather difficult; swiping the wheel appeared to be too sensitive and 

correcting this and fine-tuning the value time consuming. The ND-range pinch-zoom 

interaction felt intuitive and was highly appreciated. The toggle switches for 

changing the flight control mode were well received. 

  Design phase 2 

To both asses the influence of turbulence on touch screen operation and that of 

multi-crew operation procedures, the evaluation platform was changed to NLR’s full 

motion simulator GRACE. In Figure 5 the new set-up can be seen, with a seat for 

both a pilot-flying (PF) and a pilot monitoring (PM). With future expansion of pilot 

tasks using touch technology in mind, it was decided to switch from a separate tablet 

to fully integrated touch technology. This was achieved by using three 20” touch 

screens replacing the cockpit LCDs.  

In this phase the interaction design is shifted from the scales of the PFD towards the 

ND. A trend is seen towards strategic flight control. This implies that the role of the 

ND in the cockpit will become increasingly important. Moreover, the ND would 

ease the understanding of the flight crew about the consequences of the tactical 

intervention in terms of SA, since information about terrain, traffic and weather is 

presented. Finally, with the use of the ND, also a correspondence to manipulation of 

physical objects can be obtained, which gives DM its intuitive character. To this 

end, the physics nature of the AP variables was considered. Speed, heading, altitude 

and vertical speed can be contained in just one physical object: a vector in 3D space, 

originated at the aircraft (see Figure 6 for a top view and a side view representation 

of this vector). 
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Figure 5. Touchscreen HMIs integrated in full-motion flight simulator GRACE 

  

 

Figure 6. AP variables physics nature as a vector in 3D space 

An aircraft has a position and an altitude which determine the origin of this vector. 

Its speed and heading give the vector length and direction. One can imagine that it is 

possible to control the behaviour of an aircraft by manipulating this vector; rotate it 

to change heading, extend/shorten its length to increase/reduce speed, tilt it to adjust 

its vertical speed to climb or descent towards a new target altitude. This formed the 

basis of the new HMI design. Since it is difficult to adjust a vector in a 3D space on 

a 2D screen, it was decided to split it into two views: a top view presented on the 

ND and a side view presented on a so-called Vertical Situation Display (VSD). This 

VSD has a similar nature as the ND with information about altitude, vertical speed, 

distance, terrain, weather and other traffic.  
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In Figure 7 the final HMI design of this phase is shown including this VSD. Since 

the mode switches were positively assessed, they are preserved and positioned in 

between the ND and VSD.  

 

Figure 7. HMI design phase 2 including a VSD below the ND 

  Heading and speed adjustments 

The heading and speed could be adjusted using the ND display. When touching the 

aircraft symbol on the ND, an interaction screen appeared on top of the ND, while 

dimming the rest of the display, see Figure 8. The heading rose was extended to a 

full 360 degrees circle and a speed scale was presented covering all selectable 

airspeeds. The blue vector originated in the aircraft symbol represented the current 

target heading and speed physics of the aircraft (in the figure 91 deg and 220 kts 

(11.32 m/s) respectively).  

With this HMI design it was possible to simultaneously adjust the speed and the 

heading. When touching and holding the tip of the vector (at the position of the 

yellow arrows indicating the possible interaction directions), the user could drag it 

around within the heading rose, thereby adjusting both the length (i.e. aircraft speed) 

and the direction (i.e. aircraft heading) of the vector (see Figure 9). Since Air Traffic 

Control (ATC) commands can contain a combination of heading and speed, this 

feature was hypothesized to increase efficiency. When one stayed within the grey 

circular band, merely the heading was changed. On contrary, when one stayed 

within the speed scale, merely the speed was changed. For ease of operation and due 

to the fact that most adjustments do not request a higher accuracy than 5 units, both 

the speed and heading values were snapped at a multiple of 5 kts (2.57 m/s) or 5 

degrees. For fine-tuning purposes both for the speed and the heading values, two 

buttons were added next to the numerical indication of the adjusted value. Touching 

these buttons increased/decreased the heading or speed values by 1 degree or 1 knot 

(0.5144 m/s). 
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Figure 8.Interaction screen for speed and heading adjustments 

 

Figure 9. Drag the tip of the vector to adjust the aircraft speed and heading 
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  Altitude and vertical speed adjustments 

The altitude and vertical speed could be adjusted using the VSD display. When 

touching the aircraft symbol in the VSD, an interaction screen appeared on top of the 

VSD, while dimming the rest of the display, see Figure 10. The yellow vector 

originating from the aircraft symbol represented the physics nature of both the 

current altitude and vertical speed. The aircraft symbol was positioned at half height 

of the VSD. The altitude scale on the left is a moving tape, indicating the actual 

altitude of the aircraft at the aircraft symbol. The blue icon on this altitude scale 

represented the target altitude; after descending/climbing towards this target altitude, 

the aircraft will level off when reaching the target value. A pilot could decide to 

control the climb/descent towards this new altitude by setting a target vertical speed. 

When flying with a certain vertical speed towards a certain altitude, it can be 

calculated what distance will be covered before reaching this altitude. These three 

variables were all presented simultaneously in the VSD. Vertical dotted lines were 

plotted in the VSD at fixed distance from the aircraft (in this view at every 10 

nautical miles (NM) (18.52 km)). Imaginary sloped lines from the aircraft symbol 

towards the right side of the VSD scale indicated how much altitude could be 

covered in 40 NM (74.08 km) and therewith represented the vertical speed 

(indicated in small sloped lines on the right side of the VSD scale).  

 

Figure 10. Interaction screen for altitude and vertical speed adjustments 

This made the VSD an ideal interaction display for simultaneously adjusting the 

altitude and the vertical speed. When touching and holding the tip of the vector the 

user could drag it around within the VSD scale, thereby adjusting the desired 

distance at which to achieve a certain altitude. For example in Figure 11, where a 

pilot wanted to climb to an altitude of 15000 ft (4572 m), while climbing at 1500 

ft/min (7.62 m/s), he immediately received feedback about the distance the aircraft 

would need to travel to reach the target altitude at this vertical speed (i.e. almost 30 

NM (55.56 km)). If he wanted to reach this altitude earlier, he needed to drag his 

finger to the left, resulting in a higher vertical speed. This was hypothesized to be a 
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very intuitive feature, which was not yet available using the AP-panel on the glare 

shield.  

 

Figure 11. Simultaneously adjusting the target altitude and vertical speed 

When a pilot merely wanted to set a target altitude, he could drag the tip of the 

vector on the left side outside the VSD scale, thereby releasing the vertical speed. 

The altitude value then could be adjusted by dragging the indicator along the altitude 

scale or by touching the fine-tuning buttons (with increments of 100/1000 ft 

(30.48/304.8 m)) depending on the flight phase), see Figure 12. 

 

Figure 12. Merely adjusting the altitude using the VSD interaction scale 

When a pilot merely wanted to set a target vertical speed, he could drag the tip of the 

vector on the right side outside the VSD scale, thereby releasing the altitude. The 

vertical speed value could be adjusted by dragging the indicator along the vertical 
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speed scale or by touching the fine-tuning buttons (with increments of ±100 ft/min 

(0.508 m/s)), see Figure 13. To instantly reset the target vertical speed to 0 ft/min (0 

m/s) the Level off button could be touched (see Figure 12). 

 

Figure 13. Merely adjusting the vertical speed using the VSD interaction scale 

  Evaluation phase 2 

It has to be noted here, that during the experiment, the auto-pilot functionality was 

just one of several new things to be evaluated. In Rouwhorst et al. (2017) more 

detail is presented on some other touch functionalities.  

In general, when receiving the briefing and the design thoughts of the new HMI, all 

pilots supported the idea of setting auto-pilot values in this intuitive way. The idea 

of not having to switch focus to the glare shield display, the possibility of combined 

inputs of heading and speed and setting a level-off point graphically were considered 

promising.  

All pilots experienced a steep learning curve. When comparing the touch HMI 

design to using the rotary knobs of the AP-panel, the pilots reported it as more 

demanding; it took more effort (the number of actions), time and mental workload. 

Although beforehand they expected the combined functionality of the speed and 

heading inputs to be intuitive, most of the pilots advised to decouple them, since it 

was too hard and time consuming to accurately set them both simultaneously. Pilots 

had difficulty operating the system under high stress levels, such as turbulence and 

complex ATC commands, like those that included speed, heading and altitude 

changes. Such a plural request would require interaction on the ND at first, followed 

by another interaction on the VSD. This took too much time, and number of 

operations was too high; pilots tended to forget the actual instruction provided to 

them. Comments were received on the grey circle band. Since its placement 

depended on the actual speed, the radius of the band became too small for adjusting 

the heading when flying at low airspeeds. Pilots liked the graphical representation of 

the point where the aircraft will level-off to a new set altitude, however controlling 
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this point with a finger, thereby choosing a value for the altitude and the vertical 

speed simultaneously appeared to be troublesome. With the use of the VSD, they 

predicted an expansion of use of the vertical speed mode, since this was received as 

very intuitive. In terms of multi-crew operation the design appeared to be 

inadequate; the PM had trouble staying in the loop of what the PF was doing and 

could not easily verify whether for example instructions received from ATC were 

properly addressed by the PF. During the experiment therefore a master-slave 

construction was developed in which the actions of the PF were passively visible on 

the screen of the PM.  

  Design Phase 3 

Unfortunately, there was not enough time to do a complete third design and piloted 

evaluation session, but based on the pilot comments and outcome of the 

experiments, the project allowed final improvements to be made. The most 

important improvement was the decoupling of the heading & speed and altitude & 

vertical speed input. Since the grey circular band appeared to be too small to set 

accurate heading values at low speeds, the heading was decided to be set along the 

outer ring of the ND arc (see Figure 14).  

 

Figure 14. Interaction screen for decoupled speed and heading adjustments 

Another improvement was the addition of the current target speed value as a 

reference, presented by the yellow line and cyan triangle in the speed tape on the 

ND. In the previous design, the interaction overlay disappeared automatically after 

you had stopped adjusting your input. The pilots got confused by this; they lost track 

of what they were actually doing, had to wait a short while before their inputs were 

taken over by the aircraft and missed the possibility to reset the entire action. This 

has been improved by given them control; an “acknowledge”- and “cancel”-icon are 

added. When the pilot felt confident about his actions, he could acknowledge them 

by touching the green check mark.  
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The same idea is adopted for the VSD, see Figure 15. Also on the VSD the altitude 

and vertical speed settings were decoupled; adjusting the altitude could be done by 

dragging the indicator along the altitude scale on the left and adjusting the vertical 

speed could be done by dragging the indicator along the vertical speed scale on the 

right. As the pilots had trouble finetuning the target altitude on the small scale it was 

decided to fixate the value indicator at the vertical centre of the VSD. In the 

previous design the fine-tuning increments depended on the flight phase; to give the 

pilots more sense of control, additional fine-tuning buttons were added, for 

achieving an accuracy of 100ft (30.48 m) as well as 1000ft (304.8 m). Because the 

pilots liked the feature of knowing where the level-off point is situated, this is 

preserved as a dashed bold line (so in the example in Figure 15, when climbing at 

2400 ft/min (12.19 m/s) to a target altitude of 13200 ft (4023.4 m), the level off 

point was situated at a range of 15 NM (27.28 km)).   

 

Figure 15. Interaction screen for decoupled speed and heading adjustments 

  Discussion 

It can be concluded that the touch screen itself has great potential, and other 

functionalities evaluated in the project were already very well received (see also 

Rouwhorst et al. (2017)). For the task of Tactical Flight Control it can be concluded 

that the design concept was well received and has the potential to increase SA, but 

there is room for improvement of the interaction implementation on the HMI. Only 

with extensive iterative testing and evaluating a complex HMI such as the present 

design can be fine-tuned to be an impeccable system. As a first step for further 

research the HMI design of phase 3 could be evaluated in a pilot-in-the-loop 

experiment. A solution should be found for dealing with turbulence when using a 

touch screen. It is unlikely that the HMI design concept will reduce workload when 

solely comparing the Tactial Flight Control task with the conventional AP knobs 

functionality. It has however great potential to increase SA and be part of a full 

blown touch cockpit. Such integrated touch cockpit has the potential to reduce 

overall workload levels. This research can be seen an important step towards this 
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future touch cockpit, but more iteration cycles are needed on the HMI interaction 

design. 
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  Abstract 

With the prominence of cybersecurity questions, the role of analysts in managing 

cyber-attacks is crucial. Studies investigating human factors in cyber defence 

context generally focus on analyst training, situation awareness or cognitive biases 

(e.g. Gutzwiller et al., 2015) in order to reduce analyst errors. Champion and 

collaborators (2012) showed that social factors such as team communication 

influence the cyber teamwork. In this present study, we have examined elements 

contributing to the analyst’s stress level. More precisely, we have studied the effects 

of cyber threats and the moderator effects of social support on analyst stress. We 

venture the hypothesis that 1) cyber-threats have an impact on stress levels and 2) 

social support reduce individual stress levels. This study has taken place in a cyber-

security centre where cyber-attacks on a Vital Organisation have been simulated 

with engineer-students as cyber-defenders. Stress levels have been measured 

according to their heart frequency, and social communications have been coded 

from the video. Results show that threats do not directly affect stress, whereas 

obtaining -informational - social support is associated with a decrease of stress level. 

  Introduction 

Many organisations (industrial firms, financial institutions, public administrations, 

companies operating in the fields of defence and energy or more generally 

organisations depending on the use of computer data or internet) have a critical need 

to protect against cyber-attacks. In order to ensure the security of their information 

system, these organisations need to get protecting against data theft and alteration. 

With the increasing number of cyber-crimes, it is essential to identify factors 

improving effectiveness and efficiency of cyber defenders. These operators have to 

assess how serious the situation is swiftly, identify priorities and make relevant 

decisions. The strong pressure (time pressure, high risk) felt by these operators can 

generate significant stress and therefore impact their performances. In this context, 

we will observe how the cyber team operates and is managed during cyber-attacks. 

The aim of this exploratory study is to examine the effects of cyber events and the 

moderator effects of social support on stress level in cyber-attack simulation. This 

study takes place in a cyber-security centre where cyber-attacks on a Vital 

Organisation have been simulated with engineer-students as cyber-defenders. 
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  Theoretical framework 

In the literature, Champion, Rajivan, Cooke, & Jariwala (2012) suggest that a 

cybersecurity analyst team can be characterized as a group of individuals working 

independently with few communication or collaborative efforts among team 

members. They identified three major factors impacting teamwork: overall 

organisation of the team, team communication and information overload. Some 

authors (Gutzwiller, Fugate, Sawyer, & Hancock, 2015; Champion & al., 2012) 

focused on situation awareness in cyber defence context but not on stress processes.  

With regard to stress, several models exist. This study uses the Lazarus (1984, 1999) 

transactional model of stress. Stress occurs when person/environment transactions 

lead the individual to perceive a discrepancy between the situational demands and 

her/his resources or abilities to cope with those demands. The nature and type of 

coping generated by a person will be determined by the coping resources in the 

personal environment. The model identifies four types of coping resources: 

individual resources, social support, beliefs, and problem solving skills. Granåsen & 

Anderson (2015) explore the within-team communication in a cyber-attack situation 

to understand and get knowledge on team effectiveness in cyber defence exercises 

without taking social support into account. Our study aims to assess the relationship 

of social support on stress level. The social support will be measured through the 

communications. We focus on social support which is considered as a major 

moderator. Indeed, Kaufmann & Beehr (1986) suggest that positive communications 

might buffer individual occupational stress, while negative communications might 

have a reverse buffering effect. 

According to House (1981), social support is defined as a positive resource that a 

person can use to cope with stressful situation. House (1981) distinguished four 

types of social support: 

● Emotional support consists in expressing to a person the positive affect that 

one feels towards her (friendship, love, comfort, sympathy), and generating 

feelings of reassurance, protection or comfort. 

● Appreciation support is about reassuring a person in terms of skills and 

values. This encouragement will allow her to strengthen her self-confidence 

in times of doubt when she is concerned that the demands of a situation will 

exceed her resources and capacities (overwork, role conflict, burnout ...). 

● Informative support involves advice, suggestions, knowledge about a 

problem, proposals for solving a new problem, for example. 

● Instrumental support involves effective assistance such as lending or giving 

of money or tangible goods or providing services in difficult times. It also 

characterizes assistance in the form of donating time or work. 

 

Frese (1999) shows that social support buffers the effect of stressors on health. 

Buffer effects in the relationships between stressors and psychological or 

psychosomatic dysfunctioning are higher when social support is high and lower 

when social support is low. Malviya, Fink, Sego, & Endicott-Popovsky (2011) aim 

to determine whether situational awareness of team members participating in a 

cyber-competition could predict the overall team’s score. Various data were 
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collected (e-mail, machine logs, video and audio sources), and they suggest 

supplementary data sources such as physiological stress measurements should be 

introduced in order to complete their research. The stress can be measured with heart 

frequency in dynamic situation (e.g. in driving, Healey & Picard, 2005). To our 

knowledge, no studies have been conducted on the assessment of stress in cyber 

defence situations, and none involves the study of heart frequency. 

The objective of this research is to explore the effects of cyber events and the 

moderator effects of social support on analyst stress. We venture the hypothesis that 

(H1) cyber-threat have an impact on stress levels, and that (H2) social support 

reduces individual stress levels. We have designed a methodology to record all 

communications during a simulated cyber defence exercise, focusing on social 

support communications. The different situations of cyber-threats are then studied 

with regard to the potential stress generated. This stress is measured through heart 

rate and matched with social support. 

  Method 

   The cyber context 

The study was carried out in the Cyber Security Centre (CSC) of a Higher National 

Engineering School in France. Cyber-attacks on a VO (Vital Organisation, e.g. an 

energy company) information system can be simulated. In order to be more realistic, 

a scenario of a hospital attack is worked out: following a series of triggering events 

(planned by the author’s scenario), the repercussions of these events on the hospital 

and its environment were simulated (e.g., social conflicts) associated with a series of 

cyberattacks (e.g. DDOS, Defacement). These attacks could occur at any time 

during the day. The operators had no information on the development of the scenario 

and they had to resolve the situation using their defence skills. Several cells were 

constituted for the exercise management. The Cyber cell, called the Blue Team, 

constitutes the SOC (Security Operational Centre) in charge of the organisational 

security. There is a Management Team making choices and confirming the 

decisions, the Red Team launching the cyber-attacks, an Animation Team regulating 

depending on the sequence of events and a White Cell for interacting with the media 

and providing potential reinforcement.  

   Participants 

The sample is composed of 29 graduate students from the engineering school of the 

University of Southern Brittany in France. They are aged from 21 years to 32 years 

(mean age = 23.,93 years, standard deviation = 2.62). The sample is composed of 1 

female student and 28 male students. The participants’ anonymity is guaranteed and 

a request for consent was signed by the participants fifteen days before the 

experiments. 

   Data collection 

Observations and measurements of activity were made during an exercise of cyber 

defence simulation training. The Cyber Crisis Exercise took place over five days in 
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February 2017. Spread out in four teams, each team was placed alternately in the 

Cyber Security Centre in a cyber-crisis situation. In this study, the team focussed on 

is the Blue Team. It consisted in 6 operators and a Real-Time Coordinator (CTR) 

responsible for coordinating crisis management operations. They had to deal with 

threats and attacks that could damage the system of the simulated VO. A 

measurement of the heart rate (HR) of the team members was performed using a 

BioHarness3 ™ heart rate monitor, three days before the exercise for HR baseline 

calibration, and continuously, throughout each exercise day for physiological stress 

measure. Two cameras recorded participants continuously during the cyber-crisis 

exercise. Communication were recorded using microphones and dictaphones all 

along. All events, communication and activities (e.g. movements) were coded 

according to a coding scheme. The coding scheme was designed to identify cyber 

events and social support verbalisation. 

The coding procedure was focused on taking the oral communications of the Blue 

Team into account. The coding scheme on social support was carried out in four 

steps: 1) Identification Sender (CTR or operator); 2) Purpose of social support 

(contribution, expectation or proposal); 3) Identification of the recipient (CTR or 

operator); 4) Qualification of the type of support (instrumental, informational, 

emotional, appreciation). For example, in the case of a social support contribution 

(SSC) from the CTR, SSC could take one of the four types of support cited above. 

Proposition, expectation and contribution social support behaviours had been coded 

but for the illustration, the focus was on contribution. An example of each kind of 

contribution is presented in Table 1. 

Table 1. Illustration of types of social support contribution (SSC) during the cyber exercise. 

CONTEXT 

DESCRIPTION 

COMMUNICATION (Op = 

Operator / CTR = Coordinator 

in real-time) 

SOCIAL SUPPORT 

CONTRIBUTION 

TYPES 

Op1 uses a tool that he 

doesn’t know very well and 

asks Op2 what he should 

do. 

Op1 "What should I do in the 

software Op2 "you click 

here (showing directly with 

the mouse of the Op1’s PC)". 

Instrumental  

Op1 doesn’t know how to 

do an analysis task. Op2 

responds. 

Op2 "For the UFW you do 

a ‘Ptinstall’, you look for 

the configurations Apt  in 

each machine. 

Informational 

The CTR has made a 

request for reinforcement. 

The reinforcement arrives. 

Here is the reaction of the 

CTR when he understands 

who the reinforcement is. 

CTR "Oh that’s a great gift" 
[to have this person] 

Emotional 

CTR follows an Op task 

and encourages him in his 

task. 

CTR "how is it going?" Op1 "I 

have made back-ups on my PC, 

in case the machine gets 

attacked." CTR "It's good 

okay". 

Appreciation 
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   Heart rate analysis and Controlled variables 

In the analysis of heart rate (HR) variations, we decided to ignore a behaviour 

interval of 20s around the behaviour in order to exclude from the data, HR variation 

caused by the communications induced by the behaviour. When a studied behaviour 

occurred, we compared mean HR during 20s before (Interval 1) and 20s after the 

SSC behaviour interval (Interval 2) (see Figure 1). 

 

Figure 1. Heart rate comparison method. 

Physical activity (standing or sitting position) was controlled around interval 1 & 2 

to limit ecological context bias. The HR is known to be sensitive and slowly 

decreasing, so we controlled the activity of the individual in order to limit activity 

influence on HR. If the operator was not seated during a fixed interval (40 seconds 

before and after a studied behaviour), the behaviour was excluded from the analysis. 

  Results 

The result section presents the effects of threatening cyber events on individuals and 

the effects of social support on individuals HR. 

  Threatening cyber events  

In this part, the communications on threatening cyber events that contribute to 

collective representation among the cyber team is analysed. These events are: 

detection of threats, detection of attacks, or more generally additional information 

contributions on such events. It was found that 66 occurrences of these threatening 

cyber events were coded. After activity control (standing versus sitting position), 

only 30 occurrences of threatening cyber events were taken into account. The 

boxplot depicted in Figure 2 shows the variation of HR during these occurrences. 
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Figure 2.  Variation of heart rate with threatening cyber events. Q1 = Quartile 1, 

Q2 = Median, Q3 = Quartile 3, × = Mean. 

When comparing before and after the onset of threatening cyber events, no effect 

was found on HR (Mean = + 2.34 %; NS with a Wilcoxon paired test, n = 30). To 

illustrate, Figure 2 presents each individual HR pattern variation between interval 1 

& 2 (see), depending on the criticality level of the cyber-attack (level 1: low hazard 

& low recovery, level 2: medium hazard & medium recovery, level 3: high hazard & 

high recovery; from a cyber-subject matter expert) in the simulation context. 

 

Figure 3. Heart rate variations depending on the criticality level of cyber-attacks 

(level 1 to level 3; n = 6). 
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The different individual patterns observed (Figure 3) suggested that attack criticality 

influences the individual reaction. When the attack criticality level was low (level 

1), the 2 individual patterns did not indicate an increase of HR. However, when the 

attack criticality was higher (Level 2 or 3), pattern show an increase of HR except 

for the SCADA attack. An explanation of the decrease of HR for SCADA attack is 

that the individual already had a high HR before the attack, and so an increase of HR 

was less likely. 

  Social support 

In this part, the social support behaviours were investigated. In total, 320 

occurrences of social support behaviours were coded from communication. The 

most prevalent social support behaviours coded were contributions (n = 211) then 

expectations (n = 89) and finally social support propositions (n = 20). Among the 

social support contributions (SSC), the most frequent SSC was informational social 

support contribution (n = 144), then instrumental (n = 32), appreciation (n = 20) and 

finally emotional (n = 15). 

In the following, we focused on the SSC, and analysed the variation of HR with its 

occurrences. In accordance with our second hypothesis, the analysis indicated a 

decrease of HR following a SSC (Mean = -3.410 %; W = 4.367; p < 0.001, with a 

Wilcoxon paired test, n = 117) compared to before the SSC. 

In the boxplot depicted in Figure 4, the HR variation depending on SSC types are 

presented.  

 

Figure 4. HR variations depending on types of social support contribution; Q1 = Quartile 1, 

Q2 = Median, Q3 = Quartile 3, × = Mean.  
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We differentiated SSC depending on the central tendency and the homogeneity of 

HR variations after these SSC. All SSC -except emotional- were associated with a 

HR median variation from -1 to -5% and an interquartile interval from 1 to -6 %. 

These distributions indicated that HR was stable or decreased for 75 % of SSC 

occurrences. The analysis of HR following a SSC showed a significant difference 

for informational SSC (mean = -2.886 %; t = 3.634, p < 0.003, n = 78) but not for 

instrumental SSC (Mean = -3.146 %; NS; n = 19), emotional SSC (Mean = 0.250 %; 

NS; n = 5) and appreciation SSC (Mean = -5.583 %; W = 2.166; p < 0.07; n = 15). 

These results are in accordance with our hypothesis of an effect of SSC on HR, 

depending on the type of SSC.  

  Discussion 

The current study was conducted to investigate stressors (cyber-threats or cyber-

attacks) and stress moderators in cyber context. 

   Cyber stressors  

Our hypothesis that threatening cyber events increase stress among cyber operators 

is not verified. As Figure 3 suggests, the increase tendency of stress with cyber-

attacks seems to be influenced by individual features and potential level of criticality 

of cyber events. First, as the Lazarus stress model (1984, 1999) proposes, it can 

depend on the individual personality which can be identified with appropriate 

questionnaires. Operators can be differently affected depending on their anxiety or 

current stress level. On one hand, if they are not anxious or engaged in their task, 

their stress level will be more stable. On the other hand, if they are already stressed, 

an increase of stress level is less likely. Such questionnaires have been administered 

and constitute the next phase of our research. Secondly, the specificity of the context 

which is ecological but not a real one, could affect their stress level. The fact that the 

exercise is a simulation can reduce impact of attacks compared to real live attacks, 

even if the exercise was also an evaluation of individual cyber defence abilities. 

Thirdly, the operators are trained to defend information systems from attacks, and 

with expertise, they have to manage stress during cyber events. So probably, 

threatening events are not the most important stressor, other factors, as validating 

countermeasure or making management decisions (e.g. to disconnect website) could 

be more stressful and constitute an interesting perspective for study. 

   Heart rate variation with social support contribution 

In a general manner, social support contribution is associated with a decrease of HR. 

It provides an additional argument to the Lazarus model of stress (1984, 1999) that 

SSC is a relevant moderator of stress. It is also in accordance with the hypothesis of 

positive or negative communication buffering effect (Kaufmann & Beehr, 1986) 

suggesting that positive communication might buffer individual occupational stress. 

However, social support’s contribution has different effects on stress depending on 

social support contribution types. Informational social support contribution reduces 

stress whereas the other types do not. More surprising is that instrumental social 

support contribution does not influence heart rate despite its tangible feature. One 

explanation is that a relevant tangible social support contribution can be very useful 
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for the operator’s task, inducing new cognitive tasks and so potentially additional 

mental workload. It could be interesting to insert a combination of measures to 

control the impact of mental workload on heart rate. Moreover, appreciation social 

support contribution tendentially reduces heart rate which means that when an 

operator is stressed, discouraged or submerged, encouraging him could have a 

positive effect on stress. Under stressful conditions like a cyber-crisis context, 

encouraging or helping collaborators in need, could have an important effect on 

stress and so contribute to team cohesion. In a performance perspective, such a 

vector of team cohesion and stress could be an interesting way to optimize team 

functioning. 

  Conclusion 

The study shows that in a cyber-attack context, threatening events may not be 

sources of stress but the attack criticality could be. Moreover, the social support 

contribution -and more specifically informational contribution- seems to moderate 

the stress level. It would be interesting to continue the investigation on stressors and 

moderators in a cyber defence context with a combination of stress and mental 

workload tools, in order to dissociate their respective influence on heart rate. 
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Abstract 

Wearable devices have gained high popularity in the last years, especially for health 

monitoring. Some devices aim at identifying mental states, but scientific studies on 

the potential of wearable devices for identifying mental states are rather sparse. 

Heart rate parameters proved to be valuable indicators for increasing mental 

workload and growing levels of physical activity. The question arises, if wearable 

devices can be used to identify high mental workload in different physiological 

activity conditions. Thirty-two participants (18 female) participated in an experiment 

with a 2 (mental workload) x 4 (physiological activity) factorial within-subject 

design. Participants sat, stood, stepped or cycled while they fulfilled either no 

secondary task (5 minutes) or a counting backwards task (5 minutes). Heart Rate 

was measured via a wrist-worn mobile device and a stationary device. Results 

showed that measurements of the two devices did not correlate consistently. Heart 

Rate and Inter-Beat Intervals, measured via the stationary device differed 

significantly with varying levels of physical activity and mental workload. Data 

from the wearable device showed only the physical activity effect. Findings indicate 

that wearable devices are not fully capable of identifying mental workload. Still, 

wearable devices have potential for identifying and fostering reduction of high 

physical load in everyday usage. 

  Introduction 

The market share of wrist-worn wearable devices is on the rise (IDC, 2017). This 

shows the high popularity this new technology has gained in the last years. Their 

potential for health monitoring and health support has been intensively investigated 

and discussed (e.g., Marakhimov & Joo, 2017). They allow consumers to 

continuously monitor physiological parameters and manage their health and well-

being on a personal basis. Additionally, they can help physicians to get access to 

their clients’ health data to offer personalized medical care (e.g., Kim & Kim, 2016). 

Some devices even aim to identify mental states, stress or emotions, but scientific 

studies on the potential of wearable devices for identifying different mental states in 

different situations are rather sparse.  

http://www.sciencedirect.com/science/article/pii/S0747563217304284#bib53
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The potential identification of high workload or stress opens new opportunities for 

daily life usage. Wrist-worn wearable devices might be applied in the driving or 

working context in order to identify situations in which users need support. For 

instance, workers’ health parameters could be tracked in order to implement 

solutions that respond to the observed health status and reduce the physical and 

cognitive burden at work (Lavallière et al., 2016). Through technical solutions using 

wearable devices, personal recommendations can be made about the sequence of the 

pending work tasks, exercise (e.g., daily step count), nutrition, or practices to reduce 

stress and optimize job-related (mental) workload (Swan, 2012). 

  Mental Workload and Heart Rate Variability (HRV) 

Mental workload can be described as the relationship between the cognitive 

resources that are necessary to fulfil a specific task and the operator’s cognitive 

resources that are available (e.g., Wickens, 2008). Valuable physiological indicators 

for increased mental workload and growing levels of physical activity are an 

increase in Heart Rate (HR) and decrease in Heart Rate Variability (HRV; Mulder, 

1992; De Waard & Brookhuis, 1991). HR presents the number of heart beats per 

minute and Heart Rate Variability is defined as the variability of the intervals 

between two heart beats, the Inter-Beat Interval (IBI; for a comprehensive overview 

see, Shaffer et al., 2014). HR and HRV can be measured via electrocardiogram 

(ECG) by recording the electrical activity from the heart or wearable devices that 

often use optical heart rate monitors. HRV parameters can either be time-domain or 

frequency-domain parameters. Typical time-domain parameters that are supposed to 

be indicators for parasympathetic nervous system (PNS) activity are the standard 

deviation of the RR-intervals (SDNN), root mean square of sequential deviations 

(RMSSD), and the number of adjacent pairs of IBIs differing more than 50 ms 

divided by the total number of Inter-Beat Intervals (pNN50). Commonly used 

frequency-domain parameters are power of the high-frequency band (HF: 0.15-0.40 

Hz) and the low-frequency band (LF: 0.04-0.15 Hz) and the LF/HF ratio. 

Sympathetic nervous system activities as reaction to physical activity or stress 

reactions should reflect in LF (Shaffer et al., 2014). The LF/HF ratio is considered as 

a marker for shifts in sympathetic or parasympathetic dominance. The 0.10 Hz 

component that corresponds to the LF component is supposed to be especially 

sensitive to changes in mental demand (De Waard, 1996), but often all above 

mentioned parameters are analysed (Hsu et al., 2015). 

  Potential of wearable devices for heart rate monitoring 

Wearable devices represent an easy-to-use alternative to measure HR parameters in 

daily context. Stahl et al. (2016) showed that measures of different wearable devices 

such as Mio Alpha, Microsoft Band and Fitbit Charge HR correlate highly with the 

criterion measure (Polar RS400) and with each other, even when people walk or run. 

Another study showed relatively high error rates for walking, but more acceptable 

error rates for cycling and running (Shcherbina et al., 2017). Furthermore, wearable 

devices proved satisfying HRV measurements in order to differentiate between high 

and low demanding cognitive tasks (Barber et al., 2017), although other studies 

showed that HRV parameters could be too inaccurate (Reinerman-Jones et al., 

2017).  
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On the basis of the reviewed literature, we expect that HR increases and HRV 

parameter decreases when mental demand is higher (H1). Furthermore, higher 

physical demand should reflect in higher HR and lower HRV (H2). It is further 

assumed that these effects can be detected using an ECG and a wearable device. Sun 

et al. (2012) showed that higher mental workload can be identified using HR 

parameters in different physiological activity conditions, but it has not been 

investigated whether this is replicable with using wearable devices.  

  Methods 

  Participants 

Thirty-two healthy participants finished the experiment. One data set could not be 

used due to technical problems. The remaining n = 31 participants (18 female, 13 

male) were on average 25 years old (SD = 5.5), 87% were right-handed and none of 

them had diagnosed diabetes, cardiovascular complaints or diseases or other health 

issues that would constitute a risk for participants in the study. Students (n = 29) 

received course credits for participation.  

  Design 

In an experiment with a 2 (mental workload) x 4 (activity) factorial within-subject 

design, participants’ HR and HRV was assessed in each condition. They either sat, 

stood, stepped, or cycled while solving an arithmetic task in parallel or doing 

nothing additional. The sequence of activities was varied using the latin square. The 

study procedure was approved by the ethical committee of the Chemnitz University 

of Technology (no. V-163-BM-FS-Factory-24112016). 

  Apparatus and material 

HR and HRV were measured 1) with the Microsoft Band 2 (MB2) on the non-

dominant hand and 2) with a 1-channel ECG, the SUEmpathy
®
 (SUE) with 

disposable adhesive electrodes (Dahlhausen type 405, Ag/AgC1; 45 mm diameter) 

positioned on the abdomen and chest area. The SUEmpathy100 is a measuring 

device for the functional diagnostics of the autonomous nervous system of the 

company SUESS Medizintechnik ECG 1303, SUEmpathy
®
 Vitalbox, SUESS 

Medizin-Technik Aue). The data from the ECG sensor were recorded at 512 Hz with 

12-bit resolution, and the Microsoft Band 2 data at 1 Hz. The ECG recordings were 

pre-analysed with the associated software SUEmpathy100, version SUE1-4.36j 

Scientific (SUESS Medizin-Technik Aue, 2009). The Windows software 

development kit (SDK) coming with the MB2 allows for real-time data streaming 

via Bluetooth between the device and a computer. Therefore, a self-developed 

logging application was installed on a Lenovo notebook. For analyses, the collected 

HR and IBIs were of interest. 

All instructions for physical and arithmetic tasks were presented via LabView 

(version 2014). In the arithmetic task, that was used to increase the mental workload, 

participants were asked to count backwards from 5,200 by, for instance, 13 (similar 

to Meinel, 2013). In the stepping condition, participants stepped with both legs on 
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and off a step board (height: 20.5 cm x length: 89 cm x width: 35.5 cm) using one 

leg at a time and following an 80 bpm beat given by a metronome (Yixiang, 2015). 

In the cycling condition, participants cycled on a bike fixated with a roller fix frame 

(In'Ride 300, 550 Watt B'TWIN) and followed a 90 bpm beat. The whole 

experiment was video-recorded with a Sony Digital HD-video recorder to assure 

data matching in case of system failure. 

Subjective workload was assessed using the NASA-TLX scale (Hart & Staveland, 

1988) which includes 6 items covering mental, physical and temporal demand, 

effort, frustration level and performance. Items were rated on 20-point bipolar scales 

(from 0 = low to 20 = high; for performance scale: 0 = success to 20 = failure). 

Demographic data as well as self-judgments regarding math skills were collected via 

a questionnaire.  

  Procedure 

First, participants read the instruction including the information that disqualifying 

criteria were cardiovascular complaints or diseases, diabetes, etc. and filled in the 

socio-demographic questionnaire. The experimenter checked for exclusion criteria, 

positioned the MB2 on participant’s non-dominant arm and started the video 

recording. Participants signed the confirmation agreement, equipped him-/herself 

with the electrodes of the SUEmpathy
®
 following detailed instructions and with 

potential assistance of the experimenter. When the participant stated to be ready, the 

experimenter started the LabView presentation and physiological data recording. 

The procedure (see Figure 1) was in accordance to Sun et al. (2012) with the only 

exceptions that each condition lasted 5 minutes and no mediation music was 

presented in baseline and recovery phases. In the stepping and cycling condition, 

participants could shortly test the physical activity (max. 1 minute).  

 

Figure 1. Experimental sequence. 

After each condition with increased mental workload, the NASA-TLX (Hart & 

Staveland, 1988) was filled in by the participants. In sum, the experiment lasted 90 

to 120 minutes. 

  Results 

The HR data for both devices were transferred to Kubios (Version 3.0.2; Tarvainen 

et al., 2014) in order to calculate further heart parameters. The MB2 data for the first 

10 participants had to be excluded from analysis, because data were too unreliable 

Procedure for every activity: sitting, standing, stepping, cycling  

(practice phase only for stepping and cycling) 

5 

min 

5 

min 

5 

min 

Prac- 
tice 

Activity 
(Baseline) 

Activity + 
Arithmetic 

Task 

Nasa 
TLX 

Re-
covery 
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due to the position of the MB2 (sensors on the upside of the wrist). Outlier analyses 

(Grubbs, 1969) identified 0 to 4 outliers for the varying HR parameters for each 

device that were excluded from further analyses. To investigate measurement 

validity, inter-class correlation coefficients (ICC) were calculated between MB2, 

SUE and NASA-TLX data.  

Hypotheses were tested using ANOVAs for repeated measurements as well as post 

hoc tests with Bonferroni correction and paired t-tests. In case of violating the 

assumption of sphericity, the Greenhouse-Geißer Correction was used (Field, 2013). 

When data for the different conditions were not normally distributed, log-

transformation (ln) was applied.   

  Stationary apparatus versus wearable device 

As an example, Figure 2 shows raw HR data for one participant.  

 

Figure 2. HR data for one participant (No. 21) for each condition measured via stationary 

(SUE) and wearable device (MB2). 

Note. MWL = conditions with higher mental workload (MWL). 

The ICCs (Table 1) show that the two devices’ measures correlated only 

significantly in the sitting and standing conditions.  
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Table 1. ICCs and 95% Confidence intervals for the HR and IBI mean measured via 

stationary and wearable device (* p < .05; ** p < .01). 

Parameter Condition Sit Stand Cycle Step 

Mean HR 
(bpm) 

activity 
.83**  

[0.58; 0.93] 
.86**  

[0.65; 0.95] 
-.26  

[-2.17; 0.50] 
.02  

[-1.48; 0.61] 

activity + MWL 
.70**  

[0.24; 0.88] 

.66*  

[0.13; 0.86] 

-.65  

[-3.16; 0.35]  

-1.02  

[-4.11; 0.20] 
      

Mean IBI 

(ms) 
activity 

.84**  

[0.59; 0.94] 

.74**  

[0.35; 0.90] 

.07  

[-1.36; 0.63] 

.11  

[-1.26; 0.67] 

activity + MWL 
.57*  

[-0.10; 0.83] 

.49  

[-0.28; 0.80] 

-.39  

[-2.51; 0.45] 

-.14  

[-1.89; 0.55] 

Note. N = 20. 

  Influence of Mental Workload and Physical Activity on HR parameters 

Means of several HR parameters for each condition are displayed in Table 2. In 

accordance to the ICC results, values of the two devices differ especially in the 

cycling and stepping condition. Still some differences between the conditions can be 

detected.  

Regarding hypothesis H1, SUE data confirmed that participants in conditions with 

higher mental workload show higher HR and lower mean IBI (Table 2 and 3). 

Contrary to H1, an increase was found for SDNN and pNN50 when mental 

workload was raised (Table 2). RMSSD result showed no clear direction of change. 

For the stationary device, significant main effects with large effect sizes were found 

for HR, IBI and SDNN (Table 3). For the MB2, significant differences were found 

in RMSSD, SDNN and pNN50, but not in HR or mean IBI. Average RMSSD, 

SDNN and pNN50 values were higher when mental effort was higher compared to 

when mental effort was lower. Frequency-domain components LF and HF showed 

also an increase when extra mental effort was needed. The changes were significant 

(Table 2 and 3). This is contrary to the hypothesised direction of the mental 

workload effect and does not support our hypothesis (H1). Additionally, no 

significant effect was found for the LF/HF ratio. ANOVAs for the MB2 data showed 

comparable effects in the frequency-domain parameters.  

For the SUE, all interactions mental workload x physical activity were significant 

(Table 3). For the MB2, HR, RMSSD, SDNN and LF parameters showed the 

significant interactions mental workload x physical activity. These results point out 

that the main effects of mental workload might not be always apparent. For the main 

effects that were in the hypothesised direction, we then tested each activity condition 

for significant differences between conditions with increased mental load and 

without by using one-tailed t-tests for paired samples. For interpreting the p-values, 

we applied a Bonferroni-Holm correction (Holm, 1979). For the SUE data, 

significant effects of the arithmetic task were found in the HR and mean IBI data for 

each of the activity conditions. As expected HR increased (sit: t(28) = -5.53, p < 

.001, d = -1.04; stand: t(28) = -2.40, p = .012, d = -0.45; cycle: t(28) = -8.66, p < 

.001, d = 1.63; step: t(28) = -7.92, p < .001, d = -1.50) and IBI decreased 

significantly (sit: t(28) = 5.53, p < .001, d = 1.04; stand: t(28) = 2.40, p = .012, 

d = 0.45; cycle: t(28) = 8.66, p < .001, d = 1.64; step: t(28) = 11.28, p < .001, d = 
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2.13) with more demanding physical activity. For the MB2 data, none of the 

significant mental workload effects retrieved from the ANOVAs pointed in the 

hypothesised direction. However, in one-tailed t-tests for paired samples with HR 

and mean IBI values, a medium effect was found when comparing the varying levels 

of mental workload in the sitting condition (t(19) = 2.34, p = .016, d = 0.54). After 

the Bonferroni-Holm correction it was found to no longer be significant. All other 

differences were non-significant and with small effects. Overall, the mental effort 

effect (H1) could be confirmed by HR and IBI data collected via SUE, but not by 

MB2 data.  

Table 2. Results of HR and various HRV parameters measured via SUEmpathy® (SUE) and 

Microsoft Band 2 (MB2). 

Para-
meter  

De-
vice 

n Sit 
Sit 

MWL 
Stand 

Stand 
MWL 

Cycle 
Cycle 
MWL 

Step 
Step 

MWL 

HR 

(bpm) 

SUE  29 73.8 79.4 87.4 90.8 107.5 116.9 112.2 122.1 

MB2  20 76.3 80.2 88.2 86.9 79.7 75.5 90.4 94.6 

           

Mean 

IBI (ms) 

SUE  29 828.3 766.7 703.4 673.9 567.1 524.9 542.9 495.3 

MB2 20 783.8 738.5 674.5 681.8 766.4 805.4 663.0 638.6 

           

RMSSD 

(ms) 

SUE 29 45.3 44.4 26.6 34.0 14.0 14.1 18.0 15.5 

MB2  19 114.0 161.6 125.3 160.7 253.3 253.2 220.1 213.1 

           

SDNN 

(ms) 

SUE  28 51.9 61.7 39.7 53.0 17.2 20.9 19.0 18.1 

MB2  19 90.0 126.9 98.2 124.1 188.3 203.0 175.0 173.5 

           

pNN50 

(%) 

SUE  28 21.5 21.8 8.4 10.9 2.2 2.8 1.5 0.9 

MB2  19 30.5 53.3 38.5 54.6 72.9 71.9 77.2 72.2 

           

LF (ms²) 
SUE  30 1576 2711 1206 2520 208 420 212 245 

MB2 18 2475 2957 2526 4238 24725 14440 7489 6549 

           

HF 

(ms²) 

SUE 29 1086 1037 399 674 83 304 198 269 

MB2 18 10178 13942 5121 9426 34010 74639 22000 16229 

           

LF/HF 
SUE 27 2.85 3.88 7.82 5.75 5.67 3.91 4.36 3.57 

MB2 21 1.01 0.75 1.05 0.67 0.48 0.43 0.45 0.46 

Note. MWL = conditions with higher mental workload (MWL). 
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Table 3. Results of ANOVAs with repeated measurements for various HR parameters 

measured via SUEmpathy® (SUE) and Microsoft Band 2 (MB2). 

Para-

meter 

De-

vice 

(n) 

 Mental workload  Activity  Interaction 

n F (df) η²p  F (df) η²p  F (df) η²p 

HR 
(bpm) 

SUE  29 68.9*** (1, 28) .71 
 

368.9*** (3, 84) .93 
 

3.3* (3, 84) .11 

MB2  20 0.2 (1, 19) .01 11.6*** (2.1, 39.9) .38 3.5* (3, 57) .15 

Mean 
IBI  

(ms) 

SUE 29 68.8*** (1, 28) .71 368.8*** (3, 84) .93 4.9** (2.4, 66.8) .15 

MB2  20 4.0 (1, 19) .17 17.9*** (1.3, 23.7) .49 2.1 (2, 38) .10 

RMSSD 

(ms) 

SUE 29 0.6 (1, 28) .02 51.0*** (2.0, 56.2) .65 18.7*** (2.3, 63.2) .40 

MB2  19 6.6* (1, 18) .27 26.7*** (2.3, 41.4) .58 6.3** (3, 54) .26 

SDNN 
(ms) 

SUE  28 16.9*** (1, 27) .39 71.2*** (1.9, 50.3) .73 12.9*** (2.2, 59.8) .32 

MB2  19 10.1** (1, 18) .36 32.5*** (3, 54) .64 5.1** (3, 54) .22 

pNN50 

(%) 

SUE  28 3.4 (1, 27) .11 54.3*** (2.2, 60.4) .67 6.9*** (3, 81) .20 

MB2  19 13.4** (1, 18) .43 35.0*** (2.2, 40,1) .66 17.8*** (2.0, 35.9) .50 

LF  

(ms²) 

SUE  30 33.2*** (1, 29) .53 85.6*** (2.2, 64.5) .75 10.7*** (2.2, 62.6) .27 

MB2  18 6.0* (1, 17) .26 31.7*** (3, 51) .65 3.3* (3, 51) .16 

HF 
(ms²) 

SUE 29 15.6*** (1, 28) .36 47.1*** (1.8, 51.0) .63 7.1*** (3, 84) .20 

MB2 18 9.0** (1, 17) .35 19.1*** (3, 51) .53 2.8 (3, 51) .14 

LF/HF 
SUE  27 0.1 (1, 26) .01 10.3*** (3, 78) .28 6.9*** (2.3, 59.4) .21 

MB2 21 2.4 (1, 20) .11 5.8** (3, 60) .23 0.5 (3, 60) .03 

Note. ***p < .001, **p < .01, *p < .05, significant effects are bold written. 

Regarding the effect of higher physical activity (hypothesis H2), a general trend in 

SUE data can be retrieved from Table 2. With more demanding physical activity, 

HR increases and HRV parameters values decrease. As one example, mean HR was 

the lowest in the sitting condition, followed by the standing condition and cycling. 

Stepping had the highest average HR. ANOVA results for all parameters showed 

that the main effect for activity was significant and very large (Table 3). The post 

hoc tests revealed significant differences between all activity conditions for HR and 

mean IBI, (p ≤ .015). Post hoc tests between cycling and stepping were not 

significant for RMSSD, SDNN, pNN50, LF and HF. However, all other pairwise 

comparisons proved significance (p < .001); means were highest in the sitting 

condition, followed by standing, then stepping and cycling on third rank.  

For the MB2, HR parameters in the cycling and stepping conditions differed 

extremely from SUE data (see also Table 1). Still, main effects of activity were 

found for each parameter, but post hoc tests showed quite inconsistent patterns. For 

HR and IBI significant differences occurred between sitting and standing, sitting and 

stepping as well as cycling and stepping (p ≤ .002). Additionally, IBI data showed a 
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difference between standing and cycling (p = .034). For RMSSD, SDNN, LF, and 

HF, sitting and stepping as well as cycling and stepping did not vary significantly, 

but all other post hoc tests revealed statistically significant results (p ≤ .009). LF/HF 

mean values only differed significantly between standing and cycling as well as 

stepping (.009 ≤ p ≤ .013). Based on the low reliability of MB2 data, SUE data get 

more weight in drawing conclusions regarding our hypothesis H2.  

  Results of NASA-TLX as Manipulation Check 

Regarding the NASA-TLX, the raw task load index (RTLX) was analysed (Hart & 

Staveland, 1988) and confirmed our manipulation attempts (Table 4). The overall 

score showed that workload differed significantly between most conditions (p ≤ 

.002) except for standing and cycling as well as for cycling and stepping. Results of 

the subscale Physical demand showed that sitting was the least demanding and 

cycling the most demanding activity. The post hoc tests revealed significant 

differences between almost all activities (p < .001), except for sitting and standing as 

well as for cycling and stepping. The Mental demand subscale indicated that the 

conditions with higher workload were comparable between the different physical 

activity conditions, but differences between sitting and standing (p = .003) as well as 

sitting and stepping (p = .046) were significant. 

Table 4. Selected scores and ANOVA results for the NASA-TLX data.  

 Overall score Mental demand Physical demand 

 M SD M SD M SD 

sit 39.7 27.3 57.3 19.5 8.2 7.5 

stand 46.4 27.9 68.6 18.8 13.6 9.3 

cycle 53.7 23.0 65.2 22.6 52.9 19.9 

step 55.9 23.3 68.1 19.5 50.5 22.9 

       

ANOVA 

results 

F(1.99, 59.71) = 18.67, 

p < .001, ηp² = .384 

F(2.34, 70.22) = 4.93, 

p = .007, ηp² = .141 

F(2.00, 60.13) = 82.72, 

p < .001, ηp² = .734 

Note. N = 31, M = Mean, SD = Standard deviation. 

In order to compare the results of the NASA-TLX and the devices, ICCs were 

calculated between the mean IBI values of the different activity conditions with 

mental workload task and the overall score values. However, no significant 

correlation was found for SUE (ICC(119) = -.186, 95%-KI[-.702, .173]) and MB2 

(ICC(79) = -.135, 95%-KI[-.770, .272]). 
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  Discussion 

The present experimental study aimed at identifying increased mental workload in 

the course of different physical activities comparing a wearable device with a 

stationary device. Data of the two devices showed no correlation when participants 

moved. The low accuracy of wearable device data is contrary to findings from other 

studies (e.g., Stahl et al., 2016). Worth mentioning is that the real-time data 

assessment using the Microsoft SDK is only developed for reliable measurements 

when resting. However, even in the less active conditions reliability was not as high 

as in other studies (Barber et al., 2017). One possible explanation might be that the 

device has the function to manually switch to another activity mode when recording 

heart rate while, for instance, cycling. This was not used in the study, because it 

would not be realistic to regularly switch modes of the wearable device while 

working and standing up or starting to walk. Although it was not explicitly stated, 

other researchers might have used such switches in modes. Future devices 

automatically correcting HR recordings according to the physical activity might be 

of higher potential for identifying increased mental workload or even overload at 

work. 

Still, there was a tendency in MB2 data that a higher level of mental workload came 

along with smaller mean IBI values. Only in the sitting condition, the effect reached 

a medium size. Contrary to findings of Barber et al. (2017), detecting increased 

mental workload using the Microsoft Band 2 and HR parameters while sitting, did 

not work satisfyingly in the current study. For the SUE data, the effects of increased 

mental workload for all HR parameters was strong, but the hypothesised direction of 

the effect was only found for HR and IBI. Most of the other analysed HRV 

parameters behaved in the opposite direction. Higher mental workload resulted in 

higher SDNN, LF, and HF values. This opposite direction of the mental workload 

effect was also found and discussed by Schubert et al. (2009). One explanation is 

that naming numbers orally, as part of the arithmetic task, influences the HRV 

parameters too much, so that the mental workload effect detection is difficult when 

speaking. 

Results regarding the physical workload revealed more consistent effects; for all 

activities, a significant decrease in mean IBI durations was found when mental 

workload was increased. Additionally, both devices revealed significant effects for 

the activity; higher levels of physical workload led to lower levels in mean IBI 

durations. Still, the MB2 showed completely different results in the cycling 

condition which leads us to the conclusion that measurement is too much biased in 

order to draw any conclusions from the data. Overall, results are in line with 

previous findings on the effects of physical workload on heart rate variability (e.g., 

Sun et al., 2012). The potential of a wearable device for detecting higher physical 

activity on the basis of HR parameters, as also tested by Hwang and Lee (2017), was 

proven again.  

In line with findings of Matthews et al. (2015), NASA-TLX scores did not correlate 

with physiological data. The RTLX index score showed that mental demand was 

quite comparable for the different conditions with the arithmetic task. Only the 

sitting condition was somewhat less demanding. This can be partly explained by the 
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additional task to follow the beat while cycling and stepping. This could have 

additionally raised the mental demand. Additionally, arithmetic tests might have 

varied slightly regarding their difficulty. Future research might address this and use 

even more equally difficult tasks and/or another cognitive demanding task as well as 

other means for ensuring similar physical demand.  

Overall, the limited reliability of the used wearable device regarding HR measures in 

varying activity conditions reduces the potential of (comparable) wearable devices 

for a fine-grained monitoring of physical and mental effort. Thus, short-term 

adaptation of workload on the basis of comparable, easy-to-use devices that measure 

HR does not seem reasonable right now. Future research might concentrate on 

identifying rather long-term changes that indicate stress and/or develop algorithms 

that address the reduced reliability of wearable devices, especially when moving 

and/or considering more variables for identifying changes in workload (e.g., step 

count, galvanic skin response).  
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  Abstract 

Automatic document summarization (ADS) has been introduced as a viable solution 

for reducing the time and the effort needed to read the ever-increasing textual 

content that is disseminated. However, a successful universal ADS algorithm has not 

yet been developed. Also, despite progress in the field, many ADS techniques do not 

take into account the needs of different readers, providing a summary without 

internal consistency and the consequent need to re-read the original document. The 

present study was aimed at investigating the usefulness of using eye tracking for 

increasing the quality of ADS. The general idea was of that of finding ocular 

behavioural indicators that could be easily implemented in ADS algorithms. For 

instance, the time spent in re-reading a sentence might reflect the relative importance 

of that sentence, thus providing a hint for the selection of text contributing to the 

summary. We have tested this hypothesis by comparing metrics based on the 

analysis of eye movements of 30 readers with the highlights they made afterward. 

Results showed that the time spent reading a sentence was not significantly related 

to its subjective value, thus frustrating our attempt. Results also showed that the 

length of a sentence is an unavoidable confounding because longer sentences have 

both the highest probability of containing units of text judged as important, and 

receive more fixations and re-fixations. 

  Introduction 

Summarization is a strategy used to understand and store knowledge (Anderson & 

Armbruster, 2000). The goal of a summary is to produce a document shorter than the 

original by eliminating unnecessary information, allowing the readers to optimize 

their use of time and cognitive effort (Renkl & Atkinson, 2007) and to organize the 

text in a structure that facilitates comprehension (Leopold et al., 2013). The activity 

of rewriting text is the last phase in the process of summarization. Indeed, when an 

individual reads text to study it, s/he proceeds with a quick first reading, then 

determines the main contents and, finally, rewrites them into a new, shorter 

document (Flower & Hayes, 1980; Taylor & Beach, 1984; Wittrock & Alesandrini, 

1990). An essential value of a summary is that it reflects precisely what the reader 

wants to learn about a topic. On the other hand, it is evident that the activity of 

providing summaries requires time and cognitive effort, especially if the text is 
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lengthy. Such problems are made worse by the increasing amount of electronic 

information available online and the consequent need to manage it quickly (for a 

review see Eppler & Mengis, 2004). ADS represents a partial solution to this 

problem by allowing the creation of summaries in a few seconds, by selecting the 

essential contents of a text (Gupta & Lehal, 2010). 

Research in this field started with the interest in the production of abstracts for 

technical documentation (Saggion & Poibeau, 2013). Particularly, the first attempt to 

use ADS was in 1958, when Luhn proposed an algorithm that employs the 

frequency of a word to measure sentence relevance, leading to the first and most 

straightforward approach for creating a summary. Subsequently, more complex 

strategies have considered syntactic analysis of the text (Climenson et al., 1961), 

grammatical rules of discourse construction, and the semantic relationships among 

words and sentences (Mani & Maybury, 1999). In general, these approaches have 

used statistical techniques to extract one or more phrases to provide a summary 

(Paice, 1990) and are usually divided into two categories: abstractive and extractive 

methods (Hahn & Mani, 2000). Abstractive methods use linguistic approaches to 

identify the central concepts and produce a shorter text that may include new 

sentences, not stated in the original version (Erkan & Radev, 2004). Alternatively, 

extractive methods focus on statistical analysis of the text's features such as the 

unit’s location in the source text, how often it occurs, the appearance of cue phrases, 

and statistical significance metrics (Hahn & Mani, 2000). This class of techniques 

attributes a weight or a score to each different word and sentence and uses statistical 

analysis to integrate linguistic features (word/phrase frequency, location of cue 

words) into a shorter document (Kyoomarsi et al., 2008). The fundamental principle 

is that the most frequent or the better-positioned content in a sentence is considered 

the most important. Even if these approaches are easy to implement, several issues 

limit their efficiency. The main problem is that this approach avoids analysing the 

text`s meaning, providing a summary that may be incomplete or without internal 

coherence (Hahn & Mani, 2000). For example, if two successive sentences explain 

different aspects of the same concept, and if only one of them is extracted, a re-

analysis of the text might be required. It is worth noting that many studies have 

investigated this topic, but rarely have the human factors of summarization 

behaviour been examined (Xu et al., 2009). 

  Human Factors in summary evaluation 

Summary evaluations have been discussed since the late 1990s (Jones & Endres-

Niggemeyer, 1995; Mani et al., 2002). Automatic summary evaluation methods can 

be divided into “intrinsic” and “extrinsic” (Jones & Galliers 1996; Hahn & Mani, 

2000). Intrinsic evaluations methods are based on the characteristics of the summary 

and do not consider the final user. These assessments focus on the consistency 

between different parts of the text, on the correspondence between the weights 

assigned to original sentences and extracted sentences and on the information 

reported into the summary compared to that in the original version. Alternatively, in 

extrinsic evaluation methods, the final user is the centre of the evaluation process. 

This technique evaluates how much the summary responds to the user's needs, 

considering readability, relevance and efficiency of the review based on a query. 
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Both intrinsic and extrinsic techniques can be automated or manual. In automated 

approaches, the evaluation consists of a comparison of the summary with one or 

more reference summaries (Saggion & Poibeau, 2013). Automatic procedures are 

better suited to extractive methods, whereas evaluations of summaries generated 

with abstract methods can be made only with a manual approach due to the 

difficulty of interpreting the meanings of new sentences (Saggion & Poibeau, 2013). 

In manual procedures, a team of different users evaluates a summary considering 

various features, such as style, grammar, content, readability, etc. These types of 

evaluations are often required as benchmarks, even in automated evaluation 

methods, but they are vulnerable to user subjectivity.  

In summary, all ADS methods include the measurement of two fundamental 

properties: the Compression Ratio and the Retention Ratio. The first refers to the 

length of the summary relative to that of the original text, whereas the retention ratio 

indicates how much information from the original version has been retained in the 

summary (Mani & Maybury, 1999). Even though a significant amount of literature 

has been provided on this topic, the problem is still far from being solved. Thus, it is 

possible that a human-cantered perspective could help in addressing the issue. Our 

idea is to try to improve the quality of automatic summarization techniques by 

integrating a subjective behavioural indicator of importance into the extractive 

methods. Particularly, eye movements made during initial reading activity could 

reflect the reading strategy involved in detecting essential aspects of a text. 

  Eye behaviour in reading activity 

The relationship between eye movements and attention has been widely studied, and 

several approaches have been proposed to describe it. The Premotor Theory (e.g., 

Rizzolatti et al., 1987; Rizzolatti, Riggio, & Sheliga, 1994) for example, suggests 

that attention and eye movements rely on the same brain structures. Furthermore, the 

Eye-Mind hypothesis (Just & Carpenter, 1984) advises a strong correlation between 

gazes and cognitive processes. Other studies have found that attention and saccades 

depend on the same mechanisms involved in spatial attention and in saccade 

orientation (Shepherd et al., 1986; Kowler et al., 1995; Kowler, 1996). In line with 

these results, Hoffman and Subramaniam (1995) found that subjects have difficulty 

in moving their eyes to one location and attending to another, even when instructed 

to do so and, in contrast, that making a saccade to an area improves the detectability 

of information presented in that location. In this framework, eye movements could 

be used to detect reading behaviour indicators that could be used as weights to select 

the information that will be included into the summary. 

The availability of new eye-tracking technology allows us to gain a deep 

understanding of the eye movement behaviour during reading (Clifton et al., 2016; 

Radach & Kennedy, 2013; Rayner, 1975, 1978; Rayner & Pollatsek, 1987). Notably, 

several studies have reported the details of saccades, fixations, skipping and re-

fixations (Liversedge et al., 2011; O’Regan & Ltvy-Schoen, 1987; O'Regan et al., 

1984; Pynte, 1996; Pollatsek & Rayner, 1990; Reichle et al. 2003). For instance, 

there is a consensus on the variability of saccades (20-50 milliseconds) and fixation 

durations (200-500 milliseconds) due to the relation between oculomotor system 

behaviour and comprehension processing difficulties (Reichle et al. 2003). The most 
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important factors affecting fixation durations are word length, frequency, age of 

acquisition, predictability (how predictable a word is from the context of a sentence) 

and similarity with other words (Ehrlich & Rayner, 1981; O’Regan, Levy-Schoen, 

Pynte & Brugaillère, 1984; Balota et al., 1985; Inhoff & Rayner, 1986; Kliegl et al., 

2004; Hyönä , 2011; Rayner, 2009). Moreover, the duration of fixations may include 

the encoding of the antecedent word (“spillover effect”; Reichle et al., 2003), or the 

encoding of the successive word (“preview benefit”; Inhoff et al., 2000; Schroyens 

et al., 1999). About 10-15% of saccades are called “regressions” because the eyes 

move back to a part of a text that has been already inspected (see Rayner, 2009). 

These movements may be due to several factors such as: the correction of 

oculomotor errors (see Bicknell & Levy, 2011; O'Regan, 1990) for searching for the 

"optimal viewing position" (O'Regan, 1990; Brysbaert & Nazir, 2005), or difficulties 

in linguistic processing (Reichle et al., 2003). 

Although a large body of research has been conducted with eye tracking during 

reading, few studies have tried to use eye-movement related metrics in ADS. Xu et 

al. (2009) for example, assume that the amount of time that a reader spends on a 

word is related to its importance in the comprehension process of the entire text. 

Following this reasoning, they inserted the “duration of fixations” into automatic 

summarization software as a criterion to determine which sentences to include in the 

summary. Although their results showed some superiority over other automatic 

summarization software, some issues remain. One issue is the relationship between 

attention and fixation duration. Several studies have indicated that fixation time on a 

word does not necessarily reflect its importance or the depth of cognitive processing. 

Indeed, long fixation time might also reflect difficulty in processing both the word 

fixated and the information derived from words in parafoveal vision (Kennedy & 

Pynte, 2005; Kliegl et al., 2006). The lack of attention paid by Xu and co-workers to 

the variety cognitive processes potentially affecting fixation times has been 

criticized by Buscher et al. (2012) in a more recent survey. In their study, the authors 

investigated the relationships among the following variables: “coherently read text 

length”, considered as the length of text in characters that has been read consistently 

without skipping any text; the “thorough reading ratio”, computed as the amount of 

text that has been detected as having been read divided by the amount of reading or 

skimmed text; the “regression ratio”, i.e. the ratio between the number of regressions 

made on a single Area of Interest (AOI) divided by the total number of saccades 

received from that AOI, and the “mean forward saccade length”, calculated as the 

average length of progressive saccades. The authors found that “coherently read text 

length,” “thorough reading ratio” and “regression ratio” increased with perceived 

relevance of the text, but “mean forward saccade length” decreased with perceived 

relevance. These results suggest that essential sentences are the recipients of more 

accurate reading. Also, more important paragraphs and phrases are more frequently 

inspected by the reader. Finally, Buscher et al. (2012) found that fixation duration, 

as predicted in the literature, was not related to the importance of a sentence or 

paragraph. Despite the scientific contribution of this research, the results are not yet 

conclusive and satisfactory to produce more consistent automatic summarization 

algorithms. 
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  Study 

In the present study, we used eye tracking with the aim to improve the quality of 

ADS techniques. Thanks to the evolution in eye tracking technology and data 

analysis methods, we aimed to collect information during a reading task to be used 

to provide an index of importance attributed by the reader to a sentence. This 

measure could then be used to improve the quality of automatic summaries by 

tailoring the summary to the reader’s goals. Specifically, we suggested that the study 

of eye movements during a natural reading activity could allow identification of the 

reading strategy used to create a summary. As indicators, we have considered first 

fixation duration as the time spent on the first reading of a sentence and re-fixation 

duration as the time spent on the second reading of a sentence (explained in more 

detail in the method section). We used the highlights made on a printed version of 

the same text as a measure of the subjectively perceived importance (Nist & 

Hogrebe, 1987; Peterson, 1991). The research hypothesis was that the time spent in 

re-reading a sentence reflects the subjectively perceived importance (SPI) of that 

sentence. Along with this assumption, we expected that a sentence receiving longer 

re-fixations also should receive more highlights. To test this hypothesis, eye fixation 

behaviour recorded during a screen reading task was compared with the importance 

attributed to specific sentences by observers who underlined parts of its printed 

version (Nist & Hogrebe, 1987; Peterson, 1991). 

  Participants 

Thirty university students (25 females, mean age = 26.4; sd = 4.5) volunteered to 

participate. All had normal or corrected-to-normal vision. 

Materials and Method 

We used a magazine article for the study, with the aim to involve the participants in 

the reading activity. The text chosen is the official Italian translation of the article 

"Academy Fight Song" by Thomas Frank (available at the web address 

https://thebaffler.com/salvos/academy-fight-song). The text was divided into 41 

pages and presented as slideshow. Each sentence was attributed to an AOI for 

collecting the fixations with the Tobii Studio software, allowing counting the 

fixations for each AOI. For example, Figure 1 shows the editing of different AOIs in 

the Tobii Studio software (a) and the version read by the participants during the 

experimental session (b). 
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Figure 1. a) A specific Area of Interest was assigned to each sentence in the text; b) The 

version of the text read by the participants during the experimental session. 

First fixations (FF) were defined as the early exploration on the “n” AOI until the 

eyes moved on to the “n + 1” AOI. Then, each backward movement on the “n” AOI 

was considered a re-fixation (re-reading, RR; Figure 2). The total number and 

durations of FFs and RRs were weighted according to the length of the AOI, to 

avoid biasing the data by the number of characters present in the sentences. The X2-

30 eye tracker system (Tobii, Sweden) was used to record eye movements during the 

reading activity. 

 

Figure 2. First reading was considered until a backward movement happened from the “n + 

1” AOI to the “n” AOI. All successive fixations on the “n” AOI were considered as re-

reading. 

Procedure 

The experiment consisted of two phases: in the first, participants were asked to read 

a magazine article on a 17" screen while they were positioned at about 60 cm from 

a) 

b) 
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the display, and the text was displayed in a full-screen mode, to facilitate a 

comfortable reading. Before the experiment, a 9-point calibration was performed. 

Subjects were instructed in using the spacebar for moving to the next slide. The 

second phase of the experiment took place after a week, with the same subjects. The 

task consisted of reading the same version of the magazine article in a printed 

version. We asked them to highlight the most important concepts contained in the 

text with the objective of collecting an indicator of the subjective importance 

attributed to the sentences. In both phases, reading comprehension was assessed with 

a brief structured interview (i.e., "What problem is discussed in the article that you 

have just read?"; "Why are American students willing to apply for a loan to attend a 

college or a university?"). 

 

Figure 3. Scan path: saccades (segments) and fixations (spheres) recorded during the reading 

task. 

  Data analysis and results 

The data used for the analyses were the numbers and durations of fixations and re-

fixations directed to each sentence (AOI). The highlights collected on the printed 

version of the article were used as a subjective measure of perceived importance in 

the analyses. AOIs were classified into four categories (“very low,” “low,” “high,” 

“very high”), according to the sum of highlights received from all the subjects 

(quartiles were considered for classifying the sentences). 

Data analyses showed a high positive correlation between the number and the 

duration of fixation both when the subject read for the first time (r = .99) both in re-

reading (r = .97). Due to this high correlation, we have decided to further analyse 

only duration. The correlation between the number of highlights for each sentence 

and the re-reading time was significant but low (r = .21). Also, the correlation with 

the first reading time was found to be significant (r = .31). Moreover, a significant 

positive correlation was found between the highlights and the sentence’s length (r = 

.33). 

Due to this correlation, this variable has been included as a covariate in an 

ANCOVA design, where first reading time and re-reading time were used as 

dependent variables and the number of highlights (category) as a factor. The analysis 

resulted in the absence of the primary effect of both the variables, showing no 

difference in reading or reading time depending on the highlights marked on each 
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group of sentences [F3,205 = .45, p > .05]. Indeed, a positive relation was found for 

the covariate (Figure 4 and 5). 

 

Figure 4. First Reading time (in milliseconds) by highlighting (quartiles indicate highlighting 

increment and therefore the importance of the sentence); bars represent the 95% confidence 

interval. 

 

Figure 5. Re-Reading time (in milliseconds) by highlighting (quartiles indicate highlighting 

increment and therefore the importance of the sentence); bars represent the 95% confidence 

interval. 

Therefore, the sentence’s length was used as a dependent variable in a one-way 

ANOVA design, using the highlights as a factor. The analysis confirmed the 

significant relationship of this variable [F3,206 = 10.61, p < .0001; Figure 6). 
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Figure 6. Length of the sentence (in characters) by highlighting (quartiles indicate 

highlighting increment and therefore the importance of the sentence); bars represent the 95% 

confidence interval. 

  Discussion 

The objective of the present study was to improve ADS techniques by devising an 

indicator of the subjective importance of text based on the analysis of eye movement 

behaviour. Therefore, we compared eye movements and highlighting strategies to 

find a relation between a behavioural and an individual attribution of salience across 

the text. Indeed, each sentence has been considered as an AOI and the time spent on 

it was correlated with the number of highlights received. Highlights were considered 

an indicator of personal importance (Nist & Hogrebe, 1987; Peterson, 1991), as each 

reader was free to select the most critical concepts based on his or her previous 

knowledge and the reader`s objectives. At the same time, eye movement behaviour 

is deeply involved in cognitive aspects of reading activity (Liversedge et al., 2011; 

O’Regan & Ltvy-Schoen, 1987; O'Regan et al., 1984; Pollatsek & Rayner, 1990; 

Rayner et al., 1998; Reichle, 2003).  

The idea of integrating a behavioural indicator into an extractive summarization 

technique is due to the current problems with these classes of methods, since they 

are usually unable to provide a summary that can satisfy the reader's goals (Hahn & 

Mani, 2000). Indeed, these algorithms are easy to implement because they select 

sentences with higher scores, depending on some indicators such as word frequency 

or word location (Kyoomarsi et al., 2008). However, they do not analyse text 

meaning and often provide a summary with poor internal coherence because of the 

loss of crucial concepts (Hahn & Mani, 2000). Eye movement data could offer a 

subjective weight that can be used to tailor the summary according to the reader's 

goal, advancing the utility of the extractive methods of summarization. If this 

relation were confirmed, the applicative rate would be enormous. 

Summarizing a text is a common strategy to study and store information (Anderson 

& Armbruster, 2000), and automatic summarization is used to reduce time and 

cognitive efforts needed to produce a summary (Renkl & Atkinson, 2007). This is 

even more important considering the enormous amount of information available 

online and the need to manage it quickly (Eppler & Mengis, 2004). 
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The primary hypothesis of our study was that the duration of the regressions made 

during reading reflects the subjectively perceived importance to the reader. More 

specifically, we hypothesized that higher re-reading times should correspond with 

more highlighted sentences, whereas lower re-reading times should be associated 

with sentences that received fewer highlights. 

The results obtained did not confirm our initial hypothesis. The correlation matrix 

showed a very high correlation between time and number of fixation (both in FR and 

in RR), so we decided to use the average time of fixation as dependent variable for 

the analyses. Only a weak correlation was found between RR and highlights. At the 

same time, the relation between FR measures and the highlights was also low. 

However, a significant correlation was found between the length of sentences and 

the number of highlights. It is worth noting that the number of characters in each 

phrase was balanced, as the FR and RR on each AOI were divided by the number of 

characters contained in that AOI. FR and RR were used as dependent variables in an 

ANCOVA design, using the proportion of highlights (Very Low, Low, High and 

Very High categories) as a factor and the sentence`s length as a covariate. The main 

effects were nonsignificant, and no interaction effect was found, suggesting that the 

time spent on reading or rereading the text was not related to the highlighting 

strategy. Indeed, a significant effect of the covariate was found in both analyses, 

confirming the relationship between the sentence's length and the eye movement 

behaviour.  

Although the results of this study are far from being conclusive, they seem to 

disconfirm the hypothesis that the time spent on a sentence reflects its relative 

importance. This effect was found by Buscher et al. (2012), for example. In their 

study, the authors noted that essential contents induce more precise eye movements 

and a higher probability of re-fixation, while contents perceived as not relevant are 

more related to "skimming" behaviour; that is, a higher likelihood of scanning the 

text very quickly, skipping many words and without re-fixation. The difference 

between our results and those from Buscher and colleagues (2012) could be due to 

several factors as, for instance, the text's language. Italian and English writing styles 

have different linguistic structures, and one of the main aspects is the sentence`s 

length, usually shorter in the English language. Moreover, in our study participants 

did not have to provide a summary of the text, but only to perform a verbal 

assessment of text comprehension. It is possible that the goal of the task determined 

a lower level of effort in the second task, and that the subjects gave more importance 

only to the more extended sentences. 

  Limitation and further research 

The study has some limitations, including the assumption that eye movement 

regressions and re-reading time reflects the importance given to a sentence. Indeed, 

re-reading should also reveal the reader's difficulties in understanding a sentence 

(Rayner et al., 2006). This hypothesis was not explored in the present study but, 

considering our results, needs to be addressed in further research on this topic.  

An issue lies in the instrumentation used to detect eye movements; i.e., a low-cost 

eye-tracker (sampling rate of 30Hz) that might have led to some errors in measuring 
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the eye movement behaviour during reading. It is possible that some fixations and 

saccades were not detected, or they had been assigned to an incorrect AOI. Of 

course, a higher sampling rate would make easier to collect these kinds of data 

(Holmqvist et al., 2011), but we observed that our effort for improving ADS 

techniques by making use of eye-tracking measures is one of the first studies of its 

kind in this area. Another limitation could be attributed to the experimental design, 

in which several factors might have altered ocular behaviour. The absence of pauses 

during the task can be considered a problem, as the subjects reported being tired at 

the end of the recording session (that lasted from 30 to 40 minutes). Indeed, we had 

chosen not to allow pauses during the reading activity to avoid the need to re-

calibrate the eye tracker. That limitation might have led to a loss in ecological 

validity. Regarding the data analysis, even though we had tried to weigh and 

normalize the collected measures, some features that may change the subjective 

reading behaviour have not been considered. We did not control the word frequency 

and the word predictability, for example. We were aware that these variables are 

considered significant in studies that focus on eye movements and reading. 

However, we should emphasize that our intent was not to study reading activity 

itself but to analyse the relationship between ocular behaviour during reading and a 

subsequent highlighting strategy during the study of a document. For this objective, 

we thought that the best way to investigate this relationship was to use a natural text, 

accepting loss of control of its structure. This choice was considered trivial to 

maintain the ecological validity of the study and to enable application of our results 

to future research and developing ADS technology.  

Overall, additional research is required to better understand the relationship between 

re-reading times and perceived importance of text segments. Future experimental 

designs should include some modifications to reduce the impact of the described 

limitations. For example, splitting the reading task into shorter sessions and 

presenting the subjects with different types of documents, could help to control 

effects due to fatigue and document type. Additionally, all the features that influence 

reading times should be limited or controlled. 
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  Abstract 

Forecasting loss events before they occur is the biggest challenge facing safety 

science. Typically, improving safety has been underpinned by retrospective accident 

analysis. While this approach has been valuable, many domains have reached a 

safety plateau where incident rates are not decreasing as they once were (indeed 

some are increasing). A proactive strategy for monitoring system performance with 

the aim of predicting adverse events provides a means to redress this. This article 

describes the first step in the development of a new accident prediction method, 

which included a review and evaluation of ergonomics methods for their ability to 

be used in a predictive manner. Six systems ergonomics methods were evaluated for 

the extent to which they could identify a series of core accident causation tenets 

derived from integrating contemporary accident causation models. The findings 

suggest that Cognitive Work Analysis and Event Analysis of Systemic Teamwork 

are the most suited for development into a formal accident prediction methodology. 

Implications for practice and future research steps are discussed. 

Introduction 

Safety traditionally relies on the experience of adverse events, where retrospective 

analysis is used to learn from the past and prevent future accidents. While this is a 

valued method for enhancing safety, many domains employing such analysis are 

finding themselves in a safety plateau, where incident rates are not decreasing as 

they once were (Dekker & Pizer, 2016; Salmon et al., 2017; Walker et al., 2017). A 

proactive approach to system safety is the next logical step. Previous analysis of the 

most widely used systems thinking based accident models has shown that there may 

be value in integrating their principle tenets of accident causation. Further, the 

identified tenets may support the development of a new structured approach to 

accident prediction (Grant et al., 2018). Grant et al. (2018) identified fifteen core 

systems thinking tenets, which describe the system properties underpinning 

accidents. The study concluded that the tenets could be combined with an 

appropriate systems analysis methodology to provide a framework for accident 

prediction.  
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In line with the contemporary knowledge on accident causation, any prediction 

method should be underpinned by systems thinking. This requires that methods 

account for the complexity of systems and analyse the interactions between the 

social and technical domains, while not reducing the system to its constituent parts 

(Underwood & Waterson, 2014, Salmon et al., 2012). Various candidate systems 

analysis methods are available (Salmon et al., 2011; 2017), including accident 

analysis methods such as AcciMap (Rasmussen, 1997), Functional Resonance 

Analysis Method (FRAM; Hollnagel 2012), and the Systems Theoretic Accident 

Model and Processes (STAMP; Leveson, 2004) and systems analysis and design 

methods such as the Event Analysis of Systemic Teamwork (EAST; Stanton et al., 

2008), Cognitive Work Analysis (CWA; Vicente, 1999) and Hierarchical Task 

Analysis (Stanton, 2006). All methods, accept for AcciMap, have been applied in 

some form of predictive context. Risk assessment investigations have been applied 

using EAST (Stanton et al., 2017); STAMP (STPA; Leveson et al., 2015); FRAM 

(Jensen and Avin, 2015) and HTA (NET HARMS; Dallat et al., 2017). CWA, has 

previously been applied predictively in a transportation context (Salmon et al., 

2014). The aim of this paper is to communicate the findings of a method assessment 

to determine, which of the above methods would be most suited to prediction. To 

assess each methods utility for accident prediction a pre-defined criterion was 

developed based on Stanton et al. (2013) criteria for assessing Human Factors 

methods. Second the methods were evaluated for their capacity to identify fifteen 

systems thinking tenets.  

  Systems thinking tenets 

The systems thinking tenets were identified as part of a wider program of research 

pursuing a predictive ergonomics method for accidents in complex sociotechnical 

systems. As part of a literature review of the most cited systems based accident 

analysis methods it became apparent that many accident causation models exist with 

wide-ranging contributions to safety (Grant et al., 2018). The review identified 

fifteen common accident tenets that represent the shared principles of accident 

causation. However, an outcome of this analysis identified the tenets were also ‘key 

values’ of system safety with the capacity to reveal a dichotomy between safe and 

unsafe systems (see Table 1). That is, the tenets can apply to both safe and unsafe 

operations of a system at any one time. This is important as a proactive approach to 

safety requires both the diagnosis of unsafe conditions and a return to safe operation.  

The tenets themselves are not a method for prediction. To fully measure their 

potential a suitable ergonomics method that can be used in conjunction with the 

tenets is required. The aim of this paper is to communicate the findings an 

assessment to determine which method is best suited to this task. 

Table 1. Systems Thinking Tenets (Grant et al., 2018) 

 Definition Safe  Unsafe  

Vertical Integration Interaction between levels 

in the system hierarchy 

Decisions and actions at the 

higher levels filter down to 

lower levels and impact 

behavior.  

Information regarding the 

status of the system filters 

Decisions and actions do not 

filter through the system and 

impact behavior on the front 

line. Information on the 

current status of the system 

is not used when making 
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back up the hierarchy and 

influences higher level 

decisions and actions 

process decisions 

 

Constraints Influences that limit the 

behaviours available to 

components within a 

system. 

Specific constraints 

introduced to control 

hazardous processes 

Restricts appropriate 

performance variability 

 

Functional 

dependencies 

The necessary relationships 

between components in a 

system.  

Relationships between 

functions are expected and 

sustained  

Dependencies that are not 

wanted or expected  

 

Emergence An outcome or property 

that is a result of the 

interactions between 

components in the system 

that cannot be fully 

explained by examining the 

components alone. 

Emergent behaviours that 

support the goals of the 

system 

 

Behaviours that undermine 

the goals of the system 

 

Normal 

performance 

The way that activities are 

actually performed within a 

system, regardless of 

formal rules and 

procedures 

Behaviour is flexible enough 

to cope with adverse 

conditions  

 

Behaviours cannot cope 

with the unfolding situation  

 

Coupling An interaction between 

components that influences 

their behaviour; both tight 

and loose interactions 

Tight: connections between 

components are evident 

 

Loose: recovery from 

disturbances in the system is 

possible  

Tight: Cascading failures 

when one component breaks 

down  

 

Loose: Loss of control 

regulating behaviours. Too 

much independence. 

Duplication of functions 

leading to inefficiencies.   

Non-Linear 

interactions 

Interactions are complex 

relationships between 

components where the 

outcome is not predictable 

Allows for adaptations in the 

system.  

Inconsequential events have 

large effects, cannot predict 

the effect of changes 

Linear interactions Direct cause effect 

relationships between 

components where the 

outcome is predictable. 

Predicable and dependent  

 

Interactions are predefined 

and fixed with no 

allowances for adaptations 

 

Modularity The organisation of a 

system where sub systems 

and components interact 

but are designed and 

operate largely 

independently of each 

other. 

The system is resilient to 

breakdowns, replacement or 

substitutions of components 

and organisation of sub 

systems can be easily made 

The system is tightly 

integrated and complex, 

substitutions cannot be 

made 

Feedback Loops Communication structure 

and information flow to 

evaluate control 

requirements of hazardous 

processes 

Feedback is received on 

system breakdowns allowing 

control of hazards  

Communication structures 

are not in place to provide 

or receive system feedback.  

 

Decrementalism Small changes in normal 

performance that gradually 

result in large changes. 

Complex systems need to 

adapt, small adaptations are 

required to maintain 

optimisation 

Constant small 

organisational changes 

create conflicts and pressure 

 

Sensitive 

dependence on 

initial conditions 

Characteristics of the 

original state of the system 

that are amplified 

throughout and alters the 

way the system operates 

(interconnected webs of 

relationships). 

Mechanisms for monitoring 

changes are available 

 

No understanding of initial 

conditions and their 

influence on the system 

Unruly 

technologies 

Unforeseen behaviours or 

consequences of 

technologies.  

Technology that supports 

adaptation through a 

mechanism that is beyond the 

Technology that introduces 

and sustains uncertainties 

about how and when things 
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scope of what is was designed 

for affording flexibility. 

may fail 

Performance 

variability 

Systems and components 

change performance and 

behaviour to meet the 

conditions in the world and 

environment in which the 

system must operate. 

Performance varies to meet 

the needs of changing 

conditions 

Performance does not 

change when conditions 

change 

Contribution of the 

protective  

structure 

The organised structure 

and system control that are 

intended to optimise the 

system, instead they do the 

opposite. 

Protective structures are 

effective, flexible and 

adaptable in maintaining 

controls 

 

Protective structure inhibits 

performance variability. 

Introduces new tasks that do 

not contribute to the goal. 

Unnecessary controls 

 

  Selected methods for review 

A review of the literature identified six candidate methodologies selected on the 

basis that they were systems ergonomic methods that had previously been applied to 

examine accident causation or system properties. The methods identified from this 

process were; AcciMap (Rasmussen, 1997), the Functional Resonance Analysis 

Method (Hollnagel, 2012), Systems Theoretic Accident Model and Processes 

(STAMP; Leveson, 2004), Hierarchical Task Analysis (Stanton, 2006), Cognitive 

Work Analysis (CWA; Vicente, 1999) and the Event Analysis of Systemic 

Teamwork (EAST; Stanton et al., 2008). A brief overview of each method is 

presented below. 

  AcciMap 

The AcciMap method was developed as a technique for depicting the causal web 

underlying accidents in line with Rasmussen’s risk management framework. 

Rasmussen’s (1997) model represents complex sociotechnical systems as a 

hierarchy, accounting for the dynamic context in which systems operate, which is 

characterised by rapid change, high dependence on information and communication 

technologies and often volatile economic and political landscapes (Vicente & 

Christoffersen, 2006). To complete an AcciMap the analyst identifies contributory 

factors and relationships between them and places these onto the hierarchy. Links 

are then made between the nodes at various levels creating a descriptive diagram of 

the system. AcciMap is primarily used as an accident analysis method to describe 

how dynamic sociotechnical systems are subject to a fast pace of change, and how 

accidents occur because actors within the system adapt to change in unpredictable 

ways. 

  FRAM 

Functional Resonance Analysis Method explains a system in terms of the mutually 

coupled or dependant functions relative to the whole system focusing on what a 

system does rather than what it is (Hollnagel, 2012). The system is described by the 

functions required to complete its tasks and possible variability that may occur in 

those functions (Lundberg et al., 2009).  A FRAM analysis begins by identifying 

system functions using six basic characteristics (or aspects) these being; input, 

output, precondition, resource, control, and time (Hollnagel, 2012).  Various 
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functions are linked by these characteristics to show how different functions are 

coupled. Functional resonance is the detectable signal when a variable combination 

of system functions causes one functions’ variance to be unusually high and is 

explained as the ‘unintended interaction of normal variability’ (Hollnagel, 2012). To 

complete a FRAM analysis the analyst will describe all the functions the system 

requires (inputs and outputs) for success and how work in that system is done (as 

opposed to how it is imagined). It will then ‘model’ the expected or potential 

variance in the system using possible scenarios. 

  STAMP 

Leveson’s (2004) model of system behaviour, System Theoretic Accident Model 

and Processes (STAMP) uses functional abstraction to model the structure of a 

system and describe the interrelated functions. In comparison to other accident 

analysis methods STAMP’s aim is to identify control and feedback loops and where 

they failed. To do this STAMP utilises a hierarchical control structure, which is a 

model explaining the regulation of a sociotechnical system. A taxonomy of control 

failures is found both in STAMP and STPA (Leveson, 2015) which is a hazard 

analysis technique based on STAMP. This taxonomy includes: inadequate control 

actions, inadequate execution of control actions and missing or inadequate feedback 

(Leveson, 2004; 2015, Salmon et al., 2012). The control structure is divided into two 

models, one for system development and one for operations. STAMP employs the 

use of constraints to maintain safe operation in systems. 

  HTA 

Hierarchical Task Analysis (HTA) is used to describe the system under analysis in 

terms of goals, operations, and plans. HTA has a long history within Human Factors 

and ergonomics and was developed in the late 1960’s to analyse complex non-

repetitive tasks (Annett & Duncan, 1967). HTA is used to decompose goals and sub-

goals to reveal the operations required to achieve them.  It does this by focussing on 

observed behaviour to describe task goals and sub goals in a hierarchical form. In an 

HTA a goal is broken down to its component parts to show the top-level goal of the 

system and is then accompanied by a description of the necessary task step in a 

hierarchy. A novel application of HTA and its associated task network, is NET-

HARMS which has revealed positive results as a risk assessment method (Dallat et 

al., 2017).   

  CWA 

Cognitive Work Analysis is a method used to support the analysis, development and 

evaluation of sociotechnical systems (Jenkins et al., 2009). It was originally 

developed by Rasmussen et al. (1994) in response to the need for designers to 

consider non-routine situations when designing process control rooms. It is a 

composite of five phases designed to consider types of constraints on a system. The 

phases are used to model possibilities for the different types of behaviours available 

rather than how a behaviour may actually be done (Read et al., 2015a). CWA is an 

optimising tool, often used in design contexts because of this (Read et al., 2015b). 

CWA has undergone development as others in the field have further contributed to 
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its application most notably Vincente (1999) and Naikar et al. (2005). CWA has 

been used in multiple domains including but not limited to, command and control, 

interface design, transportation safety, pedestrian safety and health care.    

  EAST 

The Event Analysis of Systemic Teamwork (EAST; Stanton et al., 2008; Walker et 

al., 2010) provides an integrated suite of methods for analysing the performance of 

human-technical systems.  It is underpinned by a ‘networks of networks’ approach 

in which three interlinked network-based representations are used to describe and 

analyse activity. The networks represent the tasks, social organisation and 

information the system requires to operate successfully.  Task networks are used to 

describe the goals and subsequent tasks being performed within a system. Social 

networks are used to analyse the organisation of the system and the communications 

taking place. Information networks show how information and knowledge is 

distributed across different agents within the system. An important contribution of 

EAST is its integration of both human and non-human agents into the three 

networks.  Task, social and information networks are finally combined revealing the 

complexity of the system under analysis and demonstrating a deeper understanding 

of behaviour in human-technical systems. 

  Method 

To assess the methods the authors first applied a pre-defined checklist to the systems 

ergonomics methodologies under review and second identified what tenets could be 

identified as an output or result analysis of each method. The pre-defined criteria 

based on Stanton et al.’s (2013) procedure determined the qualities of each method. 

While the criteria did not directly assess qualities for prediction, it was an overview 

of affordances that assisted in selecting the most appropriate method. A description 

of the criteria can be found in Table 2.  To assess the extent that methods could 

identify the tenets, the authors independently evaluated the application stages of 

each method using the descriptive tenet definitions found in Table 1. Separately the 

authors applied these definitions to evaluate if a tenet could be identified as an 

output or result of analysis for each method.  If it was believed a tenet could be 

identified a further evaluation of “explicit” or “implicit” was recorded. If rated 

explicitly this referred to a clear and obvious identification of the tenet as an output 

of the method, if rated as implicit the tenet could not be directly associated as an 

analysis output, but may be present and could not be fully excluded. 

Once the authors had independently reviewed the predefined criteria and tenet 

identification for each method under review the results were compared and 

discussion of any discrepancy was undertaken. If consensus was not met a decision 

was based on a majority rule. Once the assessments had been completed the methods 

where then weighted based on their scores from the pre-defined checklist and the 

number of tenets they could identify (including the degree that they could do so.) 
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Table 2. Description of assessment criteria based on Stanton et al. (2013) 

Criteria  Description of the criteria assessed  

Application  A general description of the method’s application and uses. The 

criteria provide a contextual background.  

Safety related published 

applications (August 2017 

Google Scholar) 

A count of the safety publications using the method. This criterion 

provides a useful measure to evaluate the past associations within 

safety contexts.  

Used Predictively Examples of previous predictive uses of the method. This 
criterion provides useful insight into predictive qualities of the 

method. 

Tailorable An assessment of the flexibility of the method to be used in 
different ways. This criterion is useful to indicate if a method can 

be altered for the purposes of prediction.  

Approximate training and 

application times 

An assessment of the complexity of the method to use learn and 

apply. This is included to assess the ease of use for future 
applications of the method in practice.  

Related methods This criterion shows similarities between methods, and 

underpinning methods which are related and/or integrated into its 
application. 

Reliability and validity 

(has reliability and/or validity 

been tested and if so with what 
result) 

Has the method undergone reliability and validity testing? This 

criterion is useful to assess if the method has proved reliable and 

effective for its purpose.   

Tools needed 

 
 

What tools are required to perform the analysis?  This criterion is 

useful to understand the necessary requirements to complete an 
analysis.  

Systems thinking tenets 

identified overall 

A list tenet available as an output of the method (either explicit or 

implicit).  This criterion shows if a method can identify the 

systems thinking tenets which informs how capable the method 
could be when used with the tenets and its potential for future 

uses.   
 

  Results 

The results of the criteria and tenet identification are presented in Table 3. The top 

six rows of the table explain the method criteria assessment. The bottom row 

indicates in bold the tenets that were explicitly identified and tenets in plain text are 

implicitly identified for each method. 

The findings suggest that AcciMap, CWA and EAST are the most suited to accident 

prediction; the criteria evaluation were sound and the methods were deemed to be 

capable of identifying fourteen (14) of the fifteen (15) systems thinking tenets.  The 

main differences between the three methods arose from the criteria results, which 

identified that AcciMap had low reliability and validity scores (Branford et al. 2011; 

Waterson et al. 2017). However, it must also be noted that both CWA and EAST 

have not undergone full reliability validity testing. AcciMap was notably easier to 

learn and apply that other methods.  While CWA and EAST shared the 

disadvantages of high complexity and application times they both had been 

previously applied predictively (see Salmon et al., 2014; Stanton et al., 2017).  
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The remaining methods FRAM, STAMP and HTA did not perform as well. FRAM 

and STAMP were deemed capable of identifying thirteen (13) and twelve (12) tenets 

respectively and HTA nine (9).   It was noted in the criteria evaluation that FRAM 

and STAMP had not undergone formal reliability and validity testing and were 

complex with high application times. However, STAMP has been used predictively 

via the STPA method (see Leveson 2015). HTA scored the lowest on paper, 

however it should be noted that it is arguably the most flexible method and can be 

used with other of techniques such as human error identification (see Baber and 

Stanton 1996). While HTA has not been used predictively the SHERPA method has, 

which uses HTA as a stage of analysis (Embrey 1986). NET-HARMs a new risk 

assessment method is underpinned by HTA’s task network. HTA is easy to learn, 

however it does have high application times. While HTA has not undergone formal 

reliability and validity on its own, Human Error Identification techniques have, 

which are underpinned by HTA (Stanton & Stevenage 1998).  

Table 3. Results of method criteria and assessment of systems thinking tenets 

 AcciMap FRAM STAMP HTA CWA EAST 

Application Accident 

causation 

method 

Generic used in 

multiple 

domains. 

It is a graphical 

representation 

of factors and 

their causal 

relationships to 

the occurrence 

of an accident 

represented 

across multiple 

levels of a 

system.  

Accident 

causation 

method 

Generic and can 

be applied to 

complex 

systems. The 

aim of FRAM 

is to identify 

potential 

variability 

within the 

functions of a 

system. 

This is 

represented by 

combinations of 

relationships 

between causal 

factors.    

Accident 

causation 

method 

Generic and can 

be applied to 

complex 

systems. A 

graphical 

representation 

of a systems 

structure 

showing 

multiple levels 

and how they 

interact. 

Controls are 

enforced to 

prevent unsafe 

behaviours.  

Task Analysis 

method 

Generic 

method. 

Describes 

activity under 

analysis in 

terms of 

hierarchy of 

goals sub-goals, 

operations and 

plans. 

Cognitive task 

analysis 

method. 

Generic 

Method. 

Models 

complex socio 

technical 

systems. 

Functional 

properties, 

nature of 

activities It is 

used to describe 

constraints in a 

domain. 

Descriptive 

Method  

Integrates 

several 

methods. Its 

aim is to 

adequately 

describe all the 

degrees of 

freedom 

inherent in 

complex socio 

technical 

systems  

Safety related 

published 

applications 

(May 2016) 

(Google 

Scholar) 

54 20 26 20 42 14 

Used 

Predictively 

No Yes (Jenson & 

Aven 2017) 

Yes (Leveson et 

al. 2015) 

Yes (SHERPA; 

Embrey 1986) 

Yes (Salmon et 

al. 2014) 

Yes (Stanton & 

Harvey 2017) 

Tailorable Yes 

 

No 

   

Yes  

 

Yes Yes Yes 

Approximate 

training and 

application 

times 

Low training 

time however 

considerable 

application time  

It is proposed 

that FRAM is 

easy to learn 

however the 

analyst is 

required to have 

in-depth 

knowledge of 

the system 

under 

investigation (it 

is plausible that 

training and 

application 

times would be 

higher).   

Low training 

time however 

considerable 

application time 

Low training 

times but 

application 

times may be 

high depending 

on the system 

under analysis 

Method is 

complex. 

Training times 

are high. High 

application 

times 

Moderate 

training the 

method is 

complex and 

requires a 

lengthy 

application 

time.   
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Related 

methods 

Actor map 

Rasmussen risk 

management 

framework 

  Used as the first 

step in many 

other HF 

methods (HEI, 

HRA and 

mental 

workload 

assessment). 

Best used 

alongside other 

methods. 

Abstraction 

hierarchy, 

decision ladder, 

Contextual 

activity 

template, 

Strategies 

Analysis 

Diagram, 

information 

flow maps, 

SRK 

framework, 

Cognitive Work 

Analysis 

Design Toolkint 

(Read et al. 

2016) 

HTA, task 

networks, social 

network 

analysis, 

situation 

awareness 

networks 

Reliability and 

validity 

(has reliability 

and/or validity 

been tested 

and if so with 

what result) 

Yes  

(Waterson et 

al., 2017; 

Branford, 2011) 

No Yes 

(Underwood et 

al., 2016) 

Yes (Stanton & 

Young, 1999) 

No  No 

Tools needed 

 

 

 

Pen and paper. 

Software 

drawing 

packages are 

required to 

produce outputs 

Pen & paper 

Software tool is 

available to 

draw visual 

output   

Pen & paper 

Software 

drawing 

packages are 

required to 

produce outputs 

 

 

Pen & paper  

 

HTA software 

tool 

Pen and paper. 

Video and 

audio recording 

equipment. 

Software 

drawing 

packages are 

required to 

produce outputs 

Pen and Paper. 

Software 

drawing 

packages and 

applications to 

draw visual 

output   

Systems 

thinking tenets 

identified by 

method  

Bold = 

explicitly 

identified 

Normal text = 

implicitly 

identified  

 

vertical 

integration, 

functional 

dependencies, 

emergence, 

normal 

performance 

non-linear and 

linear 

interactions, 

modularity, 

decrementalis

m and unruly 

technologies, 

constraints, 

coupling, and 

sensitive 

dependence on 

initial 

conditions, 

performance 

variability and 

contribution of 

the protective 

structure 

constraints, 

functional 

dependencies, 

emergence, 

normal 

performance, 

coupling, non-

linear and 

linear 

interactions, 

modularity, 

feedback 

loops, 

decrementalis

m, unruly 

technologies 

and 

performance 

variability, 

sensitive 

dependence on 

initial 

conditions 

vertical 

integration, 

constraints, 

functional 

dependencies, 

linear 

interactions 

and feedback 

loops, 

emergence, 

modularity, 

unruly 

technologies, 

performance 

variability, 

coupling, non-

linear 

interactions and 

contribution of 

the protective 

structure 

normal 

performance, 

linear 

interactions 

and feedback 

loops, vertical 

integration, 

constraints, 

coupling, non-

linear 

interactions and 

contribution of 

the protective 

structure 

constraints, 

functional 

dependence, 

emergence, 

normal 

performance, 

performance 

variability, 

contribution of 

the protective 

structure, non-

linear 

interactions 

and linear 

interactions 

vertical 

integration, 

coupling, 

sensitive 

dependence on 

initial 

conditions, 

unruly 

technologies, 

modularity and 

feedback loops 

vertical 

integration, 

functional 

dependence, 

emergence, 

normal 

performance, 

decrementalis

m, unruly 

technologies, 

and feedback 

loops 

performance 

variability, 

contribution of 

the protective 

structure, non-

linear 

interactions, 

linear 

interactions 

constraints, 

coupling and 

modularity 

 

  Discussion 

This methods review aimed to determine which of a series of systems ergonomics 

methods best met the criteria to be used in a predictive capacity. The results show 

that AcciMap, CWA and EAST appear to be the most appropriate for use in 
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conjunction with the tenets to predict accidents in complex sociotechnical systems. 

Of the remaining methods FRAM and STAMP performed well, however both were 

shown to be overly complex methods and they failed to identify as many systems 

thinking tenets as other methods.  HTA appears to be the least favourable on paper, 

however it is the most flexible, has been used predictively and is easy to learn. 

FRAM, STAMP and HTA were excluded due to their respective scores.  

The suitability of AcciMap as predictive method is questionable as it has not been 

applied predictively and the method itself relies on retrospective information. Its 

main emphasis is the analysis of systems that have already been subject to incidents. 

AcciMap does have a high publication record, attesting to its value as an accident 

analysis method. CWA and EAST differ in comparison as they represent an analysis 

of systems as they are (and as they are intended to be) and both have been applied 

predictively. While CWA has been applied extensively in the literature, its safety 

related publications were relatively low in comparison. This also applied to the 

EAST method.  While this could be interpreted as unfavourable, it provides an 

opportunity for their possible extension into safety contexts and future predictive 

applications. For this reason, CWA and EAST are the most likely candidate systems 

ergonomic methods that may be applied in a predictive context.  

A general evaluation of the tenets indicates they are well represented across the six 

methods, however there may also be room to improve methods that do not identify 

all tenets as analysis outputs. For example, Sensitive dependence on initial 

conditions and Decrementalism were the least identified tenets in this review. This 

may mean that the systems ergonomic methods are better at identifying some tenets 

over others. Considering that the tenets are important to understanding (and possibly 

predicting) safety performance, an opportunity exists to extend ergonomic methods 

and improve toolkits where they may be deficient.  

  Limitations  

The most functional means to assess each of the selected methods for their 

suitability in a predictive context would have been a practical test of each one. 

However, given the time limitations of the research this was not available. To 

overcome this the authors have endeavoured to be as thorough as possible in the 

method criteria assessment as outlined in the method section of this paper. 

  Research agenda 

It is the authors’ belief that both methods require further analysis to determine which 

performs best in a safety related context specifically their execution of the systems 

thinking tenets. Therefore, the next phase will test both CWA and EAST on a safe 

and unsafe scenario and further test their ability to use the systems thinking tenets as 

a diagnostic tool.   

  Conclusions 

An essential next step to move beyond the safety plateau experienced by many 

safety critical domains is to predict accidents before they occur. While several 
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systems ergonomics methods have been applied predictively, there is yet no 

structured approach to accident prediction. This paper presented the findings of a 

method assessment of six systems ergonomics methods to determine the most 

appropriate to be used in a predictive context using a method criteria assessment and 

application of a set of tenets believed to be key properties of both safe and unsafe 

systems states. The following methods were assessed; AcciMap (Rasmussen, 1997), 

Functional Resonance Analysis Method (FRAM; Hollnagel, 2012), Systems 

Theoretic Accident Model and Processes (STAMP; Leveson, 2004), Event Analysis 

of Systemic Teamwork (EAST; Stanton et al., 2008), Cognitive Work Analysis 

(CWA; Vicente, 1999) and Hierarchical Task Analysis (Stanton, 2006). Results 

show that CWA and EAST are equally favourable; both achieved sound results in 

the method criteria and showed a high capability to identify the systems thinking 

tenets. Further testing is needed and will require an application of the methods to 

existing accidents in both safe and unsafe states. This will test whether CWA or 

EAST is more efficient at identifying the systems thinking tenets and ultimately the 

most suitable for prediction. 
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