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A non-additive path-based reward credit scheme for traffic
congestion management PDF

Joanna Ji, Qin Zhang, Ana Tsui Moreno
and Rolf Moeckel

The impact of social networks and coordinated destination
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Whose preferences matter more? Handling unbalanced
panel data for choice modelling PDF

Christina Iliopoulou, Michail Makridis
and Anastasios Kouvelas Resilience-Oriented Design for Public Transport Networks PDF
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Lodi and Louis-Martin Rousseau problem with recourse PDF

Inneke Van Hoeck and Pieter
Vansteenwegen

A heuristic approach to improve the robustness of a railway
timetable in a bottleneck area PDF

Niousha Bagheri Khoulenjani, Milad
Ghasri and Michael Barlow

Post-hoc explanation methods for deep neural networks in
choice analysis PDF

Vishal Mahajan, Guido Cantelmo and
Constantinos Antoniou

An open-source framework for the robust calibration of
large-scale traffic simulation models PDF

Benoit Matet, Etienne Côme, Angelo
Furno, Sebastian Hörl and Latifa
Oukhellou

Use of Origin-Destination data for calibration and
spatialization of synthetic travel demand PDF

Federico Bigi, Nicola Schwemmle and
Francesco Viti

Evaluating the impact of Free Public Transport using agent-
based modeling: the case-study of Luxembourg PDF

Gülin Göksu Başaran, Jesper Bláfoss
Ingvardson and Otto Anker Nielsen

Influence of station characteristics, urban surroundings and
perceived safety on satisfaction and public transport
ridership

PDF

Rong Cheng, Andreas Fessler, Allan
Larsen, Otto Anker Nielsen and Yu
Jiang

Assessing the Impacts of Public Transport-Based
Crowdshipping: A Case Study in Nørrebro District in
Copenhagen

PDF

Hassan Idoudi, Mostafa Ameli, Cyril
Nguyen Van Phu, Mahdi Zargayouna
and Abderrezak Rachedi

Enhancing Evacuation Planning and Management through
Vehicular Communication PDF

Liang Ma, Daniel J. Graham and Marc
E.J. Stettler

Using Explainable Machine Learning to Interpret the
Effects of Policies on Air Pollution: COVID-19 Lockdown
in London

PDF

Nicola Ortelli, Matthieu de Lapparent
and Michel Bierlaire

Faster estimation of discrete choice models via weighted
dataset reduction PDF

Lubing Li, Ka Fai Ng, Jacob Lo and
Hong Lo

Adaptive Traffic Signal Control: A Novel Modelling
Approach PDF

Fábio Hipólito, Jeppe Rich and Peter
Bach Andersen

Charging demand for the unserved — an agent-based
model approach PDF

Yiru Jiao, Simeon Calvert, Sander van
Cranenburgh and Hans van Lint

Varying critical time to collision: a perspective of driver
space PDF

Xiaowei Zhu, Anupriya Anupriya and
Daniel Graham

Understanding the cycle traffic impacts of Cycle
Superhighways in London PDF

Khashayar Khavarian, Shaghayegh
Vosough and Claudio Roncoli

How do electric bikes affect the route choice of cyclists? A
case study of Greater Helsinki PDF

Léon Sobrie, Marijn Verschelde and
Bart Roets

Explainable predictions for real-time employee workload
management in railway control rooms PDF

Camila Balbontin, John Nelson, David
Hensher and Matthew Beck

Identifying main drivers for students and staff members’
mode choice or to work/study from home: A case study in
Australia
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Michal Bujak and Rafal Kucharski Assessing expected ride-pooling performance with non-
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Gabriel Hannon, Joanna Ji, Qin Zhang, Implementing an Agent-Based Formation of Social PDF
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Ana Tsui Moreno and Rolf Moeckel Networks for Joint Travel

Emily Morey, R. Eddie Wilson and
Kevin Galvin

Simulation of Mixtures of Legacy and Autonomous
Mainline Rail Operations PDF

Kenan Zhang, Andres Fielbaum and
Javier Alonso-Mora

What do walking and e-hailing bring to scale economies? A
general microeconomic model for on-demand mobility PDF

Giancarlos Parady, Yuki Oyama and
Makoto Chikaraishi

Text-aided Group Decision-making Process Observation
Method (x-GDP): A novel methodology for observing the
joint decision-making process of travel choices

PDF

Tai-Yu Ma, Yumeng Fang, Richard
Connors, Francesco Viti and Haruko
Nakao

A fast algorithm to optimize meeting-point-based electric
first-mile feeder services with capacitated charging stations PDF

Dimitrios Argyros, Renming Liu, Ravi
Seshadri, Felipe Rodrigues and Carlos
Lima Azevedo

Bayesian Optimization of Road Pricing using Agent-based
Mobility Simulation PDF

Hao Yin and Elisabetta Cherchi
A stated choice experiment to estimate preference for fully
automated taxis: comparison between immersive virtual
reality and online surveys

PDF

Fernanda Guajardo and Sebastián
Raveau

Travel mode choice modelling of visually impair people
through latent variables PDF

Milad Malekzadeh, Dimitrios
Troullinos, Ioannis Papamichail and
Markos Papageorgiou

Microscopic Simulation-based Testing of Internal
Boundary Control of Lane-free Automated Vehicle Traffic PDF

Cristian Domarchi and Elisabetta
Cherchi

Changes in car ownership due to life events: Insights from
the UK Longitudinal Household Survey PDF

Caio Vitor Beojone and Nikolas
Geroliminis

Providing a Revenue-forecasting Scheme to Relocate
Groups of Ride-Sourcing Drivers PDF

Severin Diepolder, Andrea Araldo,
Tarek Chouaki, Santa Maiti, Sebastian
Horl and Costantinos Antoniou

On the Computation of Accessibility Provided by Shared
Mobility PDF

Andrea Pellegrini and John Rose
On allowing endogenous minimum consumption bounds in
the Multiple Discrete Continuous Choice Model: An
application to expenditure patterns
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Hamoun Pourroshanfekr Arabani,
Mattias Ingelström, Mats Alaküla and
Francisco J. Márquez-Fernández

MATSim-based assessment of fast charging infrastructure
needs for a full-electric passenger car fleet on long-distance
trips in Sweden

PDF

Elham Hajhashemi, Patricia Lavieri and
Neema Nassir

Applying a latent class cluster analysis to identify consumer
segments of electric vehicle charging styles PDF

Janody Pougala, Tim Hillel and Michel
Bierlaire

Modelling the impact of activity duration on utility-based
scheduling decisions: a comparative analysis PDF

Haoye Chen, Jan Kronqvist, Wilco
Burghout, Erik Jenelius and Zhenliang
Ma

Mixed Integer Formulation with Linear Constraints for
Integrated Service Operations and Traveler Choices in
Multimodal Mobility Systems

PDF

Kacper Rossa, Andrew Smith, Richard
Batley and Phillip Hudson

The valuation of arrival and departure delays in the UK
passenger rail using satisfaction survey data PDF

Kailin Chen, Daniel Graham, Richard
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Anderson, Anupriya Anupriya and
Prateek Bansal

Understanding the Capacity of Airport Runways PDF

Bogdan Kapatsila, Dea van Lierop,
Francisco J. Bahamonde-Birke and
Emily Grisé

The Effect of Incentives on the Actions Transit Riders
Make in Response to Crowding PDF

Nejc Geržinič, Maurizio van Dalen,
Barth Donners and Oded Cats

The impact of covid-19 on modal shift in long-distance
travel PDF

Ryota Okazaki, Yuki Oyama, Naoto
Imura and Katsuhiro Nishinari

Day-to-day delivery demand management: Evaluation
based on routing efficiency and customer satisfaction PDF

Anna Reiffer and Peter Vortisch
Estimating Household-Level Time-Use within a Week
Activity Scheduling Framework – Application of the
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Aurore Sallard and Milos Balac Bayesian Networks for travel demand generation: An
application to Switzerland PDF

Nico Kuehnel, Shivam Arora, Felix
Zwick and Qin Zhang

Simulated Annealing in a Co-Evolutionary, Agent-Based
Transport Modeling Framework - The Example of Ride-
pooling Driver Supply Optimization
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Batista, Mónica Menéndez and
Yuanqing Wang

Analyzing Network-wide Energy Consumption of Electric
Vehicles in a Multimodal Traffic Context: Insights from
Drone Data

PDF

Gaurav Malik and Chris Tampère

Application of a Metamodel-Based Optimization Approach
for Toll Optimization and its comparison with
Metaheuristics-based Model Optimization via a Case
Study.
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Bingyuan Huang, Hans Wüst and
Mathijs de Haas

Assessing the Long-term Impact of E-bikes on Sustainable
Mobility: A National-Level Study in the Netherlands PDF

Lorena Torres Lahoz, Francisco Camara
Pereira, Georges Sfeir, Ioanna Arkoud,
Mayara Moraes Monteiro and Carlos
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Attitudes and Latent Class Choice Models using Machine
Learning PDF

Ana Tsui Moreno, Matthias Langer and
Rolf Moeckel

How mobile are persons with mobility restrictions?
Analysis of number of days with activities using one-week
activity schedules in Germany
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Saumya Bhatnagar, Rongge Guo, Jihui
Ma and Mauro Vallati

Prediction of Passengers Demand for Customized Bus
Systems PDF
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City-wide bottleneck and deficiency analysis on a road
network generated from the Open Street Map road network
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Short summary

We present a combined longitudinal and socioeconomic study of cycling demand in the Netherlands
and Denmark from 2010 to 2021. The countries are comparable in demography and both countries
have well-developed cycling cultures. The longitudinal data allow us to study successes and set-
backs related to cycling uptake over time. E-bikes are successfully promoting longer cycling trips
and increased cycling among elderly people, particularly in the Netherlands. However, in rural
areas of Denmark, we see setbacks in the form of significant reductions in cycling among children.
By applying an econometric model of the combined selection effect of bicycling and the mileage
effect conditional on travelling by bike, we analyse how these effects are related to, e.g. increased
distances to school, increased work distance, car ownership, changes in urbanisation and other
socio-economic factors. We show that these factors cannot explain all of the decline for childrens
cycling in Denmark.

Keywords: Cycling demand Mode choice Cycling behaviour Longitudinal analysis Cohort study

1 Introduction

Research show that cycling leads to better health, reduced congestion and better accessibility (Rich
et al., 2021) and thus Bicycle research has received increasing awareness in recent years (Heinen
& Götschi, 2022). Several studies have studied cycling across countries (Schneider et al., 2022;
Goel et al., 2022; Buehler & Goel, 2022; Pucher & Buehler, 2008). Longitudinal studies are rare
and typically from few countries with available data. Harms et al. (2014) found increasing cy-
cling volumes in the Netherlands in urban areas and decreasing volumes in rural areas between
1996-2012. Van Goeverden et al. (2013) foundt hat national bicycle shares on average were stable,
whereas Harms et al. (2014) showed that educational trips experienced a significant increase from
1994-1996 to 2007-2009. A more recent study by Kroesen & van Wee (2021) found that the level
of urbanisation was the strongest predictor of cycling distance.

It is yet unclear how different effects are related to the cycling uptake for different groups in ar-
eas with different degree of urbanisation when considered in a longitudinal perspective. Better
insight is needed to meet unfavourable tendencies with the right policy measures. As an example,
if younger age groups have a low cycling uptake locally, but not globally, it suggest that there are
local conditions that prevent young people from cycling. Global trends on the other hand, may
signal wider behavioural tendencies that could result from social media usage (Meyer et al., 2021)
or other factors. These tendencies require a different set of actions.

In this paper we present a combined longitudinal and socioeconomic study of cycling demand in
the Netherlands and Denmark in the period from 2010 to 2021. The two countries are among the
most successfully cycling nations in the world and are by all means comparable economically and
socially. The two countries also host and maintain two of the most comprehensive trip diaries in the
world (Christensen, 2020; Boonstra et al., 2022). The trip diaries are very similar in structure and
scope and are of high quality. This allows a comparison of the cycling uptake across socioeconomic
groups and over time.
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NL Trips Trips Trips Km Km DK Trips Trips Trips Km Km
Year N All Bike E-bike Bike E-bike N All Bike E-Bike Bike E-Bike
2010 44165 2.81 0.76 NA 3.28 NA 23705 2.90 0.43 0.01 3.08 5.72
2011 38722 2.72 0.78 NA 3.44 NA 18009 2.92 0.44 0.01 2.94 4.58
2012 43307 2.72 0.79 NA 3.31 NA 9696 2.97 0.46 0.01 3.14 5.94
2013 42350 2.73 0.76 NA 3.41 NA 8912 2.72 0.44 0.01 3.45 5.47
2014 42600 2.73 0.81 NA 3.60 NA 9581 2.76 0.45 0.02 3.62 5.02
2015 37350 2.64 0.74 NA 3.45 NA 8720 2.81 0.41 0.02 3.39 6.44
2016 37229 2.59 0.72 NA 3.45 NA 8794 3.03 0.44 0.02 3.21 4.10
2017 38127 2.54 0.70 NA 3.48 NA 9920 3.11 0.41 0.03 3.36 5.16
2018 57260 2.8 0.76 0.15 3.46 6.01 11087 2.90 0.42 0.03 3.41 4.38
2019 53380 2.73 0.66 0.17 3.39 5.86 10204 2.84 0.39 0.03 3.31 4.71
2020 62940 2.34 0.51 0.18 3.53 6.34 12161 2.98 0.38 0.05 3.53 4.71
2021 67083 2.52 0.50 0.23 3.56 5.83 10153 3.14 0.33 0.05 3.41 3.88
Total 564513 2.66 0.71 0.18 3.45 6.01 140942 2.92 0.42 0.03 3.32 5.01

Table 1: Number of observations and average trips per year in the two trip diaries. Trips are
calculated as weighted averages based on the official sample weights. ’Bike km’ represent
the corresponding weighted bicycle mileage per biked trip excluding e-bikes.

2 Data

In Denmark, The Danish National Travel Survey (TU) (Christensen, 2020) constitutes a represen-
tative cross-sectional sample of the Danish population between the ages of 10 and 84.The survey
collects information concerning the daily travel habits of approximately 1,000 Danish respondents
per month. In the Netherlands, the Dutch national travel survey has been conducted since 1985,
but only since 2018 in its current format. During the course of the whole year, approximately
45,000 individuals aged 6 and older currently participate, which corresponds to approximately
0.2% of the Dutch population. In both surveys one individual per household is selected. In Table
1 we present key bicycle descriptive variables in the period between 2010-2021.

It is notable that e-bikes constitute an increasing share of bicycles and travel significantly longer.
However, the share in Denmark is small compared to the Netherlands. It is also interesting to see
that, by-and-large, trip frequencies for bicycles (when combining electric bicycles and conventional
bicycles) are largely constant, while bicycle mileage seems to increase slightly.

3 Methodology

With the absence of panel data a first and straightforward measurement of bicycle trends over time
can be based on age-cohorts (Rich et al., 2022). The idea is to study how a group of people at a
given age (e.g., 10-20 years of age) behave in different years. This allows us to examine if 10-20
year old’s in the year 2010 behave differently compared to those in the same age group observed
in the year 2021.

In Rich et al. (2022), bicycling demand was decomposed into a selection effects and a mileage effect.
The selection was measured as a binary variable if the person travelled by bike on the day of the
interview. The mileage effect was measured as the total bicycle mileage on the day provided that
the interview person travelled by bike. In the paper, the two effects was modelled in a Hurdle-type
model (Cragg, 1971) and it was found that the selection effect was the main driver of changes while
the conditional mileage effect were largely inconclusive. This paper is inspired by the same idea
but develops models for both countries separately.

In addition, we include more explanatory variables in order to assess whether the trends in bicycle
demand can be explained by external factors. These factors include car ownership, household
characteristics, urbanisation and distance to school and work. In case we still see a significant
trends, it suggest that other factors not included in the model are at play.

When modelling the development in bicycle demand, we use a decomposition of the probability
of cycling on a given day, and conditionally on people cycling, the total mileage. This selection
process is estimated using a logistic regression as shown in Eq. (1). In Eq. (1) y = 0 indicates
that a person did not cycle, whereas y > 0 indicates that the person engaged in cycling activities
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on the day.

The mileage model in Eq. (2) is modelled as a standard generalized linear model. The aim is to
classify the variables that drive the bicycle demand rather than predicting bicycle demand (Efron,
2020).

Pn,t(y = 0|x) = 1− 1

1 + e−(−xn,t·βs)
(1)

gn,t(y) = xn,t · βm + un,t, u ∼ N(0, σu) (2)

In this case we apply a link-function g(y) = ln(y), which corresponds to the assumptions in a
log-normal Hurdle model.

For each country, we estimate a logistic regression (Eq. 1) and a mileage model (Eq. 2) for all
individuals n = 1, ..., N and all years t = 1, ..., T . In all models and for all countries, the following
set of explanatory variables are used:

xn,tβ = kt + βf · Femalet,n + βc · Carst,n + βsd · School_distt,n

+ βch · Children_distt,n + βwd ·Work_distt,n + βe · Ebiket, n

+ βu1 · Urbann,2 + ...+ βu4 · Urbann,5 + βa1,t1 ·Age_groupn,t1,1

+ ...+ βa4,t11 ·Age_groupn,t11,4

(3)

With the variables defined as.

• kt: Dummy variables for each year, of which T − 1 can be identified. Hence, 2010 is set as
the reference.

• Femalen: If the respondent is a female person.

• Carsn,t: The number of cars in the household in which n belongs.

• School_distn,t: The distance to school for those respondents who go to elementary school
(age ≤ 16 years).

• Childrenn,t: If small children under the age of 6 is present in the household.

• Ebiken, t: For the selection model, this variable cannot be included as we do not know the
type of bicycle owned by the respondent. However, for the mileage model, it makes sense
because we know if the specific trip is carried out by electric bike.

• Work_distn,t: The distance to work for those who work.

• Urbann,t,u: Urban classification dummies with u = 1 representing densely populated areas
and u = 5 rural areas. u = 1 is the reference level.

• Age_groupn,t,a: Age cohorts combined with years. In the simple model, we only consider
age cohorts with a = 1 corresponding to [10-20], a = 2 to [20-30], a = 3 to [30-66] a = 4 to
[66-]. However, in a generalized model, we allow for different age cohort parameters over the
years, in order to identify if behavior is changing.

As the underlying data are micro-data we track any changes in these underlying variables over
the period. Hence, if more people are moving to the cities, this will be measured in the model
through the urbanization variables. If people in cities in 2010 and 2020 behave largely identically,
we should be able to model these changes with a main-effect variable for urbanization.
The models help us to understand which factors that explain the development in bicycle demand
over time. However, most importantly, the models will allow us to see if age groups change
behavior over time when accounting for urbanization degree, car ownership, and distances to work
and school. If this is the case, it will suggest that there are other factors that need to be investigated
in the future, e.g. measures related to perceived or actual safety as an example.
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Figure 1: Selection model parameters for different age-groups and years for Denmark.
Vertical bars represent 5% confidence level.

4 Results and discussion

An interesting hypothesis is if the parameters for the main effect for age groups by year change
over the period. This should suggest if there are unexplained effects (beyond the attributes that
are included in the simple reference) for a given age group in a given year change over the period.
Therefore, for both the selection and mileage models, we combine the parameters k2011, ..., k2021
with the four age groups as well. Hence, for a given year i, we estimate not one (e.g., k2011), but
four main effects corresponding to the four age groups (e.g., Agegroup1 ∗ k2011, Agegroup2 ∗ k2011,
Agegroup3 ∗ k2011 and Agegroup4 ∗ k2011).

The results from the selection models indicate that distance to work and school indeed influence
the preference for bicycle in a negative way. Gender, has opposite sign in the two countries. Hence,
females are more likely to bike in Denmark, whereas the opposite is true in the Netherlands. We
also find that the presence of cars in the household significantly reduced the likelihood of travelling
by bike. Similarly, there is a increasing likelihood of using bicycle in urbanised areas. Across all
years, the older people gets, the less likely they are to choose the bicycle. The same pattern is seen
for both countries.

Rather than including the full table of parameters, we present only the specific main effect param-
eters in Figure 1 and 2. The vertical bars represent a 5% level of confidence.

It is interesting to see that for Denmark, for all age groups over the age of 20, there is no significant
difference in parameters. However, for young respondents between 10-20 years of age there is a
significant decline in the parameters over the years. This suggests that there are other factors in
play. For the Netherlands, the pattern is slightly different. While the younger respondents also
display a decline, the other age groups show an increase. Most notably for the oldest age group,
where we see a significant increase.

The mileage models suggests that the conditional mileage for the youngest age group declines
slightly over the period, although the parameters are not statistically different. The only systematic
change is seen for the oldest age group in the Netherlands where the tendency to travel longer
increases. Presumably, this trend is driven by an increase in electric bicycles for this age group.
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Figure 2: Selection model parameters for different age-groups and years for the Nether-
lands. Vertical bars represent 5% confidence level.

5 Conclusions

Based on longitudinal data from The Netherlands and Denmark, which are both countries with
a high cycling demand compared to other countries, we have applied an econometric model to
study how different factors are related to cycling uptake and use in these countries. In both
countries, an increasing distance to school, more cars in the household, the share of households
in rural areas, and higher age is related to a lower probability that a person will use a bicycle.
Even when these factors are taken into account, there is a tendency of a decline in preference
for cycling for younger people in Denmark. We cannot pinpoint the origin of these changes, but
a possible explanation is that safety perception play an increasingly important role for kids and
their parents. For the Netherlands, on the other hand, there are other positive unknowns affecting
the oldest group. Whether this is related to an increasing awareness of the positive health effects
from cycling is difficult to say. We find that the conditional mileage for the youngest age group
declines slightly over the period, although the parameters are not statistically different. The only
systematic change is for the oldest age group in the Netherlands where the tendency to travel
longer increases. Presumably, this trend is driven by an increase in electric bicycles for this age
group.
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Using computer vision-enriched discrete choice models to assess the visual 

impact of transport infrastructure renewal projects:  

A case study of the Delft railway zone 
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Abstract 

a computer vision-enriched discrete choice model to investigate the impact of the redevelopment of the 

Delft railway zone on the visual environment. Using computer vision-enriched discrete choice models, 

we evaluate the changes in the utility levels derived from the visual environment by analysing over 70k 

street-view images from periods before and after the redevelopment of the railway zone in Delft. We 

find evidence that the visual appearance of the railway zone has considerably improved after the 

redevelopment project. This finding highlights the potential of using computer vision-enriched discrete 

choice models to quantitatively evaluate and monitor changes to the visual environment arising from 

new transport infrastructure projects. 

 

Keywords 

Discrete choice modelling, Appraisal, Computer vision, Street-view images 

 

 Introduction 

Cost-Benefit Analysis (CBA) involves tallying up all costs of a (transport) project and subtracting that 

amount from the total projected benefits of the project. Since the benefits are often not expressed in 

euros, the latter requires a monetisation step to convert these to euros. Some benefits of transport 

projects are comparatively easy to monetise, such as travel time savings. Over the years, an extensive 

practice has been established (Small 2012; Kouwenhoven et al. 2014). Other effects are still more 

challenging to monetise, often because of their abstract or enigmatic nature. One key example of a hard-

to-monetise benefit involves changes to the visual appearance and environment. Transport projects 

often have a major (visual) impact on the landscape. Their visual impact often plays a crucial role in 

the political debate leading to the decision to build new transport infrastructure.  

 

However, the visual impacts of a transport project are typically merely assessed qualitatively. As a 

result, they are not included in either of the indicators of CBA that are decisive in the political process: 

the benefit-cost ratio or the net present value (Annema and Koopmans 2015). This weak position of 

impacts on the visual environment and landscapes, more generally, can lead to poor land-use decisions 

that cause welfare losses which undermine public support. 

 

Recently, Computer Vision-enriched Discrete Choice Models (henceforth: CV-enriched DCMs) have 

been proposed (Van Cranenburgh and Garrido-Valenzuela 2023). This model extends the application 

of discrete choice models towards visual preferences. Van Cranenburgh and Garrido-Valenzuela (2023) 

demonstrate their use in residential location choices – showing how trade-offs are captured between 

monthly cost, travel time and street-level factors, such as openness, building typology and greenness 

(as embedded in images). 

 

This study applies the CV-enriched DCM trained by (Van Cranenburgh and Garrido-Valenzuela 2023) 

to investigate changes to the visual environments resulting from transport infrastructure projects. 
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Specifically, we focus on the Delft railway zone, which was put underground in the period 2014-2015. 

This transformed the visual appearance of the whole railway zone. Using the trained CV-enriched 

DCM, we compute utility levels for over 70k Google street-view images from before and after the 

redevelopment of the railway zone. Thereby, we aim to provide a rigorous quantitative underpinning of 

the benefits to the visual environment arising from the redevelopment of the railway zone. With this 

work, we contribute to the stream of research that capitalises on street-view images as a source of 

information about the urban environment (Naik et al. 2017; Rossetti et al. 2019; Ma et al. 2021; Ramírez 

et al. 2021; Garrido-Valenzuela et al. 2022) 

 

 Methodology 

Our method involves the following four steps. First, we collect street-view images before and after the 

infrastructure renewal in the surroundings of Delft railway station. Second, we apply the CV-enriched 

DCM trained by Van Cranenburgh and Garrido-Valenzuela to the images to produce a utility level per 

image. Third, we aggregate the utilities across spatial hexagons for spatial analysis. Fourth, we analyse 

the changes in aggregate utility levels before and after the infrastructure renewal.    

 

 Delft railway station area and image data collection 

After years of fierce political debate, in the early 2000s, the final decision was made to redevelop the 

railway zone in Delft. A significant part of the project involved putting 2.3km of railway track and the 

train station underground. The main construction period on the railway track took place in 2014 and 

2015. Figure 1 shows the railway station before and after the redevelopment. Much of the debate leading 

up to the commissioning of the project was about whether the improvement in the visual environment 

in the railway zone actually would exceed the considerable construction costs. Because of the significant 

financial burden the project turned out to be, even today, the project's benefits are debated. 

 

  
Figure 1: Delft Railway station before (left) and after (right) redevelopment 

 

To collect street-view images in the Delft railway zone, we created a grid of points with 25-metre 

spacing in an 800m circumference around the city centre. We retrieved the nearest street-view image id 

for each point on the grid using Google's street-view API. If multiple years were available, we collected 

images of all available years. Each street-view image id corresponds to a 360-degree panorama view at 

the street level. Finally, from each panorama, we generated two image urls with 90-degree angles to the 

direction of the street. This latter ensures the images are side-views (e.g., as opposed to views parallel 

to the driving direction of the Google car). All street-view images are (temporally) stored using png 

format with 900 x 600 pixels and 8 bits per colour channel (implying 16.7m colour values per pixel). 

For each image, the geo-location, year and month are stored. Figure 2 shows the collected number of 

street-view urls per year. 
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Figure 2: Number of street-view images per year 

 

 Computer vision-enriched discrete choice models 

To obtain the utility levels of each image, we apply the CV-enriched DCM trained by Van Cranenburgh 

and Garrido-Valenzuela (2023) on residential location choice data. This model assumes decision-

makers, denoted n, make decisions based on Random Utility Maximising (RUM) principles (McFadden 

1974). Equation 1 shows the utility function of this model we use. As can be seen, in this model, the 

utility, Uj, is derived from the numeric attributes Xj and attributes embedded in the street-view images 

Sj, which were presented as part of the alternatives. Furthermore, the account for the possibility that 

images taken, e.g. in spring look, on average, more attractive than images taken in winter, a constant 

per month is included in the utility function (the second term from the left), where ISj is a binary vector 

with value one if the image is taken in month mo, and zero otherwise.  

 

Figure 3 shows a screenshot of the stated choice data on which the CV-enriched DCM is trained. In this 

experiment, respondents had to make trade-offs between street views (visual appearance of the 

neighbourhood) and two numeric attributes: monthly housing cost and commute travel time. The street-

view images shown to respondents in choice tasks were randomly drawn from an extensive database of 

street-view image ids. Based on these data, the CV-enriched DCM could learn the preferences over 

elements embedded in the street-view images, such as compactness, openness, street topology, parking 

facilities, etc. For more details about the data collection and the CV-enriched DCM, see Van 

Cranenburgh and Garrido-Valenzuela (2023). 
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Figure 3: Screenshot of stated choice experiment used to train the CV-enriched DCM 

 

Importantly, in Equation 1, φ is a mapping function – performed by the computer vision part of the 

model: DeiT base (Touvron et al. 2021) – which maps image Sj onto a lower dimensional feature space, 

denoted Zj (which has a dimensionality of 1 x K). The feature map of an image embeds the relevant 

information from that image that generates (dis)utility and, in turn, maps linearly map onto the utility. 

wk denotes the weight associated with the kth feature of Zj; βm denotes the marginal utility associated 

with attribute m, and xjmn denotes the attribute level of numeric attribute m of alternative j, as faced by 

decision-maker n. 

 

 |
j

Utilityderived Utilityderived Utilityderived
fromnumericattributes fromthemonthof theyear from image featuremap

jn jn jn jn r
m jmn mo S k jkn

m mo k

U whereZ S wx I w z         
 

Equation 1 

 

In this application of the model, we are solely interested in the utility it produces from images. In other 

words, to deploy this model, we first apply the mapping function φ to images to obtain feature maps Z. 

In turn, we take the inner product with w to get the utility of the image. Finally, we 'correct' the utility 

of each image for the month of the year in which the image was taken (the second term of Equation 1). 

Figure 4 kernel density plots of the utility levels computed from the images (before and after the renewal 

project). The left-hand side plot shows utility levels uncorrected for the month of the year; the right-

hand side plot shows utility levels corrected for the month of the year. 
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Figure 4: Kernel density plots of utility levels before and after the renewal project.  

 

 Aggregation 

To investigate the potential changes in utility levels arising from the changes in the visual environment 

arising from the infrastructure project, we must define a spatial unit of analysis. For this purpose, we 

use regular hexagonal cells with 25-metre sides to tessellate the entire study area. Accordingly, on 

average, each hexagon contains 20 images from the period before and 15 images from the period after 

the redevelopment.  

 

 Preliminary results 

Figure 5 shows the main results of this study. The hexagon's colour depicts how the utility level changed 

between the periods before and after the redevelopment of the railway zone. A green colour indicates a 

positive change in the average utility derived from the images within the hexagon; a red colour indicates 

a negative change in the average utility. The map shows an area of approximately 2 x 2 km. Delft has 

two landmark churches, which are depicted to ease navigation.  

 

Based on Figure 5, we make a number of observations. Firstly, the visual appearance of the redeveloped 

area has considerably improved. Almost all hexagons within the red encircled area are greenish, 

implying a positive change in utility. This is in line with behavioural intuition. It also suggests that CV-

enriched DCMs can indeed be used to evaluate changes in the visual environment. Secondly, the visual 

appearance of the area west of the redeveloped railway zone has also improved. Again, we see 

predominantly green hexagons. A possible explanation for this observation is that the redeveloped 

railway zone radiated positively in this direction and led to positive changes to the visual environment. 

Thirdly, the change in the visual appearance of the inner city (located Nord-East of the train station) is 

mixed. Some streets seem to have deteriorated (coloured orange and red), while others show positive 

changes in their visual appearance (coloured green). Presumably, local explanations can be found 

explaining these changes.   
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Figure 5: Changes in utility levels Delft. The railway zone is encircled in red.  

 

 Conclusion and discussion 

This research has employed new computer vision-enriched discrete choice models to investigate 

changes in the visual environment arising from the redevelopment of the Delft railway station zone. 

The intuitively correct results we obtained from our case study suggest that CV-enriched DCMs can 

indeed be used to evaluate changes in the visual environment. 

 

A key limitation is this research is that the utilities extracted from the CV-enriched DCM reflect the 

attractiveness as a residential location. But, the function of the railway station zone is mixed. Its 

functions include housing, transfer, gathering, working, eating, etc. In this research, we only looked at 

the visual environment from the lens of residential location. 

 

Next steps 

We envision taking the following steps in the coming months. Firstly, we would like to expand our 

study areas. We want to apply the approach to other areas that undergo renewal to establish its 

robustness and further applicability. In addition, we aim to develop a better grasp of optimal hexagon 

size in combination with data availability (Wong 2004). Finally, we aim to show what the trained CV-

enriched DCM has learned. We want to understand what causes exceptionally high or low utility 

predictions. Such model explanations may help to better inform urban planners and policymakers on 

future transport infrastructure projects.  
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Short summary

Travel behaviour modellers are increasingly interested in using models from outside the traditional
choice modelling area, first incorporating ideas from behavioural economics, such as in regret
modelling, before looking at mathematical psychology and machine learning. A key question arises
as to how well these different models perform in prediction, especially when predicting trips of
different characteristics from those used in estimation. This paper first compares the elasticities
and model fit of different models, bringing together models as diverse as logit, random regret,
decision field theory and neural networks. We highlight differences in elasticities and also note
that the prediction performance deteriorates at different rates for different models when moving
further away from the estimation data. We then develop a model averaging approach that allows
us to make the most of the entire collection of models and estimate weights for different models as a
function of distance away from the estimation sample. Keywords: choice modelling; forecasting;
machine learning; mathematical psychology; mode choice; model averaging

1 Introduction

The travel behaviour modelling literature has focussed extensively on two sorts of models, namely
models for inference (henceforth inference models) and models for forecasting (henceforth forecast-
ing models). Inference models aim to understand current travel behaviour (e.g. to recover the
value of travel time), while forecasting models aim to forecast future travel behaviour in new set-
tings (e.g. due to transport policies, such as toll roads and fuel levies). In other words, forecasting
models are developed to generalise out-of-distribution.
Inference models and forecasting models are evaluated differently by analysts. When building an
inference model, an analyst is keen that the model generates behaviourally plausible insights into
causal factors and their relative impacts. Additionally, for inference models, it is well recognised
that they should be able to replicate the behaviour in the empirical data as well as possible. In
general, analysts perceive a high model fit as a proxy for a good model. The rationale is that the
higher the likelihood of the empirical data given the model, the more reliable the results must be.
Given this model evaluation approach, it should come as no surprise that researchers in the travel
behaviour field are increasingly attracted by the comparatively good prediction performance of
machine learning approaches (cf. Hagenauer & Helbich, 2017).
For forecasting models, the focus during evaluation is typically on elasticities. A widely held view
is that forecasting models must produce behaviourally plausible elasticities, i.e. changes in demand
in response to changes in journey characteristics. Furthermore, forecasting models are evaluated
on their behavioural soundness. The dominant - although not necessarily evidenced-based - view
is that forecasting models with a solid behavioural underpinning, such as Random Utility Maximi-
sation (RUM) based discrete choice models, are better equipped to forecast behaviour under new
settings than are models with a weak or no behaviour underpinning, such as e.g. machine learning
models (cf. van Cranenburgh et al., 2022).
However, what is currently less well understood is how to value and incorporate model performance,
i.e. in the model fit on the empirical data, when developing forecasting models. What is clear is
that good model performance is not sufficient to establish that a model will make good out-of-
distribution predictions. The fact that model parameters are estimated by maximising the model
performance on the empirical data, i.e. how well they replicate current choices, is somewhat at
odds with the aim of forecasting: to generalise out-of-distribution. The choice modelling literature
has at times recognised that more advanced models that offer a better fit on the empirical data
do not necessarily lead to better forecasts (see e.g. Fox et al., 2014). But the question is still
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open on how to develop forecasting models considering the model’s performance and behavioural
underpinning. After all, it is intuitive that the performance of a model on the empirical data still
pertains to relevant information on its ability to generalise out-of-distribution.
The aim of this paper is twofold. First, we aim to quantify the deterioration of prediction perfor-
mance as a function of the “distance" between the training data and forecasting scenarios for models
with varying levels of behavioural underpinning. Second, we aim to develop a model averaging-
based approach that reduces the bias in forecasts by assigning different weights to different models
depending on this “distance". Using this model, we aim to not only develop a flexible tool for
combining models, but to craft rules-of-thumb for the conditions under which what sort of models
perform best in terms of out-of-distribution forecasting.
The key hypotheses of the present paper are as follows:

1. Good absolute in-sample prediction performance does not necessarily translate into accuracy
of elasticities.

2. Prediction performance for all models deteriorates as a function of the “distance" between
the training data and scenarios for which a prediction is made.

3. Models with a solid behavioural underpinning will increasingly perform better than models
without behavioural underpinning at increasing ”distance”.

4. Flexible models and models with a weak or no behaviour underpinning will suffer from a
considerable spread in out-of-distribution generalisation performance.

2 Methodology

Datasets

We use two different revealed preference datasets in this study, both focussing on mode choice.
The first dataset comes from a large-scale survey conducted as part of the DECISIONS project
carried out by the Choice Modelling Centre at the University of Leeds (Calastri et al., 2020). The
data used for this work corresponds to the observed mode choice behaviour where after extensive
data cleaning and data enrichment (Tsoleridis et al., 2022), 12,524 trips made by 540 individuals
remained. For each trip, individuals travelled by one of six modes: car, bus, rail, taxi, cycling or
walking. Attributes of the alternatives used in the models include in vehicle travel time, out of
vehicle travel time, and travel cost.
The second dataset is the London mode choice data compiled by Hillel et al. (2018). This dataset
contains four alternatives: walking, cycling, public transport (grouping together bus and rail) and
driving. We use a sample of 81,086 trips. Attributes of the alternatives used in the models include
in vehicle travel time, out of vehicle travel time, interchanges, and travel cost.

Model types

The following individual models were used in our analysis, combining models from traditional
choice modelling, mathematical psychology and machine learning:

Logit models: Standard multinomial Logit models using three different specifications, namely a)
linear in attributes; b) log-linear in attributes; and c) linear plus log-linear in attributes.

Nested logit models: Nested Logit using three different specifications, namely a) linear in at-
tributes; b) log-linear in attributes; and c) linear plus log-linear in attributes. In terms of
nesting structure, the DECISIONS models grouped together public transport options in a
nest, while the London models grouped together motorised modes vs active modes.

Random regret minimisation (RRM): RRM models were used, treating attributes as linear,
and with different constants depending on choice set size given varying mode availability in
the DECISIONS data.

Decision field theory (DFT): DFT is a dynamic, stochastic model, introduced by Busemeyer
& Townsend (1993). The key idea of the DFT model is that the preferences for different
alternatives update over time whilst the decision-maker considers the different alternatives
and their attributes. We use the implementation of T. O. Hancock et al. (2019).
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MultiLayer Perceptron (MLP): This model comprises an input layer with input nodes, one
or more hidden layers with hidden nodes, and and output layer with output nodes. In this
model, signals propagate forward through the links connecting the nodes. The links have a
numeric weight w, which is learned from the data. At each node, the weights are multiplied
with the input value from the previous nodes and summed. Then the signal is propagated
to the next layer using an activation function. We use tanh activation functions. In the
output layer, a Softmax function (i.e. a logit) is applied to produce choice probabilities for
each alternative.

XGBoost (XGB): The XGB model comprises a series of sequentially applied decision trees. A
decision tree is a sequence of simple IF-THEN rules, optimised to classify data accurately.
In the XGB model, each decision tree in the sequence ‘corrects’ the mispredictions of the
models before it. This process is referred to as ‘boosting’. The word ‘gradient’ relates to the
notion that each subsequent decision tree is fitted on residuals of the trees before it.

Identifying the role of “distance"

To study the impact of distance from the estimation data, we first divided the samples into 10
subsets by distance, e.g. using the 10 percent of shortest trips for the first segment.
Distance segments 1 and 10 were excluded from the model fitting work to retain them for later
out-of-distribution validation. Five separate models were then estimated for each model type on
rolling subsets of the data combining 4 distance segments, e.g. segments 2-5 for the first model, 3-6
for the second, etc. Let us define Mm,g to be the model of type m estimated on distance grouping
g, where, e.g. with g = 1, we would use distance segments 2-5.
Finally, each of the estimated models was used to make a prediction of each trip in the data,
independently of the distance segment for that trip, so e.g. also using models estimated on segments
2-5 only to predict mode choice for trips in distance segment 9.
Model estimation relied on 80% of the sample, with the remaining 20% kept for later out-of-sample
and out-of-distribution prediction.

Model averaging approach

The final step of the work uses a model averaging approach, as outlined for example by S. H. A. D. Han-
cock Thomas O. & Fox (2020). Model averaging relies on a sequential latent class approach, where
M different models have been estimated on the data, with model m giving a likelihood Pn,m for
the choice in observation n (working either at the person or observation level).
The model averaging log-likelihood is then given by

LL =

N∑
n=1

log

M∑
m=1

πn,mPn,m, (1)

where πn,m is the estimated weight given to model m for observation/person n, where this is given
by:

πn,m =
eγ

′
mzn∑M

l=1 e
γ′
lzn

, (2)

with an appropriate normalisation, where zn are characteristics of person/observation n.
Model averaging typically estimates each model on the entire data and then computes the weights
by considering how well each model fits for each of the data points.
We use a different approach. Specifically, we rely not only on the observations on which the models
were estimated, given that each model uses only 4 distance segments, but include the prediction
performance of every model on each of the trips. This allows us to study how the weight assigned
by model averaging is a function of both the model type and how far, if at all, out-of-distribution,
the model is. In other words, we expect that the weight given to a model decreases as a function
of how far away the distance of the trip for each a mode choice is predicted is from the average
distance of trips on which the model was estimatd.
With this in mind, let Dg be the average distance of trips in distance grouping g, and let dn be
the distance of the specific trip for which we make a prediction, where we work at the level of
individual trips.
We then have that our log-likelihood is given by:
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LL =

N∑
n=1

G∑
g=1

log

M∑
m=1

πn,m,gPn,m,g, (3)

where G = 5.
Each observation in the model averaging process thus uses the predictions for all the different
model types for a given distance grouping. This approach produced better results than looking
jointly at predictions from all GM models in a single row.
The model averaging weights are now specified as

πn,m,g =
eδm+(γd,m(dn<Dg)+γi,m(dn>Dg))log||Dg−dn|∑M
l=1 e

δl+(γd,l(dn<Dg)+γi,l(dn>Dg))log||Dg−dn|
, (4)

where δm is a constant for model type m, and γd,m and γi,m are parameters capturing the influence
on class allocation when the distance of a trip is below, respectively above the average distance of
trips on which the model was estimated, where a non-linear transform was used.

3 Results and discussion

The work has produced a wealth of results of which we only focus on a subset in this brief paper.

Model fit comparisons

Figure 1 compares the model fit (using ρ2) in prediction for MLP and linear logit, as a func-
tion of the estimation and prediction segment. A positive differences indicates better fit for MLP
than logit. We note that the expected patterns emerge, with MLP overall predicting better in-
distribution than logit, but losing out when moving out-of-distribution, though with some excep-
tions.

Figure 1: Model prediction comparison between MLP and linear logit: DECISIONS data

Elasticities

Figure 2 compares the car cost elasticities for a subset of models estimated on the DECISIONS
data. We see differences as a function of which segment model was estimated on. For most models,
we see decrease in elasticities for models estimated on longer distance trips, but not for MLP and
especially XGB. This is an initial indication of differences in prediction results for different models.

Model averaging results

Figure 3 and 4 show the weights for different models generated by model averaging as a function of
the difference in the distance of the trip under question and the average trip distance used in model
estimation.Figure 3 shows the results for the DECISIONS data set; Figure 4 shows the results for
the London data set.
The results show a diverse patterns. Firstly, for both data sets we see thatthe MLP and XGB
models outperform the other models best close to the estimation distance,before tailing off with
increasing distance. Second, the behavioural models take over for larger distances. Epecially no-
table is how well DFT performs for trips much longer than the estimation data on the DECISIONS
data. But, in the London data this patterns is not visible. Third, for trips that are (much) shorter
than the estimation data, the log-linear logit model performs well, on both data sets.
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Figure 2: Car cost elasticity comparisons for select models: DECISIONS data

Figure 3: Model averaging weigths as a function of distance from estimation data: DECI-
SIONS data (log=log-linear logit, lol=linear plus log-linear logit, nli=linear nested logit,
nll=linear plus log-linear nested logit, nlo=log-linear nested logit, all other acronyms as in
main text)

4 Conclusions

This work has taken an important step forward in combining insights from different modelling
approaches for travel demand forecasting. Specifically, we have shown that different models predict
choices differently well depending on how far away from the estimation sample the prediction takes
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Figure 4: Model averaging weigths as a function of distance from estimation data: DECI-
SIONS data (log=log-linear logit, lol=linear plus log-linear logit, nli=linear nested logit,
nll=linear plus log-linear nested logit, nlo=log-linear nested logit, all other acronyms as in
main text)

place. This result is not surprising in itself, but is quantified by our work.
Building forth on these insights, we contribute bydeveloping a model averaging-based approach
that estimates weights for different models as a function of the distance away from the estimation
data.
In the full paper, we present more detailed results, including on model fit, prediction out of sample,
prediction completely out of distribution (i.e. distance segments 1 and 10), and full estimation
results for the models. We also hypothesise about possible other attributes that could be used to
measure ‘distance’ from the estimation data, going beyond trip distance alone.
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SHORT SUMMARY

The amount of parcels delivered in the urban space is steadily increasing and is often expected
to double by 2030. At the same time rising energy prices and policies towards sustainable devel-
opment affect the business models and distribution schemes in the sector. The present study
uses open data to approximate today’s parcel volumes for the specific case of Lyon and esti -
mated how those parcels are delivered in terms of used vehicles, covered distances and ecologi-
cal  impacts.  The first  part  describes  our data  collection process which hypothesizes  market
shares and cost structures of the parcel operators. In the second part, we solve Heterogeneous
Vehicle Routing Problems to uncover the likely distribution schemes. This way, the study pro-
vides rough estimates on the total daily emissions and energy used for parcel deliveries outlined
pathways for future modeling efforts and data collection.

Keywords: parcels, urban, last-mile, logistics, optimization, VRP

1 INTRODUCTION

The amount of parcels delivered in the urban space is expected to increase strongly in the com-
ing years. Today, cities already reflect upon strategies to regulate urban logistics, understanding
the complex interplay between its economic, ecological and social impacts becomes ever more
important. While ideas and research efforts on sustainable urban logistics policies are gaining
traction  (Mucowska, 2021; Neghabadi et al.,  2019; Patella et al., 2021). Recent advances in
transport simulation aim to model urban logistics on a systemic level (de Bok et al., 2022; Sakai
et al., 2020; Toilier et al., 2018), but reliable data remains scarce. The present short paper is an
attempt to model one specific sector of urban logistics - home parcel deliveries - solely based on
open data for a use case of Lyon.

2 METHODOLOGY

Our approach follows various steps from generating the parcel demand for a territory and defin-
ing the supply in terms of operators and distributions center. We then define cost structures to
obtain the used vehicles and driven distances to deliver all parcels based on a cost-minimization
and vehicle-routing approach. The individual steps are described below.
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Figure 1: Map of the study area, generated parcels, and distribution centers (Background:
OpenStreetMap)

Demand data

Our demand generation process is based on a synthetic population for the Rhône-Alpes region
around Lyon. Such a synthetic population, which is a digital representation of households and
persons in a region, along with their socio-demographic attributes can be generated based on
open data in France. We make use of a replicable data processing pipeline that can be applied
anywhere in France (Hörl & Balac, 2021). For the present study, we only consider households
in our study area, which comprises the city of Lyon, the Grand Lyon metropolitan region and
bordering municipalities with relevant logistics infrastructure (Figure 1). For this perimeter, the
population synthesis pipeline generates 1.6 million persons in about 795,000 households.

We fuse the synthetic population data with surveys on the purchasing behavior of the local pop-
ulation. Specifically,  (Gardrat, 2019) provides statistics on the annual number of orders made
per household based on various socio-demographic characteristics. In (Hörl & Puchinger, 2022)
we have proposed a method to make use of this information to generate the probable daily par -
cel  demand for  the  synthetic  households  using  Iterative  Proportional  Fitting.  Applying the
model to our study area yields 16,252 geolocated parcels to be delivered during an average day
(Figure 1).

Operator model

The goal of our methodology is to let operators minimize their cost by choosing relevant vehicle
types for delivering their assigned parcels and optimizing the vehicle routes. Unfortunately, in-
formation on the cost structures of parcel operators is scarce. However, we can assume that the
main cost components for offering their service are salaries, vehicle maintenance and invest-
ment costs, and per-distance costs. A substantial part of our research was to collect information
from gray literature on these cost components. While a detailed analysis of our sources and ag-
gregation procedures  exceed the scope of this paper, they will be detailed in an extended publi -
cation.
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Figure 2: Monthly rent versus transport volume

For personnel costs, we assume an effective net salary of 1,300 EUR per month per driver, lead-
ing to an approximate gross salary of 1,700 EUR, and to monthly costs of about 3,400 EUR per
full-time employee and month for the operator. Divided by 25 operating days, we arrive at daily
salary costs of 136 EUR.

In terms of per-vehicle costs, we have examined the long-term rental offers of the major French
vehicle manufacturers, along with the characteristics of the advertised vehicles. This analysis
has yielded distinct vehicle classes (of about 3.3m3, 5m3, 10m3) for which costs increase linearly
with the transport volume. This is true for thermal and electric vehicles while the slope of the
latter is higher (Figure 2). We document the daily unit costs per prototypical vehicle that are
used in our model in Table 1 ranging from 210 EUR for a small thermal vehicle up to 800 EUR
for large electric truck. In the final optimization we divide these cost by 25 active days per
month.

The per-distance costs  depend strongly on the consumption of the individual  vehicle types.
Based on our analysis of manufacturer offers, we have attached representative values for ther -
mal vehicles (in L/100km) and electric vehicles (in Wh/km) to our prototypical vehicle types in
Table 1. The per-distance costs are calculated by multiplying the driven distance per vehicle
type with the respective consumption factor and the price for fuel (in EUR/L) and electricity (in
ct/kWh), respectively.

Additionally, we have noted down representative CO2 equivalent emissions rates (in gCO2eq/km)
for each vehicle type. The rates for thermal vehicles are based on our manufacturer analysis,
while the rates for electric vehicles are based on the French average of 90gCO2eq/kWh for elec-
tricity production1.

Finally, Table 1 shows the values for a prototypical cargo-bike (Be) based on current rental of-
fers in France and typical consumption rates.

1https://www.rte-france.com/eco2mix
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Table 1: Operator model

Vehicle type St Mt Lt Se Me Le Be
Size S M L S M L S
Propulsion T T T E E E E
Capacity 33 50 100 33 50 100 14
Fuel consumption 
[L/100km]

5 6 8 - - - -

Electricity consumption 
[Wh/km]

- - - 160 200 300 42

Unit cost 
[EUR/month]

210 260 370 260 400 800 160

Distance cost* 
[EUR/100km]

304.5.0
0

377.00 522.00 14.00 18.00 27.00 3.80

Emissions** 
[gCO2eq/km]

130 160 215 14.4 18 27 3.8

Be: Cargo-bike; Size: S – Small, M – Medium, L – Large; Propulsion: T – Thermal, E – Electric;
*Indicative distance costs based on 1.45 EUR/km and 9ct/kWh; **Electric vehicle emissions based on 90gCO2eq/kWh

Operator assignment

To link the demand and the operators, we need to assign an operator to each generated parcel in
the synthetic population. For that, we perform weighted random draws from the set of operators
based on their market shares. Those market shares have been elaborated from gray literature and
a dedicated model. These steps cannot be covered in detail but will be explained in an extended
publication. Table 2 shows the resulting parcels assigned to each operator.

Table 2: Operator statistics

Operator Distribution centers Market share [%] Parcels
La Poste (Colissimo) 72 40.08 6,384
Chronopost 6 14.98 2,430
UPS 2 13.55 2,210
DPD 3 9.94 1,632
DHL 8 8.95 1,477
GLS 2 6.93 1,169
Colis privé 2 5.36 917
Fedex 9 0.21 33
Total 104 100 16,252

Distribution centers

To know from where parcels are dispatched, we make use of the SIRENE database2, which lists
all enterprises and their facilities in France, along with their address and the number of employ-
ees. From this database we have extracted all facilities belonging to any of the parcel distribu-
tors listed in Table 2. The resulting distribution centers are shown in Figure 1 and Table 2 indi -
cates the number of centers per operator.

For each parcel, we select the distribution center of the respective operator that is the closest in
terms of road distance.  These road distances are calculated using a network extracted from

2https://www.sirene.fr
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OpenStreetMap data3 and the osmnx library (Boeing, 2017). The process results in nine distribu-
tion centers out of 104 with more than 300 assigned parcels (Figure 1).

Heterogeneous Vehicle Routing Problem

Based on the inputs above, we define a Heterogeneous Vehicle Routing Problem (HVRP) per
distribution center with the following characteristics:

• The goal is to minimize the overall cost which is the sum of the unit costs and a daily
salary per chosen vehicle and the total distance-based cost of the vehicle trajectories.

• The operator can vary the number of vehicles of each of the seven types (Table 1) and
the individual vehicle routes.

• Vehicles start at the distribution center and must return before the end of the day. Their
total active time cannot exceed a daily duration of 10h. It consists of the travel times be-
tween parcels and depot; service times of 120s at delivery; and service times of 60s per
pick-up.

• Vehicles cannot carry more parcels than their capacity allows. We assume 10 parcels
per m3 in Table 1. We allow multiple tours per vehicle during one day.

For each distribution center, we obtain a distance matrix and a travel time matrix from our ex-
tracted OpenStreetMap network using the osmnx library (Boeing, 2017). Since osmnx calculates
travel times based on the speed limits of the road segments, we further inflate these values using
averaged factors from the TomTom Congestion Index (Cohn et al., 2012) factors of Lyon to ar-
rive at approximately congested travel times.

Finally, we solve the resulting Heterogeneous Vehicle Routing Problems using the open-source
VRP solver VROOM4.

3 RESULTS AND DISCUSSION

We define three individual scenarios:

• Baseline: The scenario is based on our synthetic population for 2022. The prices are
chosen such that they reflect the long-term cost structures of the operators that have
given rise to the distribution schemes that we see today.

• Today: The scenario considers recent increases in energy prices beginning of 2023 with
fuel prices of about 1.90 EUR/L5 and 14 ct/kWh6. It hence shows how the distribution
system could develop in case prices stay at this level in the long term.

• Future: The scenario is a future scenario in which we consider an updated synthetic
population  that  considers  population  growth7 and  a  general  increase  of  parcels  per
capita by a factor of two. We assume that prices have increased by +80% for fuel and
+60% for electricity.

3https://download.geofabrik.de
4https://github.com/VROOM-Project/vroom
5Diesel, France, 09/01/2023, https://www.tolls.eu/fuel-prices
6EUROSTAT, Non-household, S2 2022, https://ec.europa.eu/eurostat/cache/infographs/energy_prices/enprices.html
7Based on INSEE prediction scenarios https://www.insee.fr/fr/information/6536990
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The results are shown in Table 3. For the Baseline case, we obtain  139 thermal vehicles being
used, but only eight electric vehicles and 24 cargo bikes. This reflects today’s reality where
electric vehicles do not have a large share in the transport system. In terms of vehicle sizes,
large vehicles (133) dominate, followed by smaller ones (24) of which the majority are cargo-
bikes. Medium-sized vehicles are rarely used. The total distance driven for last-mile deliveries
is almost 10,000 km per day for thermal vehicles, the distance for electric vehicles and cargo-
bikes is ten times smaller. Only 7% of all parcels are delivered by electric vehicles or cargo-
bikes. In terms of consumption, 780 liters of fuel are needed and 236 kWh of electricity. This
consumption translates into about 2100 kg of CO2 equivalents emitted for the last-mile deliver-
ies during one day which makes 131g per parcel. To calculate the total consumed energy we as-
sume a conversion rate of 10 kWh/L and arrive at a total of 8000 kWh per day with 497 Wh per
parcel.

For the Today scenario with adjusted prices (increase of 30% for fuel and 55% for electricity),
we see a slight shift of electric vehicles from eight to 14. Still, this shift represents a doubling of
the driven distance of electric vehicles and  a doubling in parcels delivered by electric vehicles
while their overall percentage remains low with 7% for electric transporters and 12% for cargo-
bikes. Accordingly, electricity use doubles while fuel consumption drops by 10%. These shifts
lead to a reduction in emissions by 8% in total to 120g per parcel. Total energy use is also re-
duced by 5% while no large shifts in the cost structures can be observed. Despite electricity
prices having increased stronger than fuel prices, the observed shifts can be explained by the
different ratios of capital expenses versus operational expenses between thermal and electric ve-
hicles. The latter have higher vehicle prices with lower per-distance costs. In the Baseline case,
the break-even daily distance at which a single electric vehicle becomes cheaper in total is at
about 34 km, while the point shifts to 26 km in the Today scenario (see Figure 3).

Figure 3: Break-even points for a small electric vehicle

In the Future scenario, both the numbers of thermal and electric vehicles increase because of
the higher demand. However, electric vehicles increase strongly from 8 to 101. In terms of vehi-
cle size especially large vehicles double in count. At the same time the distance for thermal ve -
hicles goes down and the distance for electric vehicles increases tenfold. Interestingly, the total
distance is not doubled, but increases by only 50%, which shows that there are scale effects with
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Table 3: Optimization results

Baseline Today Future
Scenario

Population 2022 2022 2030

Demand factor 1.0 1.0 2.0

Fuel price [EUR/L] 1.45 1.90 3.40

Electricity price [EUR/kWh] 0.09 0.14 0.23

Vehicles by type

Thermic 139 133 164

Electric 8 14 101

Cargo-bike 24 24 21

Vehicles by size

Small (S) 32 33 32

Medium (M) 6 6 8

Large (L) 133 132 246

Distances [km]

Thermic 9,835 8,916 6,185

Electric 1,194 2,294 11,438

Cargo-bike 750 785 861

    Total 11,778 11,995 18,484

Parcels

Thermic 15,001 14,493 21,926

Electric 500 1,009 11,236

Cargo-bike 751 750 761

    Total 16,252 16,252 33,923

Consumption

Fuel [L] 783 710 494

Electricity [kWh] 236 546 3,261

Environment

Emissions [kgCO2eq] 2,127 1,956 1,622

    Per parcel [gCO2eq] 131 120 48

Energy [kWh] 8,071 7,642 8,205

    Per parcel [Wh] 497 470 242

Cost [EUR]

Salaries 23,256 23,256 38,896

Vehicles 2,217 2,302 5,416

Distance 1,159 1,426 2,427

    Total 26,632 26,985 46,740

    Per Parcel 1.64 1.66 1.38
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respect to the transported parcel volumes. While parcels delivered by electric vehicles are rare
Today they make up 50% of all flows in the  Future scenario. In the latter, fuel consumption
goes down by 37% while electricity use increases by a factor of 13 and total used energy by a
factor of 10. On the contrary, total emissions decrease, but only by 24% despite a reduction of
63% per parcel. This effect is due to the generally increased demand. Total costs increase by
75% but not equally on all cost components (67% on salaries, 144% on vehicles, 109% on dis-
tance), which puts a higher influence on operational costs on the overall costs. Per parcel, there
is a margin of 26ct per parcel between the Today and Future scenario.

In all scenarios, we see that cargo-bikes are rarely used because of their limited capacity.

4 CONCLUSION

In this paper we have documented a model on the economic and ecological characteristics of
last-mile parcel deliveries in a city. While the model makes use of a multitude of assumptions,
its main value lies in the comparison of scenarios. In the future, more detailed and distinct sce-
narios should be evaluated. In terms of validation, system-level reference data is not likely to
emerge in the near future. Hence, we are engaging actively in discussing our operational as-
sumptions with domain experts and practitioners to compile a comprehensive list of limitations
and future improvements, which will be detailed in an extended publication on the model.
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SHORT SUMMARY 

Real-Time Information (RTI) systems are a key component of the management process of public 

transport disturbances. Smartphone applications, in particular, are becoming a popular means of 

disseminating information to passengers. Despite the widespread usage of RTI systems, little is 

known on how accurate those systems are, which information they provide, or which disturbances 

are not reported. 

This work proposes a methodological framework and a set of metrics to evaluate a text-based RTI 

system, comparing the alerts sent to passengers with the actual disturbances in the network, de-

scribed by Automatic Vehicle Location data (AVL). A case study is conducted on the RTI system 

of Zurich to evaluate its performance. The results show high precision in providing correct infor-

mation, despite only a small percentage of disturbances are reported. Finally, this work proposes 

recommendations on improving the RTI system analyzed. 

 

Keywords: Real Time Information; Disruptions; Public Transport; AVL data 

1. INTRODUCTION 

Real time information (RTI) on public transport disturbances can significantly improve the travel 

experience of passengers. In a literature review, (Brakewood & Watkins, 2019) show the primary 

positive effects are the decreased waiting time, overall travel time, change in route choice and 

increased satisfaction with the transport system. RTI can be provided to passengers with different 

means, such as: a screen at a bus stop, voice alerts, or mobile applications. (Harmony & Gayah, 

2017) identified that the preferred option for receiving RTI are mobile applications. Nevertheless, 

there is little knowledge on the effectiveness of mobile applications and social media to share RTI 

(Hu et al., 2018; Rahman et al., 2019). 

Most of the works in literature exploits surveys or simulation to study how RTI influences pas-

sengers, in terms of travel behavior, route choice and waiting time (Akhla et al., 2022; Leng & 

Corman, 2020; Paulsen et al., 2021). However, according to (Papangelis et al., 2016), there is 

almost no evidence on RTI requirements for passengers during disruptions. In this sense, they 

recommend the information should be accurate, timely, and directed to passengers’ needs, rather 

than generic.  

Evaluating an RTI system is significantly beneficial for a service provider, to identify the main 

flaws of the system, and its effectiveness compared to other systems. However, despite the 

acknowledged importance of RTI systems, their performance in practice remains poorly under-

stood, including their level of accuracy, which disturbances are notified, and which ones are ig-

nored. In fact, a valuable RTI system should not only notify large disruptions, but also small 

disturbances, which may have a large impact on passengers (Marra & Corman, 2020), if they are 

not correctly informed (Marra & Corman, 2023).  

This work proposes a methodological framework to analyze any text-based RTI system, and a set 

of metrics to evaluate it, in terms of correctness, amount of information provided and timeliness. 
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The core idea behind is the comparison of alerts sent to passengers with Automatic Vehicle Lo-

cation data (AVL), describing all disturbances occurred in the network. The proposed methodol-

ogy can be used to evaluate the performance of an RTI system, quantifying numerically some of 

its strengths and weaknesses. We apply the framework in a case study, the RTI system of Zurich, 

informing passengers on a smartphone application. Finally, we offer suggestions for improving 

the performance of the examined RTI system, which can also be applied to similar systems. 

2. METHODS AND DATA 

We analyze an RTI system, comparing the alerts sent to passengers with the disturbances occurred 

in the network. The comparison shows which disturbances are notified and how accurate is the 

information provided. Figure 1 shows the methodology to analyze the RTI system of Zurich. The 

same framework can be used to study any RTI system, adapting it to the information provided in 

the alert. The data and each step are described in the following sections. 

 
Figure 1: Methodology to analyze Zurich RTI system 

 

Description of the alerts 

We study the RTI system of the public transport network of Zurich, Switzerland, named “VBZ-

alerto”. The system sends automatic alerts (text messages) on a smartphone app, Telegram, de-

scribing disturbances occurred in the city. 

We collected 430 alerts between 11.11.2022 and 22.02.2023. Each alert is formed by a text and 

an “alert-time”, i.e. the time the alert is sent on the app. The alerts can be classified into three 

types: disturbance alerts (55%), notifying a disturbance; ending alerts (38%), notifying the end of 

a disturbance, previously notified; other alerts (6%), with unique text. 

For a disturbance alert, the text follows the following structure:  

“Lines A, B, C: description of disruption (unstructured) 

dd.mm.yyyy hh:mm – indefinite 

detailed description (unstructured)”. 
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Therefore, each alert contains information on the disturbed lines and the “starting-time”, i.e. the 

time the disruption started according to the operator. The “ending-time” is indefinite for most of 

the alerts (90%). However, an ending alert starting with “Resolved” notifies the “ending-time” of 

a previous disturbance alert. 71% of disturbance alerts have an ending alert. Additional infor-

mation on the disturbance, like stops involved, are not provided in a standard format, and thus 

cannot be derived automatically from the text. 

In the following analyses, we consider only alerts with the ending specified, in the text or by a 

following alert. An alert involving more than one line is considered as a different alert for each 

line. In total, 332 alerts are analysed.  

Actual disturbances 

We identify all disturbances occurred (and not only the ones notified), from long-term AVL data 

of Zurich public transport. The AVL data contain the actual and planned times of each vehicle at 

each stop in Zurich. Therefore, they describe what actually occurred in the network. According 

to (Zhang et al., 2022), AVL data are the preferred source to detect disturbances, compared to 

passenger data, incident logs and social media. 

The AVL data describe the actual disturbances occurred each day, in the form of delays and can-

celled runs. Larger disturbances, such as an entire line cancelled, are described by a set of smaller 

disturbances, such as a series of cancelled runs. Therefore, in this work, we consider as a disturb-

ance any delay >D and any cancelled run. We choose D=8 min, as it is the average headway in 

Zurich. Each disturbance has an “actual-time”, indicating the time the disturbance occurred. For 

each run, we consider only the first disturbance. Namely, if a vehicle is delayed at several stops, 

the first delay is considered as the begin of the disturbance. 

Finally, we also analyze lines not functioning for longer time, i.e. at least N consecutive cancelled 

runs (N=3 in our experiments). 

Matching alerts with actual disturbances 

The quality of an RTI system can be evaluated, comparing the set of alerts sent, with the actual 

disturbances (described in the AVL data). In fact, matching the alerts with the disturbances oc-

curred in the network, allows to identify which disturbances are notified and which not.  

We consider an alert matching a disturbance, if the following conditions hold: 

- The disturbance and the alert concern the same line; 

- The actual-time of the disturbance lies between the starting-time and ending-time of the 

alert, including a buffer B (10 min); 

Each alert may match multiple disturbances, since, for instance, an alert notifying a cancelled line 

for an hour corresponds to multiple cancelled runs.  

Evaluating the RTI system 

We evaluate an RTI system, based on how good the alerts inform about the disturbances. We 

propose a set of metrics to evaluate the correctness, amount of information provided, and timeli-

ness of the RTI system. The correctness can be measured as for a classification model, identifying 

which operations are considered disturbances, and therefore should be alerted. The performance 

can be evaluated as in Table 1. The disturbances matched by an alert are indeed informed to the 

passengers, and represent the True Positives of the system. All disturbances not matched by an 

alert are the False Negatives. Disturbances alerted but not available in the data (i.e. disturbances 

not actually occurred, or errors in the AVL data) are the False Positives. All normal operations 

(without disturbances and not alerted) are the True Negatives. 
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Table 1: Correctness of an alert system 

 
 Alert sent No alert sent 

Disturbance in the AVL 

data 

Actual disturbance notified 

[True Positive] 

Actual disturbance not 

notified [False Negative] 

No disturbance in the 

AVL data 

Disturbance notified but not 

in the data [False Positive] 

Normal operations  

[True Negative] 

 

We measure the performance of the system in terms of precision and recall, as follows: 

 

 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒/ (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒) (1) 

 𝑹𝒆𝒄𝒂𝒍𝒍 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒/ (𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 +  𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒) (2) 

 

Precision and recall measure respectively the correctness of an RTI system and the percentage of 

disturbances notified to passengers. High precision means the alerts provide correct information 

to passengers, while low precision means the alerts provide wrong information. High recall indi-

cates most of the disturbances are alerted, while low recall indicates the passengers are not in-

formed about most of the disturbances. We remark each alert matches multiple disturbances; 

therefore, the precision should be computed as number of correct alerts, while the recall as number 

of alerted disturbances. 

We evaluate the performance also in terms of timeliness of the alerts. For each alert, three time-

related information are available on the start of the disturbance: “alert-time”, when the alert is 

sent; “starting-time”, when the alert says the disturbance started; “actual-time”, when the disturb-

ance actually started, according to the data, i.e. the time of the first disturbance matching the alert. 

We evaluate the timeliness, based on three metrics: 

 

 𝑷𝒓𝒐𝒎𝒑𝒕𝒏𝒆𝒔𝒔 =  𝑎𝑙𝑒𝑟𝑡 𝑡𝑖𝑚𝑒 −  𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (3) 

 𝑳𝒂𝒕𝒆𝒏𝒄𝒚 =  𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒 −  𝑠𝑡𝑎𝑟𝑡𝑖𝑛𝑔 𝑡𝑖𝑚𝑒 (4)  

 𝑹𝒆𝒂𝒄𝒕𝒊𝒗𝒊𝒕𝒚 =   𝑎𝑙𝑒𝑟𝑡 𝑡𝑖𝑚𝑒 −  𝑎𝑐𝑡𝑢𝑎𝑙 𝑡𝑖𝑚𝑒 (5) 

 

The promptness represents how late the alert is sent to passengers, compared to the beginning of 

the disturbance, according to the operator. The latency represents how late the disturbance started, 

compared to when the alert says it started. The reactivity represents how late the alert is sent, 

compared to the actual beginning of the disturbance.  

3. RESULTS AND DISCUSSION 

During the study period, we analyzed 332 alerts, for an average of 2.29 lines per day alerted. In 

contrast, the actual disturbances are much more, with a total of 52097 disturbed runs, and an 

average per day of 401 disturbed runs and 48.5 disturbed lines. This large difference is expected, 

since we are considering both small and large disturbances. 

Regarding the correctness of the RTI system of Zurich, we observed a precision of 98% and a 

recall of 12%. The very high precision shows that the alerts provide correct information, and that 

when an alert is sent to a passenger, the disturbance can be observed in the AVL data and therefore 

occurred in reality (if there are no errors in the AVL data). Only 6 alerts did not find a correspond-

ence in the AVL data, which may be due to a wrong alert-time in the text of the alert, a measure-

ment error in the AVL data, or a disturbance with a delay shorter than 8 min. The low recall shows 

that passengers are informed only of 12% of disturbances (48 runs on average per day). This is 
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detrimental for passengers, since they are not informed of most of disturbances they encounter 

during their trip. However, we remark that it is unrealistic for an RTI system to have a very high 

recall, since it is not possible to inform passengers of all disturbances. In fact, sending just a single 

alert per disturbed line is equal to an average of 48.5 alerts per day, which may be overwhelming 

for a passenger.  

Among the notified disturbances, 91% are cancelled runs, while 9% are delays. Instead, among 

the not notified disturbances, 78% are cancelled runs, while 22% are delays. Therefore, passen-

gers are more informed when a line is not running, than when it is delayed.  

We also analyzed long-term cancelled lines, i.e. when at least 3 consecutive runs are cancelled. 

In this case, the recall is higher (30%), showing long-term cancellations are more frequently no-

tified than single cancellations (12%). 

 

 

 
Figure 2: Promptness, Latency and Reactivity for the observed alerts 

 

Figure 2 shows the timeliness of an RTI system based on three metrics, as defined in Section 3.  

For most of the alerts (73%) the promptness is below 10 minutes. This shows that most of the 

time the operators inform passengers in less than 10 minutes from the beginning of the disturb-

ance, as written in the alert. This time may be adequate for long disturbances, while not for shorter 

ones (e.g. small delays), since informing passengers after 10 or more minutes may not be useful 

for them. For most of the alerts, the latency is between -10 and 10 minutes (77%), showing the 

information provided on the beginning of the disturbance is correct. However, for many alerts the 

latency is large (120+ minutes). This is often the case when the actual start is not known, thus it 

is reported in the early morning (e.g. 06:00). Finally, the reactivity has a wider range, showing 

the alerts are often sent much before or after the actual beginning of the disturbance.  
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The analyses and results shown suggest important recommendations to improve the quality of 

Zurich RTI system, which applies also to similar RTI systems. The disturbances occurring daily 

in the network are too many to be notified to all passengers indiscriminately. Therefore, person-

alized alerts are recommended to inform about all occurred disturbances (increasing the recall), 

without overwhelming the passengers with too many alerts. The Zurich RTI system provides cor-

rect information, in terms of disturbed line and time, for most of the alerts. However, further 

information on the involved stops, vehicles or type of disturbance are not always provided. This 

makes unclear to passengers if the disturbance is affecting them (maybe a passenger is at a non-

disturbed stop). In this sense, enhancing the information quality can improve the passenger’s re-

action to disturbances and the overall travel experience. From the analysis of timeliness, we iden-

tified that the RTI system provides timely and accurate information on the starting time of a dis-

turbance. However, the gap between the beginning of a disturbance and the notification to pas-

sengers can be reduced, especially for small disturbances, whose notification should be faster to 

be effective. 

4. CONCLUSIONS 

RTI systems are widely acknowledged as key contributors to passengers’ travel experience, in 

case of public transport disturbances. Despite their recognized value, little research has investi-

gated how to evaluate an RSI system, how accurate is the information provided and which dis-

turbances are (or not) notified. This work answers these questions proposing a methodology to 

evaluate a text-based RTI system. The core idea is the comparison of alerts with AVL data, to 

identify which disturbances are notified to passengers and which not. Afterwards, a set of metrics 

is defined to assess the correctness and timeliness of the system. These metrics help to identify 

the drawbacks of an RTI system and the directions of improvement. We applied the proposed 

methods in a real test case in Zurich. The results identify that the alerts are highly precise and 

punctual, but they cover only a small fraction (12%) of all disturbances in the network. 

For future work, the analyses can be extended in several directions. The disturbances can be di-

vided into different categories (e.g. small delays, large disruptions). Analyzing how frequently 

those categories are notified may highlight which disturbances are prioritized and which are dis-

missed. Furthermore, the importance of different alerts can be estimated based on the effects of 

the disturbance on passengers, or the travel time saved thanks to the alert. 

Finally, we remark this is an on-going study, and the dataset is increasing every day. Therefore, 

in the future we plan to study a much larger dataset, allowing more detailed analyses. 
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Short summary

Bus Rapid Transit (BRT) systems can be of great value to attract passengers towards public
transport, as they offer an attractive service at relatively low investment costs. Often, BRT lines
are created by giving the bus a dedicated right of way along segments of an existing bus line. This
paper focuses on quantifying the trade-off between the number of attracted passengers and the
available investment budget when upgrading a line. Motivated by the construction of a new BRT
line around Copenhagen, we consider multiple municipalities that invest in the line. We additionally
allow restrictions on the number of connected components to be upgraded to enforce connectedness.
We suggest two passenger responses to determine the number of attracted passengers and propose
an ε-constraint based algorithm to enumerate all non-dominated points. Moreover, we perform an
extensive experimental evaluation on artificial instances and a case study for the BRT line around
Copenhagen.
Keywords: Bus Rapid Transit, Network Design, Operations Research Applications, Public Trans-
port

1 Introduction

Increasing the modal share of public transport is seen as one of the paths to reducing greenhouse
gas emissions, even when considering the electrification of private cars (Messerli et al., 2019).
Bus Rapid Transit (BRT) systems can contribute to this goal, as BRT lines provide a fast and
reliable service to passengers due to having a dedicated right of way for buses along a large share
of their route. However, while BRT investment costs are lower than for rail-based alternatives,
these investments are still substantial for local authorities both in terms of cost and usage of city
space that cannot be used for other purposes. Hence, careful planning is needed to decide which
segments of the existing line should be upgraded to a BRT standard.
In this paper, we focus on quantifying the trade-off between the number of attracted passengers
and the investment budget by determining the optimal sets of segment upgrades. Motivated by a
new BRT line being built in the Greater Copenhagen area, we consider a problem setting in which
multiple municipalities are responsible for different segments of the line and each municipality has a
budget limit. To prevent frequent switching between upgraded and non-upgraded segments due to
fragmented investments, which could reduce reliability and thus deter passengers, we additionally
allow restricting the number of upgraded connected components on the line. We refer to this
problem as the BRT investment problem.
The BRT investment problem relates to the well-studied network design problem for public trans-
port (Laporte et al., 2000; Laporte & Mesa, 2019). While the network design problem generally
focuses on constructing a network from scratch, numerous papers also look at the upgrading of
existing public transport networks. Particularly relevant for us are those papers looking at the
allocation of dedicated bus lines within existing transport networks, many of which focus on the
trade-off between the benefits for public transport passengers and the congestion on the road net-
work (Khoo et al., 2014; Bayrak & Guler, 2018; Tsitsokas et al., 2021). Another addition to the
standard network design problem that is relevant for our application in the Greater Copenhagen
region is the inclusion of multiple investing parties, which was studied by Wang & Zhang (2017)
within a game-theoretical setting. Moreover, the underlying mathematical structure of the BRT
investment problem is similar to the more general network improvement problem, which consists
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of choosing edges in a network to be upgraded while minimizing costs or satisfying a budget con-
straint (Krumke et al., 1998; Zhang et al., 2004; Murawski & Church, 2009). Compared to existing
literature, our work distinguishes itself by studying the combination of a trade-off between the
number of attracted passengers and the investment budget, the inclusion of multiple investing
parties, and the inclusion of constraints ensuring connectedness of the upgraded segments.
This paper builds on the work of our earlier conference paper (Hoogervorst et al., 2022), in which
we looked at the single-objective problem of upgrading bus line segments under a budget constraint
and without a constraint on the number of upgraded components. In this paper, we instead propose
a new bi-objective mixed-integer programming model to solve the BRT investment problem that
allows us to construct the Pareto curve between the total investment budget and the number
of attracted passengers. We do so under two possible passenger responses, one corresponding
to a linear relation and the other to a threshold relation between segment upgrades and the
attracted share of passengers. We show how the set of all non-dominated points can be found
under these passenger responses and test our proposed algorithm in a numerical study for both
artificial instances and a case study for the BRT line in Greater Copenhagen.

2 Methodology

In this section, we first formally define the problem and afterwards describe the used solution
methods.

Problem Definition

We consider an existing bus line given by a linear graph (V,E), where V = {1, . . . , n} for n ∈ N≥1
denotes the set of stations and E =

{
ei = {i, i + 1} : i ∈ {1, . . . , n − 1}

}
the set of segments

between the stations. For each edge e ∈ E, we know the cost ce ∈ R>0 for upgrading the edge as
well as the improvement, i.e., improvement in travel time, ue ∈ R>0 that is realized when the edge
is upgraded. Moreover, let D ⊆ {(i, j) : i, j ∈ V, i < j} be the set of origin-destination (OD) pairs
for the line, where OD-pair d = (i, j) ∈ D has the unique path Wd = {ek : k ∈ {i, i+ 1, . . . , j− 1}}
along the line. For each OD-pair d ∈ D, we additionally know the number of potential passengers
ad that are attracted when all edges in the path Wd are upgraded.
The set of municipalities that are investing in the BRT line is given by M . For each municipality,
we know the set of consecutive edges Em ⊆ E that lie within the municipality. We will assume
that these sets of edges of the different municipalities are pairwise disjoint, i.e., Wk ∩Wl = ∅ for
k, l ∈ M,k 6= l. Moreover, we know the budget share bm that is allocated to each municipality,
i.e., each municipality gets budget bmB when considering some total budget B. Lastly, to prevent
buses from switching too often between upgraded and non-upgraded ones, we enforce a maximum
number of BRT components of Z.
While the number of potential passengers attracted is given for each OD-pair d ∈ D when all edges
in Wd are upgraded, it is beforehand unclear how passengers react to partial upgrading of the
edges in Wd. We consider two different passenger responses pd(F ) to a set of upgrades F ⊆ E:

• The Linear response to upgrades

pd(F ) :=

∑
e∈F∩Wd

ue∑
e′∈Wd

ue′
· ad,

in which the number of passengers scales linearly with the amount of improvement realized.

• The MinImprov response to upgrades

pd(F ) :=

{
ad if Ld ≤

∑
e∈F∩Wd

ue,

0 otherwise,

in which all the potential passengers are only attracted when a minimum improvement of
Ld is achieved.

Note that the MinImprov response resembles a shortest path based route and mode choice, where
passengers only switch to the BRT line in case the upgrade is large enough to make it their option
with the shortest travel time.
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The BRT investment problem then becomes to find all the non-dominated solutions (F,B), with
F the set of upgraded edges and B the total investment budget, that solve:

max
∑
d∈D

pd(F ) (1)

min B (2)

s.t.
∑

e∈Em∩F
ce ≤ bmB m ∈M, (3)

G[F ] has at most Z connected components, (4)
F ⊆ E, (5)
B ∈ R. (6)

The first objective (1) maximizes the number of attracted passengers, while the second objective (2)
minimizes the investment budget. Constraints (3) enforce the budget limit for each municipality.
Moreover, constraints (4) enforce the maximum number of BRT components. Here, G[F ] is the
graph induced by the set of edges F , i.e., the graph obtained after deleting all edges from G that
are not contained in F .

Solution Methodology

Formulation (1) – (6) can be transformed into a bi-objective mixed-integer linear programming
(MILP) model through introducing variables for all e ∈ E that depict if a segment is upgraded
and, in the case of the MinImprov response, variables yd for all d ∈ D that depict if the minimum
improvement is realized for an OD-pair. For example, this leads to the following formulation for
the MinImprov objective:

max
∑
d∈D

adyd (7)

min B (8)

s.t. Ldyd ≤
∑
e∈Wd

uexe d ∈ D, (9)

∑
e∈Em

cexe ≤ bmB m ∈M, (10)

xei − xei+1 ≤ zi, i ∈ {1, . . . , n− 2}, (11)
xei+1 − xei ≤ zi, i ∈ {1, . . . , n− 2}, (12)

xe1 +

n−2∑
i=1

zi + xen−1
≤ 2Z, (13)

xe ∈ {0, 1} e ∈ E, (14)
zi ∈ {0, 1} i ∈ {1, . . . , n− 2}, (15)
yd ∈ {0, 1} d ∈ D, (16)
B ∈ R. (17)

The objectives (7) and (8) maximize the number of attracted passengers and minimize the invest-
ment budget, respectively. Constraints (9) determine if the minimum improvement for an OD-pair
is realized. The budget limit is enforced for each municipality by constraints (10). Moreover,
constraints (11) – (13) enforce the maximum number of BRT components through counting the
number of switches on the line between upgraded and non-upgraded segments. A bi-objective
MILP model can be obtained for the Linear passenger response in a similar way.
We use the ε-constraint method to find the set of non-dominated solutions, i.e., solutions on the
Pareto curve, for the proposed bi-objective programming problems. The used algorithm is given in
Algorithm 1, which is an adaptation of the algorithm proposed by Bérubé et al. (2009). The idea
of the algorithm is to iteratively compute all non-dominated points by solving the single-objective
version of the BRT investment problem for a fixed total budget B and to decrease B in each step
by a value that is small enough not to cut-off any non-dominated solution. In particular, we can
prove that this algorithm generates the set of all non-dominated points on the Pareto curve.
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Algorithm 1 Computing the non-dominated points for the BRT investment problem
1: Input: instance I of the BRT investment problem.
2: Output: set Γ of all non-dominated points.
3: As start values set
4: Γ← ∅,
5: B ← max

m∈M
{ 1
bm
· ∑
e∈Em

ce},

6: v∗ ← max
m∈M

{ 1
bm
· ∑
e∈Em

ce},

7: p∗ ←∑
d∈D ad.

8: while B ≥ 0 do
9: Solve instance I with budget B. Let F be an optimal solution, p̄ be the optimal

objective value.
10: Compute the minimum budget v̄ such that F remains feasible.
11: Compute step width δ.
12: if p̄ < p∗ then
13: Set Γ← Γ ∪ {(p∗, v∗)}.
14: Set p∗ ← p̄.
15: end if
16: Set v∗ ← v̄.
17: Set B ← v̄ − δ.
18: end while
19: Set Γ← Γ ∪ {(p∗, v∗)}.
20: return Γ

3 Results and discussion

We perform computational experiments for both a set of artificial instances, based on those in-
troduced in Hoogervorst et al. (2022), and on instances from the proposed BRT line in Greater
Copenhagen that motivated our study. The artificial instances differ with respect to the passenger
demand over the OD-pairs and the upgrade costs of the segments. The instances for the Greater
Copenhagen BRT line are instead based on five proposed line alternatives for the BRT, depicted
in Figure 1, and consider different ways of distributing the total budget over the municipalities.

Results Artificial Instances

The obtained Pareto plots for the artificial instances are given in Figure 2 for the setting of
a single municipality that can invest in all edges. The different columns in the figure indicate
the different passenger demand distributions, where each OD-pair has equal demand (EVEN ),
passengers mostly travel to the closest large station (CENTER), and passengers mainly travel
between the two end-stations (END), respectively. The rows instead indicate the different cost
patterns, where all segments have equal upgrade cost (UNIT ), edges towards the middle are most
expensive to upgrade (MIDDLE ), and edges towards the ends are most expensive to upgrade
(ENDS ), respectively.
The Pareto plots in Figure 2 show that there is a noticeably different trade-off between attracted
passengers and investment budget for the two passenger responses. For passenger response Linear,
we obtain a mostly concave shape for all demand and cost patterns, where the first investments
generate the largest number of new passengers. Instead, the shape of the Pareto curves is more
variable over the demand and cost patterns for the the MinImprov response. In particular, we can
see a clear jump in the Pareto plots for the MinImprov response for the END demand pattern,
which can be explained by the minimum improvement threshold that needs to be reached for
attracting the large number of passengers traveling over the whole line in this demand pattern.
The Pareto plots also allow us to obtain insight into the effect of restricting the number of connected
components. Restricting the BRT line to consist of a single component leads to a clear reduction
in the number of passengers attracted, especially for the CENTER and END demand patterns.
The reduction is significantly smaller when allowing at least two components, where especially the
Pareto plots for allowing three components lie close to the ones where no restriction on the number
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Figure 1: Route alternatives for a new BRT line in Greater Copenhagen. Adapted from
Vejdirektoratet et al. (2022).

of components is enforced.

Results BRT Line Greater Copenhagen

Pareto plots for the instances based on the Greater Copenhagen BRT line are given in Figure 3.
To evaluate the impact of multiple investing parties, these Pareto plots have been split into the
case with multiple investing municipalities (MIM ) and a case with a single investing party (SOC )
that can spend the whole investment budget B. For the MIM case, the total budget is split both
according to the number of passengers in a municipality (pass) and the costs of the edges in a
municipality (cost). Note that no restriction is enforced on the number of BRT components.
Figure 3 shows that there is not a universal ordering of the line alternatives but that the best
alternative depends on the investment level. For the SOC case, line alternatives 4 and 5, e.g., lead
to the highest number of passengers for higher investment levels under both passenger responses.
On the other hand, line alternatives 1 and 2 perform well for low investment levels, in particular
for the MinImprov response. When comparing the SOC and MIM cases, it can additionally be
seen that the introduction of a budget per municipality leads to a clear reduction in the number
of attracted passengers. This reduction seems to be strongest when passengers behave according
to the MinImprov response, for which we again see a more convex shape of the Pareto curve
when moving to the MIM case. Lastly, a comparison between the two budget assignments shows
that the cost budget distribution often seems to lead to the highest number of passengers for high
investment levels, while pass often performs well for lower investment level.

4 Conclusions

In this paper, we studied the BRT investment problem, which is focused on finding the trade-off
between attracted passengers and investment budget when upgrading an existing bus line to a
BRT line. We formulated the problem formally and suggested an ε-constraint based algorithm
to enumerate the full set of non-dominated points. The algorithm was tested on both artificial
instances and instances coming from a BRT line case study in Greater Copenhagen. Our artificial
results give insight into the trade-off between the number of passengers and investment budget for
different instance settings and show that the trade-off clearly depends on the assumed passenger
response to upgrades. Moreover, they show that especially the limitation to a single BRT com-
ponent leads to fewer passengers, while the impact is significantly lower if more components are
allowed. Our results for the Greater Copenhagen case study show how the best line alternative can
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Figure 2: Non-dominated points for the Linear (red) and MinImprov (blue) passenger
response. Solid lines represent the case Z = ∞, dashed lines Z = 3, dashed-dotted lines
Z = 2 and dotted lines Z = 1. Attracted passengers and total investment are given as a
percentage of the total number of potential passengers and costs for upgrading all segments,
respectively.
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(a) SOC: Linear (b) SOC: MinImprov

(c) MIM: Linear (d) MIM: MinImprov

Figure 3: Comparing investment costs and attracted passengers for the different route
alternatives for Z =∞.
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differ per investment level and show the impact that having multiple investing municipalities has
on the number of attracted passengers. The latter is shown to depend on the passenger response,
where the impact is strongest in the case of the threshold-based passenger response MinImprov.
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Short summary

Carpooling is known to have lower CO2 emissions compared to driving individually. One of the
limitations of carpooling is that matched drivers and passengers need to have similar itineraries,
or their generalized costs will be high. By allowing a single transfer at a designated transfer hub,
their itineraries need to be only partially similar. We allow for transfers within the carpooling
system and between carpooling and public transport. Thereby, we include travel time uncertainty
to evaluate its effect on carpooling with transfers. We model the ride-matching problem with
transfers and travel time uncertainty as a two-stage stochastic programming problem. The results
indicate that a single transfer hub can already reduce the average generalized cost of passengers by
15%. When travel times are uncertain, commuters tend to find a match that performs relatively
well in every traffic situation, rather than one that performs well for only one scenario.
Keywords: Carpooling, Ride-Matching, Ride-Sharing, Transfers, Uncertain Travel Time

1 Introduction

Transport accounts for a large share of global CO2 emissions. According to IEA (2022) cars and
buses for passenger transport constitute 45.1% of transport emissions, including freight transport.
Statistics gathered by the Center for Sustainable Systems, University of Michigan (2021) show
that in 2019 the average car occupancy in the United States was 1.5 and in 2017 24% of the U.S.
households had 3 or more vehicles. Carpooling as an alternative to traveling alone by car is known
to reduce CO2 emissions directly and a well-functioning carpooling system is expected to reduce
car ownership in the long term.

One of the main limitations of direct carpooling is that a pairing of drivers and passengers needs
to be found with similar itineraries (in space and time). By allowing transfers, a larger set of
potential matches is available for drivers and passengers since the itineraries only need to be par-
tially similar, as they spend only a part of their trip together. Thereby, passengers are allowed to
transfer to and from public transport. A graphic illustration is displayed in Figure 1. Carpooling
or ride-matching models with transfers have been considered before by, among others, Herbawi &
Weber (2012); Masoud & Jayakrishnan (2017); Huang et al. (2018); Lu et al. (2020).

Despite their benefit, transfers may impose additional difficulties when travel time is uncertain.
Passengers and drivers may carry on their first-leg delays to the second leg, thereby influencing
their match, or they may fully miss their connection. In the presence of uncertainty, transfers can
make carpooling with transfers less appealing due to their effect on tardiness and uncomfortable
and unanticipated waiting times. Long et al. (2018) consider a bi-objective ride-sharing-matching
model under travel-time uncertainty. They consider delay and schedule delay penalties that may
change according to this uncertainty.

We consider a matching framework for carpooling with transfers and uncertainty in travel time.
We allow for transfers within the carpooling system and between carpooling and public transport.
By considering uncertainty in travel time, schedule delay penalties of potential matches can de-
pend on this uncertainty, similar to Long et al. (2018). In our problem, potential matches may be
infeasible for some uncertain scenarios which can therefore affect the optimal matching. We model
the matching problem with transfers and public transport as a deterministic integer programming
problem. We extend this model to a two-stage stochastic programming problem where travel time
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uncertainty forms the division between first- and second-stage decisions. Matches on the first leg
of the trip are made under uncertainty, whereas second-leg matches are made afterward when
information on travel time is gathered.

Origin Transfer
point Destination

Figure 1: Graphic illustration of transfers

2 Methodology

We consider a matching problem of carpooling drivers and passengers. Every individual has a
specific value of time, scheduling preferences, and desired arrival time. Unlike ride-hailing services,
drivers are relatively inflexible in the system we consider. Drivers are only willing to perform
pickups at their own origin or at a dedicated transfer hub along their route and are only willing to
perform drop-offs at their own destination or at a dedicated transfer hub along their route. Thereby,
drivers determine the departure time only based on their own schedule delay preferences and ignore
those of the passengers. The reason for this is that in a complex system where drivers take multiple
passengers and passengers take multiple drivers, coordinating jointly optimal departure times can
be extremely difficult both theoretically and in practice. Contrary to the common carpooling
approach where passengers spend their full trip with a single driver, we allow passengers to transfer
at designated transfer hubs. These transfer hubs have connections to public transport services and
allow for transfers between two carpooling drivers. We only allow one transfer to limit the in-
comfort of transfers and include the inconvenience of transferring and waiting in the generalized
cost formulation.

Determinisitic Formulation

The deterministic matching approach is based on a set of predefined passenger paths. Let I be
the set of passengers, J the set of drivers, and H the set of transfer hubs. Given that the possible
number of matches for passengers is polynomial, we can generate all possible paths in advance. We
let the drivers set the departure times, such that the costs of passenger paths are independent of
each other. Then we only need to consider that drivers may take multiple passengers at the same
time, but only on the same route, and that they can pick up new passengers at the transfer point.

Every individual has an origin oi, a destination di and a desired arrival time t∗i . Let K be the set
of passenger paths and let eik = 1 if passenger path k corresponds to passenger i, and 0 otherwise.
The cost of passenger path k is denoted by ck, which only contains the cost for passengers. By
definition, drivers do not incur any scheduling delay costs nor make a detour. Therefore, we as-
sume they are fully compensated for the inconvenience of sharing their car and their costs are not
included in the objective function. Let decision variable xk = 1 if passenger path k is chosen and
0 otherwise. Let qj be the capacity of driver j, that is, the number of passengers driver j is able
to transport at the same time. We distinguish between the following three kinds of trips:

• Direct trip: a0jk = 1 if driver j contributes to passenger path k through a direct trip.
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• First leg of indirect trip: a1hjk = 1 if driver j contributes to passenger path k through a
first-leg trip to transfer hub h.

• Second leg of indirect trip: a2hjk = 1 if driver j contributes to passenger path k through a
second-leg trip from transfer hub h.

We use decision variable yjh to define through which transfer hub driver j is going. This allows to
formulate the deterministic matching problem as follows:

(P1) minimize
∑
k∈K

ckxk (1a)∑
k∈K

eikxk = 1 ∀i ∈ I (1b)

∑
k∈K

a0jkxk ≤ qj

(
1−

∑
h∈H

yjh

)
∀j ∈ J (1c)∑

k∈K

a1hjkxk ≤ qjyjh ∀j ∈ J, h ∈ H (1d)∑
k∈K

a2hjkxk ≤ qjyjh ∀j ∈ J, h ∈ H (1e)∑
h∈H

yjh ≤ 1 ∀j ∈ J (1f)

xk ∈ B ∀k ∈ K (1g)
yjh ∈ B ∀j ∈ J, h ∈ H (1h)

The objective (1a) is to minimize the cost of all matches. Every passenger needs to be matched
to exactly one driver, which is enforced by Constraints (1b). Feasibility of the solution from the
perspective of a driver is enforced through Constraints (1c) - (1e). The feasibility of the solution
from the perspective of a passenger is enforced directly on the set of paths K. That is, the set K
only contains paths that are feasible for a passenger. On every leg, a driver j ∈ J may have at most
qj passengers in their car, which is enforced jointly by Constraints (1c), (1d) and (1e). A driver
may either serve passengers directly from their origin to their destination or through a transfer
point, but not both. Constraints (1f) ensure that a driver only makes a stop at one transfer point.

In the remainder of this section, we discuss in detail the three types of paths that we consider
and the corresponding parameter values in P1. For this, we let α be the value of time spent in a
car, β the penalty for every unit of time an individual is early, and γ the penalty for every unit
of time an individual is late. Waiting time is penalized by αwait and the value of time spent in
public transport is defined as αpt. Travel time between o and d is defined as tt(o, d). For the sake
of notation, these parameters are all homogeneous, but the formulation allows for heterogeneous
parameter values.

Public Transport Paths
Every passenger i ∈ I has the option to take public transport instead of carpooling. Public trans-
port has a fixed cost per unit of time such that ck = αpttt(oi, di).

Direct Carpool Paths
For every passenger i ∈ I, a direct match can be found with a driver j ∈ J if oi = oj and di = dj .
As the driver selects the departure time to minimize her own cost, the arrival time at the final
destination is equal to the desired arrival time of the driver, possibly imposing schedule delay costs
on the passenger. For a match between i ∈ I and j ∈ J , eik = 1, a0jk = 1 and all other parameters
are equal to 0. The cost of this direct match are as follows:

ck = αtt(oi, di) + β(t∗i − t∗j )
+ + γ(t∗j − t∗i )

+ (2)

Indirect Carpool Paths
For the sake of notation, we define t∗j (h) as the desired arrival time of driver j at transfer hub h if
he travels through that hub. This is simply computed as t∗j (h) = t∗j − tt(h, dj).

We first consider the path where the passenger takes public transport on one of the two legs.
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For a path where only the first leg is a carpooling leg, if passenger i ∈ I and driver j ∈ J are
matched with a transfer at hub h ∈ H, they must share their origin oi = oj and hub h must be on
the path of driver j. For a path where only the second leg is a carpooling leg, if passenger i ∈ I
and driver j ∈ J are matched with a transfer at hub h ∈ H, they must share their destination
di = dj and hub h must be on the path of driver j. Given the fixed cost of public transport and
the fact that we do not consider a schedule for public transport, the cost for first-leg or second-leg
carpooling are highly similar and given as follows:

ck = αpttt(h, di) + αtt(oi, h) + β[t∗i − t∗j (h)− tt(h, di)]
+ + γ[t∗j (h) + tt(h, di)− t∗i ]

+ (3)

ck = αpttt(oi, h) + αtt(h, di) + β[t∗i − t∗j (h)− tt(h, di)]
+ + γ[t∗j (h) + tt(h, di)− t∗i ]

+ (4)

For paths that consist of two carpooling legs, we consider a passenger i ∈ I and two drivers
j1, j2 ∈ J where j1 takes i on the first leg and j2 takes i on the second leg with a transfer at
transfer hub h. Similar to before, this is only feasible if oi = oj1 , di = dj2 and h is both on the
path of j1 and j2. Thereby, t∗j1(h) ≤ t∗j2(h) to ensure that the passenger is dropped off at the
transfer hub before the scheduled pickup. The cost for the passenger is then defined as follows:

ck = α[tt(oi, h)+tt(h, di)]+αwait[t∗j2(h)−t∗j1(h)]+β[t∗i −t∗j2(h)−tt(h, di)]
++γ[t∗j2(h)+tt(h, di)−t∗i ]

+

(5)

Stochastic Formulation

To allow for uncertainty in travel times, we adapt our formulation to a two-stage stochastic pro-
gramming problem. The matching is determined a-priori but may be adapted based on the observed
state of the system (i.e. the travel times). The first leg of every driver and passenger is fixed and
cannot be altered after observing the state. This can be seen as a contract between the driver and
the passenger. The second leg, however, may be changed after observing the state of the system.
We assume the state is observed after the first leg has been fixed (i.e., the contract has been ne-
gotiated) but before the second leg commenced. With modern technologies, commuters are aware
of traffic conditions during or shortly before their trip. Let Ω be the uncertainty set and ω ∈ Ω a
realization of the uncertain travel times. We also refer to such a realization of the uncertain travel
times as a scenario.

All variables and parameters are altered to be dependent on the scenario ω. This means that
in stead of xk we use xk(ω) and in stead of yjh we use yjh(ω). In addition to this, the cost of path
k also depends on the scenario as it influences travel time and may even make paths infeasible.
Therefore, we change ck to ck(ω), where ck(ω) = ∞ if it path k is infeasible for scenario ω. This
may happen, for example, when the passenger arrives at the transfer point after their driver has
already departed because of a delay. We denote p(ω) the probability of scenario ω occuring, such
that p(ω) ≥ 0,

∑
ω∈Ω p(ω) = 1.

We enforce that all first-stage decisions are the same for all scenarios. Specifically, if driver j
is involved in path k for scenario ω that is a direct match from origin to destination, he must
commit to the same direct path in any other scenario. Therefore, as direct paths only have one
leg, the chosen paths are identical for every scenario and are used to minimize the expected cost.
This is enforced through

a0jkxk(ω) = a0jkxk(ω
′) ∀j ∈ J, k ∈ K,ω, ω′ ∈ Ω (6)

For an indirect path, only the first leg is fixed. In this case, the full path need not be the same,
as long as the same driver goes to the same hub in both scenarios. In addition to this, we impose
that both paths need to correspond to the same passenger. To enforce this, we use the following
set of constraints. By enforcing the matched driver-passenger pair as well as the hub at which the
passenger is dropped to be equal across scenarios, we guarantee that first-leg matches are fixed in
advance.

∑
k∈K

eika
1h
jkxk(ω) =

∑
k∈K

eika
1h
jkxk(ω

′) ∀i ∈ I, j ∈ J, h ∈ H,ω, ω′ ∈ Ω (7)

The full formulation of the stochastic programming problem, to which we refer as P2, is given as
follows:
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(P2) minimize
∑
ω∈Ω

∑
k∈K

p(ω)ck(ω)xk(ω) (8a)∑
k∈K

eikxk(ω) = 1 ∀i ∈ I, ω ∈ Ω (8b)

∑
k∈K

a0jkxk(ω) ≤ qj

(
1−

∑
h∈H

yjh(ω)

)
∀j ∈ J, ω ∈ Ω (8c)∑

k∈K

a1hjkxk(ω) ≤ qjyjh(ω) ∀j ∈ J, h ∈ H,ω ∈ Ω (8d)∑
k∈K

a2hjkxk(ω) ≤ qjyjh(ω) ∀j ∈ J, h ∈ H,ω ∈ Ω (8e)∑
h∈H

yjh(ω) ≤ 1 ∀j ∈ J, ω ∈ Ω (8f)

a0jkxk(ω) = a0jkxk(ω
′) ∀j ∈ J, k ∈ K,ω, ω′ ∈ Ω (8g)∑

k∈K

eika
1h
jkxk(ω) =

∑
k∈K

eika
1h
jkxk(ω

′) ∀i ∈ I, j ∈ J, h ∈ H,ω, ω′ ∈ Ω (8h)

xk ∈ B ∀k ∈ K (8i)
yjh ∈ B ∀j ∈ J, h ∈ H (8j)

The Objective (8a) is to minimize the expected costs, which is a linear function weighted by the
probability of each scenario occurring. Constraints (8b) to (8f) are the same as in (P1), but
extended them with the scenario dependency ω. Constraints (8g) ensure that the same direct
paths are chosen for every scenario. Constraints (8h) enforce the first leg of drivers to be the same
on indirect paths and that they carry the same passenger.

3 Results and discussion

We evaluate our model on a circular city consisting of 33 nodes, as depicted in Figure 2. Every
passenger and driver has an origin and destination at one of the 33 nodes. Origins are more likely
to be in the suburbs (the outer rings) whereas destinations are more likely to be in the city center.
Transfer hubs can be at any of the nodes in the network. Drivers can perform a pick-up or a
drop-off at one of the transfer hubs, but only if the hub is on their shortest path. We consider 1000
drivers and 500 passengers. Desired arrival times are drawn from a truncated normal distribution
with a mean at 8:00 and a standard deviation of 1 hour. The distribution is truncated such that
we only allow desired arrival times between 6:30 and 9:30.

The parameter settings are homogeneous among the entire population and are defined as fol-
lows. The value of time spent in a car α is equal to 6.4[$/h]. Earliness and lateness are penalized
with β and γ equal to 3.9[$/h] and 15.21[$/h] respectively. The value of time in public transport
αpt is higher and is set equal to 11.0[$/h]. In addition to this, public transport has a fixed cost of
2.0$ per trip to compensate for waiting times. Waiting time is penalized by αwait which is equal
to 13.5[$/h] such that β < α < αpt < αwait < γ, consistent with the literature.

Figure 2: Circular city with the distribution of origins (left) and destinations (right)
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Influence of transfers on cost and mode choice

We consider the influence transfers make on the average cost per individual in the deterministic
system. The results are displayed in Figure 3 where the left-hand panel displays the modal split
of passengers and the right-hand panel displays the composition of the average cost of passengers.
Clearly, when there are no transfer hubs, the only possible mode choices are direct carpooling and
public transport. By opening transfer hubs, a modal shift to the two modes that use transfers
is observed. Especially the number of passengers carpooling on two separate legs increases. The
reason for this is that by using a transfer, more options exist for matching to someone with the
same destination and a similar desired arrival time, at the cost of waiting at the transfer point.
The number of direct matches may be limited as the origin and destination of the passenger and
driver need to be identical and the desired arrival time needs to be somewhat similar.

By using a single transfer hub in the center of the network, the average cost decreases from
14$ to 12$ (≈ 15%). Increasing the number of transfer hubs allows a further decrease in the
average cost, but not nearly as substantial as for the first hub in the center. When all 9 hubs
are opened, the average cost decreases to 11$ (≈ 22%). We emphasize that carpooling benefits
from economies of scale when the number of commuters increases. The reason for this is that the
matching opportunities increase, which decreases the expected cost of a match.

Modal split of passengers
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Figure 3: Statistics for a varying number of transfer hubs

Distribution of passengers by desired arrival time

We evaluate the distribution of passengers by desired arrival time and the mode they use to com-
mute. We consider the deterministic system with only one hub in the center of the network. The
results are displayed in Figure 4 where the left-hand panel displays the number of passengers us-
ing a mode and the right-hand panel displays the proportion of passengers with a specific desired
arrival time using a mode.

The proportion of passengers using public transport is the highest in the tails. The reason for
this is that the number of potential matches with identical origins and destinations and similar
desired arrival times is low since the number of individuals here is rather low. This effect is more
apparent for passengers with an early desired arrival time. When these passengers match to a
driver, it is highly likely that the desired arrival time of the driver is later than that of the pas-
senger, and therefore the passenger will suffer from lateness. As lateness is penalized heavier than
earliness, the effect is more apparent at the start of the morning commute than it is at the end.
At the peak of the rush hour, the number of carpoolers is the highest. We see a slight skewness
towards later desired arrival times, which follows the same reasoning as stated before.

Stochastic Programming Results

We analyze the results of the stochastic programming problem, using three scenarios (|Ω| = 3),
with all travel times at 100%, 125%, and 150% of the free-flow travel times, respectively. A selec-
tion of 50 passengers is made to display the matching, where a bar represents a match to a driver.
The color of the bar, as well as the index displayed on the bar, identifies the driver. The first bar

6



Number of passengers carpooling

6.5 8 9.5

Time in hours

0

500

1000

1500

2000

2500

3000

3500
Proportion of passengers carpooling

6.5 8 9.5

Time in hours

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Settings:

Public transport

Direct carpool

Carpool with transfer

Transfer between carpool and public transport

Figure 4: Distribution of passengers by desired arrival time and mode

displays a first-leg match, the second bar displays a second-leg match and the full bar represents a
direct match. When no bar is given on a leg, the passenger uses public transport on this leg. The
results are given in Figure 5.

We observe that in line with Constraints (8g) and (8h) the direct matches and first-leg matches
are the same for all scenarios. Approximately 75% of the matches are identical across all three sce-
narios, whereas for the remaining 25% the passenger either changes mode or driver on the second
part of the trip. We compare the result to the wait-and-see benchmark, where Constraints (8g)
and (8h) are relaxed. This is displayed in Figure 6. For the wait-and-see benchmark only 50% of
the matches are identical. The wait-and-see benchmark shows that the higher the travel times (for
scenarios 2 and 3) the fewer matches are optimal. For the recourse problem, however, a middle
ground needs to be found since the matching cannot be fully adapted to the exact traffic situation.
Therefore, we observe slightly fewer matches in scenario 1 for the recourse problem, whereas we
observe significantly more matches for scenario 3 compared to the wait-and-see problem.
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Figure 6: Gantt chart of matching for the wait-and-see benchmark problem.

4 Conclusions

We conclude that transfers can significantly reduce the average costs of commuters. Carpooling
with transfers partially replaces direct carpooling as well as public transport as a mode of transport.
It is especially beneficial for commuters during the peak of the commute, whereas commuters in
the tails are usually better off taking public transport. In the case of stochastic travel times,
we observe a large share of the commuters stick to the same mode and match for each scenario.
However, 25% of the commuters may change their mode or match. We also observe that due to
uncertainty, the number of carpoolers generally decreases.
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Short summary

In this paper, we present a spatial branch and bound algorithm to tackle the continuous pric-
ing problem, where demand is captured by an advanced discrete choice model (DCM). Advanced
DCMs, like mixed logit or latent class models, are capable of modeling demand on the level of
individuals very accurately due to a focus on behavioral realism. The downside of such realistic
models is that it is highly nontrivial to include the resulting demand probabilities into an op-
timization problem, as they usually do not have a convex or even closed-form expression when
decision variables are part of the choice model. To this end, a simulation procedure proposed by
Paneque et al. (2021) is applied to get a formulation as a mixed integer linear program (MILP).
However, due to the large number of variables stemming from the simulation, this MILP is very
hard to solve. We first propose to solve the problem as a non-convex quadratically constrained
quadratic program (QCQP) instead, where total unimodularity guarantees the integrality of the
solution. Isolating all non-convexity into a set of bilinear constraints leads to a formulation as a
non-convex quadratically constrained linear program (QCLP) that proves computationally bene-
ficial for general-purpose solvers. Lastly, we present a spatial branch and bound algorithm that
employs the McCormick envelope to obtain relaxations and makes use of total unimodularity to
generate feasible solutions and thus lower bounds for the maximization fast. We compare the pro-
posed method to the fastest commercially available solver GUROBI, on a parking choice case study
from Ibeas et al. (2014). The results show that the custom spatial branch and bound approach
outspeeds GUROBI by a factor of at least 35x for the MILP formulation and at least 2.5x for the
QCLP in single-price optimization, and a factor of at least 4.5x for the QCQP and 1.3x for the
QCLP when optimizing multiple prices simultaneously. The ratio of the speedup further increases
with the size of the instance.
Keywords: branch and bound, discrete choice, mixed multinomial logit, optimization, pricing,
simulation

1 Introduction

Pricing optimization is essential when pricing decisions need to be made for one or multiple prod-
ucts, particularly when there are cross-effects between their demands (Talluri & Van Ryzin, 2004).
This problem can arise in various areas, including revenue management for airlines, railways, and
hotels, assortment pricing in retail, or product line pricing in consumer goods industries.
While previous research has utilized the price-dependent multinomial logit (MNL) model to op-
timize prices for firms offering multiple products (Dong et al., 2009; Song et al., 2021), advanced
discrete choice models such as mixed logit or latent class models have not been commonly used.
DCMs can capture the heterogeneity of customer preferences and the complex interactions between
product attributes, which are often lost when the demand is aggregated. Furthermore, individual-
level data can be used to identify profitable customer segments and to develop targeted pricing
strategies. However, modeling demand at an individual level requires more data and computational
resources compared to modeling the demand on an aggregate level.
In product assortment (PA) optimization, where a seller must make discrete decisions about the
selection of products and their prices, the mixed multinomial logit (MMNL) has become increas-
ingly popular (see e.g. Feldman et al., 2022). MMNL is regarded as a potent tool that captures the
cross-effects in demand and can approximate any random utility choice model arbitrarily closely
(Train, 2009). Since the PA problem under the MMNL choice model (or any other advanced choice
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model that leads to non-convex probability formulas) is NP-hard (G. Li et al., 2015; Désir et al.,
2015), much work has been focused on deriving upper bounds and efficient approximations, with
the recent exception of Sen et al. (2017) who propose an exact conic MIP approach. Despite its
theoretical and practical relevance, the MMNL model and its incorporation into revenue maxi-
mization have received little attention in the dynamic pricing literature (e.g. Keskin, 2014), with
researchers often sacrificing behavioral realism for tractable (concave) formulations and therefore
considering MNL (Dong et al., 2009; Keller et al., 2014) or nested logit H. Li & Huh (2011) instead.
A general implementation approach for integrating any advanced choice model into an optimization
problem has been proposed in Paneque et al. (2021), where Monte Carlo simulation is used to
generate a deterministic problem at the cost of an increase in complexity since the resulting mixed
integer linear problem (MILP) involves finding the best price over a large number of scenarios,
generated by taking draws from the stochastic components of the formulation. With a sufficiently
large number of draws, the MILP formulation guarantees convergence to globally optimal solutions.
However, since the complexity of the MILP scales exponentially with the number of draws, the
approach can currently only be applied to solving small-scale instances, i.e., with few individuals
and alternatives.
In this work, we extend the MILP approach in Paneque et al. (2021) by first restating it as
a non-convex quadratically constrained quadratic program (QCQP), and then as a non-convex
quadratically constrained linear program (QCLP), for which we develop a spatial branch and
bound algorithm that efficiently solves the problem for large numbers of draws. We compare the
MILP, the QCQP, and QCLP formulations (all solved using the mathematical solver GUROBI) to
our spatial branch and bound approach by application to a parking choice case study by Ibeas et
al. (2014).

2 Methodology

We first present the original MILP formulation of the CPP that results when applying the approach
of Paneque et al. (2021) directly:

MILP formulation

max
p,ω,U,H

1

R

∑
r

∑
n

∑
i

piωinr

s.t.∑
i

ωinr = 1 (µnr)

Hnr =
∑
i

Uinrωinr (ζnr)

Hnr ≥ Uinr (αinr)

Uinr =
∑
k ̸=p

βkxink + βppi + εinr (κinr)

ω ∈ {0, 1}
p, U,H ∈ R

Formulation 1 – CPP as a MILP

Consider a set of n = {1, . . . , N} individu-
als choosing exactly one alternative among
a set of i = {1, . . . , I} alternatives. Assume
that in every scenario r, each individual n
selects the alternative i corresponding to the
maximal utility Uinr. The utility function
depends on K parameters βk which are ex-
ogenous and estimated using an advanced
discrete choice model where all prices were
fixed. These parameters are multiplied by
individual or alternative specific attributes
xink, which are also exogenous, just like the
added error term draws εinr. For the CPP
the price pi of alternative i becomes a deci-
sion variable that is to be optimized in order
to maximize profit. Note that the only as-
sumption we make on the utilities is that

they are linear in the price variables. Denote by ωinr the binary decision variable that indicates
whether individual n chooses alternative i in scenario r. The choice probabilities are then ap-
proximated by Pn(i) ≈ 1

R

∑
r ωinr and are guaranteed to converge to the real probabilities with a

sufficiently large number of scenarios R, see Paneque et al. (2021). The objective function is equal
to the profit and is thus defined as the average number of times that individual n chooses alterna-
tive i over all scenarios r (i.e. its choice probability) multiplied by the alternative’s price pi. The
constraints define the individual choices: Constraints (µnr) guarantee that only one alternative can
be chosen per individual and scenario. Constraints (κinr) model the utility Uinr of each alternative
i for individual n in scenario r. Constraints (ζnr) and constraints (αinr) ensure that the choice
being made corresponds to the one with the highest utility. Note that both the objective and the
constraints ζnr contain the product piωinr, which can be linearized using a big-M approach.
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Continuous reformulation

max
p,ω,U,H

1

R

∑
r

∑
n

∑
i

piωinr

s.t.∑
i

ωinr = 1 (µnr)

Hnr =
∑
i

Uinrωinr (ζnr)

Hnr ≥ Uinr (αinr)

Uinr =
∑
k ̸=p

βkxink + βppi + εinr (κinr)

ω ∈ [0, 1]

p, U,H ∈ R

Formulation 2 – CPP as a QCQP

Our first reformulation (Formulation 2) de-
fines the CPP as a non-convex quadratically
constrained quadratic problem (QCQP),
with a quadratic objective and quadratic
equality constraints, making them non-
convex. The formulation is equivalent to
the MILP in Formulation 1, except that the
variables ωinr are no longer constrained to
be binary and instead are relaxed to be in
the interval [0, 1]. Integrality still holds,
since for any price pi the problem of choos-
ing the alternative with the highest utility
is a knapsack problem, which is totally uni-
modular.

Our second reformulation (Formulation 3)
isolates all non-convexity into a set of bilin-
ear constraints λinr which define the prod-
uct piωinr, turning the problem into a non-
convex quadratically constrained linear pro-
gram (QCLP).

max
p,ω,η,U,H

1

R

∑
r

∑
n

∑
i

ηinr

s.t.∑
i

ωinr = 1 (µnr)

Hnr =
∑
i

(
∑
k ̸=p

βkxink + εinr)ωinr + βpηinr

Hnr ≥ Uinr (αinr)

Uinr =
∑
k ̸=p

βkxink + βppi + εinr (κinr)

ηinr = piωinr (λinr)
ω ∈ [0, 1]

p, η, U,H ∈ R

Formulation 3 – CPP as a QCLP

Spatial Branch and Bound algorithm

We start from the QCLP formulation of the
CPP shown in Formulation 3. We then con-
struct a linear relaxation (Formulation 4) by
replacing the bilinear constraints λinr by a
set of inequalities (λ1

inr to λ4
inr) that define

the McCormick envelope, see McCormick
(1976). This relaxation is a commonly used
device to tackle problems with bilinear con-
straints. For the McCormick envelope, we
need to provide bounds for both variables in
the product piωinr. For ωinr this is straight-
forward, as we can simply set the lower and
upper bound to 0 and 1 respectively, whereas

for the prices pi we have to assume that its possible to define a reasonable range for each price,
pi ∈ [pL

i , p
U
i ], which is usually the case in practice. To go from solving a relaxation to an approxi-

mation of the optimal solution of the original problem, we employ a so-called spatial branch and
bound algorithm: We start by solving the relaxation with the initial bounds p ∈ [pL, pU ]. If it is
infeasible, the original problem is also infeasible and we are done. If it is feasible and the optimal
solution found is also feasible for the original problem, we are done as well. There are multiple ways
to define feasibility for the original problem, one way would be to check if all ω are close enough
to integer values, another is to check how strongly the relaxed bilinear constraints are violated.
If we find an optimal solution for the relaxation that is infeasible for the original, we store the
objective value of that solution as an upper bound for the objective value of all subpolyhedra and
we start the branching: This means that instead of looking at the entire space p ∈ [pL, pU ], we
choose an alternative i and split the domain [pLi , p

U
i ] of pi into two smaller intervals [pLi ,

pL
i +pU

i

2 ] and

[
pL
i +pU

i

2 , pUi ]. Using these two new sets of bounds, we create two new (sub)polyhedra where we solve
the relaxation again and iterate the procedure. After a branching, we always proceed on the branch
which has the highest upper bound on its objective value (this is also called a best-first-search).
Furthermore, after solving each relaxation, we can use the optimal value of the pi variable that we
get from the relaxation to compute an integer solution to the original problem. This can be done
very efficiently as for fixed prices, all individuals and scenarios become completely independent,
and finding the optimal values of the ω variables reduces to assigning 1 to the alternative with the
highest utility and 0 to all others.
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max
p,ω,η,U,H

1

R

∑
r

∑
n

∑
i

ηinr

s.t.∑
i

ωinr = 1 (µnr)

Hnr =
∑
i

(
∑
k ̸=p

βkxink + εinr)ωinr + βpηinr

Hnr ≥ Uinr (αinr)

Uinr =
∑
k ̸=p

βkxink + βppi + εinr (κinr)

ηinr ≥ pLi ωinr (λ1
inr)

ηinr ≥ pUi ωinr + pi − pi
U (λ2

inr)

ηinr ≤ pLi ωinr + pi − pi
L (λ3

inr)

ηinr ≤ pUi ωinr (λ4
inr)

ω ∈ [0, 1]

p, η, U,H ∈ R

Formulation 4 – Linear relaxation of the
CPP using the McCormick envelope

This integer solution is feasible for the orig-
inal problem and thus provides us with a
global lower bound for the branching tree,
meaning we can delete all branches whose
upper bound is less or equal to the best
(highest) known lower bound. If we ever
find a solution during the branching which
is also feasible for the original, we can use it
as a lower bound as well. This process con-
tinues until the highest upper bound umax

from all active branches is at most a certain
tolerance percentage perctol away from the
best lower bound lmax, i.e.:
test.....ss lmax−umax

lmax
· 100 ≤ perctol.

If we deal with more than one price that
we want to optimize, an important deci-
sion we have to make at each branching is
which alternative’s price to branch on. The
traditional approach of spatial branch and
bound is to always select the alternative
i where the interval [pLi , p

U
i ] is the largest

(longest-edge-branching). This is compa-
rable to a strategic exhaustive search. In
our case we utilize a custom branching rule

where we branch along the asset which displays the largest maximum violation of the constraints
ηinr = piωinr. Algorithm 1 provides the pseudo-code for the described procedure. It is worth not-
ing that this branch and bound algorithm will always terminate with a 0% gap in a finite number
of steps since we do not actually need to find the exact optimal price, but rather the bounds for
the price such that the optimal choices are generated. It then follows that, within those sufficiently
optimal bounds, the obtained price will be optimal as well.

Algorithm 1: A spatial Branch & Bound algorithm to solve the CCP
Result: perctol-optimal solution (p∗, ω∗, η∗) for Formulation 3.
Initialization: Set j := 0, ∆j := [pL1 , p

U
1 ]× · · · × [pLJ , p

U
J ], o

∗ := −∞, ôj := ∞,
Ω := {{∆j , ôj}}

while o∗−maxj{ôj}
o∗ · 100 ≤ perctol and Ω ̸= ∅ do

let j := argmax{ôj |{∆j , ôj} ∈ Ω}. Remove {∆j , ôj} from Ω and solve Formulation 4
with bounds ∆j .

if Formulation 4 is feasible then
denote its optimal solution by (pj , ωj , ηj) and its optimal objective value by oj as
well as its integer optimal value ōj .

if ōj > o∗ then
compute ω̄j , η̄j from pj and set o∗ = oj , (p∗, ω∗, η∗) := (pj , ω̄j , η̄j), delete from
Ω all instances {∆j , ôj} where ôj ≤ o∗.

end
if oj > o∗ then

if (pj , ωj , ηj) is feasible for Formulation 3 then
o∗ = oj , (p∗, ω∗, η∗) := (pj , ωj , ηj), delete from Ω all instances {∆j , ôj}
where ôj ≤ o∗.

else
let i = argmax{maxnr |ηinr − piωinr| | i ∈ J} and divide the interval
[pLi , p

U
i ] into two new intervals [pLi ,

pL
i +pU

i

2 ] and [
pL
i +pU

i

2 , pUi ]. Construct
the two new subpolyhedra ∆

′
and ∆

′′
. Define ô

′
= ô

′′
:= oj and augment

Ω = Ω ∪ {∆′
, ô

′} ∪ {∆′′
, ô

′′}.
end

end
end

end
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3 Results and discussion

To test the presented methodology we rely on a case study of a parking services operator, which is
motivated by a published disaggregate demand model for parking choice by Ibeas et al. (2014). The
choice set consists of three services: paid on-street parking (PSP), paid parking in an underground
car park (PUP), and free on-street parking (FSP). Since the latter does not provide any revenue
to the operator, it represents the opt-out option. We assume that all customers must pay the
same price for the same service. The explanatory variables considered in the discrete choice model
estimated by Ibeas et al. (2014) include the following socioeconomic characteristics: trip origin (if
outside town, it affects the utility of free street parking), age of the vehicle (if less than three years
old, it affects the utility of paid underground parking), the income of the driver (if low, it affects
the utility of paid alternatives), area of residency of the driver (if in town, it affects the utility of
paid alternatives). Additionally, the following attributes of the alternatives are considered: access
time to destination, access time to parking and parking fee. For the latter two continuous variables,
the corresponding coefficients are normally distributed in the utility function, making the choice
model a mixed multinomial logit (MMNL). Table 1 illustrates the parameters of the discrete choice
model.

Table 1 – Utility parameters derived from Ibeas et al. (2014)

Parameter Value
ASCFSP 0.0
ASCPSP 32.0
ASCPUP 34.0
Fee (€) ∼ N(−32.328, 14.168)
Fee PSP - low income (€) -10.995
Fee PUP - low income (€) -13.729
Fee PSP - resident (€) -11.440
Fee PUP - resident (€) -10.668
Access time to parking (min) ∼ N(−0.788, 1.06)
Access time to destination (min) -0.612
Age of vehicle (1/0) 4.037
Origin (1/0) -5.762

We run two series of tests: in the first, we fix the price of PSP to be 0.6€ and only optimize
the price of PUP. This reduces the complexity enough to make meaningful comparisons to the
computationally heavy MILP model. We consider a random subset of 100 customers and stepwise
increase the number of random draws from 100 to 1000. For the second series of tests, we optimize
both the price of PSP and PUP, but we only consider a set of 50 customers, with the same range of
random draws. All experiments are performed using GUROBI 10.0.0 (Gurobi Optimization, LLC,
2021) on a 2.6 GHz 6-Core Intel Core i7 processor with 16 GB of RAM, on a single thread and with
a two-hour time limit per instance. Tables 2 and 3 show the solve time with achieved optimality
gap and the objective values with computed prices respectively for optimizing only the price of the
PUP alternative, whereas Tables 4 and 5 depict the same outputs when optimizing PSP and PUP
prices together. It is evident that computing the prices of two competing alternatives that influence
each other’s demands simultaneously is much more computationally challenging than optimizing
a single price only. For optimizing only the PUP price, our algorithm outspeeds the MILP by a
factor of at least 35x, the QCQP by at least 4x, and the QCLP by at least 2.5x, with the ratio
increasing with the number of draws. When optimizing both the PSP and PUP prices, the MILP
solver never terminates but for the QCQP we note a speedup of at least 4.5x and for the QCLP
of at least 1.3x. Again, increasing the number of draws also increases the ratio of the speedup.
For more than 600 draws, the QCLP solver is not able to generate any feasible solutions in the
two-hour time window, whereas our spatial branch and bound approach finds feasible solutions
with an objective value up to 2.5x higher than the one found by the MILP or the QCQP.
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Table 2 – Solve time (seconds) for optimizing PUP price only

MILP QCQP QCLP B&B
N R Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%)

100 100 3360 0 291 0 182 0 95 0
100 200 7200 22.89 1256 0 794 0 398 0
100 300 7200 134.28 3307 0 2584 0 976 0
100 400 7200 128.56 6522 0 4275 0 1593 0
100 500 7200 141.54 7200 0.74 7093 0 2661 0
100 600 7200 118.14 7200 26.19 7200 0.57 3620 0
100 700 7200 128.45 7200 36.83 7200 0.75 5283 0
100 800 7200 113.12 7200 - 7200 5.27 7200 0.37
100 900 7200 142.49 7200 - 7200 - 7200 1.94
100 1000 7200 149.03 7200 - 7200 - 7200 10.89

Table 3 – Objective value and optimal solution for optimizing PUP price only

MILP QCQP QCLP B&B
N R Obj. Price Obj. Price Obj. Price Obj. Price
100 100 54.13 [0.6, 0.66] 54.13 [0.6, 0.66] 54.13 [0.6, 0.66] 54.13 [0.6, 0.66]
100 200 54.54 [0.6, 0.65] 54.6 [0.6, 0.66] 54.6 [0.6, 0.66] 54.6 [0.6, 0.66]
100 300 54.38 [0.6, 0.64] 54.48 [0.6, 0.67] 54.48 [0.6, 0.67] 54.48 [0.6, 0.67]
100 400 54.15 [0.6, 0.63] 54.39 [0.6, 0.66] 54.39 [0.6, 0.66] 54.39 [0.6, 0.67]
100 500 54.27 [0.6, 0.66] 54.23 [0.6, 0.65] 54.29 [0.6, 0.67] 54.29 [0.6, 0.67]
100 600 54.15 [0.6, 0.64] 49.13 [0.6, 0.97] 54.25 [0.6, 0.65] 54.29 [0.6, 0.67]
100 700 54.14 [0.6, 0.63] 49.18 [0.6, 0.97] 54.37 [0.6, 0.65] 54.39 [0.6, 0.66]
100 800 54.32 [0.6, 0.66] - - 53.82 [0.6, 0.61] 54.32 [0.6, 0.65]
100 900 54.43 [0.6, 0.67] - - - - 54.44 [0.6, 0.67]
100 1000 54.42 [0.6, 0.66] - - - - 54.35 [0.6, 0.68]

Table 4 – Solve time (seconds) for optimizing PSP and PUP prices together

MILP QCQP QCLP B&B
N R Time Gap (%) Time Gap (%) Time Gap (%) Time Gap (%)
50 100 7200 33.76 4283 0 1231 0 918 0
50 200 7200 70.03 6719 0 5187 0 3495 0
50 300 7200 125.65 7200 1.03 7200 1.53 7200 0.28
50 400 7200 186.21 7200 9.55 7200 20.7 7200 2.88
50 500 7200 272.78 7200 33.07 7200 40.88 7200 7.7
50 600 7200 379.53 7200 42.8 7200 41.99 7200 10.59
50 700 7200 440.25 7200 260.91 7200 - 7200 16.82
50 800 7200 495.39 7200 260.28 7200 - 7200 22.91
50 900 7200 493.85 7200 260.97 7200 - 7200 25
50 1000 7200 - 7200 260.67 7200 - 7200 29.16
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Table 5 – Objective value and optimal solution for optimizing PSP and PUP
prices together

MILP QCQP QCLP B&B
N R Obj. Price Obj. Price Obj. Price Obj. Price
50 100 27.37 [0.58, 0.72] 27.55 [0.61, 0.7] 27.55 [0.61, 0.7] 27.55 [0.61, 0.7]
50 200 23.92 [0.66, 0.95] 27 [0.55, 0.68] 27 [0.55, 0.68] 26.99 [0.55, 0.68]
50 300 16.76 [1.02, 1.1] 27.12 [0.56, 0.67] 27.09 [0.56, 0.68] 27.12 [0.56, 0.67]
50 400 15.83 [1.01, 1.17] 27.07 [0.59, 0.69] 26.29 [1.09, 0.67] 27.15 [0.56, 0.66]
50 500 12.18 [1.3, 1.34] 26.4 [0.59, 0.8] 26.42 [0.59, 0.8] 27.13 [0.57, 0.68]
50 600 9.45 [1.32, 1.66] 26.36 [0.59, 0.8] 26.37 [0.59, 0.8] 27.23 [0.56, 0.69]
50 700 8.43 [1.33, 1.85] 11.73 [1.2, 1.39] - - 26.87 [0.62, 0.69]
50 800 7.65 [1.76, 1.76] 11.74 [1.2, 1.39] - - 26.37 [0.75, 0.62]
50 900 7.63 [1.74, 1.76] 11.7 [1.2, 1.39] - - 26.36 [0.75, 0.62]
50 1000 - - 11.73 [1.2, 1.39] - - 26.35 [0.75, 0.62]

4 Conclusions

We propose a spatial branch and bound algorithm to tackle the continuous pricing problem, where
demand is captured by an advanced discrete choice model (DCM). The stochasticity in the demand
is dealt with using simulation, which leads to a large MILP formulation that is difficult to solve.
We show that already reformulating the MILP as a non-convex QCQP improves computational
speed significantly, even more so when formulated as a non-convex QCLP. The spatial branch
and bound procedure solves the problem significantly faster GUROBI on the tested instances,
outspeeding the MILP by a factor of at least 35x and the QCLP by at least 2.5x for single price
optimization, and outspeeding the QCQP by a factor of at least 4.5x and the QCLP by at least 1.3x
for optimizing two prices simultaneously. Increasing the size of the instance also increases the ratio
of the speedup. The methodology could be substantially advanced in future research by making
use of the separability of each relaxed subproblem, since the price is the only complicating variable
preventing the problem from being solved for each individual and scenario separately. Thus a
Benders decomposition would be a suitable candidate for further improvement of the method. The
authors would also like to perform a series of comparisons using only open-source software like for
example SCIP and COUENNE, as not every business might be capable of purchasing a license for
GUROBI. Last but not least, the code has not yet been optimized in terms of language or data
structure usage, which could both have a strong impact on the performance.
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SHORT SUMMARY 

Weather impacts several aspects of our daily life, of which the way we travel is one. The relation-

ship between weather phenomena and ridership of trains has not received much attention previ-

ously. The study we present here aims to understand the impact of temperature, wind, and precip-

itation on passenger volumes for commuter trains. To do so we make use of automatic passenger 

count and weather data from over a million unique station stops, spanning two years, in the South-

ern region of Scania in Sweden. Our findings show that changes in the level of precipitation do 

not affect the volume of boarding passengers. Statistically significant effects are found for 

changes in temperature and wind speeds. These effects are most prominent for departures outside 

of peak hours. The results are useful for planning more accurate dwell times and rolling stock 

circulations and can serve as inputs during real-time rescheduling problems and demand model-

ling. 

 

Keywords: Trains, weather, planning, passengers, railway 

1. INTRODUCTION 

The weather has an impact on many aspects of our daily life and the activities we conduct. One 

of these activities is how we travel. Spinney and Millward (2011), for example, found that cold 

weather and precipitation lead to more home-based activities. There is a large body of literature 

focusing on travel behaviour and mode choices in relation to weather conditions. For an extensive 

review, we refer to Böcker et al. (2013). However, studies focusing on the effects of weather on 

rail transport are scarce (Koetse & Rietveld, 2009). The study we present here focuses on changes 

in passenger volumes for commuter trains in relation to weather conditions to help fill this 

knowledge gap. Although not explicitly focusing on travel by railway, some indications of 

changes in passenger demand and weather for public transport can be identified in the literature. 

Strong winds and warmer weather conditions have been found to reduce the use of public 

transport for example. On the other hand, it was found that public transport usage increases under 

cold weather conditions and when precipitation increases (Sabir, 2011). In contrast to this, Cools 

et al. (2010) found that temperature has a lesser effect on travel behaviour than other weather 

conditions such as fog and wind. These studies thus indicate a potential relationship between the 

ridership of commuter trains and weather conditions. 

 

It is relevant to study how different weather phenomena influence the number of people who 

travel by train since passenger demand has several important implications for railway operations 

and scheduling, as well as passenger demand modelling. The expected passenger demand affects 

the necessary rolling stock to be in use, for example. Having insufficient rolling stock in use can 

lead to high levels of onboard crowding, which is negative in terms of passenger comfort and 

experiences (Cox et al., 2006). Whereas having too much rolling stock in use results in increased 

operational costs. The volume of boarding passengers has also been found to influence dwell time 
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punctuality (Kuipers & Palmqvist, 2022; Li et al., 2016). Dwell time, in the case of passenger 

trains, refers to the time a train is stationary at a station to allow for the exchange of passengers. 

Dwell time delays reduce the overall punctuality and reliability of railways, and with this the 

attractiveness of railways as a mode of transport (Brons & Rietveld, 2008; van Loon et al., 2011).  

 

Although it has been shown that weather influences how we travel, and that passenger load factors 

influence the operation of railways, the possible effect of weather on passenger demand for com-

muter trains has not received as much attention. The study we present here, therefore, focuses on 

how the volume of boarding passengers changes under different weather phenomena: wind speed, 

temperature, and precipitation. This knowledge can help planners to schedule more accurate roll-

ing stock circulations and dwell times. Furthermore, it can serve as important input during real-

time rescheduling problems and demand modelling. The latter is relevant since demand modelling 

is commonly based on data from travel surveys, aggregated over multiple days, which excludes 

nuances such as changes in weather conditions (Lepage & Morency, 2021).  

2. METHOD 

To study we present here makes use of automatic passenger count data collected on board 

commuter trains in the Southern region of Scania in Sweden during 2018 and 2019. A simplified 

line map of the region is shown in Figure 1. The commuter train sets consist of four carriages, 

with a total of 240 seats available and five doors on either side of the train. Individual trainsets 

can be combined to increase capacity, increasing the available seats and doors. The automatic 

passenger counters make use of infrared beams to count both the number of boarding and alighting 

passengers on a door-by-door level, with a minimum detection height of one meter. For the 

purpose of this study, we only make use of the volume of boarding passengers. The number of 

boarding passengers is a good reflection of the number of people who choose to use the train as a 

mode of transport. The weather data used in this study is collected by the Swedish Meteorological 

and Hydrological Institute on an hourly basis. The weather data has observations for the same 

period as the automatic passenger count data, from several different weather stations. The number 

of weather stations per weather variable is shown in Table 1, along with the aggregation steps for 

the weather data. 

 

 

Figure 1: Simplified line map showing the railway network and some stations in Scania, Sweden.  
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Table 1: Overview of weather data. 

Weather type 
Number of 

weather stations 
Scale Aggregation 

Temperature  12 Celsius Bins of five degrees Celsius 

Wind 14 
Meters per 

second 
Beaufort scale 

Precipitation  15 
Millimetre per 

hour 

Dry (0 mm/h) 

Slight Precipitation (0 to 0.4 mm/h) 

Moderate Precipitation (0.5 to 3.9 

mm/h) 

Heavy Precipitation (>= 4 mm/h) 

 

To combine the automatic passenger count data and weather data, we matched the data from the 

weather stations to a train stop in space and time. The first step involved matching the railway 

stations to the nearest weather station based on their respective coordinates. The upper limit for 

the distance between a weather station and a railway station was set at 25 kilometres. Matches 

where this threshold was exceeded were excluded from the analysis. The second step consisted 

of matching the observations from the automatic passenger count system at each station with the 

hourly observations from the previously matched weather station. The process of matching the 

automatic passenger count data and weather data resulted in 1,296,576 data points having 

information on the volume of boarding passengers for unique station stops. 

 

For this study, we are interested in changes in the frequency of passenger volumes rather than the 

exact volume. Knowing how often a certain number of people will board a train given a specific 

situation is more relevant for planning purposes compared to knowing the exact volume. Prior to 

the analyses, we split the data into peak hour and off-peak hour departures. Studies on trip and 

mode choices in relation to weather conditions show that it is important to account for the trip 

purpose, where less flexibility is found for trips made by commuters (Cools et al., 2010; Liu et 

al., 2014). A trip is considered to be made during peak hours when it departed on a weekday 

between 06:00 and 08:00 or between 15:30 and 17:30. These times are based on observed 

passenger volumes. 

 

We make use of a series of pairwise Chi-square goodness of fit tests to determine whether changes 

in the frequency in the volume of boarding passengers under different weather conditions are 

statistically significant. To control for a potential familywise error rate for multiple comparisons 

we corrected the significance levels using the Bonferroni correction, as suggested by (McDonald, 

2014). To perform the Chi-square goodness of fit tests we compared the difference between the 

frequency distribution under different weather conditions and the unconditional frequency 

distribution of boarding passenger volumes. When weather phenomena do not have an impact we 

expect the frequency distribution to be the same as the unconditional frequency distribution. 

When performing a Chi-square goodness of fit, the expected frequencies should at least be five. 

In order to ensure we fulfil this criterion we aggregated the passenger count data in steps of five 

passengers. The analyses are limited to a volume of 40 boarding passengers due to a lack of 

sufficient data points for larger volumes of passengers. This limitation left us with 1,155,266 data 

points on unique station stops to use for the analyses in this study. 
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3. RESULTS AND DISCUSSION 

The frequency of passenger volumes for different precipitation levels is shown in Figure 2. Visual 

analysis indicates that the level of precipitation does not influence the number of people boarding 

a train, except for conditions with heavy rain during peak hours. The results from the Chi-square 

goodness of fit tests, Table 2, show that there is no statistically significant effect of precipitation 

on the frequency of passenger off-peak hours. We do find a statistically significant effect of con-

ditions with moderate precipitation on the frequency of passenger volumes during peak hours. 

Although the visual analysis indicates a difference, this is thus not found to be statistically signif-

icant. 

 

Figure 2: Frequency of passenger volumes under different precipitation levels. 

 

Table 2: Chi-square goodness of fit test results for the difference in frequency of passenger volumes 

under different precipitation levels. Significant results indicated with an *, significance level with 

Bonferroni correction p < 0.013 (0.05/4 = 0.013). 

 

Precipitation level Off-peak hours Peak hours 

Chi-square P-value Chi-square P-value 

Dry 1 0.999 2 0.931* 

Slight precipitation 5 0.693 14 0.048* 

Moderate precipitation 8 0.321 18 0.012* 

Heavy precipitation 5 0.637 9 0.224* 

 

Figure 3 shows the frequency of passenger volumes given different temperatures. The visual anal-

ysis shows relatively larger differences in the frequency of passengers during off-peak hours, 

where the frequency of larger passenger volumes increases as the temperature increases. The fre-

quency of passengers during peak hours is found to be less affected by changes in temperature. 

The results of the Chi-square goodness of fit tests, Table 3, show that statistically significant 

effects of the temperature occur during peak hours, but not for all brackets under consideration. 

In contrast to this, we find that changes in the temperature have a statistically significant effect 

on the frequency of passenger volumes for all brackets under consideration during off-peak hours. 

The higher Chi-square values suggest that the effect is strongest when temperatures exceed 20 

degrees Celsius. 
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Figure 3: Frequency of passenger volumes under different temperature levels. 

 

Table 3: Chi-square goodness of fit test results for the difference in frequency of passenger volumes 

under different temperature levels. Significant results indicated with an *, significance level with 

Bonferroni correction p < 0.006 (0.05/9 = 0.006). 

Temperature  

(Celsius) 

Off-peak hours Peak hours 

Chi-square P-value Chi-square P-value 

-9 to -5 221 0.000* 22 0.002* 

-4 to 0 586 0.000* 34 0.000* 

1-5 264 0.000* 16 0.028* 

5-10 178 0.000* 27 0.000* 

10-15 224 0.000* 11 0.132* 

15-20 112 0.000* 23 0.002* 

20-25 2653 0.000* 46 0.000* 

25-30 1505 0.000* 31 0.000* 

 

The frequency of passenger volumes in relation to the wind speed is shown in Figure 4. As with 

the changes in temperature, we find the largest effect of wind speed on the frequency of 

passengers to occur during off-peak hours. Larger passenger volumes are found to be somewhat 

more common as the wind speed increases, both during peak and off-peak hours. The results from 

the Chi-square goodness of fit test, Table 4, reveal that there are statistically significant effects of 

the wind speed on the frequency of passengers with the effect being stronger during off-peak 

hours. 

 

Figure 4: Frequency of passenger volumes under different wind speeds. 
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Table 4: Chi-square goodness of fit test results for the difference in frequency of passenger volumes 

under different wind speeds. Significant results indicated with an *, significance level with Bonferroni 

correction p < 0.005 (0.05/10 = 0.005). 

Beaufort scale Off-peak hours Peak hours 

Chi-square P-value Chi-square P-value 
Calm (0) 699 0.000* 117 0.000* 
Light air (1) 391 0.000* 92 0.000* 
Light breeze (2) 920 0.000* 77 0.000* 
Gentle breeze (3) 76 0.000* 30 0.000* 
Moderate breeze (4) 269 0.000* 19 0.009* 
Fresh breeze (5) 417 0.000* 33 0.000* 
Strong breeze (6) 5 0.670* 41 0.000* 
High wind (7) 6 0.490* 42 0.000* 
Gale (8) 52 0.000* 34 0.000* 
Strong gale (9) 30 0.000* 24 0.000* 

 

The findings we present here show that weather phenomena have statistically significant effects 

on the volume of boarding passengers for commuter trains. Larger Chi-square values for the ef-

fects are found during off-peak compared to peak hours for both the changes in temperature and 

wind speed. Weather conditions thus have a stronger effect on passenger demand during off-peak 

hours, which is in line with previous remarks regarding the flexibility of trips made by  Cools et 

al. (2010) and Liu et al. (2014). The lack of an effect of precipitation levels on the frequency of 

passenger volumes can be regarded as somewhat surprising. Previous studies have highlighted a 

shift from active, mostly open-air, modes towards covered modes such as public transport and 

private vehicles as a result of increased precipitation (Sabir, 2011). In terms of practical implica-

tions, our findings indicate that weather should be taken into account both during tactical and 

operational planning. The change in passenger volumes can be incorporated into the timetable by 

adapting dwell time during prolonged periods of warm weather during off-peak hours. A similar 

notion can be made concerning long-term rolling stock circulation plans. On the operational level, 

rolling stock circulations can be adapted based on weather predictions. To account for the increase 

of passengers during periods with higher wind speeds, for example. These changes can also be 

incorporated into demand modelling and real-time rescheduling problems. 

 

The study we present here does come with some limitations. To account for different responses 

to weather variables between commuters and non-commuters we split our observations based on 

the departure time. Although this can be considered a good proxy for the type of trip, it does not 

capture a shift in travel times for commuters. More detailed information on the individual traveller 

is required to reveal such responses to changes in the weather. Another limitation is the distance 

between the weather stations and railway stations and the granularity of the observations in terms 

of time. As mentioned by Creemers et al. (2015) some caution is advised when making use of 

data from point sources such as weather stations when analysing changes in space and time. 

Although hourly weather data is relatively detailed, weather changes can be volatile and change 

within the hour. Nevertheless, we argue that the data used for this study are of sufficient quality 

to make meaningful inferences. The study we present here is limited to focusing on the volume 

of boarding passengers. Although one of the main factors affecting the duration of dwell times, 

other aspects such as the ratio and spread of passengers influence dwell times as well. Future 

studies could include these passenger flow characteristics, which can help improve real-time 

travel time predictions. In addition to this, station design characteristics such as the available roof 

coverage can be included in a future study. Doing so allows for a more in-depth understanding of 

the effect of weather conditions, and can highlight whether station characteristics play a role in 

the effects found here. 
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4. CONCLUSIONS 

The study we present here focuses on changes in the volume of boarding passengers under 

different weather conditions. The relationship between weather phenomena and the ridership of 

trains has not received much attention previously. Our study aims to fill this research gap. To do 

so we make use of automatic passenger count and weather data on over a million unique station 

stops, spanning two years, in the Southern region of Scania in Sweden. We find that changes in 

the level of precipitation, in general, do not affect the volume of boarding passengers except for 

conditions with moderate precipitation during peak hours. Both changes in temperature and wind 

speeds are found to have a statistically significant effect on the frequency distribution of the 

volume of boarding passengers. These changes are different depending on whether the trip takes 

place during peak hours or off-peak hours. Passenger volumes for trips made during off-peak 

hours are found to be more susceptible to changes in both wind and temperature. The effects we 

find can serve as input during both tactical and operational planning, by guiding timetable 

principles as well as rolling stock circulation plans, and serve as input during real-time 

rescheduling problems.  
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Short summary

This study investigates the effects of remote and flexible working styles on traffic congestion. We
first formulate an integrated equilibrium model simultaneously considering the working style,
official work start time, and departure time choice of workers via an extension of the bottleneck
model. Subsequently, we derive the equivalent optimization problem of the equilibrium problem
as linear programming (LP) and demonstrate that we can obtain an analytical solution to the LP.
This analytical solution enables us to assess the effects of remote and flexible working on social
surplus and queueing loss. By comparing various situations, we show that implementing remote
and flexible work causes higher queueing loss with an equal social surplus than implementing
only remote work. Finally, we propose an integrated road management scheme that includes
dynamic pricing to prevent this paradoxical phenomenon and efficiently implements remote and
flexible working.
Keywords: remote working, flexible working, working style choice, departure time choice, bot-
tleneck model

1 Introduction

New working styles, which are different from the conventional style of commuting to an office at
a designated time, have become widespread, mainly owing to the COVID-19 pandemic. These
new working styles include teleworking, staggered work hours, and flexible work. Each working
style not only decreases the number of opportunities available to workers to contact each other in
the office but also reduces or disperses the commuting demand during peak-periods. Therefore,
promoting these working styles could potentially reduce commute-related congestion. However,
many companies and workers have adopted these ways of working independently of the aim of
the urban transportation system, which is to relieve traffic congestion. Under these circumstances,
whether remote work and staggered work hours contribute to reducing congestion and their effect
on road congestion are not well understood.
Many studies examined the relationship between traffic congestion and working style based on
Vickrey’s bottleneck model. Mun & Yonekawa, 2006; Fosgerau & Small, 2017; Takayama, 2015
formulated peak-period congestion models based on the bottleneck model and developed models
describing the choice of firms and workers to adopt fixed or flexible schedules. In addition,
many analyses of bottleneck models that consider the heterogeneity of preferred arrival times can
be interpreted as modeling flexible or staggered work hours (e.g., Hendrickson & Kocur, 1981;
Lindsey, 2004; Lindsey et al., 2019). Zhang et al. (2005) studied the trade-off between teleworking
and office working, and they considered the elastic travel demand by incorporating teleworking
as an alternative. Gubins & Verhoef (2011) analyzed the welfare effects of teleworking on road
traffic congestion in the context of Vickrey’s model. These studies highlight the positive effects of
flexible and remote working on traffic congestion and social welfare. However, these results are
based on analyses that consider only one type of working style. To develop effective congestion
reduction policies for the current situation where multiple new working styles are widespread, we
need to investigate how the relationship between these working styles affects traffic congestion.
This study investigates the effects of remote and flexible work on traffic congestion. We first formu-
late an integrated equilibrium model that accounts for flexible and remote work simultaneously
via an extension of the bottleneck model. Subsequently, we derive the equivalent optimization
problem of the equilibrium problem as linear programming (LP) and demonstrate that we obtain
an analytical solution to the LP. This analytical solution enables us to assess the impacts of remote

1
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and flexible work on social surplus and queueing loss. We present the following facts by compar-
ing four scenarios: - no policies, remote working, flexible working, and both remote and flexible
working:

• Implementing remote work causes lower queueing loss and higher social surplus than
implementing remote work.

• Implementing flexible work causes lower queueing loss and higher social surplus than not
implementing flexible work.

• Implementing remote and flexible work causes higher queueing loss with equal social
surplus than implementing only remote work.

The third fact describes a paradoxical phenomenon in which the simultaneous introduction of
flexible and remote working may increase queueing losses. This phenomenon may be interesting
and important for road management.
The remainder of this paper is structured as follows: Section 2 introduces the integrated equi-
librium model and derives its equivalent optimization problem. Section 3 presents an analytical
approach to solving the problem and the effects of remote and flexible working arrangements on
traffic congestion. Finally, Section 4 concludes the study and discusses future studies.

2 Model

Consider a city that consists of a central business district (CBD) and residential area connected
by a freeway (Figure 1). This freeway has a single bottleneck with capacity µ, and its free-flow
travel time is denoted by f . If the arrival rates of the workers at the bottleneck exceed bottleneck
capacity, a queue develops. To model queueing congestion, we use first-in-first-out (FIFO) and a
point queue in which vehicles have no physical length, as in standard bottleneck models.
All workers reside in the residential area. The workers are treated as a continuum, and the total
mass Q is a given constant. The firm, located in the CBD, offers two working styles for workers:
office and remote work. In addition, the firm allows K official work start (OWS) times {t1, ..., tK

}

for office workers. Each worker can choose between office and remote work. If they choose the
former, they must commute and choose the OWS time and the actual departure/arrival time. If
they choose the latter, they work from home without commuting to the office.
The trip costs for each commuter (i.e., office worker) are assumed additively separable into free-
flow travel, queueing delay, and schedule delay costs. The schedule delay cost is defined as the
difference between the actual arrival times and OWS time at the office. We assume piecewise
linearity in the schedule delay cost function, which is expressed as follows (Figure 2):

ck(t) ≡
{
β(tk− t) if tk < t
γ(t− tk) if tk ≥ t

∀k ∈ K , ∀t ∈ T . (1)

The trip cost of a commuter whose destination arrival time is t and OWS time is tk is defined as
follows:

Ck(t) ≡ ck(t)+α(w(t)+ f ) ∀k ∈ K , ∀t ∈ T . (2)
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where w(t) is the queuing delay experienced at the bottleneck by commuters with CBD arrival
time t. Parameters f and α represent the free-flow travel time and value of time, respectively. This
study assumes that f = 0 and α = 1 for all commuters.
Workers choose their working styles to maximize their own utility. Utility of an office worker
whose OWS time is tk and actual CBD arrival time is t determine θO−Ck(t), where θO represents
the wage parameter for office workers. In contrast, the utility of a remote worker is θR, where
θR represents the wage parameter for remote workers. We assume that office workers have
higher productivity and wages, i.e., θO > θR. In the equilibrium resulting from these choices of
the workers, the following properties hold: no worker can reduce their utility by unilaterally
changing their working style, and no commuter can reduce their commuting costs by unilaterally
changing their destination arrival time.
The equilibrium problem can be formulated as a linear complementary problem comprising five
equilibrium conditions. First, the worker conservation condition is expressed as follows:

(Worker conservation) QO+QR =Q, (3)

where QO and QR represent the numbers of office and remote workers, respectively. Second, the
equilibrium condition for workers in terms of working style is expressed as

(equilibrium condition for office workers)
{
ρ = θO−λ if QO > 0
ρ ≥ θO−λ if QO = 0

(4)

(equilibrium condition for remote workers)
{
ρ = θR if QR > 0
ρ ≥ θR if QR = 0

(5)

where ρ represents the equilibrium utility, and λ represents the equilibrium commuting cost.
Third, the office worker (commuter flow) conservation conditions for the commuting demands
must satisfy

(commuter conservation)
∑
k∈K

∫
t∈T

qk(t)dt =QO ∀k ∈ K , (6)

where qk(t) ≥ 0 is the arrival flow rate of commuters whose CBD arrival time is t and OWS time is

3
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Figure 4: Commuting equilibrium with K = 2.

tk. Fourth, the equilibrium condition for commuters is expressed as

(departure time choice condition)
{
λ = ck(t)+α(w(t)+ f ) if qk(t) > 0
λ ≤ ck(t)+α(w(t)+ f ) if qk(t) = 0

∀k ∈ K , ∀t ∈ T . (7)

Fifth, the queueing condition at the bottleneck is expressed as follows (Akamatsu et al., 2021):

(bottleneck queueing condition)


∑
k∈K

qk(t) = µ if w(t) > 0∑
k∈K

qk(t) ≤ µ if w(t) = 0
∀t ∈ T . (8)

The equilibrium state represents the collection of variables {QO, QR, λ, ρ, w(t), qk(t)} that satisfy
Eqs. (3) to (8).
Based on the methods reported by Iryo & Yoshii (2007); Akamatsu et al. (2021), an optimization
problem can obtain the aforementioned equilibrium state. Specifically, we can derive the equilib-
rium number of office/remote workers and commuter arrival flow patterns as the optimal solution
to the following linear programming. In addition, the equilibrium cost pattern, including the equi-
librium utility, equilibrium commuting cost, and queueing delay pattern, can also be obtained as
the optimal Lagrange variable of the problem.

min
QO,QR,{qk(t)}≥0

.
∑
k∈K

∫
t∈T

ck(t)qk(t)dt−θOQO−θRQR (9)

s.t.
∑
k∈K

qk(t) ≤ µ ∀t ∈ T [w(t)], (10)

∑
k∈K

∫
t∈T

qk(t)dt =QO [λ], (11)

QO+QR =Q [ρ], (12)

where the variables inside the square brackets represent the Lagrangian multipliers for each
constraint. We refer to this problem as the equivalent optimization problem. Equivalency can be
proven by comparing the first-order conditions with the equilibrium conditions.

3 Welfare impact of remote and flexible working policies

The model formulated in the previous section describes the equilibrium under various situations
by fixing certain parameters. In this section, we first develop a general approach to obtaining
equilibrium by solving the equivalent optimization problem. We then derive the equilibrium in
the following four situations by fixing the appropriate parameters (This paper assumes the two
OWS times differ by d in flexible working situation, i.e., K = 2 and t2− t1 = d.):

• Scenario (1): No policies (θR = −∞, K = 1)
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• Scenario (2): Remote working (K = 1)
• Scenario (3): Flexible working (θR = −∞, K = 2)
• Scenario (4): Remote working and flexible working (K = 2)

Finally, by comparing equilibrium in scenarios (1)-(4), we analyze the effect of the interaction
between remote and flexible working on traffic congestion.
To derive the equilibrium solutions systematically, let us decompose the equivalent optimization
problem into a hierarchical optimization problem consisting of the master problem and sub-
problem. The master problem determines the mass of office workers QO and remote workers QR.
The sub-problem determines the commuting departure flow patterns qk(t), in which QO is the
given parameter. We here introduce the hierarchical optimization problem below.

[Master] min
QO,QR≥0

. TC(QO)−θOQO−θRQR (13)

s.t. QO+QR =Q [ρ]. (14)

[Sub] TC(QO) ≡ min
{qk(t)}≥0

.
∑
k∈K

∫
t∈T

ck(t)qk(t)dt (15)

s.t.
∑
k∈K

qk(t) ≤ µ ∀t ∈ T [w(t)], (16)

∑
k∈K

∫
t∈T

qk(t)dt =QO [λ]. (17)

By solving the sub-problem, we first derive the equilibrium commuting cost as a function of
the total commuting demand (the number of office workers) determined by the master problem.
Subsequently, we solve the master problem using the equilibrium commuting cost.
The sub-problem has the same structure as the single bottleneck model, and we can analytically
solve it by using the condition that all commuters incur the same commuting costs (w(t)+ ck(t))
in the equilibrium state, as shown in Figures 3 and 4. Figure 3 illustrates the equilibrium ar-
rival/departure flow pattern at the bottleneck and the equilibrium cost pattern with K = 1 when
the total commuting demand is X. Similarly, Figure 4 illustrates the equilibrium commuting cost
pattern with K = 2 when the total commuting demand is X. In both figures, λ(X) represents the
equilibrium commuting cost derived as follows:

λ(X) =


X
µ
δ if K = 1

min
{

X
2µ
δ,

X
µ
δ−dδ

}
if K = 2

, (18)

where δ = βγ/(β+γ).
Based on the equilibrium commuting cost λ(X), we obtain the solutions to the master problem,
i.e., QO and QR. Specifically, from the optimality condition of the master problem, we find that
the following relationship holds in equilibrium:

QO =min{λ−1(θO−θR), Q}, (19)

whereλ−1(·) is the inverse function ofλ(X). Thus, “the solution of equationθO−θR =λ(X)” or “Q”,
whichever is smaller, is the total commuting demand QO. By combining QO and the conservation
condition of the workers, we find the number of remoter workers QR. This mathematical approach
corresponds to a graphical approach determining the intersection between θO −λ(X) and θR.
Figure 5 illustrates the intersection between θR and θO −λ(X | K). In Figure 5, intersections I(1),
I(2), I(3), and I(4) represent equilibrium states for each scenario. By finding the coordinates of these
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Figure 5: Equilibrium number of office/remote workers in scenarios (1)-(4).

intersections, the analytical solution for each scenario can be derived as follows1:

Scenario (1): Q(1)
O =Q, Q(1)

R = 0, λ(1) =
Q
µ
δ, ρ(1) = θO−λ

(1), (20)

Scenario (2): Q(2)
O =

µ

δ
(θO−θR), Q(2)

R =Q−Q(2)
O , λ

(2) = θO−θR, ρ
(2) = θR, (21)

Scenario (3): Q(3)
O =Q, Q(3)

R = 0, λ(3) =
Q
µ
δ−dδ, ρ(3) = θO−λ

(3), (22)

Scenario (4): Q(4)
O =

2µ
δ

(θO−θR), Q(4)
R =Q−Q(4)

O , λ
(4)
= θO−θR, ρ

(4) = θR. (23)

Using Eqs. (20) to (23), we can calculate the social surplus and queueing loss in each scenario. The
social surplus and queueing loss correspond to the areas of the regions in Figure 5, as shown in
Table 1. In Figure 5, MU(X | K = 1) and MU(X | K = 2) are social marginal utility functions for K = 1
and K = 2, respectively.

Table 1: Comparison of the scenarios
Social Surplus SS Queueing Loss QL Schedule Loss SL

Scenario(1) SS(1) = AFCO QL(1) = AI(1)F SL(1) = ABI(1)

Scenario(2) SS(2) = AGI(2)ECO QL(2) = AI(2)G SL(2) = AHI(2)

Scenario(3) SS(3) = AJKCO QL(3) = ADI(3)KJ SL(3) = ABI(3)D
Scenario(4) SS(4) = AJLI(4)ECO QL(4) = ADI(4)LJ SL(4) = AMI(4)D

By comparing these areas, we obtain the following theorem:

Theorem 3.1 (Remote work effect). Implementing remote work causes lower queuing loss and
higher social surplus than not implementing remote work.

QL(2) <QL(1), SS(2) > SS(1) (24)

1Strictly speaking, the cases must be divided according to θR. Because of space limitations, this study
shows only the most standard cases.
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Theorem 3.2 (Flexible work effect). Implementing flexible work causes lower queuing loss and
higher social surplus than not implementing flexible work.

QL(3) <QL(1), SS(3) > SS(1) (25)

Theorem 3.3 (Remote work paradox). Implementing remote and flexible work causes higher
queuing loss with equal social surplus than implementing only remote work.

QL(2) <QL(4), SS(4) = SS(2) (26)

Theorem 3.1 and Theorem 3.2 state the positive effects of remote and flexible work, respectively.
In contrast, Theorem 3.3 describes a paradoxical phenomenon in which the simultaneous imple-
mentation of flexible and remote working may cause higher queueing losses. This paradox is
due to the induced demand created by decreasing commuting costs for flexible working. That is,
even if the flexible working spreads out the OWS time, additional traffic congestion around each
OWS time occurs because the utility of office workers is equal to (to balance) the utility of remote
workers in the equilibrium state.
This paradox of the relationship between flexible and remote working styles can be prevented
by implementing a dynamic pricing scheme. Specifically, the road manager imposes a time-
varying congestion toll that mimics the queuing delay pattern in scenario (4) to the commuters.
In equilibrium under this dynamic pricing, bottleneck congestion is completely eliminated, and
the utility of all workers maintain the same as before the implementation of the pricing. Since
this pricing scheme gives the road manager toll revenue equal to queuing loss, the utility of the
workers increases if the toll revenue is appropriately returned to workers. These results imply
that combining multiple policies can affect efficiency and highlight the importance of analyzing
the combined effects of multiple policies.

4 Conclusion

This study investigated the impact of flexible and remote work on traffic congestion using the
bottleneck model. We first formulated an integrated equilibrium model that simultaneously
considered three worker choices: office/remote work, OWS time, and departure time choices.
Furthermore, we elucidated that the equilibrium model had an equivalent optimization problem.
We derived the equilibrium solution using a hierarchical decomposition approach and calculated
the social surplus and queuing loss under various situations. Comparing these situations showed
a paradoxical phenomenon in which queuing losses were higher while social surplus remained
constant when flexible and remote work policies were considered simultaneously than when only
remote work policies were considered. We conclude that the cause of this paradox is the demand
induced by reduced commuting costs for flexible working.
Future studies may investigate a more general model and reveal the impact of the relationships
between various working styles on traffic congestion. Specifically, we may extend the network
structure to corridor networks with multiple residential areas. This extension analysis allows
us to understand the impact of the relationships between flexible and remote working styles on
the location choice of workers. We also must model the agglomeration economics of office work
and investigate the policy effects more precisely, considering the trade-offs between the office and
remote work.
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SHORT SUMMARY 

Passenger overcrowding is a major problem influencing travel behaviour in urban public transport 

(PT). Its relevance has been presumably shaped by the covid-19 pandemic impacts, which have 

to be yet fully understood. Real-time crowding information (RTCI) is therefore potentially instru-

mental in the post-covid recovery of PT ridership. This study investigates the willingness to wait 

(WTW) to reduce overcrowding in urban PT, analysing pre- vs. post-covid travel behaviour atti-

tudes. Ex-post stated-preference data and (subsequently estimated) choice models indicate, com-

pared to pre-covid findings, a higher propensity to skip overcrowded services with RTCI on seats 

available in later departures, and lower utility of RTCI on moderately crowded services. The 

WTW with RTCI seems to have become less dependent on individual characteristics and more 

prominent for time-critical (obligatory) trips as well. Implications of these findings are discussed 

in final study sections. 

 

Keywords: public transport; passenger crowding; discrete choice modelling; real-time 

crowding information; RTCI; willingness to wait; COVID-19 

1. INTRODUCTION 

Travel behaviour in public transport (PT) systems is shaped by multiple factors, including pas-

senger overcrowding - a recurrent problem in high-density urban transportation networks. Rising 

(over)crowding influences the relative (un)attractiveness, comfort and safety perceptions of PT 

travel options. Moreover, it may lead to system failure in oversaturated PT networks - manifested 

in form of denied boardings, demand-supply feedback deteriorations etc. (Tirachini et al, 2013; 

Cats, West, Elliasson 2016). Crowding impacts upon travel behaviour have been widely studied 

in state-of-the-art literature (e.g. (Wardman and Whelan, 2011; Tirachini et al, 2013; Hoercher et 

al, 2017; Yap et al, 2018) and references cited therein).  

 

Meanwhile, the recent COVID-19 pandemic has profoundly impacted the urban PT systems 

worldwide, with yet lingering ramifications for passengers’ travel behaviour (Tirachini and Cats, 

2020; Gkiotsalitis, Cats 2021). Its experience has exacerbated the perceived risks of travelling in 

higher crowding conditions. The emerging stream of literature underlines that crowding valua-

tions have increased by up to 25% compared to pre-pandemic levels (Cho and Park, 2021; Shelat 

et al, 2022b). Various user groups (e.g. female and elderly travellers, but also across wider popu-

lation) have become much more apprehensive of exposure to PT overcrowding, especially if con-

sidering the associated infection risks (Shelat et al, 2022a; Aghabayk et al, 2021; Basnak et al, 

2022).  
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As a consequence, PT ridership is often still struggling to recover to pre-pandemic levels. This 

underpins the need for tools addressing the post-pandemic travel safety concerns in urban PT 

systems. A prospective ITS-based solution emerges in form of providing real-time crowding 

information (RTCI) on (in-vehicle) passenger loads of urban PT services. The RTCI can help 

passengers mitigate the PT overcrowding experience, as demonstrated in simulation studies (Nuz-

zolo et al, 2016; Noursalehi et al, 2021; Drabicki et al, 2021, 2022). Moreover, RTCI provision 

may incite a novel (and not fully understood yet) travel behaviour phenomenon in form of will-

ingness to wait (WTW) to reduce overcrowding. Namely, passengers may opt to skip deliberately 

an (over)crowded departure and wait for a less-crowded service at the same PT stop. This notion 

has been hitherto explored in a number of studies, though conducted either before the onset of 

COVID-19 pandemic (Kim et al, 2009; Kroes et al, 2014; Preston et al, 2017; Drabicki et al, 

2023), or afterwards (Shelat et al, 2022a; Singh et al, 2023). To the best of our knowledge, no 

comparative analysis of pre- vs. post-covid changes in passengers’ WTW with RTCI is yet avail-

able in state-of-the-art literature. 

 

The objective of this study is to contribute to the above research gap with a pre- vs. post-covid 

investigation of passengers’ WTW to reduce overcrowding with RTCI in urban PT journeys. To 

this end, we design a stated-preference (SP) survey and estimate discrete choice models, using a 

mixed logit specification. A comparison of our investigation results conducted in two stages – 

pre-covid (2019) and post-covid (2022) – highlights the shifts arising in passengers’ WTW pref-

erences. Findings and conclusions from our research underline how the RTCI may play an even 

more instrumental and effective role in post-pandemic urban PT networks.  

2. METHODOLOGY 

Research investigation has been conducted in two data collection stages: 

• ‘pre-covid’ investigation – in March 2019 (sample size: n = 377 respondents), 

• ‘post-covid’ investigation – in May 2022 (sample size: n = 424 respondents). 

 

Both stages of our research investigation follow the methodology elaborated in (Drabicki et al, 

2023), summarized below. Moreover, timing of both survey stages ensured that the case-study 

urban PT system was free of any disruptions or social distancing restrictions, which could have 

impaired the reliability and plausibility of collected responses. 

 

 
 

Figure 1: Example of the SP choice experiment question. 
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The SP survey has been designed as a field survey, conducted among passengers at urban PT 

stops within the city of Krakow (Poland), with completion time no greater than 3 – 5 minutes. 

This allowed a vast majority of interviewees to answer it successfully. A randomized sampling 

strategy aimed to reflect the typical demand pattern of urban PT users in Krakow. 

 

The SP survey started with questions on the respondents’ current trip context – trip motivation, 

propensity to arrive on-time (at destination), elapsed journey time, service frequency. This fol-

lowed then with core part of SP survey – i.e., a panel series of stated choice experiments. Re-

spondents were presented with a hypothetical RTCI on the 2 nearest bus/tram departures from 

their current stop, and were asked to choose the preferred travel option: first departure – departing 

now, but with higher (over)crowding on-board, vs. second departure – less crowded but requiring 

a 5- or a 10-minute wait. All the remaining trip characteristics remained equal for both travel 

options, as specified by respondents themselves. Socio-demographic information (age, gender, 

PT usage frequency) was also collected for statistical purposes. 

 

In total, each respondent was presented with 6 stated-choice scenarios. Each scenario was set up 

as a combination of 2 possible waiting time values (5 or 10 minutes) and 3 possible RTCI values 

of the nearest 2 departures: 

• 1st dep. – moderately crowded (RTCI level 3), 2nd dep. – seats available (RTCI level 2), 

• 1st dep. – highly overcrowded (RTCI lvl. 4), 2nd dep. – moderately crowded (RTCI lvl. 3), 

• 1st dep. – highly overcrowded (RTCI lvl. 4), 2nd dep. – seats available (RTCI lvl. 2), 

 

The SP answers serve next as basis for estimation of discrete choice models of the WTW with 

RTCI. Our WTW experimental setup essentially reflects a binary choice context, formulated in 

accordance with the random utility maximization (RUM) theory (Ben-Akiva, Lerman 1985). 

Choice probability is evaluated between the utility U1 of boarding now the first departure vs. 

utility U2 associated with waiting and boarding (later) the second departure. Once we assume a 

fixed reference utility rate of U1 = 0, the utility U2 = UWTW expresses then the relative (dis)utility 

associated with deliberately waiting for a second, less-crowded PT departure: 

 

 𝑃(𝑈2) =
𝑒𝑥𝑝(𝑈2)

𝑒𝑥𝑝(𝑈1)+𝑒𝑥𝑝(𝑈2)
=

𝑒𝑥𝑝(𝑈𝑊𝑇𝑊)

1+𝑒𝑥𝑝(𝑈𝑊𝑇𝑊)
 (1) 

 

This UWTW utility is composed of systematic utility VWTW plus a random error term εWTW (normally 

distributed with mean equal to zero). The systematic WTW utility is, in turn, a function of a vector 

of taste (preference) co-efficients βk and corresponding attribute values Xk: 

 

 𝑉𝑊𝑇𝑊 = ∑ 𝜷𝒌 ∗ 𝑿𝒌
𝐾
𝑘=1  (2) 

 

The attribute set K contains various trip- and population-related characteristics, valid for a given 

choice situation. We hereby test various model specifications, utilizing the mixed logit (MXL) 

approach. The MXL allows to capture unobserved heterogeneity effects in our panel survey data. 

The default MXL model specification consists of RTCI utility βs
RTCI · δ

s
RTCI (represented by case-

specific dummy variables, denoted by RTCI levels of both PT departures in the choice scenario s) 

and waiting time (dis)utility βwt · twt. The MXL mixing distribution is applied to the waiting time 

co-efficient, assumed to be a normally distributed variable βwt(µ,σ): 

 

 𝑉𝑊𝑇𝑊 = 𝛽𝑅𝑇𝐶𝐼
3−2 ∗ 𝛿𝑅𝑇𝐶𝐼

3−2 + 𝛽𝑅𝑇𝐶𝐼
4−3 ∗ 𝛿𝑅𝑇𝐶𝐼

4−3 + 𝛽𝑅𝑇𝐶𝐼
4−2 ∗ 𝛿𝑅𝑇𝐶𝐼

4−2 + 𝛽𝑤𝑡(𝜇, 𝜎) ∗ 𝑡𝑤𝑡 (3) 
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3. RESULTS AND DISCUSSION 

Starting from descriptive statistics, a comparative analysis of both survey stages (2019 vs. 2022) 

reveals substantial differences in reported WTW with RTCI (Fig. 2). The 2019 pre-covid survey 

indicates a substantial propensity to avoid high overcrowding (RTCI level 4) in the first vehicle, 

regardless of crowding level inside the second departure. Ca. 75% of respondents would choose 

the less-crowded option arriving in 5 [mins], and for a 10-minute wait this rate oscillates around 

45%. Meanwhile, the post-covid (2022) findings show that WTW decisions are more dependent 

on crowding level of the second departure as well. If this involves moderate standing crowding 

(RTCI level 3), ca. 57% of respondents would wait for 5 [mins], and just above 20% for 10 [mins]. 

However, if the second arrival has seats available (RTCI level 2), these rates surge to over 90% 

and 55%, respectively. In the third (alternative) scenario, passengers’ willingness to avoid a mod-

erately crowded vehicle (RTCI level 3) in exchange for seat availability (RTCI level 2) remains 

analogous across both survey samples. Approx. 30% of respondents would accept a 5-minute 

wait, and ca. 10% would wait for 10 [mins]. 

 

2019 sample 2022 sample Legend 

  

 

 
Figure 2: Survey results – overall WTW with RTCI in the pre- (left) vs. post-covid (right) sample. 

 

The post-covid evaluation also indicates a variable and generally lower influence of trip- and 

demographic-related factors upon WTW with RTCI. For example, the pre-covid survey pointed 

towards a more substantial role of trip time-criticality, i.e. propensity to arrive on-time at the 

destination (Drabicki et al, 2023). In the post-covid sample, passengers’ preferences are more 

uniform across the whole sample. This suggests relatively higher WTW probability for time-crit-

ical trips, especially with abrupt difference in crowding conditions between consecutive depar-

tures (i.e. the RTCI level 4 vs. 2 ‘scenario’). Otherwise, respondent’s age remains a relevant 

choice factor, as the WTW increases for those aged 50 - 65 years, and even further for the 65+ 

year-olds. 
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2019 sample 2022 sample 

 

 
 

Figure 3: Survey results – reported WTW with RTCI, distinguished by trip time-criticality. 

 

Survey outputs serve then for MXL model estimation purposes (Tab. 1). Model co-efficients es-

sentially represent the βs
RTCI RTCI utility versus the βwt waiting time (dis)utility rate. In other 

words, the former denotes the expected utility gain from reducing the on-board overcrowding if 

choosing the later departure, whilst the latter reflects the perceived unit utility loss per minute of 

waiting time (hence the negative symbol). All the co-efficients are statistically significant at p 

<0.05, and panel effects are included in mixing distribution applied to βwt. In general, post-covid 

data shows a relative increase in RTCI utility in case of information on seats available in the 

second departure. This is especially valid if the first departure implies high overcrowding condi-

tions β4-2
RTCI. On the other hand, when RTCI indicates only the possibility of decreasing the stand-

ing crowding (β4-3
RTCI), its utility seems lower compared to pre-covid estimates.  

 
Table 1: Mixed logit estimation results of the WTW with RTCI. 

 

Coefficients 

mean, (t-stat.) 

2019 sample 2022 sample  

β3-2
RTCI 1.828     (8.09) 2.144   (10.11) 

β4-3
RTCI 5.294   (15.90) 3.540   (15.14) 

β4-2
RTCI 5.510   (11.46) 6.598   (18.92) 

βwt 
µ - 0.705   (11.82) - 0.628   (16.62) 

σ 0.286     (6.33) 0.244   (13.10) 

   

initial log-likelihood: - 1380.9 - 1734.3 

final log-likelihood: - 816.5 - 1141.6 

LL ratio test: 1128.4 1243.4 

adjusted rho-square: 0.396 0.349 

sample size: 377 424 

 

Discrete choice modelling results can be further used to compute the ratio of marginal utilities of 

RTCI and waiting time. This yields the average acceptable waiting times for a second, less-

crowded PT departure (Tab. 2). Seemingly, acceptable WTW thresholds have increased in the 
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post-covid period with RTCI indicating the possibility to mitigate standing crowding in the sec-

ond departure. On average, waiting times have risen from (roughly) 3 to 4 [mins] for the β3-2
RTCI 

case, and even more from 9 to 12 [mins] for the β3-2
RTCI case. In contrast, mean acceptable waiting 

time has dropped from ca. 9 to 7 [mins] for the β4-3
RTCI case. 

 
Table 2: Acceptable waiting times in [mins] with the RTCI, acc. to MXL modelling results. 

 

RTCI case 
2019 sample 
(mean, (st. dev.)) 

2022 sample 
(mean, (st. dev.)) 

 

3.2 4.2 

(3.5) (3.7) 

 

8.9 6.8 

(5.8) (4.7) 

 

9.2 12.1 

(5.9) (6.4) 

 

Based on above findings, we compute the value-of-time crowding multipliers for a sample 15-

minute journey in urban PT network (Tab. 3). These are calculated according to the methodology 

in Preston et al (2017) and Drabicki et al (2023)). The post-covid crowding multipliers are, like-

wise, higher for the β4-2
RTCI and β3-2

RTCI cases and lower for the β4-3
RTCI cases. Relative changes 

versus the pre-covid rates amount to ca. 5 – 10%. This compares similar (albeit somewhat lower) 

to findings in the recent literature (Cho and Park, 2021). 

 
Table 3: Crowding multipliers for a 15-minute PT journey, acc. to MXL modelling results. 

 

RTCI case 
2019 sample 

(mean) 
2022 sample 

(mean) 

 
1.21 1.28 

 
1.59 1.45 

 
1.62 1.81 

4. CONCLUSIONS 

This study contributes with a pre- vs. post-covid analysis of passengers’ willingness to wait 

(WTW) to reduce overcrowding in urban PT networks. Based on survey data from 2019 and 2022 

conducted in Krakow (Poland), we observe how the prospective utility of real-time crowding 

information (RTCI) has changed in the aftermath of COVID-19 pandemic. While pre-covid esti-

mates showed that the WTW was primarily driven by sole possibility of avoiding overcrowding 

in the first departure, the expected crowding reduction in the second departure wields greater 

influence upon post-covid passengers’ preferences. Compared to pre-covid data, fewer passengers 

are willing to skip a highly overcrowded vehicle and wait for a moderately crowded one. How-

ever, the WTW probability has substantially increased with seats available in the later departure. 

While seat availability itself may not be a crucial decision factor in short-range, urban PT trips, 

these findings suggest that passengers nowadays attach relatively greater weight to the RTCI con-

tent and displayed difference(s) between crowding levels of PT vehicles.  
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Our findings also underpin the prospective application of RTCI systems in future urban PT net-

works. The WTW incited by RTCI provision can lead to more balanced distribution of passenger 

loads between PT vehicles. This will improve operational efficiency and decrease exposure to 

overcrowding. Hence, timely and accurate RTCI can reassure the crowding-aware passengers 

about current travel conditions. Moreover, it can serve as an effective travel demand management 

tool, playing thus an instrumental role in post-covid recovery of PT ridership. 
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Short summary

Quantum choice models have been recently introduced to travel behaviour modelling, showing
significant promise in explaining preferential change as a result of a change in choice context.
However, thus far, quantum choice models have only been applied to stated preference (SP) data.
This paper focusses on the application of these models to revealed preference (RP) data and the
methodological adaptations required to deal with the increased complexities that come with RP
data. Using 2-week travel diaries from 273 individuals in/near Leeds, UK, we demonstrate that
quantum choice models can effectively capture the impact of behavioural nudges used to shift
travellers towards greener travel modes. The results demonstrate that the provision of feedback on
behaviour relative to those of a similar demographic reinforces current behaviour: travellers who
make more green choices become greener, whilst the converse is true for travellers who use make
less green choices than average.
Keywords: Behavioural change; Quantum choice model; Quantum rotations; Revealed preference
data.

1 Introduction

Quantum probability, first developed in theoretical physics, has recently made the transition into
cognitive psychology, where it has been used to explain the impact of question order, fallacies in
decision-making, and other effects that were previously difficult to explain using classical models
(Pothos & Busemeyer, 2022). In our previous work, we demonstrated that quantum probability
theory could also make the transition into choice modelling through the development of quantum
choice models, and be used to explain route choice behaviour (Hancock et al., 2020b) as well
as moral choice behaviour (Hancock et al., 2020a). In particular, the results revealed that the
quantum choice models can efficiently capture the effect of a change in choice context through
‘quantum rotations’ in stated preference choice settings.
However, the applicability of the methods in real-world settings, where the context effects are
more ‘fuzzy’ and difficult to capture in the data, remains unclear. Furthermore, the model has not
previously been applied to datasets where there are different numbers of alternatives in different
choice contexts, nor has it been applied to choice contexts where there are different numbers of
attributes for different alternatives.
In this paper, we aim to address these research gaps by testing quantum choice models on revealed
preference (RP) data from a natural experiment involving behavioural interventions/nudges po-
tentially leading to shifts in the choice context. We aim to test whether quantum choice models
better capture behavioural changes arising from interventions and whether they lead to similar or
different behavioural insights in comparison to typical modelling approaches.
The remainder of this paper is arranged as follows. First, the current and standard implementations
of quantum choice models are described, before new theories and extensions for the model are
detailed. Next, we discuss a real-world case study of mode choice with nudge interventions in the
UK, before presenting conclusions and possibilities for future research.

2 Methodology

First we present an overview of quantum concepts. Next, we outline the ‘quantum amplitude
model’, specifying different levels of model complexity. Finally, we demonstrate how the model
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captures a change in choice context.

Overview of the quantum concepts

As is the case for any choice model, a quantum choice model captures the quality of each alter-
native and produces a set of probabilities for the likelihood of choosing each alternative. The
representation of the alternatives, however, is very different to that of standard econometric choice
models. Under quantum choice models, a series of choices (i.e. where, how and when to travel)
is represented by a ‘Hilbert space’, H. This space is similar to Euclidean space, except that it
uses complex numbers and is of dimension J , where J represents the number of alternatives. Each
individual choice (where, how and when) is itself represented by a subspace, L, within the Hilbert
space. Each subspace, L, is created by a basis of vectors (e.g. |x1⟩, |x2⟩, ..) where each vector
represents an alternative and has real and imaginary parts. In line with previous notation used
in quantum cognition, we use ‘bra-ket’ notation (Trueblood & Busemeyer, 2011), under which a
column vector in a Hilbert space is represented by a ‘ket’ vector, |·⟩, with the corresponding row
vector (with each element being complex conjugated) a ‘bra’ vector, ⟨·|. A representation of a
subspace is given in Figure 1.

Figure 1: An example of a subspace representing a destination choice, where the individual
can choose to travel to Leeds or York (adapted from Hancock et al. 2020b). Leeds is
represented by the vector |L⟩ and York is represented by |Y ⟩, with the decision-maker’s
current preference represented by |Z⟩.

The preferences of the individual (e.g. to choose to travel to York or Leeds in Figure 1) are contained
within a ‘state’ vector, |Z⟩, which is a superposition of the alternative vectors and represents the
decision-maker’s propensity to choose different alternatives. By ‘choosing’ an alternative, the
decision-maker’s ‘state’ vector aligns with the vector representing the chosen alternative through
a projection from the state vector. This results in the possibility of complex interactions between
pairs of choices (e.g. where and how) as the choice of an alternative for where can impact the
probability of choosing different alternatives for how (e.g. a shopper who wishes to travel by car
may choose to travel to a place with better parking facilities). A visualisation of this is provided
in Figure 2.
The shift in probability is a direct result of the decision being made from a different state. In the
example provided in Figure 2, the projection length for Leeds, ||ψL⟩|, is increased if the decision-
maker chooses their destination from |T ⟩ instead of |Z⟩.

The quantum amplitude model (QAM)

The quantum amplitude model (QAM, Hancock et al. 2020b) defines probabilities for alternatives
based on the use of projection lengths for each alternative, ||ψi⟩|. As the state vector representing
the decision-maker’s preferences is normalised to be of unit length and the vectors for the different
alternatives are orthonormal, the probability for choosing the alternative can be set to its squared
projection length. In Euclidean space, this is a direct result of the use of Pytagoras’ Theorem, see
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Figure 2: An example of a pair of choices. The choice of either travelling by car or train
impacts the probability of choosing to travel to York or Leeds.

Figure 1. In Hilbert space, the use of complex conjugates (Hancock et al., 2020b) ensures that this
property holds. Thus, we have:

P (j) = |ψj |2 = ψj · Conj(ψj), (1)

where |ψj | is the norm of the ‘amplitude’ and we have:

J∑
j

|ψj |2 = 1. (2)

Consequently, we can build a quantum choice model simply by defining a normalised state vector,
which, like a standard econometric choice model, can be based on the attributes of the alternatives.
The state vector components (with respect to each alternative vector) can be based on utility
function differences (e.g. regret functions (Chorus, 2010) work particularly well, Hancock et al.
2020b), as this results in larger projection lengths for alternatives with favourable attributes,
which increases the probability of these alternatives being chosen. Thus, under our most basic
specification for a quantum choice model, for alternative i, for individual n in choice task t, we
define:

|ψint| = δi +

K∑
k=1

J∑
j ̸=i

(Ai,j · ln(1 + eβk(xintk−xjntk))) (3)

where δi is equivalent to alternative specific constants in econometric choice models, and captures
the underlying bias towards an alternative. βk captures the relative importance of attribute k, the
elements x represent the attribute levels and Ai,j is an indicator variable taking the value of 1 if
alternatives i and j are both available in the current choice context.
In the work using quantum choice models thus far, the number of possible alternatives has always
been constant across the dataset. This is not necessarily the case in RP data, where, for example,
car availability will impact the number of possible alternatives. As regret functions are used, a
correction may be required (Van Cranenburgh et al., 2015). Thus, the second QAM model is
defined using average differences through the use of Jnt, the number of available alternatives for
individual n in choice task t:

|ψint| = δi +

K∑
k=1

J∑
j ̸=i

(Ai,j · ln(1 + eβk(xintk−xjntk)))/(Jnt − 1). (4)

To properly exploit the fact that the quantum choice model can operate in complex space (with
real and imaginary parts), our third version of the model incorporates ‘complex phases’, ei·θk , to
introduce imaginary parts to the amplitudes. This aims to capture the fact that different attributes
may not be considered equivalently during the choice deliberation process (Hancock et al., 2020a).
Thus we have:
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|ψint| = δi +

K∑
k=1

J∑
j ̸=i

(ei·θk ·Ai,j · ln(1 + eβk(xintk−xjntk)))/(Jnt − 1). (5)

Finally, further flexibility can be introduced by introducing complex phase multipliers (ei·θi) to
the alternative specific constants:

|ψint| = δi · ei·θi +
K∑

k=1

J∑
j ̸=i

(ei·θk ·Ai,j · ln(1 + eβk(xintk−xjntk)))/(Jnt − 1), (6)

where the phase for one alternative is fixed to ensure identification.

Capturing a change of choice context

Under quantum choice models, the impact of a nudge can be captured by a ‘quantum rotation,’
which shifts the state vector. Preferences for two separate tasks/actions are represented by the
same state vector (i.e. we would have the same state vector representing preferences/the propensity
to choose which mode to travel, and where an individual chooses to travel, see Figure 1). Vectors
representing alternatives in the first task are not the same as vectors representing alternatives in the
second, but are not necessarily orthonormal across tasks, meaning that making one decision (and
thus ‘projecting’ onto the vector represented by the first chosen alternative), will shift the decision-
maker’s state vector, but ultimately mean that they can still choose any of the alternatives in the
second task. Consequently, the probabilities of choosing the different alternatives in the second task
may change (i.e. trying to be more environmentally friendly will reduce the likelihood of choosing
to drive). This concept of ‘entanglement’ is the key factor in driving the improvement found by
adopting quantum models within case studies on ordering effects in cognitive psychology. In the
current context, behavioural nudges are represented mathematically through the use of a quantum
rotation to the state vector prior to the decision-maker choosing an alternative. For example, an
individual may implicitly answer the question ‘Am I an environmentally friendly person?’ if they
are nudged towards making greener choices. The more environmentally conscious the individual,
the larger the rotation and consequential shift towards greener alternatives. Mathematically, a
rotation maps amplitudes onto new ones through multiplication:

ψ′|j =
n∑

i=1

U∗
j,i · |ψj |, (7)

where the unitary matrix U must have certain properties to ensure that a new belief state vector
maintains unit length. In the case in hand, the use of Hamiltonians, (H), control the change of
the belief state vector according the dynamics of the Schrödinger equation:

U(τ) = e−iHτ , (8)

where H itself must be Hermition to ensures that the time evolution (over τ) will conserve the
normalisation of the belief state. The size of H will depend on the number of available alternatives.
For two alternatives, it is defined:

H =

[
1 δH12

Conj(δH12
) −1

]
, (9)

where δHij
is a parameter to be estimated that governs the degree to which an individual’s pref-

erence shifts between alternatives i and j.

3 Empirical application

Data

The dataset tested is from the ‘Decisions’ survey (Calastri et al., 2020). In this survey, 273
participants completed a 2-week travel diary with the use of Rmove. An average of 2.5 trips per
day across respondents resulted in a total of 9,254 trips.
At the end of the first week, some participants were given feedback as to whether they use more
or less CO2 and burn more or fewer calories than other participants with similar demographics.
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In total, 128 participants received no feedback, 79 received feedback regarding their own travel,
and 66 received feedback showing their own travel relative to those of a similar demographic. An
example of the feedback received is shown in Figure 3.

Figure 3: An example of the feedback given after one week to a participant who sees their
relative performance in comparison to individuals of a similar demographic.

Corrections for correlation and endogeneity issues suggested that there was no significant impact
of feedback for individuals aggregating over all their trips (Palma et al., 2019). However, analysis
at the trip-level was not possible at this point as level-of-service data was only obtained for this
dataset following later work (Tsoleridis et al., 2022). In the current context, quantum choice models
are applied across the choice tasks with ‘quantum rotations’ aiming to capture the ‘nudge’ towards
making greener choices if the individual has received feedback.

Model specification

There are up to six possible mode alternatives, listed below in Table 1. The multinomial logit
model that is used for comparison is linear sum of alternative specific constants (δ), mode-specific
in-vehicle travel times for non-active modes (βmode−ivt), mode-specific out-of-vehicle times for
active modes and public transport (βmode−ovt), and costs for non-active modes (βcost).

Table 1: The full set of parameters used in the base models.
Car Bus Rail Taxi Cycle Walk

Alternative specific constant δcar δbus δrail δtaxi δcycle δwalk

In-vehicle travel time βcar−ivt βbus−ivt βrail−ivt βtaxi−ivt

Out-of-vehicle travel time βbus−ovt βrail−ovt βcycle−ovt βwalk−ovt

Fare/Cost βcost βcost βcost βcost

To capture behavioural change in the MNL models, we use shifted alternative specific constants,
thus we have:

δ′i,n = δi + δco2,i · ζco2,n + δcal,i · ζcal,n, (10)

where ζco2,n = 1 and ζcal,n = 1 if individual n has received feedback stating that they have used
more CO2, and burned more calories, respectively, than individuals of a similar demographic.
For the quantum choice models, the behavioural change is incorporated through the use of Hamil-
tonians (see Equations 7-9). We focus on the shift towards or away from the use of car, thus
have:

Hcar,i = δco2,i · ζco2,n + δcal,i · ζcal,n, (11)

with the other non-diagonal elements of the Hamiltonian set to a value of zero.

Results for base models

The full model results for the base MNL model and the base quantum amplitude model (QAM,
based on Equation 3) are given in Table 2.
For the MNL model, we see reasonable willingness-to-pay outputs, with out-of-vehicle times gen-
erally worse than in-vehicle times, and the coefficient for walking time most negative, as would

5



Table 2: Model outputs and parameter estimates for the base MNL and quantum models.
Model Base MNL QAM (Eq. 3)

free pars. 14 15
LL(0) -11,176 -11,176
LL -4,057 -4,160

adj. ρ2 0.6358 0.6265
BIC 8,369 8,593

par. est rob. t-rat VTT (£/hr) est rob. t-rat RI (£/hr)
δcar 0.000 NA 36.383 3.59
δbus -2.908 -11.62 2.512 2.67
δrail -2.850 -7.30 -3.536 -2.69
δtaxi -3.780 -10.21 3.522 3.16
δcycle -4.239 -9.68 -4.600 -4.23
δwalk 0.365 1.47 12.122 3.41

βcar−ivt -0.144 -9.27 41.42 -0.395 -3.31 26.93
βbus−ivt -0.049 -7.21 14.05 -0.214 -3.49 14.58
βbus−ovt -0.097 -3.28 27.81 -0.584 -4.07 39.86
βrail−ivt -0.048 -3.29 13.67 -0.157 -2.26 10.71
βrail−ovt -0.079 -5.84 22.62 -0.321 -3.53 21.88
βtaxi−ivt -0.100 -3.32 28.79 -0.916 -3.55 62.50
βcycle−ovt -0.080 -5.53 22.95 -0.528 -2.96 36.03
βwalk−ovt -0.154 -11.94 44.10 -0.347 -4.13 23.65

βcost -0.209 -6.71 -0.879 -3.53

be expected. Though the quantum choice model does not produce WTP outputs, the relative
importance of attributes can be estimated. These values, though within the same range as MNL
WTPs, show some large discrepancies. For example, the relative importance for taxi travel time
is approximately doubled, whilst it is halved for walking time.
Next, we compare model fits across the QAM models with updated specifications based on Equa-
tions 4-6. These model results are given in Table 3.

Table 3: Model fits from the different versions of quantum amplitude models
Model MNL QAM (Eq.3) QAM (Eq.4) QAM (Eq.5) QAM (Eq.6)

Free pars. 14 15 15 17 22
LL(0) -11,176 -11,176 -11,176 -11,176 -11,176
LL -4,057 -4,160 -4,158 -4,059 -4,032

adj.ρ2 0.6358 0.6265 0.6266 0.6353 0.6373
BIC 8,369 8,593 8,589 8,428 8,465

The inclusion of complex phases (Equation 5) results in a substantial improvement in the perfor-
mance of the QAM model, bringing it in line with the result from the MNL model, though at the
cost of 3 additional parameters. The addition of a further 5 complex phases results in the QAM
model outperforming MNL by 25 log-likelihood units with a better adjusted ρ2, but worse BIC.
The impact of the inclusion of the complex phases is visualised in Figure 4. If two phases overlap,
this suggests ‘no interference’ between the two factors, meaning that the factors are fully com-
pensatory and can be traded off against each other. Thus, in this case, as there is no interference
between time and bus, this implies that there is no correlation between travel times and unobserved
utility contributions towards bus. As a contrast, walk and taxi are most different.

Key differences between models

Notably, the performance of the models looks very different if they are applied to subsets of the
dataset where the dataset is split based on the number of available alternatives. The model fit
for choice tasks with a different number of available alternatives is given in Table 4, in which the
performance of the base MNL and 4th QAM model are compared to their counterparts fitted to
the subsets of data.
Most strikingly, it appears that QAM performs better than MNL for 2 or 3 alternatives, and worse
for 4 or more alternatives. The QAM model also appears insufficiently adapted for datasets with
differing numbers of available alternatives, with the performance of the QAM model improving
more significantly than that of the MNL model when separate models are applied to subsets of
data.1

1The application of correction factors (Van Cranenburgh et al., 2015), where an estimated coefficient
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Figure 4: Inference patterns for the 4th QAM model, with the complex phase outputs for
each attribute/alternative visualised in real and imaginary space.

Table 4: Contrasting performance of models applied to subsets of data based on the number
of available alternatives.

Same model Separate models

Available alts Obs. MNL Quantum Diff MNL Quantum Diff
2 alts 1,541 -319 -317 2 -301 -281 21
3 alts 2,940 -1,473 -1,400 73 -1,434 -1,337 97
4 alts 3,630 -1,730 -1,756 -25 -1,712 -1,731 -19

5/6 alts 1,143 -534 -559 -25 -501 -511 -11

Sum 9,254 -4,057 -4,032 25 -3,948 -3,859 88

Results for models capturing behavioural change

Next, we add parameters to the MNL and QAM models to capture the shift in preference following
the provision of feedback. Using Equations 10 and 11, respectively, the gain in model performance
is shown in Table 5.
Positive shifts are observed for δcal,i, meaning that a participant who is told they burn more calories
than individuals of a similar demographic shift away from the use of a car towards the use of mode
i (note that the effects for cycling and bus were insignificant and thus dropped). Negative shifts are
observed for individuals who are told they burn more CO2. This implies that current behaviour
is reinforced. Though results between the models appear similar, there are small differences, with
the QAM in comparison to MNL suggesting a stronger relative shift for walking in comparison to
rail (see Figure 5). The converse is true for the shift from taxi.

replaces Jnt − 1 in Equation 4, results in some improvement (-4,021) though not yet getting close to the
gain obtained through the use of separate models (-3,859).
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Table 5: Model results after the inclusion of parameters to capture behavioural change.
Model MNL QAM

Base model LL -4,056.53 -4,031.54
LL -4,029.68 -4,009.35

Difference 26.85 22.20
Extra pars. 6 6

Likelihood Ratio Test 8.48E-10 6.214E-08

par. est rob. t-rat est rob. t-rat
δco2,rail -1.838 -2.01 -0.207 -2.96
δco2,taxi -1.669 -2.97 -0.136 -4.49
δco2,walk -2.514 -3.58 -0.339 -7.07
δcal,rail 1.522 2.21 0.221 3.16
δcal,taxi 1.379 3.39 0.124 4.27
δcal,walk 1.897 3.19 0.243 6.70

Figure 5: Relative shifts in preferences through fixing the shift from rail to car for those
who used more CO2 to a value of -1 in both models.

4 Conclusions

In this work, we applied quantum choice models to revealed preference data for the first time,
utilising ‘quantum rotations’ to capture the impact of behavioural nudges. Contrary to most
examples in the literature, we find that, regardless of the modelling paradigm used, feedback
reinforces behaviour, as opposed to changing behaviour. In particular, there is a shift towards
choosing car if an individual is told they use more CO2 than others, whereas there is a shift away
from choosing car if an individual is told that they burn more calories than others. However, these
results may be subject to endogeneity biases (Palma et al., 2019), and future work should consider
whether these concerns are properly accounted for in the choice models applied here.
Contrary to results from SP data (Hancock et al., 2020b,a), the base QAM model performed worse
than the counterpart MNL, However, after utilisation of the full flexibility of QAM models, per-
formance was significantly better than that of MNL, though a full interpretation of what complex
phases actually capture remains a direction for future research.
Though it was not evident that QAM models are better suited than MNL models at capturing
behavioural change (log-likelihood improvement was similar, see Table 5), it was clear that QAM
models appear better when there are fewer available alternatives, Further work is required to
establish whether these findings can be generalised.
Finally, it should be noted that extensions are possible for both models in terms of capturing het-
erogeneity in responses to the provision of feedback: some individuals may be more impressionable
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or may simply have more opportunities to change their behaviour. Further analysis is required to
better understand these possible individual differences.
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Short summary

We propose the Experience-Based Choice Model (EBCM), a novel approach capable of: (1) re-
vealing the triggers of instant utility (emotions) in a transportation context, (2) measuring instant
utility using psychophysiological indicators, and (3) estimating choices based on experiences. This
framework combines the canonical discrete choice modelling, with the cyclical idea of decisions
influenced by hedonic measures of experiences. In this article, we apply the components (1) and
(2) of EBCM with data from a real-life travel experiment, in which skin temperature (SKT), heart
rate (HR), heart rate variation (HRV), and electrodermal activity (EDA) were measured with a
specially designed wristband. Using a latent variable approach, the main results show that instant
utilities are sensible, to the travel mode; speed; crowding; brightness; and noise. In addition, it is
shown that the participants kept a biased memory of the emotions and that EDA and SKT are
meaningful indicators of instant utilities.
Keywords: EBCM; instant utility; psychophysiological indicators; travel experiment; emotions.

1 Introduction

The traditional models used to predict travel behaviour and discrete choice, in general, are based
on the classic assumption that people are able to perfectly predict the utility they will perceive
once they choose any alternative (Becker, 1996). This rationality argument, which is questionable
in various fields including transportation, may be relaxed by introducing the ideas of experienced
and instant utility proposed by Kahneman et al. (1997).
Kahneman proposed that when an individual chooses a specific alternative from a set, that alter-
native is afterwards experienced, causing a set of outcomes in every instant of that experience.
The outcomes trigger hedonic feelings at each time point, which are called instant utilities. At the
end of the experience, the individual has experimented a total utility (or experienced utility) which
is the area beneath the curve of instant utilities. However, the individual may associate with that
experience a biased level of utility due to memory limitations or any other bias source. This is
called the remembered utility and is a function of the experienced instant utilities.
In the practical implementation of his framework Kahneman et al. (1997) measured instant utility
directly from questionnaires of stated emotions, while fantasising with future methods that may
instead incorporate physiological indices of stress and of hedonic states. Such is the goal of the
present paper. After 25 years, we are capable of measuring instant utilities using PPIs in a real-life
experiment. For this we adapted Kahneman et al. (1997)’s framework and propose the Experience-
Based Choice Model (EBCM), which is capable of (1) revealing the triggers of instant utility, (2)
measuring instant utility using psychophysiological indicators (PPIs) and (3) estimating choices
based on past experiences. In this framework, we understand instant utility as a latent
variable that gives account of the psychophysiological states and emotions triggered
by an experience in a specific time point.
For this purpose, we use a transportation context, plagued with situations where this framework
occurs naturally, but the methodology may be straightforwardly applied in several other fields.
Castro et al. (2020) and Hancock & Choudhury (2023) proposed the use of PPIs to correct endo-
geneity of hybrid models (Walker & Ben-Akiva, 2002) and to measure latent variables. But, no
previous studies have used PPIs as indicators of latent variables. However, PPIs have been used
in travel context in correlational studies, to predict choices based on stress levels in driving simu-
lators (see Hancock & Choudhury (2023) for a review) and to model stated emotions with logistic
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regressions (Barria et al., 2022). To the best of our knowledge, none of them bring to discussion
framework of Kahneman et al. (1997).
In this article, we focus on estimating the components (1) and (2) of EBCM. The results show the
triggers of instant utility; how PPIs variate with instant utility and the benefit from incorporating
PPIs as indicators of instant utility. We also explored how individuals keep biased memories of
their experiences.
The data used in this study is retrieved from the experiment reported in Barria et al. (2022). They
collected physiological indicators, environmental and travel variables from 44 participants travelling
in different modes. The field experiment design is based on the methodological framework proposed
and validated by Castro et al. (2020).
The remainder of this article is divided into 4 sections. Section 2 overviews the EBCM. Section 3
shows the methods, Section 4 the main results and Section 5 exposes the main conclusions of this
work.

2 The Experience-Based Choice Model

We propose an extended Experience-Based Choice Model (EBCM) that integrates Kahneman’s
theory with the canonical discrete choice framework. Figure 1 shows a schematic view of the model.
We argue, that decision-making is a cyclical process, where the individual learns from his/her
experience and also considers exogenous information for making a choice. In this framework, an
experience is composed by a mapping of outcomes to instant utilities, which are latent hedonic
measures of the outcomes of the decision and can also be understood as latent emotions. Instant
utilities are aggregated as a memory into a remembered utility. We call this process the Memory
Aggregation Process (MAP), which could adopt different functional forms (e.g. the mean or the
logsum of instant utilities). Instant utility is a latent variable that can be measured with statements
of emotions and PPIs, while the remembered utility can be measured with post-experience stated
emotions. Remembered utility is a biassed measure of the experience, in contrast to experience
utility which is the area beneath the curve of instant utilities. When facing the same decision in
the future, the decision utility will be a function of exogenous information and the remembered
utility from previous experiences with each alternative. In the absence of previous experience, it
could be assumed that decision depends just on exogenous information.
Both frameworks complement each other, since Kahneman’s framework did not consider the ex-
ogenous information and did not consider instant and remembered utilities as latent variables that
can be measured. On the other hand, the canonical decision making framework neglects the weigh
of experience on decisions. EBCM is capable of (1) revealing the triggers of instant utility, (2)
measuring instant utility using psychophysiological indicators (PPIs) and (3) estimating choices
based on past experiences.
When an experience is remembered worse than what it actually was, i.e., negative memory bias
exists, the subject is less likely to choose it in the future, despite the actual level of experienced
utility (the opposite follows directly). This is the main reason why observed choices should not be
used to infer satisfaction with the alternatives but only a biased notion of satisfaction.
In this article, we focus on modelling the relations outside the canonical framework in Figure 1
(relations 4, 5, 6, and 8) in order to: (1) prove the feasibility of measuring instant utility with PPI
plus real-time and PPI plus post-trip stated emotions; (2) identify the triggers of emotions; and
(4) identify which PPIs are best suited to measure latent emotions. Future efforts should be made
to model the complete EBCM.

3 Methods

In this study we used the data collected in the experiment reported by Barria et al. (2022) to
partially model the EBCM. To measure the PPIs, a wristlab called Biomonitor 2.0 was used,
which was developed by WeSST Lab at Universidad de Chile (Jimenez-Molina et al., 2018). It
can measure electrodermal activity (EDA), heart rate (HR), heart rate variation (HRV), skin
temperature (SKT), and acceleration. In addition, an observer collected environmental data using
device of sensors called ContextINO, and recorded punctual events that occurred during each trip
using a mobile application called PsychoTrans. Specifically, the relations outside the canonical
framework were modelled in Figure 1. We estimated the following models:

1. MV: instant utility measured by valence of emotions and PPIs (Figure 2)
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Figure 1: Experience-Based Choice Model (EBCM)

2. MA: instant utility measured by arousal of emotions and PPIs (Figure 2)

3. MV-NoP: MV without PPIs

4. MA-NoP: MA without PPIs

5. MV-NoT: MV without travel data

6. MA-NoT: MA without travel data

The estimation was carried out using Apollo, a freeware package for R (Hess & Palma, 2019). After
model estimation, we estimated the posterior model parameter distributions using the function
apollo_conditionals of the Apollo package. In addition, onboard stated emotions were compared
with ex-post stated emotions.
Then, spatial and temporal profiles of instant utility are generated using the estimated parameters.
These profiles allow visualising how did participant’s instant utility vary in the different sections
of the trip.

4 Results

The results shown are obtained using 5000 Halton draws (N(0,1)) for the likelihood simulation. It
was verified that estimates are stable between 4000 and 5000 draws. We display in Figure 3 the
impact on the valence and on the arousal of the different triggers studied. Since only the ratio
of the coefficients can be identified in discrete choice models, the analysis is presented relative to
(βtt), which showed the largest nominal value. Just the statistically significant, and those that
were slightly above the significance limit in at least one of the models, are shown.
It was observed that:

• Travelling on BHS (when velocity is above the average) causes more happiness than any of
the other variables.
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Figure 2: Model diagram of MV and MA

• Travelling on BLS (when velocity is below average) triggers more sadness than any other
considered variables.

• When velocity is above the average, the impact of BLS on emotions is similar to walking.
This may appear contradictory, but we suggest this is due to an unsafe feeling when riding
BLS and higher displeasure caused by vibrations and route accelerations.

• Crowings levels 2 and 1 reduce the arousal.

• Better-illuminated places positively affect emotions.

• Higher humidity and higher noise variation increase the feeling of sadness.

We conducted a similar latent variable model but neglecting PPIs (MV-NoP and MA-NoP). It
was found no environmental variables turned statistically significant. Some travel variable are
significant.
From the estimation of the parameters of the measurement equations, some relations are derived:
At higher valence:

• Higher EDA

• Lower SKT, HR

At higher arousal:

• Higher EDA, HR

• Lower HRV
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Posterior parameter distribution
This section seeks to answer whether the relations found between instantaneous utility and PPI
can be extrapolated to the individual level. Figure 4 and Figure 5 show, for MV and MA models,
respectively, the density function of both the population distribution (no filled area) and the density
of the expected value of each parameter across individuals (filled area). The mean population
distribution of the parameter is shown with a vertical dashed line, while the mean expected value
across individuals is shown with a vertical solid line. Under each density plot, a box-plot shows
the distribution of the expected parameters for each individual.
Tables 4 and 4 show the analysis of the mean expected value of the valence-PPI and arousal-PPI
effects. It can be observed that, on average, higher valence is expected to increase EDA, while it
is expected to decrease SKT (-0.75, p < 0.001). Higher arousal significantly increases the EDA
(0.56, p = 0.01) and HR (0.37, p = 0.02) while it decreases HRV (-0.17, p = 0.01).

Table 1: Individuals’ expected valence-PPI relation: mean, standard deviation, t-test
against zero and p-value

Mean sd t-test p-value
EDA 0.65 0.21 3.12 <0.001

HR 0.19 0.14 1.33 0.19
SKT -0.75 0.17 -4.55 <0.001
HRV 0.06 0.05 1.41 0.17

Instant utility profile
Figures 6 and 7 show the spatial instant utility profiles. In both figures, higher values of instant
utility indicate a higher probability of experiencing a positive valence or arousal, respectively.
Also, it was estimated the mean instant utilities and the mean valence and arousal direct from the
stated emotions. On the contrary, the comparison between the remembered mean arousal and the
mean onboard stated arousal shows a negative bias ( −4.447%, p = 0.0923). The same way, the
mean remembered valence was 5.848% lower than the mean onboard stated valence (p = 0.0267).
This means that participants, after the experiment, associate to the travel sadder feelings than
what they actually experienced.
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Figure 4: Distribution of the relation valence-PPI for the population (no filled density
plot) and distribution of the expected parameters for each individual (filled density and
boxplot)

Table 2: Individuals’ expected Arousal-PPI relation: mean, standard deviation, t-test
against zero and p-value

Mean sd t-test p-value
EDA 0.56 0.21 2.63 0.01

HR 0.37 0.15 2.49 0.02
SKT -0.19 0.23 -0.81 0.42
HRV -0.17 0.06 -2.88 0.01

5 Conclusions

A novel methodology was implemented to estimate the latent psychophysiological state of 44
participants in an on-road travel experiment. A novel approach to discrete choice is proposed:
the Experience-Based Choice Model (EBCM). This model is partially estimated incorporating
environmental, travel, and physiological variables.
It was shown that the participants’ emotions were sensible environmental and travel variables. The
low-standard bus has, better effects on emotions when velocities are slow, which can be associated
with insecurity or discomfort feelings.
Also, it was shown statiscally significant mean effects of instant utility physiological indicators,
despite that for different individuals this effect may be in opposite directions. It was also shown
that the estimation of the instant utilities without the physiological indicators is futile due to the
loss of statistical efficiency.
In addition, it was shown that the participants hold biased memories of what they actually ex-
perienced on the public transport trip. In fact, the bias on valence was negative and significant,
which we suggest may be due to an over-weighting of past experiences or to a social tendency to
negatively evaluate the use of public transport.
Policy-makers should consider the potential benefit of psychological well-being associated with less
stressful travel conditions. Future research should consider including more heterogeneity in the
sample and assess more interactions between variables. Also, the instant utility discussion opens
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Figure 6: Spatial latent emotion profile estimated from model MV results

at least two research lines, namely: to explore whether memory bias influences modal choice and
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Figure 7: Spatial latent emotion profile estimated from model MA results
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Figure 8: Estimated memory bias as the difference of the mean arousal and valence stated
at the end of the trip (remembered valence and arousal) and the estimated or the stated
valence during the trip

to explore whether this bias holds when travelling by other modes and if it is necessary to design
public policies that tackle a possible loss of (biassed) public transport users.
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Short summary

Major disruptions render the schedules of public transport operators infeasible. The majority of the
recently developed algorithms for updating these schedules assume the duration of the disruption
is known when they occur. However, in practice, this is generally untrue. This paper compares
three different models for Rolling Stock Rescheduling under uncertainty: an optimistic approach, a
strict-robust model inspired by the definition of disruption of Ben Tal et al, and a Light-Robustness
approach that aims to provide a middle way between the two.
The models are evaluated on a realistic case study of the Netherlands Railways. Initial results
indicate that building robustness against different disruption durations is worthwhile when alter-
native scenarios are associated with a sizable probability mass. The best approach depends on the
probability distribution over the different scenarios.
Keywords:public transport, passenger train rolling stock rescheduling, robust optimization, math-
ematical combinatorial optimization

1 Introduction

Railway operators all over the world transport millions of passengers on a daily basis. During
actual operations, railway operators may face major disruptions as a result of, e.g., a system
malfunction, an accident, or the complete blockage of a track segment by a fallen tree. In such
cases, the current operational plan becomes infeasible, and needs to be rescheduled. Research on
effective disruption management has led to many algorithmic tools for rescheduling the timetable,
rolling stock and crew schedule (see Cacchiani et al. (2014)). These types of advances support
operators in increasing the reliability of their operations’ reliability, hopefully positively impacting
their passenger volumes.
Our work focuses on robust rolling stock rescheduling assuming the duration of the disruption is
uncertain. Previous research on this topic, such as Nielsen (2011), Løve et al. (2002), and Wagenaar
(2016), have always assumed the duration of the disruption is known. Although such algorithms
could be used in a rolling horizon setting, this means that in practice they will often have either
over or underestimated the disruption duration.
Considering only a single disruption duration when rescheduling the rolling stock could result
in myopic, irreversible decisions that may negatively impact passenger comfort. For example, it
might be impossible to provide capacity for all passengers on a trip if the disruption lasts longer
or shorter than expected, trips may have unnecessarily been cancelled, or additional trips need
to be cancelled due to unforeseen shortages of rolling stock. If disruption duration variability is
considered when rescheduling the first time, then the quality of the service that the operator is
able to provide can be improved. Moreover, a minimization in the number of required updates has
a practical advantage. At many operators, the updating of the schedule requires manual updates
and communications, and the risk of errors is minimized when the frequency of these changes is
minimized.
The main contribution of this paper is a model that is able to reschedule the rolling stock schedule
in a robust way. This means that the rolling stock schedule requires no or small additional changes
in case the disruption duration turns out to be longer than orignally expected. Depending on the
level of robustness required, our model is able to give a full robust or a semi-robust solution. In case
of a full robust solution all important trips and all composition changes are robust against different
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disruption durations and in case of a semi-robust solution at least a given percentage of the trips
must be robust against different disruption durations. We also demonstrate that robustness comes
at a price and show what this price is for different practical settings.

2 Methodology

Problem definition

We consider the variant of the rolling stock scheduling problem as defined in Fioole et al. (2006),
with the additional complication that, in contrast to (Fioole et al., 2006), the duration of the
disruption is uncertain. Rolling stock scheduling thus entails finding a minimum cost assignment
of train compositions (a specific ordering of specific rolling stock type units) to a set of timetabled
trips. A trip refers to the movement of a train between two successive stops. It is assumed that
both the departure time and the arrival time of any trip are known. Associated with each trip is
a known, forecast demand that indicates the number of passengers who wish to make the trip. A
service refers to the movement of a train between two terminal stations and comprises a sequence
of trips. For any trip, its predecessor trip and its successor trip are specified in the timetable.
Figure 1 illustrates an example timetable, adjusted after a major disruption. Stations are depicted
as vertical layers, and time runs from left to right. A total of 44 trips is depicted, examples of
which include t1, t2, and t3. The sequence t1 − t2 − t3 provides an example of a service between
Amsterdam (Asd) and Arnhem (Ah).
The general objective of the rolling stock rescheduling problem is to minimize a weighted combina-
tion of the number of cancelled trips, the number of additional composition changes and shunting
movements in comparison to the planned rolling stock schedule, carriage kilometers, seat-shortages,
and end-of-day imbalances in rolling stock depot inventories.

Ah

Ed

Ut

Asd

t1

t2

t3

Figure 1: Timetable with disrupted area and short-turning.

Three approaches to robust rolling stock rescheduling

We propose three approaches for rolling stock rescheduling under uncertainty: a hopeful approach
(HOPE) that always assumes the shortest-possible disruption duration and updates the rolling
stock schedule step-by-step whenever this assumption is incorrect; a strict composition robust
approach (STR), inspired by robustness as defined in Ben-Tal & Nemirovski (2002); and a light
trip robust approach (LTR), inspired by light robustness as defined in Fischetti & Monaci (2009).
All models are mixed-integer-programming models customized for rolling stock rescheduling under
uncertainty. Unfortunately, the length of the abstract does not allow us to present them in detail
here.

3 Results and discussion

Case study

2 depicts our Netherlands Railways(NS) based case study, spanning with 3 lines a signifcant and
busy part of the network consisting or 1094 trips. We consider 16 different compositions, and thus
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223 different composition changes, and assume that composition changes may occur after every
trip.

Dv

Nm

Bd

Hdr

Asd

Ut

Rtd

Gv

Figure 2: Train lines in the Netherlands. The lines in blue are the ones considered in the
case study.

Evaluation function

The quality of a schedule is defined, for each possible disruption scenario, by the weighted sum of
schedule changes. Table 1 gives an overview of the objective coefficients that we use in our exper-
iments to evaluate the rescheduling approaches, set in discussion with NS. We make a distinction
between rescheduling the first time (update λ0) and rescheduling thereafter again (update λi for
i ≥ 1).

Costs λ0 λi for i ≥ 1

Seat shortages: SS 0.1 0.1
Carriage costs p km: Carr. 0.01 0.01
Unplanned Shunting 10 100
Cancelled Shunting 5 20

Difference in end of day balance: EOD 10 10
Change in composition type: Composition 5 10

Cancellation of trip: Cancel 100000 100000

Table 1: Overview of costs

Detailed discussion of a single instance

There is a disruption between Utrecht (Ut) and Amsterdam (Asd) starting at 7:00 in the morning.
We have the scenario set S = {[(7 : 00, 9 : 00)], [(7 : 00, 9 : 00), (9 : 00, 11 : 00)]}. We show and
compare results of four of our rescheduling approaches; the HOPEapproach, the LTR approach
with α = 0.4 and α = 0.8, and the STR approach.
The results of our comparison regarding the different cost components and the overall objective are
given in Table 2. Here, the columns denote the total penalty paid for each different components
of the evaluation. Only ’Shunting’ denotes a combination of the penalties for both unplanned
and cancelled shunting movements. The first three rows of the table show the evaluation value
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and its components when rescheduling the original rolling stock schedule at time λ0 = 7 : 00 for
disruption end time d0 = 9 : 00, that is, for update u0 = (7 : 00, 9 : 00). In the second set of
rows we see the rescheduling costs that we incur if we need to reschedule for a second time, that
is, for update u1 = (9 : 00, 11 : 00). The third set of rows depict the total costs for scenario
S1 = [(7 : 00, 9 : 00), (9 : 00, 11 : 00)]. The final set of rows shows the expected evaluation value
and its cost components for the scenario set S = {S0, S1} with S0 = [u0] and π0 = π1 = 0.5.

Evaluation Approach (A) Evaluation SS Carr Shunting EOD Cancel Comps
value

HOPE 3066 1285 1181 65 100 0 435
LTR0.4 3199 1280 1184 140 100 0 495

’disr. ends at 9:00’ LTR0.8 3470 1300 1180 185 100 0 705
STR 3658 1231 1183 150 200 0 894

HOPE 4468 1385 1175 600 100 0 1210
’rescheduling costs’ LTR0.4 3908 1310 1178 260 100 0 1060

LTR0.8 3054 1150 1174 140 100 0 490
STR 2664 1281 1183 0 200 0 0

GC(A,R0, S1) HOPE 4968 1385 1175 665 100 0 1645
’disr. ends at 11:00’ LTR0.4 4543 1310 1178 400 100 0 1555

LTR0.8 3944 1150 1174 325 100 0 1195
STR 3708 1281 1183 150 200 0 894

GC(A,R0,S) HOPE 4017 1335 1177 365 100 0 1040
’expected value’ LTR0.4 3875 1300 1180 270 100 0 1025

LTR0.8 3707 1225 1177 255 100 0 950
STR 3683 1256 1183 150 200 0 894

Table 2: Evaluation values and their components for the single instance considered in
Section 3.

For short disruption lengths, the robust approach provides a cost that can be avoided using the
HOPEapproach. The main difference in schedules stems from the penalty for having more changed
shunting operations and the number of different compositions appointed. However, when the dis-
ruption last long (second scenario) the rescheduling for the HOPE approach is much more expen-
sive, in particular with respect to using different shunting operations and different compositions
than in the initial schedule. Whether building in this robustness is worthwhile, depends on the
probability on each of the two scenarios occuring.
The last set of columns denotes the expected evaluation value assuming a probability of 50% for
each scenario, indicating the STR approach as optimal in this example. Figure 3 shows the expected
evaluation values depending on the probabilities that we assign to the two scenarios ’disruption is
over at 9:00’ (π0) and ’disruption is over at 11:00’ (π0 = 1− π1). As can be seen, in this example,
each of the strategies is optimal for a certain range of probabilities: for a low probability of a later
disruption end time, i.e., π1 ≤ 0.22, the HOPEapproach is best, for 0.22 ≤ π1 ≤ 0.0.3 LTR0.4 is
best, for 0.3 ≤ π1 ≤ 0.45 LTR0.8 is best, for π ≥ 0.45 the STR approach should be used.
In general, we observe that the penalty for the additional canceling of trips is chosen so high
that the model avoids this measure completely. Composition changes, changes in the shunting
movements, and in the end of day balance, which are penalized moderately in the model, have
most influence on the evaluation. Seat shortages and costs for operating the carriages play a minor
role for this parameter setting.
Experiments concerning multiple scenarios, and different ways of dealing with uncertain disruption
length, are underway. Preliminary results indicate that whether the build-in of initial robustness
against a longer disruption length is worthwhile when the probability of longer disruption lengths
represents a significant probability mass.

4 Conclusions

We proposed three approaches to rolling stock rescheduling under uncertainty: HOPE, LTRand
STR. The first represent current approach, the second a Light-robustness approach, and the latter a
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Figure 3: Expected evaluation values. The figure zooms in on the interesting part between
0.2 ≤ π1 ≤ 0.5

strict robustness version in the spirit ofBen-Tal & Nemirovski (2002). Mixed-Integer programming
formulations have been developed for all three, that within a reasonable time can be solved with
a commercial solver like CPlEX, Gurobi,etc. These approaches are evaluated on a realistic case
study for Netherlands Railways. The results indicate that it is worthwhile to build in robustness
for multiple possible durations of the disruption when there exists a reasonable probability for an
alternative scenario. Which approach in expectation is best depends on the probabilities associated
with each disruption scenario.
Current work is evaluating the model for multiple cases and multiple scenarios. Moreover, a
sensitivity analysis for the selection of objective-parameters is on its way.
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Can Bayesian Optimization be the Last Puzzle for Automatic Estimation of
Neural Network Discrete Choice Models? An experiment
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Short summary

This study investigates the performances of Bayesian optimization (BO) and random grid search
methods for tuning neural network hyper-parameters in the context of discrete choice modeling.
Specifically, the fully-connected feed-forward (FNN) and alternative-specific-utility neural networks
(ASU) are tuned. Results show that BO outperforms random grid search for both FNN and ASU
models in terms of out-of-sample log-likelihood. Furthermore, it is illustrated that BO has higher
sample efficiency and is relatively more robust to different random initialization. Our experiments
show that the Bayesian hyper-parameter tuning framework could accommodate and complement
existing neural network models that are cast for automatic utility function specifications, and
create a fully automatic estimation workflow.
Keywords: Bayesian optimization, Discrete choice modeling, Hyper-parameter tuning, Neural
network models

1 Introduction

Discrete choice modeling typically requires prior knowledge of the utility functions (Han et al.,
2022), which are often, however, specified using trial-and-error based on researcher’s interpretations
and experiences. Recent studies have adapted neural network (NN) methods for automatic utility
function specifications and shown greater predictive power of NN models (e.g., Lee et al., 2018;
Wang, Wang, & Zhao, 2020).
However, general-purpose neural networks tend to over-fitting. Consequently, their out-of-sample
performances (Han et al., 2022), as well as their interpretability (Wang, Mo, & Zhao, 2020), could
be poor. To tackle these issues, several studies have incorporated domain-knowledge-based regu-
larization methods with NN models, by designing specific sparse NN architectures. For example,
Sifringer et al. (2020) and Han et al. (2022) assign single-layer sparse (e.g., linear-in-parameter)
neural network for the interpretable component of the systematic utility, and report improved
predictive power and retained interpretability. Wang, Mo, & Zhao (2020) also show that their
proposed alternative-specific-utility (ASU) NN modeling framework, in which only attributes asso-
ciated with the same alternative are connected, generally improves model performances compared
to fully-connected feed-forward NN. Yao & Bekhor (2022) applies the variational autoencoder neu-
ral network to estimate the implicit availability perception of alternatives and embed it in the
utility computation.
Although these domain-specific NN for choice modeling have demonstrated the automatic feature-
learning power of NN, their performances still heavily depend on the hyper-parameters. Wang,
Mo, & Zhao (2020) shows that poorly tuned hyper-parameters can hinder the performances of NN
models due to their large estimation error.
The challenges in selecting the NN hyper-parameters are two-fold: 1) Large number of hyper-
parameters; 2) Bi-level problem structure. The lower-level model estimation depends on the
upper-level hyper-parameter selection; whereas the upper-level hyper-parameter tuning typically
requires evaluating the lower-level objective (i.e., out-of-sample log-likelihood in the context of
choice modeling). In the case of large datasets, which is typical for applying data-driven methods,
the lower-level model estimation could be time-consuming for complex NN models.
One classic approach for hyper-parameter tuning is to perform a random grid search on the hyper-
parameter space and select the set of hyper-parameters with high out-of-sample log-likelihood
(Bergstra & Bengio, 2012). Recently, Snoek et al. (2012) shows that, compared to random search,
the Bayesian optimization (BO) method is more efficient and improves state-of-the-art perfor-
mances of many machine-learning tasks.
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The primary objective of BO is to identify the global optimum of an unknown function with only
a small number of evaluations. This is achieved by modeling the unknown function as a Gaussian
process (GP) and selecting the next sample point that maximizes an acquisition function derived
from the GP. The acquisition function is designed to balance the trade-off between exploitation,
where the mean is high, and exploration, where the uncertainty is high. BO is therefore employed
for solving problems that are expensive to evaluate, have an unknown structure, such as concavity
or linearity (i.e., the function is a black-box), and possess a continuous objective function (Frazier,
2018).
This study aims to evaluate and compare the performances of the Bayesian optimization method
and random grid search for improving the model out-of-sample log-likelihood, which could provide a
promising direction for a fully automatic neural network discrete choice model estimation pipeline.

2 Methodology

Figure 1. Bayesian hyper-parameter tuning framework

We show in Figure 1 the overall Bayesian hyper-parameter tuning framework. In the following
subsections, we first detail the lower-level neural network models used in this study for discrete
choice modeling. Next, the Bayesian hyper-parameter tuning method is introduced. Lastly, we
briefly introduce the benchmark random grid search method.

Neural networks for choice modeling

Two neural network models, fully-connected feed-forward neural network (FNN) and alternative-
specific utility neural network (ASU, Wang, Mo, & Zhao (2020)), are selected in this study for
comparing the performances of Bayesian hyper-parameter tuning and random grid search in the
context of choice modeling.

Figure 2. FNN architecture for discrete choice modeling

We show in Figure 2 the FNN architecture, in which there are two types of inputs, namely,
alternative-specific attributes xi for alternative i, and individual-specific attributes z. The FNN
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model connects all input attributes to the hidden layer neurons through fully-connected layers
(FC) and activation functions. Correspondingly, the systematic utility of an alternative i, Vi,
is function of attributes of all alternatives x = {xi,∀i} and the individual-specific attributes z.
Mathematically, systematic utility Vi of FNN can be defined recursively as:

Vi = V (z,x) = w⊤
i (gM ◦ ... ◦ g1) (z,x) (1)

where, wi denote the weights on the output layer (i.e., readout) for alternative i before applying
softmax (Logit function), gm(y) = Φ(W⊤

my) denote the hidden layer m ∈ [1,M ], Φ(·) denote the
activation function, Wm is the weight on the FC layer m, and ◦ denote function composition. We
refer to Wang, Mo, & Zhao (2020) for detailed proof on the connection between FNN and utility
function specification.

Figure 3. ASU architecture for discrete choice modeling
(adapted from Wang, Mo, & Zhao (2020))

The ASU architecture is shown in Figure 3. Different from the FNN architecture, the ASU model
first transforms independently each set of alternative-specific attributes xi and the individual-
specific attributes z with separate NNs. Only after M1 layers of transformation, z enter the
systematic utility Vi. As a result, Vi, is only function of alternative-specific attributes xi and the
individual-specific attributes z, which can be formally defined as:

Vi = V (z,xi) = w⊤
i

(
giM2

◦ ... ◦ gi1
)
(
(
gzM1

◦ ... ◦ gz1
)
(z),

(
giM1

◦ ... ◦ gi1
)
xi) (2)

where, gim1
and gzm1

denote the hidden layers for separate transformation of alternative-specific
attributes xi and sociodemographic attributes z, and gim2

denote the additional transformation
after z enters the computation of Vi.
We summarize a list of selected FNN and ASU hyper-parameters for comparing the performances
of Bayesian optimization and random grid search in Table 1:
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Table 1. Hyper-parameters for FNN and ASU

FNN

M Number of FNN hidden layers
n Width (number of neurons) of each FNN hidden layer

ASU

M1 Number of ASU hidden layers for separate transformations
M2 Number of ASU hidden layers after z enters
n1 Width of ASU M1 hidden layer
n2 Width of ASU M2 hidden layer

Generic

l1 L1 regularization parameter to control model sparsity
l2 L2 regularization parameter to control coefficient magnitudes

Dropout rate Probability of dropping some coefficients for model sparsity
Learning rate Step size in stochastic gradient descent (SGD)

Batch size Number of observations per batch in SGD
Batch normalization Normalizing each batch of observations in SGD

Note that, we set the number of iterations as 20,000 and employ an early-stopping strategy for
training both FNN and ASU, for which the algorithm stops if the log-likelihood of the validation
set does not improve in 50 consecutive iterations. Other hyper-parameters are set as recommended
values in the literature.

Bayesian hyper-parameter tuning

A BO framework comprises two primary steps (Frazier, 2018). The first step involves updating a
Bayesian statistical model which approximates the complex mapping from the hyper-parameters
(denoted by θ), to the objective values (i.e., out-of-sample log-likelihood l). The second step is to
select a candidate hyper-parameter vector that optimizes the acquisition function and evaluates
its performance.
The Gaussian process is often chosen as the prior for the statistical model, because of its tractability
in computing posterior and predictive distributions. The GP is characterized by its mean function
µ0(θ), and its covariance kernel function, denoted by k(θ,θ′). Given a set Dm containing hyper-
parameters and their corresponding objective values, that is, Dm = {θ1:m, l1:m}, where subscript
1 : m represents ||m|| variables.
The joint distribution of l1:m is Gaussian:

l1:m ∼ N (µ0(θ1:m), K(θ1:m,θ′
1:m)), (3)

where µ0 is the prior mean function, which is usually set as a constant value (0 in this study), and
K(θ1:m,θ′

1:m)i,j = k(θi,θ
′
j), for i, j ∈ {1, 2, . . . ,m}, is the covariance matrix. We also assume k

as the commonly used Matern kernel.
The posterior distribution of lm+1 can be computed using Bayes’ theorem:

lm+1|l1:m ∼ N
(
µ(θm+1), σ2(θm+1)

)
, (4)

where µ(θm+1) = kTK−1l1:m and σ2(θm+1) = k(θm+1,θm+1)− kTK−1k.
The fitted GP, which serves as a surrogate model of the lower-level problem objective (i.e., out-of-
sample log-likelihood in our paper), is capable of predicting the value of the objective function at un-
evaluated hyper-parameter locations based on previously collected data points Dm = {θ1:m, l1:m}.
The goal is to select the next vector of hyper-parameters with the highest gained value of in-
formation. Such value of information is measured by an acquisition function, which is a proxy
function derived from the mean and variance of the objective function values and directs the next
sample point. This study uses a popular acquisition function, Expected Improvement (EI), which
computes the expected improvement with respect to the current maximum l∗ = max l1:m, i.e.,

EI(θ) = E([lm+1 − l∗]+|θ1:m, l1:m). (5)
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The next point to be evaluated is determined by:

θm+1 = argmax
θ

EI(θ) (6)

This optimization problem can be efficiently solved by local solvers like L-BFGS-B (Liu & Nocedal,
1989) with multiple restarts.

Random grid search

For a given grid of hyper-parameter values, a random grid search selects random combinations of
these values to train the models. The set of hyper-parameters with the best out-of-sample per-
formance is chosen in a post-hoc manner. Although the independent sampling procedure suggests
that random grid search can be performed in parallel, its efficiency (in terms of computational
costs) and effectiveness (in terms of best performance) could be low (Snoek et al., 2012).

3 Results and discussion

Dataset and experiment setup

Our experiment is based on the swissmetro dataset (Bierlaire et al., 2001), for which 6,768 observa-
tions with trip purpose of commute and business are selected for model estimation. In the dataset,
respondents choose among 3 alternative modes: train, swissmetro, and car. Data statistics of the
attributes used for estimation are summarized in Table 2:

Table 2. Data statistics for the selected swissmetro dataset

Attribute Mean Std.

Train time [min] 166.63 77.35
Train cost [CHF] 514.34 1088.93
Swissmetro time [min] 87.47 53.55
Swissmetro cost [CHF] 670.34 1441.59
Car time [min] 123.80 88.71
Car cost [CHF] 78.74 55.26

Number of observations: 6,768
Number of choices: Train (13.26%), Swissmetro (57.94%), Car (28.71%)

The dataset is divided into training, validation, and out-of-sample sets in the ratio 4: 1: 1. A
five-fold cross-validation is used for model selection. That is, each model (i.e. one set of hyper-
parameters) is trained 5 times with different data folds, and evaluated with the out-of-sample set.
The model performance is taken as the average of 5 out-of-sample log-likelihoods.
We consider the following hyper-parameter space for FNN and ASU (Table 3):
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Table 3. Hyper-parameter space for FNN and ASU

Hyper-parameter Values

FNN

M {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}
n {60, 120, 240, 360, 480, 600}

ASU

M1 {1, 2, 3, 4, 5, 6}
M2 {0, 1, 2, 3, 4, 5, 6}
n1 {10, 20, 40, 60, 80}
n2 {10, 20, 40, 60, 80, 100}

Generic

l1 [1−20, 1.0]
l2 [1−20, 1.0]

Dropout rate [1−20, 0.1]
Learning rate [1−5, 0.5]

Batch size {50, 100, 200, 500, 1000}
Batch normalization {True, False}

Invariant hyper-parameters

Activation function ReLU (Rectified linear unit) and Softmax (Logit)
Loss function Log-likelihood

Weight initialization He initialization (He et al., 2015)

Note that, we consider discrete architecture parameters for FNN and ASU, while selected param-
eters for the training algorithm, namely, l1, l2, dropout rate, and learning rate, are considered as
continuous values. For the random grid search method, all discrete values are uniformly sampled,
whereas log-uniform sampling is applied for the training parameters in order to draw values at
different magnitudes.
Both FNN and ASU are implemented in PyTorch 1.12 with Adam optimizer (Kingma & Ba, 2014).
The Bayesian optimization is implemented with the BoTorch package (Balandat et al., 2020). We
set the number of hyper-parameter tuning iterations as 100 for ASU, and 80 for FNN (due to
fewer hyper-parameters to be tuned). In addition, 2 replications with different random seeds are
performed for both the BO and random grid search. That is, for each hyper-parameter tuning
method, we estimate 200 ASU models and 160 FNN models.

Comparison of out-of-sample performances

We report out-of-sample performance and architecture parameters of the best models obtained by
BO and random grid search methods in Table 4.
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Table 4. Comparison of the best model of Bayesian optimization and random grid search

Bayesian Optimization Random grid search

FNN

M 5 11
n 240 60

Out-of-sample performance −741.17 −768.60

ASU

M1 1 3
M2 1 1
n1 40 10
n2 80 20

Out-of-sample performance −762.03 −787.94

As shown in Table 4, the BO outperforms random grid search in terms of out-of-sample log-
likelihood for both the FNN and ASU models. Moreover, compared to random grid search, the BO
method is able to find network architecture with fewer layers yet stronger predictive power on the
out-of-sample dataset. This is consistent with the literature (e.g., Hillel, 2019; Han et al., 2022),
for which shallower but wider NN empirically performs better in choice modeling tasks.
We further examine the hyper-parameter optimization iterations of BO and random grid search
methods in Figure 4, where iteration numbers for the random grid search are sorted models.

Figure 4. The optimization for hyper-parameters of (a) FNN and (b) ASU architectures
(shaded area represents 95% confidence interval)

As shown in Figure 4, for both the FNN and ASU models, the BO method outperforms the random
grid search after the initial 10 iterations. This suggests that, compared to random grid search, the
BO method has higher sample efficiency, i.e., the BO candidate hyper-parameters have a higher
potential to improve the out-of-sample performance. Furthermore, the variance of out-of-sample
performance of BO iterations is smaller than random grid search (as indicated by the smaller shaded
area of BO), which suggests the BO method could be more robust to (initial) randomization. In
the following subsection, we further illustrate the sample efficiency of BO and random grid search.

Illustration of sample efficiency between Bayesian and random search methods

We next investigate the sample efficiency of random search and BO methods by illustrating the
distributions of sample points for the ASU models, as shown in Figure 5 and 6. The diagonal plots
show histograms for each hyper-parameter, and the lower triangle shows two-dimensional scatter
plots of all sample points for each pair of the hyper-parameters. The red points represent the set
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of hyper-parameters with the best out-of-sample performance (termed optimal hereinafter) found
by each method.

Figure 5. Sample points of the random search for ASU architecture.
(Red points represent the optimal hyper-parameters)

As shown in Figure 5 for the random grid search method, all sample points are distributed almost
uniformly across the search space. Although random grid search has been proven to be more
efficient than brutal-force full grid search (Bergstra & Bengio, 2012), this uniform distribution of
sample points still suggests the out-of-sample performance might not be improved in consecutive
iterations, resulting in relatively poorer sample efficiency. This can also be verified by the longer and
flatter platoons of random grid search in Figure 4 for out-of-sample performance versus iterations.
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Figure 6. Acquisition points of the Bayesian optimization for ASU architecture.
(Red points represent the optimal hyper-parameters,

and darker colors correspond to later samples)

On the other hand, BO follows a different pattern. As shown in Figure 6, acquisition points
obtained by BO gradually cluster around the optimal hyper-parameters, as indicated by the darker
points centered around the red points. This clustering effect is also evident in the histograms, in
which the highest frequencies are observed around the optimal hyper-parameters. These results
indicate that the BO method has higher sample efficiency, compared to random grid search.
The behavior of the BO method can be explained by its optimization procedures. As more sample
points are collected/evaluated, the surrogate model has higher confidence about its estimation
of out-of-sample performance at unexplored hyper-parameter points. As a result, the associated
acquisition function can direct more efficiently the search towards the optimal hyper-parameters
with the improved surrogate model estimations.
Note that, similar patterns of sample points for random grid search and BO are also observed of
FNN models, which suggests the BO method is expected to have relatively higher sample efficiency.

4 Conclusions

This study investigates the performances of Bayesian optimization (BO) and random grid search
methods for tuning neural network hyper-parameters in the context of discrete choice modeling.
Specifically, the fully-connected feed-forward (FNN) and alternative-specific-utility neural networks

9



(ASU) are tuned, and the out-of-sample performances as well as the sample efficiencies of the BO
and random grid search methods are compared.
Results show that BO outperforms random grid search for both FNN and ASU models in terms
of out-of-sample log-likelihood. Furthermore, it is illustrated that BO has higher sample efficiency
and is relatively more robust to different random initialization.
Our experiments show that BO provides a promising direction for a fully automatic estimation
workflow of neural network discrete choice models. Future research will extend the experiment to
larger datasets, transferability of BO among datasets, as well as other data-driven machine learning
models.
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SHORT SUMMARY 

Development in discrete choice modelling has been dominated by Random Utility Maximization 

approaches due to their ease of application and high economic interpretability. However, this 

model assumes that decision-makers perform an in-depth information search process (ISP) 

implicitly and instantaneously. It has not been investigated in detail whether the ISP of transport 

users is in depth or breadth-first in a public transport choice context, a gap that this research aims 

to fill. To this end, the ISP of public transport users has been characterized in three SP surveys 

with click-tracking, which were pivoted concerning commute and varied in the number of 

dimensions. The results allow us to conclude that the ISP is part of a heuristic, heterogeneous, 

complex, and mixed deliberation process, which depends on the dimensions of the choice tasks. 

However, breadth-first searches predominate, i.e., the evaluation of information is done by 

comparing alternatives under one attribute in each search. 

 

 

Keywords: Information Search Process, Breadth-first, Public Transport SP, RUM -DFT 

1. INTRODUCTION 

Making a decision implies a deliberation process in which individuals, based on their preferences 

and valuations, choose an alternative among a given set (Engel et al., 1968). Several areas of 

knowledge have a great interest in comprehending the decision process, ranging from transporta-

tion and behavioural economy to psychology. To explain and predict how individuals make such 

decisions, choice models have been developed and widely used. Busemeyer and Townsend (1993) 

propose a classification of choice models into static and dynamic. 

 

Static models define the choice probabilities in a way that is independent of the cognitive process 

and that does not vary in the choice process. Among the advantages, their simplicity of imple-

mentation and great explanatory power stand out, with the Random Utility Maximization (RUM) 

approach being the most widely used member of this group (McFadden, 1976). Static choice 

models consider that individuals are rational agents, possess complete information, and choose 

the alternative with the highest utility within the choice set by performing an in-depth information 

search of the attributes. In other words, RUM models assume an in-depth search first in which 

individuals consider all the attributes of an alternative to construct the utility of that alternative, 

which is then used to make a comparison and the choice. 

 

RUM models are versatile, practical and provide transparent statistical a microeconomic frame-

work for the analysis of discrete choices. However, they fail to consider the true cognitive process 

that individuals go through when deciding. RUM models assume that decision-makers somehow 
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instantaneously evaluate all the attributes of all the alternatives involved in the choice situation, 

but evidence suggest that the process is dynamic. Individuals focus on some attributes of some 

alternatives in different stages, acquiring information sequentially to make a final decision. 

Among others, Noguchi, and Stewart (2014); Stewart et al., (2016a); Stewart et al., (2016b); Sui 

et al. (2020) have evidenced, through eye-tracking those preferences vary across attribute evalu-

ation and that this behaviour occurs in simple, risky, strategic and with multi-attributes choices. 

 

On the other hand, dynamic models consider that preferences change over the time of choice due 

to the cognitive process. This approach has been represented, among others, by Decision Field 

Theory (DFT) (Busemeyer and Townsend, 1993). The DFT considers that the cognitive process 

is iterative and that the sequence of information search is breadth-first. This means that individu-

als begin with some initially preconceived preferences toward the available alternatives. Then, 

they focus on and evaluate one specific attribute at a time among all alternatives (breath-first), 

and then iteratively update preferences by looking at other attributes until they finally choose an 

alternative when they reach their internal (preference) or external (time) limit. Recent studies 

show that the DFT model fits the data often better than conventional static models [Qin et al. 

(2013); Hancock et al. (2018)]. However, the DFT model presents important limitations, such as 

that it relays on ad-hoc matric implementation, lacks a robust statistical theoretical framework 

that allow transparent identification, and lacks compatibility with microeconomic theory. 

 

The trade of between RUM and DFT motivates the development of a RUM based model that 

could account for the dynamics of the decision-making process that is captured by the DFT model. 

As a first stage toward this overall research goal, this article is devoted to the collection an analysis 

of data on the sequential process of attributes evaluation within a public transport stated prefer-

ence experiment. The experiment has the purpose of confirming or rejecting the breath-first be-

havioural hypothesis that is behind the DFT model and to study the impact of various contextual 

settings that may influence such behaviour. Besides, the data collected and studied in this research 

will be used to generate a database on which, later, different practical RUM-DFT models can be 

assessed. 

2. LITERATURE REVIEW 

The Information search process is defined as the stages where an individual performs cognitive 

tasks, such as searching their memory, acquiring new information and processing the data to carry 

out their choice (Payne, 1992; Riedl et al., 2008). Figure 1, Xie et al., (2019) presents this process 

that could be incorporated into discrete choice models. 

 

On the one hand, there is the internal search related to retrieving information stored by individu-

als. Quite a few studies have been conducted to try to understand this process, but it is still unclear 

how to apply the findings of people's memory in choice models. And on the other hand, there is 

the external search, which corresponds to the stage of acquisition and processing of new infor-

mation that individuals obtain from external sources (Hulland et al.,1994). According to Schulte-

Mecklenbeck et al.,(2017) this sub-process is defined by the fixations on the attributes during the 

deliberation time that the decision-maker performs before making the choice. The transitions be-

tween these attentions allow the construction of the information search patterns that individuals 

perform in prior to the choice. 

 

Therefore, efforts will be made to understand, analyse, and characterise the external information 

search process performed by public transport users. This is crucial for modelling discrete choices 
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since ignoring the real dynamics behind this process will result in inconsistent model parameter 

estimators due to endogeneity (Guevara, 2015). 

 

 
Figure 1: The information search process Xie et al., (2019). 

 

Specifically, four different patterns of information search are considered in the analysis that de-

pend on the transitions of the attributes addressed by the decision-makers in a sequential manner. 

Definitions like Bettman (1976), Payne (1976), Johnson et al., (2008), Noguchi et al., (2014), 

Jiang et al., (2016). 

 

• Depth search occurs when the individual conceptualises all the attributes of an alternative 

before making comparisons with the rest of the options. Thus, attention is expected to 

fluctuate under different attributes but within the same alternative. The RUM models im-

plicitly include this pattern in the calculation of the choice probabilities since it is as-

sumed that individuals construct the utilities of the alternatives considering the value of 

all available attributes before choosing. 

 

• Breadth-first search occurs when the individual focuses on a particular attribute and sim-

ultaneously updates the value of all available alternatives for comparison. Therefore, it is 

expected to focus more on one attribute, and transitions occur more frequently between 

the alternatives. This pattern has been incorporated into different discrete choice models. 

On the one hand, the RRM model implicitly includes it in the modelling since the proba-

bilities of choice depend on the regret calculated through the bilateral comparisons of 

attributes (Chorus, 2010). On the other hand, the DFT model explicitly includes this pat-

tern since updating preconceived preferences during the deliberation process is made con-

cerning one attribute at a time (Hancock et al., 2018). It should be noted that this behav-

iour has been evidenced and supported by the findings of Noguchi et al., (2014), which 

indicate that comparisons of a pair of alternatives under the same attribute dimension 

occur more frequently. This is why psychological choice models should be modelled in 

such a way. 

 

• Unusual searches occur when attention is more erratic than usual. On the one hand, the 

adjacent diagonal searches capture the transitions that occur towards contiguous attributes 

and alternatives. In contrast, non-adjacent diagonal transitions occur when attention goes 

between non-contiguous attributes and alternatives that imply greater cognitive cost. 
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The figure 2 shows the information search patterns adopted in the different discrete choice models 

(Inspired from Chorus (2012)). The solid arrows represent the conceptualisations, and the dotted 

arrows represent the information search process and comparisons of alternatives. 

 

 
Figure 2: Choice process based on RUM (A), RRM (B) and DFT (C). 

3. METHODOLOGY AND PROCEDURES 

 

For studying the information search process, in this research a methodology was developed and 

applied to collect behavioural evidence of sequential attribute evaluation.  Three click-tracking 

surveys are built that vary in the number of alternatives and attributes displayed as areas of interest 

(AOI), which are not visible and only one can be displayed at a time, following a Payne (1976)'s 

information board format.  

 

Click tracking was used to evaluate the information search process as decision makers respond to 

pivoted Stated Preference (SP) surveys Public Transport trips occurring around the morning peak 

hour transit route choice study (click tracking), where the areas of interest shown (AOIs) repre-

senting the attributes of available alternatives are varied. In general, respondents were asked to 

report their socioeconomic characteristics, their typical commute, and then to choose one of the 

hypothetical public transport routes based on their walking time, waiting time, travel time, cost, 

number of transfers, and seat availability. 

 

After the surveys are designed, they are implemented on a web page and evaluated by applying 

them in a focus group to verify that the sequence of attributes clicked, the time of each click, and 

the choices in each task are properly obtained. Likewise, to improve the instrument, comments 

and feedback are received. Figure 3.A shows the section of socioeconomic questions, figure 3.B 

shows the mobility questions (revealed preferences), and figure 3.C shows an example of a choice 

task; containing 3 alternatives and 6 attributes in a click-tracked information board format (de-

clared preferences). 

 

In particular, we measured (1) the amount of information search, which corresponds to the number 

of fixations on an attribute; (2) the pattern of information search, which reflects the search transi-

tions in the attribute evaluations (in breadth-first search), which can be either by attribute (in-
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depth search), by alternative, or by attribute and alternative (diagonal searches); (3) the duration 

of fixation over the time course of a choice; and (4) the time spent on each choice task. 

 

 
Figure 3: A) Socio-economic questions. B) Revealed preference questions: Mobil-

ity. C) Revealed questions: Information board with Click-Tracking 

4. 4. RESULTS AND DISCUSSION 

 

Amount of information search 
 

The information searches carried out by the respondents before the choice, and the mean values, 

together with their standard deviation, are summarised in the table 1. On average, more infor-

mation searches were carried out than the total number of areas of interest shown in each instru-

ment, realising that public transport users do not capture the value of the attributes in the first 

instance and need to reconceptualise these values to include them in their utilities or preferences. 

Moreover, this construct grows significantly as the number of attributes or alternatives increases. 

On the other hand, when considering the AIS normalised by the AOI in the different surveys and 

performing a test of means, it can be noted that a more significant increase in the number of 

searches is generated when attributes are added (t=6.36) compared to when the alternatives are 

increased (t=2.71). Therefore, the amount of information search increases at decreasing rates with 

the AOIs shown in the surveys, but to a greater extent when attributes are added. 

 

Table 1: Amount of information search in surveys 
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The boxplot with the fixations made by the respondents normalised by the amount of AOI corre-

sponding to each survey reinforces the previous finding since the confidence intervals are differ-

ent from each other. Furthermore, it is shown that less information is sought by AOI when cog-

nitive load increases. Also, the greatest difference is between the CT23-CT26 surveys, more than 

the CT26-CT36 surveys, showing that the number of searches intensifies to a greater degree with 

the attributes increase. 

 
Figure 4: Amount of information search standardised by AOI. 

 

To close this construct analysis, it can be commented that these results are consistent with those 

found by Meiβner et al, (2020), who conclude that the dimensions of the election situation affect 

the information search process. The findings show that increasing the number of attributes and 

alternatives leads to an increase in the information search and induces certain filtering of attrib-

utes. The novelty of this research lies in the fact that these results are replicated in the public 

transport route choice SP context, and a greater impact is evidenced in the deliberation process 

when adding attributes to the number of alternatives. 

 

Filtration 
 

Figure 5 shows the percentage of areas of interest that were not fixed during the deliberation 

process in each of the surveys presented. In this image, it can be seen, in general, that increasing 

the number of alternatives or attributes leads to a significant increase in filtered information. This 

was already evident with the other results for amount information search, which show observa-

tions that did not fix on certain attributes or alternatives at any point in time. It can also be seen 

that the percentage of neglected areas of interest increases as the decision-maker progresses 

through the choice tasks. 

 

 
Figure 5: Percentage of areas of interest not fixed in surveys. 
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Search pattern order 

 

Figures 6, 7, and 8 plot the curves that represent the times in which respondents performed the 

different information search patterns, at each step of the deliberation process. From this analysis, 

it is possible to deduce the order in which these types of searches are carried out. 

 
Figure 6: Information search pattern order in CT23. 

     

Firstly, from the CT23 survey (figure 6), there is a greater number of respondents who preferably 

perform breadth-first searches; in the first instance, and this is maintained during most of the 

deliberation time (up to t=13 there are 83.5\% of respondents who have already decided on an 

alternative). Then until t=4, it is followed by adjacent diagonal searches and depth transitions for 

the rest of the time (until t=13). The non-adjacent patterns are smaller and correspond to the min-

imum value in 92% of the deliberation time concerning the other transitions. 

 

It should be noted that more depth comparisons are made as the deliberation time progresses, 

which can be evidenced for two reasons. First, the slope of the curve is less than the decay rate of 

the breadth-first transition. And secondly, the number of depth searches is greater than the rest of 

the patterns from the first third of the process onwards. 

 

 
Figure 7: Information search pattern order in CT26. 
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On the other hand, in the CT26 and CT36 survey, there is a clear predominance of breadth-first 

search occurrences performed in the first stage of the deliberation time. It stands out, as in the 

previous case, as time progresses, more depth searches are generated concerning the rest of the 

patterns, and there is a turning point after the first third of the deliberative process. 

 

 
Figure 8: Information search pattern order in CT36. 

 

Transition Matrix 
 

Transition matrices show the relative frequencies between consecutive fixations. These results 

are summarised in figures 9, 10 and 11, which reveal the probabilities that respondents attend a 

particular area of interest in timestep t conditional on a previous AOI. From the figures, two im-

portant findings can be obtained. First, it is possible to know the aggregate information search 

patterns that predominate among the participants to reach their final decision. Secondly, it can 

empirically know the probability of observing an attribute in the next step in the information 

search process. This allows to include how the evidenced information is acquired and its attention 

weights in the model to be proposed, which incorporates the sequential evaluation of attributes. 

Therefore, this modelling allows for the first time to adequately integrate the updating of utilities 

or preferences for the subsequent comparison of alternatives and choices. 

 
Figure 9: Transition matrix of CT23 
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Figure 10: Transition matrix of CT26. 

 

 
Figure 11: Transition matrix of CT36. 

 

 

     

     

Duration 
The boxplots in figure 12 show the average information search time for each of the 8 choice tasks 

of the CT23, CT26 and CT36 surveys, respectively. Also, the average of these values is high-

lighted in red. These values are obtained as the amount of time the clicked areas of interest remain 

visible. From these values, there is a steady decline in average click durations as respondents 

progress through the survey. This suggests two possible reasons. The respondents acquire 

knowledge to use the instrument and click faster, or participants begin to memorise the location 

of the relevant areas of interest to make their choice and perform certain information search heu-

ristics acquired during the previous answered tasks. 

 

Therefore, the duration is not constant during the deliberation process and contradicts the results 

shown by Stewart et al., (2016). This is because the experiments carried out in this work are more 

complex. As has been evidenced from the different constructs, different information search pat-

terns are involved, showing instability in information processing. This implies differences in the 

duration of information acquisition and processing (Rayner et al., 2012). However, short durations 

and variability throughout the deliberation are more consistent with automatic processes such as 

accumulating models (Glockner et al., 2011). 
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Figure 12: duration per task and survey. 

    

5. CONCLUSIONS AND FUTURE RESEARCH 

 

Based on this analysis, we found 3 main findings. The first, that transit users have a change in the 

pattern of information search that depends on the number of alternatives and attributes (AOI) 

shown in the choice situation. On the one hand, as AOIs increase, people search more frequently 

for information in breadth-first. In addition, we find that users, on average, perform breadth-first 

and then in-depth search to validate their chosen alternative. A second finding, we found that the 

sequential evaluation of attributes, number of steps, increases with increasing AOI and a higher 

number of diagonal searches is observed. Third, doing an analysis of the transition matrices of 

the AOIs, we find that the most likely transition corresponds to a search for information in 

breadth-first in all experiments, and that the effect becomes more acute with the number of AOIs. 

 

The evidence found suggests that there is a predominance of information search in breadth-first, 

so that the RUM model would not be able to adequately describe the choice process and that the 

DFT approach would be more appropriate, but not necessarily fully comprehensive, for these 

purposes. Evidence shows that the search for information in breadth-first is not total and this 

behavior becomes more acute with increasing AOI. Given these results, it seems that a latent class 

model, incorporating both types of searches (in-depth and breath-first), may be the more suitable 

to address the problem. The development an assessment of this and other models with the col-

lected data remains as future work. 
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Schulte-Mecklenbeck, M., Johnson, J.G., B öckenholt, U., Goldstein, D.G., Russo, J.E., Sullivan, 

N.J., Willemsen, M.C., 2017. Process-tracing methods in decision making: On growing up in the 

70s. Current Directions in Psychological Science 26, 442–450. 

 

Stewart, N., Gächter, S., Noguchi, T., y Mullett, T. (2016). Eye movements in strategic choice. 

Journal of behavioral decision making, 29 (2-3), 137–156.  

 

Stewart, N., Hermens, F., y Matthews, W. (2016). Eye movements in risky choice. Journal of 

behavioral decision making, 29 (2-3), 116–136.  

 

Sui, X.-Y., Liu, H.-Z., y Rao, L.-L. (2020). The timing of gaze-contingent decision prompts in-

fluences risky choice. Cognition, 195, 104077. 

 

Xie, Y., et al., 2019. Choice modeling with observed and unobserved information search. Ph.D. 

thesis. Massachusetts Institute of Technology. 

 

Qin, H., Guan, H., y Wu, Y.-J. (2013). Analysis of park-and-ride decision behavior based on 

decision field theory. Transportation research part F: traffic psychology and behaviour, 18 , 199–

212. 



Power sector effects of alternative options for electrifying heavy-duty vehicles

Carlos Gaete-Morales*1, Julius Jöhrens2, Florian Heining2, and Wolf-Peter Schill1

1Energy, Transportation, Environment Department, German Institute for Economic Research
(DIW Berlin), Mohrenstraße 58, Berlin, 10117, Germany

2ifeu - Institute for Energy and Environmental Research, Wilckensstraße 3, Heidelberg, 69120,
Germany

Short summary

In the passenger car segment, battery-electric vehicles have emerged as the most promising option
to decarbonize transportation. For heavy-duty vehicles, the technology space still appears to be
more open. Aside from stationary-charged battery-electric trucks, electric road systems (ERS) for
dynamic power transfer to electric vehicles are also discussed, as well as trucks that use hydrogen
fuel cells or e-fuels. Here we investigate the power sector implications of these different options.
We apply an open-source power sector capacity expansion model to future scenarios of Germany
with high renewable energy shares, drawing on detailed route-based truck mobility data. Results
show that power sector costs are highest in the case of e-fuels, and lowest for battery-electric and
ERS trucks. The latter technologies can generally provide more temporal flexibility to the power
sector than battery-electric and ERS trucks. Yet, these flexibility benefits do not outweigh their
disadvantages in terms of energy efficiency. In equilibrium, the different flexibility characteristics
lead to higher capacity expansion and use of solar PV for battery-electric and ERS trucks, and to
a higher use of wind power for hydrogen and e-fuel trucks. If battery-electric and ERS trucks are
charged in a non-optimized manner, power sector costs increase, but still remain below those of
hydrogen and e-fuel trucks.

Keywords: Battery-electric vehicles, Catenary, Electrification and decarbonization of transport,
Heavy-duty vehicles, Hydrogen, Power sector modeling.

1 Introduction

Making energy consumption climate neutral in all end-use sectors is of paramount importance for
mitigating climate change de Coninck et al. (2018). A key strategy for achieving this is to substi-
tute fossil fuels by renewable electricity, facilitated by direct or indirect electrification of end uses
in mobility, heating, and industrial applications Shukla et al. (2022). In the transportation sector,
battery-electric vehicles (BEV) have emerged as the most promising option for the passenger car
segment. Already today, BEV can lead to sizeable greenhouse gas emission reductions compared
to internal combustion engines Hoekstra (2019), which will further increase when the electricity
mix becomes cleaner. In many countries, markets for electric passenger cars have been soaring in
the past years, and are expected to continue to grow strongly in the near future IEA (2022). For
heavy-duty vehicles (HDV), however, the technology space still appears to be more open. While
the feasibility of pure battery-electric HDV has been assessed to be increasing Nykvist & Olsson
(2021), they compete with other options. This includes electric road systems (ERS), which allow
for dynamic power transfer to electric vehicles on the road (Boltze et al., 2020; Speth & Funke,
2021); trucks with hydrogen fuel cells; or conventional HDV with internal combustion engines that
use liquid e-fuels which are produced with renewable electricity Hannula & Reiner (2019); Laje-
vardi et al. (2022); Plötz (2022); Li et al. (2022).

These options of direct or indirect electrification of HDV have different properties concerning, on
the one hand, energy efficiency, and, on the other hand, temporal flexibility of electricity use. For
example, direct electrification via BEV is more energy efficient compared to indirect electrification
via electrolysis-based hydrogen or e-fuels Ueckerdt et al. (2021); Lajevardi et al. (2022). Yet, the
temporal flexibility of BEV may be constrained by charging availability and limited battery ca-
pacities, as vehicle batteries are costly and heavy. In contrast, indirect electrification via hydrogen
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or e-fuels may entail large-scale and low-cost storage options Taljegard et al. (2017); Stöckl et al.
(2021), but the overall energy efficiency of these supply chains is lower compared to BEV. Tempo-
ral power sector flexibility becomes increasingly important with growing shares of renewables, as
the potential for firm renewable generation such as hydropower, bioenergy, or geothermal power is
limited in many countries. In contrast, wind and solar power potentials are often abundant, but
they have variable generation profiles that depend on weather conditions and daily and seasonal
cycles (López-Prol & Schill, 2021). Integrating growing shares of such variable renewables thus
requires an increasing use of flexibility options in the power sector (Kondziella & Bruckner, 2016).

Against this background, we investigate the power sector implications of different options for (in-
)directly electrifying HDV, particularly focusing on the trade-off between energy efficiency and
temporal flexibility. To do so, we apply an open-source capacity expansion model Zerrahn & Schill
(2017); Gaete-Morales, Kittel, et al. (2021) to 2030 scenarios of the Central European power sector
with high renewable energy shares. We focus on the domestic traffic of HDV in Germany with
a gross vehicle weight above 26 tonnes, drawing on a detailed data set of truck trips on inner-
German origin-destination pairs. We include stationary-charged BEV trucks as well as hybrid
battery-catenary trucks as a particular example of an electric road system technology (ERS-BEV),
fuel-cell hydrogen electric trucks (FCEV), and such with internal diesel combustion engines pow-
ered by e-fuels (ICEV PtL). For hydrogen, we further differentiate two domestic supply chains,
either decentralized electrolysis at filling stations, which is temporally inflexible, or centralized
electrolysis and transport via gaseous hydrogen, which also comes with low-cost storage opportu-
nities and is thus more flexible. We compare the power sector costs of these options, as well as
their repercussions on the optimal power plant fleet, under different assumptions on the temporal
flexibility of the electric load of electric HDV usage.

While there is a broad literature on the potential power sector impacts of battery-electric passenger
cars Richardson (2013); Muratori & Mai (2020); Mangipinto et al. (2022), according research for
electric HDV is sparse Schill & Gerbaulet (2015); Gnann et al. (2018); Sadeghian et al. (2022);
Pickering et al. (2022).

We contribute to the literature by providing, to the best of our knowledge, the first analysis that co-
optimizes the charging and discharging operations (including V2G) of different types of electrified
HDV with capacity and dispatch decisions in the power sector. We do so for a wide range of HDV
technologies, including dynamic power supply via electric road systems. We use a power sector
model that fully captures the hourly variability of load and renewable generation over all hours of
a full year, and apply it to a future scenario with high shares of variable renewables. The model
code and all input data, including detailed hourly HDV mission profiles for domestic transport in
Germany, are provided open source for transparency and reproducibility.

2 Methodology

The power sector model DIETER

We use the open-source power sector model Dispatch and Investment Evaluation Tool with En-
dogenous Renewables (DIETER). It is a linear program that minimizes power sector costs by
optimizing capacity and dispatch decisions for a full year in an hourly resolution Zerrahn & Schill
(2017); Gaete-Morales, Kittel, et al. (2021). Its objective function includes fixed an variable costs
of all electricity generation and storage technologies, electrolysis and PtL plants, as well as hydro-
gen or e-fuel transportation. It does not include the costs of charging or catenary infrastructure,
hydrogen filling stations, or PtL filling stations. Accordingly, the power sector cost figures provided
above do not include the costs of HDV electrification infrastructure. We further do not consider
the option of hydrogen imports, as these are likely to be unavailable at scale by 2030. In general,
the global scaling up of green hydrogen supply remains uncertain Odenweller et al. (2022).

Endogenous model variables include power sector costs, optimal generation and electricity storage
capacities (Germany) and their hourly use (all countries), hourly decisions for HDV charging and
discharging, as well as the capacity and operational decisions of electrolysis and PtL generation
and storage infrastructure. In addition, we interpret the marginals of the hourly energy balance
as wholesale prices (compare (Brown et al., 2018)).
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Exogenous model inputs include fixed and variable costs of all electricity generation and storage
technologies, efficiency parameters, as well as time-series variable renewable energy availability
profiles and electric load. In the case of inflexible HDV charging (BEV Inflex, ERS-BEV Inflex),
we assume that the vehicles always start charging as soon as an opportunity arises, and that ve-
hicles batteries are fully charged by the time the next trip starts, if possible. The charging power
is set to facilitate exactly this for each charging period, i.e., charging power is generally lower, the
longer a vehicle is connected to the grid. This resembles the “balanced” charging profile defined
in Gaete-Morales, Kramer, et al. (2021). For Germany, we further assume upper limits for invest-
ments in fossil generation capacities as given by the federal Grid Development Plan 2030.

The geographic scope of the model version used here includes Germany and its neighboring coun-
tries plus Italy. In order to reduce numerical complexity and improve tractability, we allow for
endogenous generation capacity investment only in Germany, and fix the power plant portfolio
for the other countries to values derived from ENTSO-E’s Ten Year Network Development Plans
ENTSOE (2018). The model is required to satisfy at least 80 percent of the load in Germany with
domestic renewable electricity generation. This includes the additional load related to directly or
indirectly electrifying HDV. This reflects the current German government’s target for 2030 that
has also been set out in the Renewable Energy Sources Act.

Mobility data of heavy-duty vehicles

We generate synthetic truck usage patterns that are intended to approximate the German fleet of
HDV larger than 26 tons. The main data source for the usage patterns is the traffic model PTV
Validate, from which we extract a database of daily truck trips in domestic German road freight
transport.

For these profiles, the time series of charging availability (in the depot, during idle and driver’s
resting times) and of the electricity demand of pure BEV-HDV (500 km battery range) and ERS-
HDV (150 km battery range) are calculated. The resulting electricity demands and charging
availabilities are used as inputs for the DIETER model.

3 Results and discussion

Lowest power sector costs and electricity prices for BEV with V2G

Compared to the reference case without electrified HDV, yearly power sector costs increase in all
scenarios with electrified HDV (Figure 1, upper panel). That is, the cost of the additional elec-
tricity demand induced by HDVs always outweighs their potential flexibility benefits. Cost effects,
however, vary strongly between different options. Flexible BEV with V2G incur the lowest addi-
tional power sector costs (1.8 bn Euros/year, or around 5,600 Euros/year per vehicle), followed by
BEV without V2G (2.3 bn Euros/year, or around 7,200 Euros/year per vehicle). If BEV charging
is not optimized, system costs are markedly higher (3.8 bn Euros/year, or 11,900 Euros/year per
vehicle). Results are qualitatively similar for ERS-BEV, but on a slightly higher cost level. The
differences between the three ERS-BEV cases are much less pronounced than for pure BEV, as
their temporal flexibility potential is much smaller. The battery capacity of an ERS-BEV fleet
is only around a quarter of that of an alternative pure BEV fleet (655 kWh usable capacity per
pure BEV and 181 kWh per ERS-BEV truck). In contrast, power sector cost are substantially
higher for FCEV (12.6 or 12.7 bn Euros/year, for decentralized or centralized hydrogen provi-
sion, i.e. around 39,700 Euros/year per vehicle) and even more so for PtL (16.8 bn Euros/year, or
52,700 Euros/year per vehicle). This is a direct consequence of high conversion losses of hydrogen
and PtL supply chains and vehicles drive trains. Because of these losses, the two hydrogen supply
chains increase the electricity demand more than twice as much as the battery-electric options.
The electricity demand of PtL-HDV is nearly four times as high as in the case of BEV. Notably,
the cost differences between BEV and ERS-BEV are much smaller than the differences between
these direct-electric options and indirect electrification via hydrogen or PtL.

Complementary to power sector costs, we also evaluate average yearly wholesale electricity prices
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Figure 1: Changes in yearly power sector costs and electricity demand induced by different
HDV options (upper panel), and average wholesale market prices of charging electricity
(lower panel).

for HDV electricity (Figure 1, lower panel). This allows to largely separate the differences in overall
electricity consumption of the various HDV options from their ability to make use of low-cost elec-
tricity. Average prices are calculated by multiplying hourly wholesale prices of electricity consumed
by the different HDV options or fed back to the grid with respective hourly quantities, summing
up over the whole year, and dividing by the overall electricity consumption of the fleet. That is,
the numbers also account for revenues of electricity sold via V2G.1 BEV with V2G face the lowest
average electricity prices, as these also benefit from revenues of feeding back to the grid, followed
by BEV without V2G. Average electricity prices paid by ERS-BEV are somewhat higher, as their
smaller batteries limit the ability for temporally optimizing their charging and V2G decisions. In
contrast, pure BEV can leverage their larger battery capacity to make better use of hours with low
electricity prices.

In contrast, average electricity prices faced by inflexibly charged BEV are high, and even slightly
above those of inflexible ERS-BEV. Note that inflexibly charged BEV generally benefit less from
cheap electricity prices around midday related to abundant PV feed-in than inflexible ERS-BEV,
while they are driving. With flexible charging, BEV can compensate for this charging availability
disadvantage at midday by making better use of low prices in other periods, e.g., in windy nights,
leveraging their larger batteries. In the case of inflexible charging, however, this is no longer
possible, and the higher day-time grid availability of ERS-BEV gives them a slight competitive
edge over BEV in terms of average charging prices. Prices for electricity used in hydrogen and

1Here we assume that HDV operators receive the respective hourly wholesale price whenever they feed
electricity back to the grid.
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PtL supply chains are in the same range as those of ERS-BEV options. Centralized hydrogen
and PtL supply can make use of lower prices than decentralized supply, because their low-cost
storage options allow for higher temporal flexibility. Electricity prices of centralized hydrogen
supply chains and PtL are also cheaper than those faced by inflexibly operated BEV or ERS-BEV.
In terms of overall costs, these temporal flexibility benefits are, however, by far outweighed by the
higher overall energy consumption of the FCEV and PtL options (Figure 1, upper panel).

Capacity and dispatch effects

The upper panel of Figure 2 shows optimal generation capacities in the reference (on the left) and
the changes induced by HDV (on the right) in Germany, where minimum renewable energy share
of 80% applies. In the reference, variable solar PV and onshore wind power dominate the capacity
mix. These are complemented by smaller firm capacities of natural gas and bioenergy. The capacity
additions related to the electrification of HDVs are predominantly a mix of solar PV and onshore
wind power. Flexible BEV and ERS-BEV lead to the highest PV shares in the capacity additions,
especially if combined with V2G. BEV with V2G essentially serve as short-duration grid storage,
which favors the expansion of solar PV. HDV options that are temporally less flexible or that,
overall, require more electricity favor higher onshore wind power capacities. If, alternatively, more
PV was built, this would lead to increasing amounts of unused renewable surplus energy. Offshore
wind power is not added here because of relatively unfavourable costs. FCEV and PtL options
have the highest capacity needs because of substantial conversion losses. Decentralized electrolysis
further requires a substantial addition of long-duration electricity storage capacity (9.4 GW) to
compensate for the temporal inflexibility of the additional electricity demand (10.3 TWh). Aside
from natural gas and oil, no fossil fuel generation capacities are used, partly due to a CO2 price of
100 Euros/ton which discourages such investments. However, in the more inflexible scenarios (BEV
Inflex, ERS-BEV Inflex and FCEV Distributed), investments into natural gas and oil generation
capacity are at the assumed maxima.

The changes in yearly electricity generation are shown in the lower panel of Figure 2. On the
left-hand side the overall electricity generation of the reference scenario is displayed. Whereas
the right-hand side figure shows electricity additions or reductions according to the HDV options
and generating technologies.2 Here, the share of wind power in additional electricity generation is
higher than in additional capacity because of its higher full-load hours as compared to solar PV.

Flexible BEV and ERS-BEV options show large solar PV generation, the lowest gas and oil gen-
eration and an inferior electricity import that led them to reach a higher renewable share (above
81%) than the reference case (80%). Centralized FCEV and PtL increased the gas power output of
the most efficient plants, the combined-cycle ones, even without investing in more capacity leading
to an increase in the capacity factor and maintaining the same low renewable share as the reference
scenario (80%). As the coal power investment was disincentivized due to the high carbon price
and having reached the maximum investment in gas and oil power, FCEV distributed option was
forced to increase the share of renewables to 82.6% to fulfil the highest energy consumption. It
also replaced in part power import by long-term storage, P2G2P, to overcome the inflexibility that
distributed hydrogen entailed to the power sector.

Direct carbon emissions

Among all scenarios, CO2 emissions increase the most if the HDV fleet uses e-fuels or hydrogen
(Figure 3). This is a consequence of additional electricity generation from natural gas in these
scenarios. Among the two hydrogen cases, on-site electrolysis at filling stations leads to lower
emissions impacts compared to centralized electrolysis, as its temporal flexibility limitations require
additional long-duration electricity storage, which in turn is charged to a substantial extent by
renewable surplus energy. Emission effects are smaller for BEV and ERS-BEV, and even negative
for flexibly charged BEV, especially if combined with V2G. The latter is driven by an additional
expansion of solar PV facilitated by V2G, as shown above. For neighboring countries, relative
emission effects are smaller, as by assumption they have lower renewable energy shares and, in
turn, higher emissions, as well as no electrified truck fleets.

2This chart also shows the output power associated with storage options. These figures do not represent
generation as long as it corresponds to energy throughput.
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Figure 2: Effects of different HDV scenarios on optimal generation capacity (upper panel)
and on yearly generation (lower panel) in Germany

Time series reveal differences in flexibility characteristics

Figure 4 illustrates that flexible BEV HDV are able to charge their batteries in hours of low resid-
ual load, and especially to make use of renewable surplus energy to a substantial extent. They
also make use of the V2G option to some extent to feed back renewable surplus energy to the
grid, whenever the battery capacity is not needed for driving. In the exemplary illustration, this
is visible particularly in summer (right panel). Note that the time series shown begins on a Sat-
urday.3 BEV with V2G store a substantial amount of renewable (i.e., solar PV) surplus energy
on Saturday afternoon, and feed it back to the grid in the night between Saturday and Sunday
(top right time series shown in Figure 4). This is possible because HDV are not used on Sunday,
so the battery capacity is idle. Note that this is different in the following days, as HDV are used
between Monday and Friday, and much less battery capacity is available for V2G. If BEV charging
is not optimized, but follows an inflexible, pre-determined pattern, charging profiles are less peaky
and much more balanced (second panels from top). This especially means that BEV are not able
to make much use of cheap renewable surplus electricity in this case, but also carry out a lot of
charging in hours with positive residual load.

ERS-BEV generally follow similar patterns as non-catenary BEV. Yet, their smaller batteries make
ERS-BEV temporally less flexible, so they can make less use of renewable surplus events and also

3For simplification, we assume that both Saturday and Sunday are truck-free.
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Figure 3: Direct CO2 emissions from electricity generation. The left panel shows annual
emissions from Germany, while in the right panel are the emissions from Germany’s neigh-
bouring countries. Each panel contains, on the left, the overall emissions of a reference
scenario with no trucks. On the right is the emissions difference of the scenarios with direct
or indirect power demand.

have to draw electricity from the grid during hours with positive residual load to some extent.
For the same reason, their potential for feeding electricity back to the grid is also much smaller
than in the case of pure BEV. Note that ERS-BEV partly also charge their batteries during driving.

Hydrogen and PtL supply chains show very different patterns of electricity use compared to BEV
or ERS-BEV. FCEV with centralized hydrogen supply chains (i.e., centralized electrolyzers with
large-scale hydrogen storage capacities) generally have a flat consumption profile in many hours,
as their high fixed costs make it optimal to use them with relatively high full load hours. This
also limits their ability to make use of renewable surplus energy (lower electricity consumption on
first summer day shown in the graph compared to BEV V2G). Yet, they can use the temporal
flexibility provided by centralized, large-scale hydrogen storage to reduce electricity consumption
in hours of high positive residual load, i.e., high prices. In contrast, on-site electrolysis follows the
actual hydrogen demand much more closely. This is because decentralized electrolyzers sited at
filling stations by assumption only come with very limited hydrogen storage. Accordingly, they
can avoid electricity consumption in hours of high residual load only to a minor extent, and much
less than centralized electrolyzers. The PtL supply chain has a relatively similar pattern as the
one for centralized hydrogen. The peak load is however higher because of higher overall energy
consumption which also goes along with the highers PEM electrolysis capacity (24.4 GW).4

4 Conclusions

We analyze the power sector effects of alternatives options for electrifying heavy-duty vehicles in
Germany, focussing on power sector costs costs, investment decisions, dispatch and direct carbon
emission in the power sector. Temporal flexibility and energy efficiency are important drivers of
results.

4PEM electrolyzer capacity. FCEV centralized: 13.5 GW, FCEV distributed: 19.1 GW, ICEV PtL:
24.4 GW.
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Figure 4: Five days sample for winter and summer of electricity flow time series. It
contains residual load, electricity consumed to fulfil the demand for mobility (loading) and
electricity returned to the grid in case of Vehicle to Grid (V2G) in GW. The samples start
on Saturday.

Flexibly operated BEV and ERS-BEV, especially if combined with vehicle-to-grid, lead to the
lowest power sector costs because of their energy efficiency benefits. In contrast, FCEV and PtL
are temporally more flexible, but this does not outweigh their energy efficiency drawbacks.

From a pure power sector perspective, direct electrification of the truck fleet would be clearly
preferable. Moreover, temporally flexible charging, including V2G, is desirable, as this leads to the
lowest electricity sector costs and carbon emissions, and the highest use of renewable electricity.
In contrast, inflexible charging should be discouraged as it performs poorly compared to flexible
and bi-directional charging.

Future research may investigate overall system cost effects, also considering cost differences of
charging and ERS infrastructures, as well as purchase cost differences of the trucks, which was
beyond the scope of this study.
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SHORT SUMMARY 
 

Bus bunching describes a phenomenon that is familiar to many public transport users. Two buses, 

running according to a scheduled frequency, arrive at a stop in immediate succession. In most 

cases, the leading vehicle is delayed. The delay causes an increasing number of waiting passen-

gers at the stops. Through this higher number of boarding and alighting passengers, the dwell time 

of the leading bus lengthens and by that also its delay. This problem is made visible using freely 

available public transport control data of two routes from Sydney, Australia. To validate the 

bunching events captured from the bus control data, General Transit Feed Specification (GTFS) 

data is used. The buses’ positioning logs are traced to determine the distance between bunched 

vehicles. Additionally, a direct association between late departures of buses induced by delay 

propagation from one direction and increased bunching occurrence in the opposite direction is 

observed. 

 

Keywords: Big Data, Bus Bunching, Public Transport 

 

1. INTRODUCTION 
 

Bus bunching resembles a phenomenon that is frequently observed in urban bus operations. 

Whereas measuring or detecting its characteristics has not led to a thorough definition of the un-

derlying problem, most literature determines bus bunching by the immediate queuing of two con-

secutive buses at one particular stop (ILIOPOULOU et al., 2020). Bus bunching resembles a phe-

nomenon that is frequently observed in urban bus operations. Whereas measuring or detecting its 

characteristics has not led to a thorough definition of the underlying problem, most literature de-

termines bus bunching by the immediate queuing of consecutive buses at one particular stop 

(MOREIRA-MATIAS et al., 2014; XIN et al., 2021; YU et al., 2016).  

 

This paper has three objectives. First, to develop a methodology for identifying and analysing the 

spatiotemporal dimensions of bus bunching using publicly available data. Second, to investigate 

whether strict adherence to the timetable, as well as knock-on delays, also lead to bunching. Third, 

an overarching objective of this research is to ensure that potential results are obtained as accu-

rately as possible, but with a minimum of effort for the operator. 

 

Datasets revealing the punctuality of buses are already available to many transport companies 

worldwide. The common procedure is to analyse the actual arrival and departure times at bus 

stops and to calculate the deviation from the schedule. This paper shows how additional findings 

can be drawn from such analysis and headway deviation calculations. The methodology process 
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proves how common practices considering solely schedule adherence are easily extended to cap-

ture bus bunching. Service regularity gains importance compared to schedule adherence, espe-

cially in dense headways. It is noteworthy that these insights do not require supplementary data 

sources. Automatic Vehicle Location (AVL) is not necessarily available to all operators, such 

data is used in this paper as a means of validation of the methodology. 

 

2. METHODOLOGY 
 

The approach used for this project involves a total of four steps (see Table 1). Firstly, with the 

research questions concerning bus bunching identification and its spatiotemporal analysis are out-

lined. Secondly, the data acquisition determines the required level of detail to analyse bus bunch-

ing. Thirdly, the evaluation framework is described, which is crucial for clarifying which key 

performance indicators (KPI) will subsequently allow the interpretation of the results of the data 

analysis. The goal is to create a schedule adherence index. The index does not measure bus bunch-

ing directly but bus regularity, which is closely associated with bus bunching. Fourthly, several 

proposed solution approaches are compared regarding both the determined KPIs and the available 

data basis. A presented validation method helps to underline the results. In an additional step, the 

position and time of the bunching events are compared against a second data stream that tracks 

the actual coordinates of the vehicles.  

Table 1: Methodological Steps for Bus Bunching Identification 

Step Task Question /  

Decision to be dealt with 

Outcome 

1 Data  

Acquisition 

How can the available data basis 

be evaluated in terms of the  

project’s feasibility? 

Level of detail of data basis 

and its feasibility for the in-

tended analysis 

2 Evaluation 

Framework 

Which KPIs can be measured with 

the data basis? 

Choice of KPIs 

3 Choice of 

Method 

Which solution approach from lit-

erature appears to be suitable? 

Choice of Solution Ap-

proach (Algorithm) to cap-

ture chosen KPIs 

4 Data  

Analysis 

How can the desired results be ob-

tained from the available data? 

Specification of measure-

ment tools and techniques 

 

Data acquisition 
 

The data used for this work is acquired from the Bus Opal Assignment Model (BOAM) hosted 

by Transport for New South Wales in Australia (TfNSW), which makes a wide variety of public 

transport (PT) related datasets publicly available. For buses, only actual arrival times at stops are 

recorded so that the actual departure times remain unknown. Figure 1 shows exemplarily those 

four columns that are relevant for the bunching identification and its spatiotemporal analysis:  
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Table 2: Excerpt of BOAM Daily Dataset Relevant for Bunching Identification 

Trip ID_Date Stop Scheduled Arrival Actual Arrival 

179839616_2020-02-03 1 06:00:00 06:03:34 

179839727_2020-02-03 1 06:10:00 06:10:58 

179839617_2020-02-03 1 06:20:00 06:22:34 

179839618_2020-02-03 1 06:30:00 06:30:18 

179839730_2020-02-03 1 06:38:00 06:37:19 

179839732_2020-02-03 1 06:45:00 06:45:09 

 

From public transport control data to bus bunching analysis 
 

The real-time extension of the General Transit Feed Specification (GTFS) differentiates trip up-

dates, service alerts, and vehicle positions. The vehicle positions feed is of vital importance for 

the identification of bus bunching, it depicts the current location and movement parameters of 

vehicles (BARBEAU., 2018). AVL data is the primary of three forms of PT control data (alongside 

Automatic Fare Collection and Automated Passenger Counting) and typically involves infor-

mation in three dimensions (latitude, longitude, time). Consequently, the identification of bus 

bunching which relies solely on AVL data can be regarded as a robust methodology (SUN, 2020).  

 

The spatiotemporal analysis is designed as a retrospective evaluation of sample data to uncover 

patterns. Particularly, categorizing bus operations into predefined levels of service relies on the 

coefficient of variation of headway deviations. To obtain the required quotient, the standard de-

viation of headways is divided by the average headway (CAMPS AND ROMEU, 2016).  

 

The calculation of the coefficient of variation 𝑐𝑣ℎ  follows equation (1): 

𝑐𝑣ℎ =  
𝑠𝑑(ℎ𝐴)

ℎ𝐴
 (1) 

 
𝑠𝑑: 
ℎ𝐴: 
ℎ𝐴: 

standard deviation 

actual headway 

average actual headway 

 

The further translation into Levels of Service (LOS) is applied according to the threshold ranges 

from the PT Capacity and Quality of Service Manual presented in Table 3 (TURNER et al., 2010).  
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Table 3: Levels of Service of Schedule Adherence based on Headway Deviations 

LOS 𝒄𝒗𝒉 P(abs(𝒉𝒊 − 𝒉) > 

0.5 * 𝒉 

Passenger and Operator Perspective 

A 0.00 - 0.21 ≤ 2% Service provided like clockwork 

B 0.22 – 0.30 ≤ 10% Vehicles slightly off headway 

C 0.31 – 0.39 ≤ 20% Vehicles often off headway 

D 0.40 – 0.52 ≤ 33% Irregular headway, with some bunching 

E 0.53 – 0.74 ≤ 50% Frequent bunching 

F ≥ 0.75 > 50% Most vehicles bunched 

There are few studies in which schedule adherence is ascribed to minor importance. This is rea-

soned by the high utility of bus lines with short headways of less than ten minutes. Riders are 

assumed to travel spontaneously, meaning they do not check the upcoming departure times of 

their bus services (BARTHOLDI AND EISENSTEIN, 2012). However, a valuable contribution from 

the spatiotemporal analysis is to spot the locations at which bus bunching occurs regularly (LI et 

al., 2013).  

 

Preliminary choice of method for data analysis 

 
The prescribed methodology involves a suitable calculation method. Table 4 below describes the 

six steps carried out within that final methodological step. Because of the low traffic volumes 

during the night times, only the hour bands which are relevant to grasp the phenomenon are stud-

ied thoroughly. Data from weekdays in February are chosen as these do not interfere with public 

holidays or other strong seasonal influences. 

Table 4: Six-step Heuristic as Final Methodological Step 

Step 
Description 

1) Data cleaning Elimination of faulty (e.g. double) or missing records. 

2) Data sorting Sort records by scheduled / actual arrival time for each stop for 

scheduled and actual headway calculation, respectively. 

3) Headway calculation 

and bus identification 

Headway can be easily obtained by subtracting two consecutive 

arrival times for each stop 

4) Bus bunching identi-

fication 

The set headway threshold for bus bunching identification is set to 

be 0.25* ℎ𝑠𝑐ℎ𝑑 (scheduled headway).  

5) Bus bunching distri-

bution and further KPI 

calculation 

Count the number of identified bus bunching records for each stop 

in each hour for all days of the same type of day (weekday). Cal-

culate the coefficient of variation for each stop in each hour and 

return the corresponding LOS. 

6) Data aggregation and 

plotting 
Aggregate data sets of same day type and plot results. 
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Supplementary analysis of delay propagation  

 
In classic scheduled services, buffer and turnaround times are scheduled at the terminals of sched-

uled routes. However, despite these preventive measures, it may happen that delayed buses from 

one direction do not re-enter the line route in the opposite direction on time. This delay propaga-

tion is closely linked to the phenomenon of bus bunching, as poor schedule adherence applies in 

both cases. The six-step heuristic for bus bunching analysis is perpetuated to conclude a direct 

association between late departures of buses induced by delay propagation from one direction and 

increased bunching occurrence in the opposite direction. By doing so, each trip is marked by a 

flag regarding its deviation from the scheduled departure at the start-stop. Thus, trips are divided 

into three categories - trips that depart more than a minute before their scheduled departure, trips 

that depart between a minute early and a minute late (one-minute tolerance), and trips that are 

more than a minute late. The latter serve as an indicator of the relationship between delay propa-

gation and the occurrence of bus bunching events. Subsequently, for the three aforementioned 

categories of trips, bunching events are identified and additionally, the number of bunching events 

per trip is determined. The stop on the route at which the bunching event occurs has secondary 

importance – nevertheless, a trip can inherit more than one bunching event (PARK, 2020). 

 

3. RESULTS AND DISCUSSION 

 
Low LOS resulting from high coefficients of variation of the calculated headway deviations indi-

cate bus bunching. The following figure shows the LOS according to Table 3 for each stop of line 

304 in both directions. For instance, the examined line 304 runs in the north-south direction in 

and out of Sydney’s highly demanded central business district (CBD) on a ten-to-twelve-minute 

frequency during normal weekday hours. During peak hours, its headway is shortened to six 

minutes for the major commuting direction. On parts of the route close to the CBD, the headway 

is even lowered to three minutes. In contrast to the inbound results, Line 304 in the outbound 

direction reveals lower LOS in the afternoon.  
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Inbound 

 
Outbound  

 
Figure 1: Line 304 - Schedule Adherence Index in February 2020  
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During the week, most bunching events occur in the rush hour between 8 and 9 a.m. Weekends 

feature most bunching events around midday. According to the major commuting direction, the 

evening peak is significantly more affected by bunching than the morning, which is evident not 

only during the week but also on weekends as shown in Table 5 below. 

Table 5: Line 304 – Number of Bus Bunching Events in February 2020 

Inbound 

 
Outbound 

 

To conclude this section, it can be said that in both directions of line 304, the counted bunching 

events fit the heat maps of the schedule adherence index (Figure 1). Both the peak hours, as well 

as the major commuting direction, are apparent. 

  

daytype mon tue wed thu fri sat sun weekdays weekends total

06:00 to 06:59 1 11 9 0 15 0 0 36 0 36

07:00 to 07:59 120 117 138 103 91 0 0 569 0 569

08:00 to 08:59 146 110 111 156 128 0 0 651 0 651

09:00 to 09:59 88 88 70 104 48 0 0 398 0 398

10:00 to 10:59 13 26 33 48 1 0 0 121 0 121

11:00 to 11:59 11 5 16 6 19 6 0 57 6 63

12:00 to 12:59 14 9 3 11 9 23 9 46 32 78

13:00 to 13:59 4 34 8 21 12 44 1 79 45 124

14:00 to 14:59 19 7 9 12 6 26 2 53 28 81

15:00 to 15:59 43 20 53 34 50 7 5 200 12 212

16:00 to 16:59 71 41 32 51 40 2 0 235 2 237

17:00 to 17:59 19 6 29 20 35 12 2 109 14 123

18:00 to 18:59 29 61 22 78 47 17 2 237 19 256

19:00 to 19:59 0 19 17 15 38 3 0 89 3 92

20:00 to 20:59 0 1 0 20 5 0 0 26 0 26

total 578 555 550 679 544 140 21 2906 161 3067

mean 145 139 138 170 136 28 5,25 145,3 17,89 105,76

daytype mon tue wed thu fri sat sun weekdays weekends total

06:00 to 06:59 0 0 0 0 0 0 0 0 0 0

07:00 to 07:59 1 0 2 0 0 0 0 3 0 3

08:00 to 08:59 14 7 9 32 1 0 0 63 0 63

09:00 to 09:59 55 39 38 55 24 0 0 211 0 211

10:00 to 10:59 49 49 49 83 21 0 0 251 0 251

11:00 to 11:59 10 11 0 23 0 1 0 44 1 45

12:00 to 12:59 7 14 3 4 20 34 0 48 34 82

13:00 to 13:59 18 18 7 29 1 22 0 73 22 95

14:00 to 14:59 7 23 7 42 11 54 1 90 55 145

15:00 to 15:59 53 23 6 28 50 22 0 160 22 182

16:00 to 16:59 67 57 110 53 139 20 0 426 20 446

17:00 to 17:59 106 97 135 136 108 1 0 582 1 583

18:00 to 18:59 99 133 160 110 121 47 0 623 47 670

19:00 to 19:59 17 50 65 103 180 24 0 415 24 439

20:00 to 20:59 0 46 9 55 92 0 0 202 0 202

total 503 567 600 753 768 225 1 3191 226 3417

mean 126 142 150 188 192 45 0,25 159,55 25,11 117,83
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Validating identified bunching events using records from GTFS-real-time feed 
 

Table 6:  Identified Bunching Event for Exemplary Validation 

Route Trip Stop Sched-

uled 

headway 

Scheduled 

arrival time 

Actual 

headway 

Actual  

arrival time 

Schedule 

deviation 

304 21 8 540 s 18:14:00 807 s 18:14:04 -4 s 

304 22 8 180 s 18:17:00   25 s 18:14:29 151 s 

Table 6 depicts an identified bunching event as two consecutive arrivals of line 304 at stop 8 (trips 

21 and 22) are recorded only 25 seconds after another. To validate whether a bus bunching event 

has occurred, the matching GTFS-real-time feed records at 18:14 needs to be considered (see 

Table 7). For the validation, the two trip IDs are to be checked for bunching at stop 8 (despite an 

insignificant five-second delay of the following vehicle's record). 

Table 7: Matching GTFS records for Exemplary Validation 

Route Trip Start 

time 

Lati-

tude 

Longi-

tude 

Timestamp Vehicle  Direction 

304 21 17:59:00 -33.885 151.214 18:14:40 1339858 Inbound 

304 22 18:02:00 -33.881 151.214  18:14:45 1340083 Inbound 

Finally, a comparison of the latitude and longitude coordinates using the statistical software R 

computes the distance of the allegedly bunching buses. R yields a distance of only 515 meters, 

which unambiguously indicates bus bunching. 

 

Dependency of bunching occurrence from delay propagation 
 

Beyond the presented suitability of the methodology to study bus bunching and the spatiotemporal 

dimensions of the phenomenon, the relation between delay propagation on trips and bunching 

occurrences in the opposite direction is discovered. Table 8 notes bunching events according to 

one of three predefined categories concerning the start delay of the respective trips. Although the 

number of trips per category varies greatly, it appears that the dispersion of bunching events in 

the case of trips that suffer from delay propagation of more than one minute reaches higher value 

ranges. 

Table 8: Bunching Events per Trip categorised by Schedule Adherence at Stop 1 

(Line 304 Inbound –Weekdays in February 2020) 

Schedule adherence at first stop 

(Category) 

Number 

of trips  

Total  

Bunching Events 

Mean (Bunching 

events / trip) 

Earlier than 1 min before schedule 24 74 3.08 

Within 1 min deviation from the 

schedule 

1239 1744 1.41 

More than 1 min late 490 1002 2.04 

Total 1753 2820 1.61 

The 1239 trips recorded between one minute before and one minute after the schedule at the start-

stop show a considerably lower mean of only 1.41 bunching events per trip (1744 bunching events 
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recorded). At the same time, indicating the negative effect of the delay propagation, 1002 bunch-

ing events are counted among 490 trips that are recorded for the category of more than one minute 

late at the start-stop. The corresponding average of 2.04 is clearly above the overall average (1.61) 

of all trips. The category of trips that start more than one minute early on the line route is very 

rare (only 24 occasions) and the high average value of 3.08 bunching events per trip most likely 

results from considerable irregularities in the operation of the vehicles. 

 

4. CONCLUSIONS 

 
Although various paradigms and algorithms have already sufficiently addressed the topic of spa-

tiotemporal analysis of bus bunching, the selected measuring instruments allow a transparent view 

of this phenomenon. The uniqueness of the methodology is the type of data used. The data’s 

prevalence as well as its scope and format are globally distinctive, which caters to a high trans-

ferability of the methodology. It shows that bus bunching can be analysed with publicly available 

PT control data. Typically, punctuality is the focus of analysis, but on-time performance is often 

not influenceable due to prevailing external factors. However, service regularity is a more prom-

ising indicator to assess the service quality of a line. PT agencies that record actual values of 

buses’ arrivals or departures along the route can use the methodology presented here to better 

understand the occurrence of bus bunching in their network. 

 

Following this work, the influence of short turns or buffer times on bus bunching events gives 

room for further investigation. These are the simplest tool for transport operators and can mitigate 

the proven delay propagation and associated bunching occurrence. Further influencing factors 

such as weather conditions, and temporal dimensions like the day of the week, time of day, and 

season could be additionally differentiated. Overall, bunching analysis and drawing the right con-

clusions from it could bridge the time until automated mitigation actions might be implemented 

in the onboard computers of buses. 
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SHORT SUMMARY 

A large body of research has developed on walking and walkability, in part in response to in-
creasing concerns over people’s health, climate change, livability, and social cohesion. Litera-
ture shows that some built environment and socio-demographic characteristics influence walk-
ing rates more than others.  
 
Different approaches and methods have been used to study the relationship between the built en-
vironment characteristics, socio-demographic variables and walking patterns. Yet, so far very 
few studies have applied machine learning tools to study and explore these relationships. This 
research aims to start filling this void.  
 
The study draws on a dataset contains details about trips made by over 37,000 respondents in 
the Tel-Aviv metropolitan area. The detailed data allow us to differentiate between walk-only 
trips and walk trips that are combined with other modes of transport. Our results show that the 
built environment shapes walk-only trips more than walking as an access or egress mode.  
 
 
Keywords: Data analysis, Machine learning, Mobility, Urban planning, Walkability, Walking.  
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1. INTRODUCTION 

Walking is a mode of transport that enables getting from one place to another, and it is the most 
prevalent form of physical activity. Walking is a fundamental constituent of nearly all trips, as it 
enables physical access to different kinds of facilities. Transportation means such as trains, buses, 
and private transport, require walking both for access and egress (Wigan, 1995).     
 
Walking is not shaped solely by dedicated infrastructure (e.g., pavements and crossings) but is 
also highly dependent on other features of the built environment, as these can promote or constrain 
walking (Forsyth & Krizek, 2010; Lee & Moudon, 2004). The act of walking is shaped by the 
city, infrastructures, its built environment characteristics, and the sociodemographic variables of 
people. 

Different approaches and tools are used to study walking behavior and investigate its relationship 
with personal and sociodemographic variables and built environment variables. Very few studies 
have applied data analysis and machine learning tools to study and explore the (non-linear) 
relationship between the different variables.  

This study aims to disentangle the potential of the built environment effects on walking in urban 
areas and to determine the relative importance of built environment and socio-demographic 
variables in shaping walking patterns employing a machine learning and data analysis approach. 
This research is conducted among a diverse population in terms of their characteristics using a 
large data set that includes nearly 37,100 participants. The research question is: “What type of 
variables most strongly shape walking patterns?”. 

2. METHODOLOGY 

This research applies a Random Forest (RF) multiclass classification algorithm to identify the set 
of (walkability) parameters that most strongly shape walking in urban areas. The two compared 
groups of parameters include the sociodemographic and the built environment variables. RF al-
gorithm can easily handle a large number of variables as it weighs the contribution of each vari-
able according to how dependent it is on other variables (Breiman, 1996; T. Shi & Horvath, 2006).  

We developed a model where we distinguish between four possible trip types that compile for the 
dependent variables in the model: walk only trips, walk trips in combination with public transport, 
walk trips in combination with car use, and trips that do not include walking at all (Table 1). We 
distinguish between these trip types, because we expect that effect of the built environment and 
of people’s socio-demographic characteristics may vary between the trips. We may expect that 
built environment factors may particularly shape walk only trips, while being less important for 
the other two trip types that include a walking leg. By distinguishing between the trip types, we 
can test this expectation, which has not yet been done in the literature.  
 
We hypothesize that it is more likely that the built environment shapes walk-only trips, since 
walking as part of public transport or car trip is largely unavoidable. Yet, we also hypothesize 
that the built environment is more likely to shape the choice of walking integrated with public 
transport than the choice of walking and car use, as literature shows that the decision to use public 
transport is partly shaped by built environment factors (An et al., 2022). The dataset contains 
288,555 trips. These trips are described by 40 different parameters including built environment 
variables (Table 2), and socio-demographic variables (Table 3).  
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Table 1. Dependent Variables; Key characteristics of the four Trips Types Distin-
guished in the Research 
 

 

 

Table 2. Built Environment Variables in the Dataset & included in RF model 

 Variable  Description  Share  Mean  SD (Stand-
ard devia-
tion) 

Built Environ-
ment variables 
(Zonal level) 

Residential density 
(HHdens) 

Total number of households in zone divided 
by zone surface area (number/m2) 

 3.8 4.0 

Population density 
(popdens) 

Total population divided by zone surface 
area (persons/m2) 

 10.1 10.1 

Land use mix in terms 
of jobs employment  

Number of jobs in zone divided by popula-
tion (jobs/persons) 

 0.4 0.1 

Employees  Number of employees in area  1389.7 1146.1 
Parking capacity Parking capacity in area   3119.2 5883.1 
Urban area type (share 
of zones that belong to 
each category) 

Metropolitan CBD 3.36%   
Urban Residential - Low-density: zones un-
der 5,000 inhabitants per sq. km. 

12.80%   

Urban Residential - High-density: zones 
over 5,000 inhabitants per sq. km. 

57.76%   

Major public institutions: educational / legal 
/ hospitals. 

0.40%   

Commercial: include city centers, shopping 
centers and markets. 

8.48%   

Major Employment centers: employment 
centers over 4,000 employees. 

4.72%   

Medium Employment centers: employment 
centers under 4,000 employees. 

2.00%   

Class 
index  

Class  Description Percentage of 
trips of all 
walk trips 

Mean length 
of travel dis-
tance 

Mean travel 
time of trips 

1 Walk-only trips  
 

Trips that consist solely of one or more 
walk legs 

24% 0.79 km 9.34 min 

2 Walk + public trans-
portation trip 
 

Public transport means that were taken 
into consideration in this category are: 
bus, taxi, train, and organized shared 
transit  
Every trip with at least one walk leg and 
one PT leg, irrespective of whether the 
entire trip chain also includes other 
modes of transport for some trip legs 
(e.g. car, bicycle) are included 
3. Trips that include public transport, 
but for which no walk trip was reported, 
were also added to this category, since 
we hypothesized that to get to a public 
transport stop a walk would be neces-
sary in virtually all cases. 

9% 8.09 km 35.78 min 

3 Walk + car trip 
 

Every trip with at least one walk leg and 
one leg by car (as driver or passenger) or 
motorbike, unless the trip chain includes 
PT for one or more trip legs (and irre-
spective whether the trip included yet 
other modes of transport for some trip 
legs (e.g., bicycle). 

2% 7.74 km 32.96 min 

4 Trips without a walk 
leg  

All trips that do not belong to one of the 
categories mentioned above (bicycle 
trips are included). 

65% 3.66 km 12.89 min 
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Mixed Use Areas: areas with a mix of resi-
dential, commerce and employment. 

3.60%   

Major Transport facilities: airports, ports 
and bus stations. 

0.24%   

Sports and Tourism: areas with concentra-
tions of hotels, beaches and sport facilities. 

2.56% 

 

  

Rural Areas: rural settlements (like mosha-
vim and kibutzim), agricultural land and 
isolated developments. 

3.12%   

Open Areas: empty or non-built areas with 
no special use. 

0.16%   

Military Areas: zones used by the army. 0   
Cemetery 0.48%   
Small Settlements: isolated development of 
urban residential uses outside the urban 
core. 

0   

Students  Number of students studying in zone  110.79 1105.88 
Socio economic status Socio-economic level of zone   11.30 4.76 
Parking availability at 
employment place 
(EmpPark) 

EmpPark_1: Parking available for free for 
workers  

22.2%   

EmpPark_2: Parking available only near 
workplace  

0.8%   

EmpPark_3: Unavailable parking spaces  69.3%   
 

 

Table 3: Sociodemographic Variables in the Dataset & included in RF model 
 Variable  Description  Share  Mean  SD (Stand-

ard devia-
tion) 

Socio-demo-
graphic variables 

Age Respondent`s age  33.2 22.9 
Gender Male respondents  51.5%   

Female respondents 48.5%   
Sector  Secular Jew  70.2%   

Religious Jew  12.6%   
Orthodox Jew  14.8%   
Arab  2.3%   

Education level Highly educated respondent – undergraduate 
& graduate studies  

26.0%   

Medium educated respondent – high school 
certificate  

24.8%   

Low educated respondent – adult without 
high school certificate  

19.0%   

School students and other  29.9%   
Employment status 

 

Employed (full/part time job)  46.8%   
Unemployed  23.3%   
Other (unknown, irrelevant)  28.8%   

Car license holding 
(Clic) 

Clic_1: The respondent holds a driving li-
cense   

62.9%   

Clic_2: The respondent does not hold a driv-
ing license  

13.7%   

Clic_9: Unknown whether the respondent 
holds a driving license  

0.003%   

Clic_99: Irrelevant   23.3%   
Household size 
(HHsize) 

Person\household  2.9 1.76 

Children under age 8 
in household 

Per household  0.4 0.9 
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Car ownership 
(HHVeh) 

Households with at least one car in their own-
ership  

76.7%   

Bicycle ownership Households with at least one bicycle in their 
ownership 

31.4%   

Household composi-
tion (HHType) 

HHType_1: Households with one individual 
person  

22.0%   

HHType_2: Households for a couple  24.2%   
HHType_3: Households for parents and their 
children  

51.8%   

HHType_4: Households for disabled person 
and assistant  

0.1%   

HHType_5: Shared Households (between 
partners)  

1.6%   

 

Techniques for dealing with the imbalanced dataset  

 
As can be seen in Table 1, the data is imbalanced since the data set has skewed class proportions. 
The trip type with the least observation is the Walk+car class, as it accounts for only 2% of all 
trips. In contrast, Trips without any walk leg make up the majority class with 65% of the data. In 
this case, the RF algorithm will mainly relate to the majority class and treat the minority class 
features as noise in the data and ignore them. SMOTE technique was used in order to overcome 
this issue.  
 

Hyperparameters Tuning  

Tuning is the task of finding optimal hyperparameters for a RF model for a given dataset (Probst 
et al., 2018), thus optimizing the model in terms of its performance and running time. RF models 
works reasonably well with the default values of the hyperparameters specified in software pack-
ages. Nevertheless, tuning the hyperparameters can improve the performance of RF. The tech-
nique that was used in this research in order to overcome the imbalanced dataset was fitted to the 
hyperparameters that were accepted after 30 iterations (Table 4). 

 

Oversampling  
 

SMOTE (Synthetic Minority Oversampling Technique) was applied on the training set, alongside 
with hyper-tuning the model, which is an oversampling technique where synthetic samples are 
generated for the minority classes to rebalance the original training set.  

After running this technique, an evaluation of the results should be done. Since the number of 
observations in each class is initially unequal, a so-called confusion matrix is needed to describe 
the performance of a classification algorithm. 

In the confusion matrix, the number of correct and incorrect predictions is described with counted 
values for each class. Prediction for each class can be described by its precision and recall. 
Precision measures the share of data cases signaled by the model that are real predictions. Recall 
measures the share of data cases occurring in the domain that are “captured” by the models (Torgo 
& Ribeiro, 2009).  
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F1 score is the harmonic mean of the precision and recall of the model (Equation 1) which delivers 
the best value at 1 and worst score at 0 (Lipton et al., 2014).  
Equation 1: F1 score 

F1 = 2 * (precision * recall) / (precision + recall) 
 
Examining the first model`s performance (4 classes model) based on the F1-score shows a rela-
tively high prediction accuracy score for all of the classes apart from the walk + car class. The 
low F1 score for the walk + car trip class indicates that the model did not predict the true labels 
in this class, as it predicted correctly only 6% of the labels. The majority of the wrong predictions 
was in favor to trips without a walk leg. This suggests that the model mistakenly confuses between 
these two classes, thus resulting in inaccurate feature importance of each one of the parameters in 
the model regarding the walk + car class (Figure 1.a).  

 
In order to overcome this issue, we developed a second model (3 classes model) where we ex-
cluded the trips without a walk leg class from the model. In this case, the F1 score for the walk + 
car trip class was substantially higher than in the first model (62%) (Table 4).  

 
 
Table 4. Hyperparameters setting and Models classification reports      

 
 Parameter / Model SMOTE 

Model 1:  
4 classes 
model 

SMOTE 
Model 2:  
3 classes 
model 

Hyperparameters  
 

Parameter Description (58) 

n_estimators Decision trees number 
being built in the forest  

1000 2000 

min_sample_split Minimum number of 
samples required to 
split an internal node 

10 2 

min_sample_leaf Minimum number of 
data required in node 

1 2 

max_features  Maximum features 
number used for a node 
split process 

“auto” “auto” 

max_depth  Maximum depth and 
levels a decision tree is 
allowed 

80 60 

bootstrap False value: All data is 
used for every decision 
tree; else selected boot-
strap samples are used 
when building decision 
trees 

False False 

F1 score for different 
Classes   

1. Walk only trips 0.78 0.91 
2. Walk trip + PT 0.61 0.75 
3. Walk trip + Car 0.08 0.62 
4. Trips without a walk leg 0.90 -  
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Figure 1. Confusion Matrix for (a) 4 Classes Model, and (b) 3 Classes Model  
 

3. RESULTS AND DISCUSSION 

The results of our analysis concern the four trip types thar were investigated in this research and 
depicted in figure 2. For walk-only trips, the likelihood that a person makes a walk-only trip 
increases with population density at origin, population density at the destination, household den-
sity at origin, household density at the destination, no parking available at workplaces, household 
size, and workers number in origin. In contrast, it decreases with car license holding, household 
vehicle, and age that have the strongest negative influence.  
 
Walk + PT trips are related to several features. Vehicle license and number of vehicles in the 
household all shape the number of the walk + PT trips. Additional sociodemographic character-
istics that are related to making walk + PT trips are age, gender, sector, employment status, and 
education level. Males and secular Jews tend to make less walk + PT trips. In terms of the built 
environment variables, free parking at the workplace leads to a reduction in walk + PT trips. In 
contrast, the unavailability of parking near the workplace has a positive impact on walk + PT 
trips. Furthermore, population density at the trip origin increases the choice for walk + PT trips.  
 
For walk + car trips, the likelihood of making this trip type is influenced by holding a car license, 
age, and the number of cars in the household, among other factors. These three variables have 
strong importance for a person choosing this trip type. An additional factor is the household size. 
Part of the most important built environment factors that reduce the likelihood that a person will 
make walk + car trips is population density at origin and destination, workspace parking availa-
bility, and the number of workers at the destination area. 

Figure 5.b: Confusion Matrix for SMOTE + Tuned Random Forest Model
 (3 classes model)

Figure 5.a: Confusion Matrix for SMOTE + Tuned Random Forest Model
 (4 classes model)
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Figure 2. Model results: Feature Importance for Different Trips Types 
  

4. CONCLUSIONS 

Our results illustrate the importance of built environment variables in shaping walking-only trips 
more than other types of trips, with household and population densities having the strongest pos-
itive effect on walk-only trips of all built environment characteristics.  
 
Our study shows that machine learning and data science approaches hold promise for the analysis 
of walking patterns, and for gaining insight into the set of variables that influence walking in 
cities. 
 
The study suggests that the impacts of minimum parking norms for offices and other employment 
types have an impact beyond the home-to-work trip. Our findings indicate that parking at the 
workplace also affects the frequency with people engage in walk-only trips. This underscores the 
importance of abolishing parking minimums, as is gradually occurring in Israel and elsewhere 
(Christiansen et al., 2017; Shiftan & Burd-Eden, 2001; SimiAeviA et al., 2013).  
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Short summary

The challenge of identifying the ideal spatial and temporal prioritization for long-term expansions
of bicycle networks is a complex undertaking. Our objective in this research is to determine the
most beneficial expansions of bicycle networks for society, while considering the impact of level-of-
service effects and induced demand throughout the evaluation period. While the effects of constant
demand can be approximated through a sequence of linear binary mathematical programs (Paulsen
& Rich, 2023), accommodating induced demand necessitates a different optimization approach that
accounts for the likelihood of various segments being integrated in the infrastructure in future years
during the optimization process. We put this approach to the test by applying it to the Greater
Copenhagen Cycle Superhighway network. It is demonstrated that the optimized infrastructure
render benefit-cost ratios exceeding 10, and that accounting for demand effects, significantly in-
creases the societal return and changes the geographical structure of optimal investments.

Keywords: Bicycle network design; Bicycle traffic; Induced demand; Socioeconomic assessment;
Dynamic optimization

1 Introduction

There is considerable evidence that bicycle demand is impacted by the presence of bicycle infras-
tructure, as demonstrated in several studies including van Goeverden et al. (2015) and Rich et al.
(2021). The implementation of bicycle infrastructure not only affects travel time benefits resulting
from route choice substitution as demonstrated in Paulsen & Rich (2023), but also the number of
bicycle trips in the network (Hallberg et al., 2021). This is a result of mode substitution effects and
potentially induced traffic. The societal value of increasing bicycle mileage is evidenced in Breda
et al. (2018) and Martin et al. (2006), who study the external health benefit of one kilometer of
cycling. The cost-benefit performance of bicycle infrastructure is studied in Rich et al. (2021), who
finds that bicycle infrastructure is highly beneficial.

Optimal design of bicycle networks has been studied within operation research since early work by
Smith & Haghani (2012) and Mesbah et al. (2012). The objective functions and constraints vary
largely across studies, from approaches who i) minimize investment cost constrained by a minimum
level-of service (Duthie & Unnikrishnan, 2014), ii) minimize local detours (Lim et al., 2021), iii)
maximize cyclists on links where the stress-level is low (Chan et al., 2022; Ospina et al., 2022), iv)
minimize generalized costs (Mauttone et al., 2017; Liu et al., 2019), or v) consider multi-objective
costs (Lin & Yu, 2013; Lin & Liao, 2016; Liaw & Lin, 2022) subject to budget constraints. Although
the studies have considered a large variety of performance measures, none of the studies calculate
societal cost-benefit performance of the resulting bicycle network investment plans. Furthermore,
many of these studies embed the route choice of cyclists directly in the optimization model, which
becomes computationally intractable when considering large-scale applications with very large
networks and many origin-destination pairs.

A recent study (Paulsen & Rich, 2023) shows that the consumer surplus of existing users can be
approximated closely through sequences of linear binary mathematical programs at the level of the
links. The approach is based on a method where OD-benefits are assigned to the network. The
study show – under the assumption of constant demand – how optimal infrastructure expansions
can be derived from a series of binary linear programs. However, as the study assumes the demand
to be exogenous, it is not able to include health benefits that arise from increased bicycle demand.
As demonstrated in previous research (Breda et al., 2018; Rich et al., 2021), this is the single
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most important factor when calculating the societal net present value of large bicycle network
expansions.

This study extends Paulsen & Rich (2023), and the literature by and large, by determining the
societal optimal expansions with endogenous demand. Methodologically, the approach is based
on a dynamic optimization framework, within which the expected level-of-service and induced
demand are approximated forward in time, to then approximate the expected accumulated benefit
of selecting a given segment at a given time. By applying the algorithm to the entire evaluation
period, we identify a bicycle infrastructure plan that render a solution worth 16 billion DKK in net
present value terms. This correspond to a solution that is 81%–417% better than the considered
reference strategies and with a benefit-cost ratio exceeding 10.

2 Methodology

Approximation of net present value

The overall aim is to provide a reasonable and computationally feasible approximation to the net
present value at time t of any given existing network configuration ut−1 and investment action
∆ut. Here, ut−1 is a binary vector, which has value 1 for link segments that were constructed
at or before t − 1, and ∆ut being a binary vector, which is 1 for the segments being constructed
exactly at time t. Link segments are natural bundles of links (chunks of routes) along the same
corridor, see Figure 3 for an example.

In Paulsen & Rich (2023) it is shown that the travel time function Xω can be approximated very
accurately for any configuration of ut−1 by assigning the OD-level travel time savings back onto
the network, and by taking into account the travel time savings. That is,

Xω(u
t−1) ≃ x0

ω − (∆xω)
⊺
ut−1, (1)

ω ∈ Ω represents combinations of OD and traveler type, and x0
ω is the baseline travel time for

ω without any network upgrades. ∆xω =
[
∆x1,ω ∆x2,ω · · · ∆x|B|,ω

]⊺ is the approximated
vector of linear travel reductions from Paulsen & Rich (2023),

∆xb,ω =

∑
l∈b

Ll∑
l∈qLω∩L

Ll

∑
l∈q0ω

τl,ω −
∑
l∈qLω

τ̂l,ω

 , b ∈ B, ω ∈ Ω. (2)

Here, Ll is the length of link l, τl,ω is the non-upgraded travel time on link l for the traveler
type associated with ω, and τ̂l,ω is the corresponding upgraded travel time. qomega,0 and qomega,0

denotes the shortest paths for OD and traveler type ω in the non-upgraded network and the fully
upgraded network, respectively.

Equality is guaranteed in Eq. (1) at the two extrema ut−1 = 0 and ut−1 = 1. For this study,
analogously, we introduce the approximated vector of linear travel distance extension ∆λω =[
∆λ1,ω ∆λ2,ω · · · ∆λ|B|,ω

]⊺, which allows approximating the traveled distance for each ω,

Λω(u
t−1) ≃ λ0

ω + (∆λω)
⊺
ut−1. (3)

Again with guarantee for equality for ut−1 ∈ {0,1}. Here ∆λω has elements,

∆λb,ω =

∑
l∈b

Ll∑
l∈qLω∩L

Ll

∑
l∈qLω

Ll −
∑
l∈q0ω

Ll

 , b ∈ B, ω ∈ Ω. (4)

Finally, the demand function Dω does not require searching through the network, why it can be
evaluated sufficiently quickly to be used as it is. In the study we use a simple logit-based mode
choice model based on parameters from Hallberg et al. (2021). More advanced models can easily be
considered within the framework we propose, for instance models that include destination choice
or forecasts demand according the development in GDP.

All in all, this suggest that the net present value can be approximated reasonably and computa-
tionally efficient by NPVt(∆ut;ut−1) in the equation below,
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NPVt(∆ut;ut−1) =

Consumer surplus︷ ︸︸ ︷
κt

∑
ω∈Ω

ζω
Dω(u

t−1) + d0ω
2

(
x0
ω −Xω(u

t−1)
)
+

Health benefits︷ ︸︸ ︷
κt

∑
ω∈Ω

ξω
(
Dω(u

t−1)Λω(u
t−1)− d0ωλ

0
ω

)
+

Scrap value︷ ︸︸ ︷
κ|T |

∑
b∈B

cb∆ut
b−

Construction costs︷ ︸︸ ︷
κt

∑
b∈B

cb∆ut
b −

Maintenance costs︷ ︸︸ ︷
κt

∑
b∈B

mbu
t−1
b . (5)

The used notation is summarized in Table 1.

b ∈ B A link segment b (containing links l ∈ b along the same corridor), within the set
of all link segments B. B partitions L, such that the each link of L belongs to
exactly one link segment b ∈ B.

cb Construction cost of segment b. From Incentive (2018).
d0ω Baseline demand for ω, i.e. Dω(X(0)).
Dω Demand function for ω. Parameters adopted from Hallberg et al. (2021).
ζω Value of time for the traveler type of ω. Value of 91 DKK per hour (Technical

University of Denmark, 2022).
κt Discounting factor for time t. From Technical University of Denmark (2022).
λ0
ω Baseline travel distance of ω, i.e. Λω(0).

Λω Travel distance function for ω.
mb Annual maintenance cost of segment b. From Incentive (2018).
∆ut The decision variable vector at time t, [∆ut

1 ∆ut
2 . . . ∆ut

|B|]
⊺, which is 1 for

segments being chosen at time t, and 0 otherwise.
ut−1 The vector [ut−1

1 ut−1
2 . . . ut−1

|B| ]
⊺ containing ones for all segments that have

been selected at time t − 1 or before, and zeroes elsewhere. That is, ut−1 =∑
k≤t−1 ∆uk.

x0
ω Baseline travel time for ω, i.e. Xω(0)

Xω Travel time function for ω. From Hallberg et al. (2021).
ξω Health benefit factor per km for ω (subtracted the corresponding accident factor).

Value of 7.11 DKK per km (Technical University of Denmark, 2022).
ω ∈ Ω Considered OD-pair and traveler type combinations. From Hallberg et al. (2021).

Table 1: Notation overview for the net present value calculation (Eq. (5))

Optimization framework

The idea is then to embed this expression into an optimization scheme that optimizes ∆ut for all
t in the 50 year evaluation period T , as stated in Problem 1.
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Figure 1: Flow chart of the proposed optimization scheme. ∆ut
′ are the optimal strategies at each time step, whereas pt′ represents the expected

infrastructure composition at future time steps. The binary mathematical program (Binary MP) is Problem 2. E
[
pt′ |E

[
Demand(pt′), LoS(pt′)

]]
=

E
[
pt′ |E

[
D(pt′), X(pt′)

]]
forms a fixed point problem across all future t′ > k, which leads to the vector St. The calculation of St is further detailed in

Figure 2, and constitutes the coefficients for the linear objective function of Binary MP used to determine ∆ut
′ .
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max
∆ut

Z =
∑
t∈T

NPVt(∆ut,ut−1) s.t. (P1a)

Bt ≥
∑

k∈T :k≤t

κk
(
c⊺∆uk +m⊺uk−1

)
, ∀t ∈ T (P1b)

utb ≥ ut−1
b , ∀b ∈ B, ∀t ∈ T (P1c)

∆utb ∈ {0, 1}, ∀b ∈ B, ∀t ∈ T (P1d)

Problem 1: NPV-model with flexible demand

Here, Bt is the cumulative budget for time t, whereas c and m are construction costs and main-
tenance costs vectors defined by c = [c1 c2 · · · cB]

⊺ and m = [m1 m2 · · · mB]
⊺, respec-

tively. A sketch of the overall idea is outlined in Figure 1.

So far, the approach is more or less similar to that of Paulsen & Rich (2023). That is, given
previous decisions ut−1, we determine the optimal composition of the segments to select at time t
(∆ut) subject to budget constraints, such that the expected future net present value is maximized.
Once the optimal ∆ut has been found, ut can be updated to ut ← ut+∆ut−1, and we can consider
the next choice situation at time t← t+1. The basic idea is that at any given decision time t, we
can assume that we already know what has happened in the past, i.e. ∆ut′ ,∀t′ < t.

However, the optimization problem is complicated by the presence of endogenous demand. A very
precise approximation could be made concerning future net present values without taking into
account the expectations of future investment in Paulsen & Rich (2023) under the assumption
of constant demand. In that case, the effect of each segment could be linearized, fully ignoring
their interaction without any notable loss in net present value precision. This would clearly be
inappropriate when taking endogenous demand into account.

Thus, instead we develop a vector St that also takes the expectations of future investments pt′ into
account for t′ > t. It gives an approximation of how each, so far un-selected segment, contributes
to the expected accumulated net present value. We use this as the coefficients for our objective
function in Problem 2.

max
∆ut

Z =
(
St

)⊺
∆ut s.t. (P2a)

Bt ≥
∑

k∈T :k≤t

κk
(
c⊺∆uk +m⊺uk−1

)
, ∀t ∈ T (P2b)

utb ≥ ut−1
b , ∀b ∈ B, ∀t ∈ T (P2c)

∆utb ∈ {0, 1}, ∀b ∈ B, ∀t ∈ T (P2d)

Problem 2: The individual binary linear problems

Calculation of St

The calculation St is a tedious and complex task not particularly suited for being explained in
detail in an extended abstract. Still, we aim at outlining the key aspects in this section. A flow
chart of the process of calculating St for a single t ∈ T is found in Figure 2.

The calculation of St considers future time stages t′ ∈ T : t′ > t, in which we do not yet know which
segments will be chosen. We accommodate this by loosening the restriction of binary decisions, and
instead introduce a cumulative probability vector pt′ for future t′ > t for all segments that remain
unchosen at time t, denoted by Bt = {b ∈ B : ut−1

b = 0}. Likewise, we introduce the instantaneous
probability vector ∆pt′ = pt′ − pt′−1. Initially, we do not differentiate between the probability of
various segments, i.e. assign uniform probabilities pt

′

1 = pt
′

2 . . . = pt
′

|B|,∀t
′ > t across segments, but

we will later set up a fixed point problem where the probabilities feed into an expected future net
present value for each b ∈ Bt, and the future net present values affect the probabilities.
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Figure 2: Flow chart of the process of calculating St for a single t ∈ T . The calculation
contains two fixed point problems. One for determining νt

′,b′ for every future time steps
t′ > t for every unselected segment b ∈ Bt with intermediate solutions indexed by j ∈ N+,
and an overall fixed point problem for St with solutions indexed by k ∈ N+.

At time t we aim at evaluating the approximate effect of choosing each of the unselected segments
b ∈ Bt, and compare it to a situation where no action is taken. The difference between the two
(Eq. (6)),

St
b{k+1} =


∑
t′≥t

NPVt′

(
∆pt′,b,t

{k} ,pt′−1,b,t
{k}

)
−

∑
t′≥t

NPVt′

(
∆pt′,0,t

{k} ,pt′−1,0,t
{k}

)
, b ∈ Bt

0, otherwise
, (6)

is calculated using Eq. (5) using continuous rather than binary vectors as input, and reflects an
approximation of the added value of choosing segment b at time t.

However, in order to calculate St
b{k+1} we need the probability vectors pt′,b,t

{k} . As we will see shortly,
these are mutually dependent and form a fixed point problem which is solved iteratively across an
iteration counter k. An exception to this is for t′ = t, for which we have the evaluated action at
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time t, that is

pt,b,ti =

{
1, i = b

ut−1
i otherwise

,∀b ∈ Bt. (7)

Before we can determine the actual probability vector for t′ > t, it turns out to be relevant to
determine the expected number of segments chosen in a given future timestep t′ > t. We denote
this number by νt

′
. As it (also) forms a fixed point problem with the probability vector in all

future time stages, we index it by j. For a given t′ ≥ t and possibly an intermediate probability
vector pν{j},b,t

{j} , νt
′

{j} can be determined by dividing the (expected) remaining budget Rt′ at time t′

with the probability weighted average construction costs of the remaining segments c̄t
′,b,t
{j} ,

νt
′

{j+1} =
Rt′

c̄t
′,b,t
{j}

=



Bt−
∑

k∈T :k<t

κkc⊺∆uk−
∑

k∈T :k≤t

κkm⊺uk−1

κt′ 1

|Bt,b|

∑
b′∈B

cb′
, j + 1 = 0

Bt−
∑

k∈T :k<t

κkc⊺∆uk−
∑

k∈T :k≤t

κkm⊺uk−1

κt′ ∑
b′∈Bt,b

∆p
νt′
{j}

b′{j}
c
b′

∑
b′∈Bt,b

∆p
νt′
{j}

b′{j}

, j + 1 ∈ N+ . (8)

The probability vector does not only depend on the expected number of selected segments, but also
on baseline probabilities wt which takes into account the expected performance of each segment.
As St measures exactly this, it seems reasonable to include St in the determination of the baseline
probabilities. Furthermore, since the investments at each time step are limited by the construction
costs of the segments, we also adjust the probabilities according to the construction costs, so
that expected net present value increase per construction costs is used in the denominator. The
suggestion that this is a good performance indicator is supported by Paulsen & Rich (2023) in
which a greedy algorithm based on this ratio yields practically identical results as the optimal
solution. This, leads to the following baseline probability expression wt

{k} for Iteration k based on
a based on a Multinomial Logit (McFadden, 1973) formulation:

wt
b{k} =


1

|Bt| , k = 0

exp

(
µ

Mt

St
b{k}
κtcb

)
∑

i∈Bt
exp

(
µ

Mt

St
i{k}
κtci

) , k ∈ N+
,∀b ∈ Bt

′
,∀t ∈ T . (9)

Here M t is the range between the best and worst segment in Iteration 1, i.e.

M t = max
b∈Bt

St
b{1} − min

b∈Bt
St
b{1}, (10)

and µ is a hyperparameter.

When evaluating the effect of choosing segment b at time t, the baseline probabilities have to be
altered accordingly, such that they still sum to 1 when not taking b into account, i.e.

wt,b
b′ {k} =


wt

b′ {k}
1−wt

b{k}
, b′ ∈ Bt,b

0, otherwise
, t ∈ T . (11)

Assume now that ν ∈ N+ segments are to be selected among Bt. As selected segments cannot be
unselected, it follows that the segment probability is a monotonously non-decreasing function of
ν. Based on the baseline probabilities wt and ν, we propose the following recursive definition of
the probability of being selected within the first ν segments (excluding b),
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qν,b,tb′ =


wt,b

b′{k}(1−Qν−1,b,t

b′ )∑
i∈Bt,b

wt,b
i{k}(1−Qν−1,b,t

i )
, ν ≤

∣∣Bt,b∣∣
1, otherwise

, ν ∈ N+,∀b′ ∈ Bt,b,∀b ∈ Bt,∀t ∈ T , (12)

with

Qν,b,t
b′ =

0, ν = 0

min

{
1,

ν∑
n=1

qn,b,tb′

}
, ν ∈ N+ , ∀b′ ∈ Bt,b,∀b ∈ Bt,∀t ∈ T . (13)

This is the regular probability expression, but corrected by the cumulative probability of being
selected within the first ν segments. It can be generalized for non-integer ν’s as follows:

p
ν{j},b,t

b′{j+1} =

{
Q
⌊ν{j}⌋,b,t
b′ +Q

⌊ν{j}⌋+1,b,t

b′ ·
(
ν{j} −

⌊
ν{j}

⌋)
, b′ ∈ Bt,b

1, otherwise
, ν ∈ R+,∀b ∈ Bt,∀t ∈ T .

(14)

Since νt
′,b,t

{j} and pν{j−1},b,t
′

{j} are mutually dependent, the determination of the two forms a fixed
point problem across j. Empirically, since the calculations are very fast, the problem converges
quickly. Once the fixed point problem has been solved, i.e. when

∣∣∣∣∣∣νt′,b,t{j} − νt
′,b,t

{j−1}

∣∣∣∣∣∣
∞

< ϵν , the

resulting νt
′

{j} is denoted by νt
′,b,t and we assign pt′,b,t

{k} ← pνt′,b,t,b,t.

By doing this for all t′ > t, the vector St
{k+1} can be obtained from Eq. (6) for a given k, and

k ← k + 1 can be incremented. The St
{k} is then used to update the baseline probabilities w{k}.

By applying the Method of Successive Averages (Robbins & Monro, 1951; Sheffi, 1985) on the
sequence of St

{k}, the sequence have been found to converge in our application.

When
∣∣∣∣∣∣St

{k} − St
{k−1}

∣∣∣∣∣∣
∞

< ϵS for some k, the optimal strategy at time t can be determined by

assuming linear independence between the elements of St
{k}, and solving Problem 2 using St

{k} as
St.

3 Results and discussion

We test our proposed methodology on a large-scale network of Greater Copenhagen, where we
consider the expansion of 43 proposed cycle superhighway routes divided into 202 segments (see
Figure 3) over a 50 year planning period. Each of the 202 segments has specific construction and
maintenance costs from Incentive (2018), and at each t ∈ {1, 2, . . . , 50} the available budget is
given by Bt = 50 · t mill. DKK. The set of origin-destination pairs and traveler types Ω are taken
from Hallberg et al. (2021) and contains the combinations of 258 origins and destinations and nine
traveller types (combinations of speed preference and bicycle technology, see Hallberg et al. (2021)
for details), leading to a total of 596,754 entries.

Table 2 summarizes the various costs, benefits and performance measures associated to each of
the seven applied solution strategies. W/ demand effects is our proposed method, whereas
W/o demand effects is the solution where demand effects is not taken into account(Paulsen
& Rich, 2023). The bottom-five strategies are baseline reference strategies that are not based on
optimization.
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Figure 3: The 202 segments forming the 580km planned future cycle superhighway network
extension for the Greater Copenhagen area (Sekretariatet for Supercykelstier, 2019) as well
as the existing network.
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W/ demand effects 715.8 181.9 1,080.5 2,746.3 14,890.5 16,022.4 10.9
W/o demand effects∗∗ 321.7 60.4 445.9 2,197.6 11,270.0 12,760.4 19.0
Random order 986.7 358.6 1,406.4 1,153.4 6,526.7 5,645.6 3.77
Shorter segments first 997.2 358.6 1,387.8 1,864.1 9,001.1 8,839.6 5.36
Shorter routes first 998.9 358.6 1,386.9 1,570.3 8,166.4 7,709.5 4.80
Longer segments first 983.6 358.6 1,410.4 694.4 5,187.5 3,846.4 2.89
Longer routes first 978.8 358.6 1,414.7 1,235.7 7,997.7 7,198.5 4.54

Table 2: Investment key-performance indicators [mill. DKK]. ∗Benefit-cost ratio is dimen-
sionless. ∗∗ The solution found with the methodology from Paulsen & Rich (2023).
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From the results of the baseline strategies it is clearly shown that the overall project portfolio is
profitable, leading to net present values between 3.8 and 8.8 billion DKK – largely driven by the
health benefits from added bicycle kilometers. The variation in net present value across the baseline
reference strategies are substantial, underlining that the order in which segments are implemented
have a large effect on the socioeconomic performance. It is also seen that taking a mathematical
optimization approach leads to large net present value improvements of at least 3.9 billion DKK
when using the method from Paulsen & Rich (2023) (W/o demand effects) and 7.2 billion DKK
with the approach proposed in this study (W/ demand effects), when compared to the best
baseline reference strategy (Shorter segments first). Thus, the improved methodology leads to
a net present value increase that is 83% higher than that of Paulsen & Rich (2023), underlining
that taking demand effects into account in the optimization is highly important. Based on the
raw net present values of 16.0 billion DKK (W/ demand effects) and 12.8 billion DKK (W/o
demand effects), the relative improvement is 26%.

We note that our optimization routine maximizes an approximation of the net present value, why
it is not surprising that the method from Paulsen & Rich (2023) leads to a higher benefit-cost
ratio. Especially since that method stops when further expansions are no longer deemed profitable
without considering demand effects. When considering these effects, more segments are deemed
profitable, leading to a premature stop of investments for the W/o demand effects strategy.
Only investing in the most profitable segments naturally lead to a high benefit-cost ratio, but fails
to achieve the full potential net present value.

Discussion

We consider the same case study and project portfolio as in Hallberg et al. (2021); Rich et al.
(2021), and Paulsen & Rich (2023). Our demand model shares many similarities with Hallberg et
al. (2021) and Rich et al. (2021) in that we apply similar level-of-service data and model parameters.
However, in the present study we only consider choice of mode and not choice of destination. When
upgrading the entire network, we get a relative increase in the number of trips of 3.7%, which
compares to an increase of 4.5% in Hallberg et al. (2021). The difference is due to not considering
choice of destination. Also, the increase in average cycled trip distance of 8.3% are in line with the
7-8% of Rich et al. (2021). It suggest that our demand sensitivity are largely in line with previous
findings.

In Figure 4 we compare the solution of our proposed method with that of Paulsen & Rich (2023)
that does not incorporate demand effects. Clearly, we see that including such effects encourage
building longer routes further away from the city center and cause more segments to be profitable
from a socioeconomic point-of-view. Hence, the integration of demand effects implies not only a
sizable increase in the welfare contribution, but change the spatial investment pattern as well. The
fact that the investment pattern becomes more spatially scattered have some positive indirect im-
plications for the practical implementation of such strategies. Where the solution without demand
effect is concentrated mostly the in city center, and hence discourages other municipalities from
taking part in the investment scheme, the improved solution actually goes across the geography and
makes it highly relevant for municipalities to collaborate when upgrading the infrastructure.
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(a) Year 4, cumulative budget of 200 mill. DKK (b) Year 12, cumulative budget of 600 mill. DKK

(c) Year 20, cumulative budget of 1,000 mill. DKK (d) Year 28, cumulative budget of 1,400 mill. DKK

Figure 4: Spatial comparison of obtained solutions with (present study) and without
(Paulsen & Rich (2023)) demand effects.
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4 Conclusions

With this study we develop and show the large-scale applicability of a methodology for societally
optimal expansions of bicycle networks where demand is integrated into the problem. The proposed
methodology leads to massive societal benefits with a net present value exceeding 16 billion DKK,
in the range of 81%–417% higher than the baseline reference strategies, and 26% higher than
the solution found without taking demand effects into account as presented in Paulsen & Rich
(2023).

Despite providing a significant contribution to the literature, several research avenues remain open
for future research. Methodologically, it is relevant to investigate alternative ways of calculating
the expected future net present value contribution of segments (St) and compare the performance
of the different variations. It will also be relevant to test the effect of a less sensitive demand
response, and to incorporate more advanced demand models that allow modeling the composition
of regular bicycle users versus electric bicycle users dynamically as network changes occur. As
demand effects are even more pronounced for electric bicycle users that travel further (Hallberg et
al., 2021), it is of particular interest to investigate if and how such dynamic modeling of the share
of electric bicycle users would alter the optimal infrastructure plans. Future research also includes
looking further into regional distribution effects, how to integrate regional budget constraints, and,
not least, how these would affect the solution and socio-economic performance measures.
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Lane change behavior on motorways based on naturalistic trajectory data
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Short summary

Lane change behavior is a major aspect in traffic flow modeling. Since only a few empirical analyzes
are available, validation of lane change models is frequently limited to macroscopic characteristics
(e.g. number of lane changes). In addition, many existing lane change models do not reflect
lane change behavior in complex situations realistic enough. Therefore, we investigate naturalistic
trajectory data from German motorways and analyze gap acceptance behavior focusing on vary-
ing discretionary lane change objectives, especially on cooperative lane changes. We propose a
methodology to classify different lane change objectives and analyze the critical time gap using the
Raff´s method. The results show differences in gap acceptance between varying discretionary lane
changes classes. Moreover, we found that drivers who perform a cooperative lane change accept
rather low time gaps. The analyzes should provide a basis for validating existing and developing
new lane change models.

Keywords: cooperative lane changing, gap acceptance, lane change analyzes, naturalistic trajec-
tory data, traffic flow theory

1 Introduction

The effects of lane changing on traffic flow characteristics and traffic safety on motorways have
been widely studied in the past. According to Zheng et al. (2010) lane changes can lead to traffic
oscillations, which have a negative impact on traffic safety and traffic efficiency. To analyze these
phenomena microscopic traffic flow simulation (TFS) is often used. Although, in the past new
data-driven lane change models have been proposed, human driving behavior - and lane changing
in particular - is still not fully understood. Besides the uncertainties in driver perception and
anticipation (Endsley,1995; Calvert et al., 2020) it is difficult to classify different driving behavior.
Most lane change models integrated into TFS software allow the user to define multiple param-
eter sets that should reflect different driver behavior groups. In addition, due to differences in
gap acceptance behavior, mandatory and discretionary lane changes are typically distinguished.
Mandatory lane changes need to be performed in order to follow a path, which is why drivers tend
to accept lower time gaps compared to discretionary lane changes, which are usually performed to
improve the own driving conditions. However, different incentives why a discretionary lane change
is performed exist. Especially, in on-ramp areas and weaving sections drivers often try to assist
neighboring merging vehicles by performing a cooperative lane change. Regarding lane changing
in general there are still limited empirical analyzes available (Knoop et al., 2012). Nowadays,
vehicle trajectory data is frequently used to get insights in this field of research (van Beinum et
al., 2018; Sharma et al., 2020; Chauhan et al., 2022) . However, to the best of our knowledge no
extensive analyzes regarding lane changing, focusing on gap acceptance properties of cooperative
lane changes has been carried out.
This paper fills this gap by analyzing two naturalistic trajectory data-sets (highD & exiD dataset)
from German motorways (Krajewski et al.,2018; Moers et al., 2022). For this study, we developed
and applied a methodology to designate the lane change start. In a next step we analyzed the
relevance of surrounding vehicles during the lane change decision period. Within that period we
extracted multiple time steps and applied a probabilistic approach to get an indicator, if a pre-
ceding and/or right-preceding was relevant for the lane change decision or not. This was done
utilizing the basic principles of the action-based Wiedemann car-following model (Wiedemann,
1974). As a last step, we analyzed the critical gap utilizing the method described in Raff (1950) by
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investigating accepted as well as rejected time gaps on the target lane. In addition, we analyzed
lane change duration, lane change length as well as the number of lane changes under given traffic
flow characteristics.

2 Methodology of lane change analyzes

In this section we first give an overview over the used datasets within this study and explain the
methodology to identify the lane change start using trajectory data. Then we show the classification
framework of different lane change categories. This sections ends with a description of the gap
acceptance analyzes.

Trajectory Dataset

For the presented analyzes we used the highD and exiD dataset, which are naturalistic trajectory
datasets recorded by drones on German motorway segments (Krajewski et al.,2018; Moers et al.,
2022). The highD dataset consists of 16.5 hours of trajectory data (around 110.500 vehicles,
fidelity=25Hz) on six different locations on the open road. Within the exiD dataset there is
trajectory data from six different locations (on-ramps, off-ramps, weaving segments) included,
recorded within a time period of 16 hours. Although the number of driven kilometers is only about
60% in the exiD dataset compared to the highD dataset, the number of lane changes is much
higher. We decided to analyze both datasets in order to be able to compare possible differences
between on-/off-ramp areas and open road segments. To visualize the trajectory datasets we used
the TraViA tool, which is advantageous for validating results and to analyze specific scenarios
(Siebinga, 2021).

Lane change detection

According to Sharma et al. (2020) a vehicles lane-changing process starts when it begins to drift
laterally and ends when it stabilizes its lateral position on the target lane. Human drivers drift
laterally even in lane-keeping situations, which is why is not a trivial task to mark the starting time
instances of a lane change process. We investigated the distance between a vehicles center-point
and its left/right lane marking (depending on the lane change direction) since this attribute is not
dependent on the road geometry, which is highly relevant in on-ramp areas. Within this study
we calculated the exponential growth rate and applied an exponentially weighted moving average
(EWMA) filter to smooth the noise in the data. This method is shown in Tang et al. (2020), the
formula can be seen below:

x̄α(ti) =

I+D∑
k=i−D

xα(tk)e
− |i−k|

∆

I+D∑
k=i−D

e−
|i−k|

∆

(1)

where xα(ti) is the state value after filtering at ti, D denotes the size of the sliding window and
∆ represents the average of the sliding time window. The EWMA filter method leads to an
exponentially decreasing weighting coefficient over time.

Figure 1: Classification of maneuver status
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After analyzing descriptive statistics and visualizing the time series data we set a threshold of
the exponential growth rate to -0.015m, which marks the time instances, when a lane change
begins/ends. The threshold is represented by the dashed horizontal line in figure 1, in which
the exponential growth rate of the distance to a vehicle’s left/right lane marking of two vehicles
are shown. The first vehicle (0.0-10.0s) is performing two lane changes immediately after each
other, whereas the second vehicle (2.6-20.7s) does have a lane-keeping phase between the two lane
changes. Moreover, vehicle 2 was already performing a lane change when it entered the field of
view of the drone. These lane changes were not further investigated as a classification of the lane
change objective was not possible.

Classification of lane change objective

In order to classify the drivers lane change objective, we applied a probabilistic approach using the
basic principles of the action-based Wiedemann car-following model (Wiedemann, 1974). Using
the time instance of the lane change begin as starting point, we extracted multiple time steps (e.g.
4, 3, 2, 1, 0s before lane change begin) within the lane change decision period, which we set to
maximum 4 seconds, according to the work in Guo et al. (2021). For each of these time instances
we calculated a datapoint considering the relative velocity and the distance headway, given that
there was a preceding vehicle present. As a next step we computed for all datapoints the difference
to a simple linear threshold utilizing the basic principles of the Wiedemann car-following model.
A datapoint below the yellow dashed threshold in figure 2a, indicates that a preceding/right-
preceding might have been relevant during the lane change decision period. After calculating a
difference-value for all datapoints considering all lane changes we computed a distribution (see
figure 2b), which allows us to get an indicator regarding the likelihood, that a surrounding vehicle
was relevant for the lane change decision.

(a) Usage of basic principles of
Wiedemann-model

(b) Histogram and 1-CDF distribution for
"difference to Wiedemann threshold"

Figure 2: Probabilistic approach to classify relevant surrounding vehicles during lane
change decision

Besides the probability value, whether a preceding/right-preceding vehicle was relevant during a
certain time instance during the lane change decision, we analyzed a tendency how the probability-
value evolves over time. Using these two indicators we defined a framework in order to classify
whether a preceding/right-preceding vehicle was relevant or not, which can be seen in table 1. We
used this classification in order to categorize different discretionary lane change objectives, which
are displayed in table 2. If a vehicle was performing a lane change from the first lane to the second
lane and there was no relevant preceding vehicle (value=-1 ) detected but a relevant right-preceding
vehicle (value=1 ), then the lane change was classified as a cooperative lane change. On the other
hand, lane changes were marked as overtaking, if there was no relevant right-preceding vehicle
present and the drivers intention was to change lane in order to overtake the preceding vehicle.
If there was no relevant surrounding vehicle detected in the trajectory data we categorized the
lane change objective as unclassified. In addition, we introduced a mixture class, which represents
lane changes, in which both, a relevant preceding and right-preceding vehicle were present. For
mandatory lane changes as well as for lane changes to the right-hand side we did not consider the
impact of surrounding vehicles.
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Table 1: Classification framework of relevant/not-relevant surrounding vehicles

probability (p)
preceding
vehicle

right-preceding
vehicle tendency classification

p > 0.2 p > 0.5 - 1/ relevant
0.1 < p < 0.2 0.2 < p < 0.5 1/ increasing 1/ relevant
0.1 < p < 0.2 0.2 < p < 0.5 −1/ decreasing 0/ unclear
0.025 < p < 0.1 0.0 < p < 0.2 1/ increasing 0/ unclear
0.025 < p < 0.1 0.0 < p < 0.2 −1/ decreasing −1/ not relevant
p < 0.025 p < 0.0 - −1/ not relevant

Table 2: Classification framework of a drivers lane change objective

relevance classification

origin
lane

target
lane

right-preceding
vehicles

preceding
vehicle

lane change objective
classification

0 1 - - merging
1 0 - - diverging
0 2 - - merging/overtaking
2|3 1|2 - - right
1|2 2|3 1 −1 cooperative
1|2 2|3 1 0 cooperative
1|2 2|3 1 1 mixture
1|2 2|3 0 −1 cooperative
1|2 2|3 0 0 unclassified
1|2 2|3 0 1 overtaking
1|2 2|3 −1 −1 unclassified
1|2 2|3 −1 0 overtaking
1|2 2|3 −1 1 overtaking

Gap acceptance analyzes

To investigate gap acceptance characteristics, it is necessary to identify the relevant vehicles on the
target lane, especially in dense traffic situation in which multiple vehicles are changing lane at the
same time. Therefore, we extracted the vehicle IDs on the target lane multiple times during the
lane change decision and the lane change execution phase. By doing so we identified situations, in
which the vehicle IDs of the preceding and following vehicle on the target lane changed over time,
which enabled us to investigate rejected gaps too. If a temporary left following vehicle overtook
during the lane change decision period and thus was the preceding vehicle after the lane change,
we indicated the time gaps during the lane change decision period as rejected. This approach
allows to extract the critical time gap, as it is shown in Raff (1950). Regarding gap acceptance
we analyzed the net time gap, net distance headway, relative velocity and time-to-collision (TTC)
to the following vehicle on the target lane and for varying lane change objectives. Moreover, we
investigated the number of lane changes under given traffic characteristics like traffic volume. Due
to space limitations, we will focus on the accepted time gaps within the result discussion in section
3.
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3 Results and discussion

By applying the methodology described in section 2 we computed a distribution for varying lane
change objectives considering the net time gap to the following vehicle on the target lane. Rela-
tively high time gaps to the following vehicle have a rather low impact on gap acceptance behavior,
which is why we excluded all time gaps bigger than 5s. In figure 3 the gap acceptance distribu-
tions for different discretionary lane change objective classes can be seen. The histogram and the
corresponding black cumulative distribution function show the accepted time gaps in the instance
of the lane change start. The yellow function reflects the cumulative distribution function of all
rejected gaps. The intersection between the distributions is defined as the critical gap (Raff, 1950).
Comparing the distribution functions shows, that there is a minor difference between cooperative
lane changes (3a) and lane changes, which are performed in order to overtake a preceding vehicle
(3b). The accepted gaps as well as the critical gap of 0.68s for cooperative lane changes is rather
low. This could be due to the fact, that altruistic behavior is mainly observed among experienced
drivers, since they are able to anticipate surrounding vehicles pretty good. Figure 3c shows a criti-
cal gap of 0.9s for lane changes, which are performed immediately after conducting a merging lane
change from an on-ramp. Hence, these complex lane change manoeuvres are mainly performed if
the time gap on the target lane is sufficient big. This can be seen in the black distribution function
as well, which shows less time gaps below 1s. In figure 3d the distribution of accepted time gaps
for lane changes to the right-hand side is displayed. The following vehicles on the target lane are
usually slower, resulting in lower accepted time gaps compared to all other lane change classes. We
did not display a distribution for rejected time gaps, as not sufficient situations could be observed.

(a) analyzing critical gap - cooperative lane changes

(b) analyzing critical gap - overtaking lane changes

(c) analyzing critical gap - merging/overtaking lane changes

(d) Gap acceptance - right lane changes

Figure 3: Gap acceptance analyzes for different lane change objectives
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4 Conclusions and outlook

This paper presents empirical analyzes regarding human lane change behavior by investigating
naturalistic trajectory data recorded at German motorway segments. We showed a methodology
to detect the time instance, when a vehicle starts to drift laterally and we proposed a probabilistic
rule-based classification of different lane change objectives. Moreover, we analyzed gap acceptance
characteristics for different discretionary lane change objectives. Surprisingly, drivers who perform
a cooperative lane change accept rather low time gaps to their following vehicle on the target lane.
This might be the case as these drivers are usually quite experienced and are able to anticipate the
surrounding vehicles quite good. However, to underline these assumptions further investigations
also with data from driver simulator studies should be focused on. In addition, we plan to train a
Long-short-term-memory (LSTM) Neural Network for classifying different lane change objectives,
which might lead to improved intermediate results. The presented analyzes gave new insights
regarding human lane change behavior and they can serve as a good starting point for further
validation of existing lane change models or even for the development of new models.
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SHORT SUMMARY 

In this paper, we assess the demand effects of lower public transport fares in Geneva, an urban 
area in Switzerland. Considering a unique sample based on transport companies' annual reports, 
we find that, when reducing the costs of annual season tickets, day tickets, and hourly tickets (by 
up to 29%, 6%, and 20%, respectively), demand increases over five years by about 10.6%. To the 
best of our knowledge, we are the first to show how the synthetic control method can be used to 
assess such (for policy-makers) important price reduction effects in urban public transport. 
Furthermore, we propose an aggregate metric that inherits changes in public transport supply 
(e.g., frequency increases) to assess these demand effects, namely passenger trips per vehicle 
kilometre. This metric helps us to isolate the impact of price reductions by ensuring that 
companies' supply changes do not affect estimators of interest. 
 
Keywords: policy evaluation, price reduction, urban public transport pricing, synthetic 
control method  

1. INTRODUCTION 

The transport sector is a pivotal contributor to air pollution. Globally, approximately 27% of CO2 
emissions and energy consumption are caused by the transport sector; in the European Union, the 
figure amounts to about a third (Batty et al., 2015). Therefore, the transport sector also causes 
negative externalities, which means a situation in which the action of a person imposes a cost on 
another person who is not a party to the transaction. Private car use will lead to even greater levels 
of such negative externalities, which a shift in transport mode towards public transport could help 
to reduce. Lower fares are a frequently discussed tool to motivate individuals to use public 
transport (see, e.g., Redman et al., 2013). 
 
However, policy-makers must know how existing and potential customers respond to such lower 
fares. In reality, it is generally challenging to identify the causal effect of lower fares on public 
transport demand as transport supply changes over time. Therefore, we propose an aggregate 
metric that inherits a transport company's supply in public transport demand. The metric is com-
posed of passenger trips per vehicle kilometre. Moreover, considering CO2 emissions, an increase 
in the metric points to an average emission decrease by each passenger.  
 
In our comparative case study,1 we use this metric as the outcome variable to analyze lower fares 
empirically in the case of Geneva, an urban area in Switzerland. There, the electorate decided to 

 
1 Note that this paper is based on a more extended paper, see Wallimann et al. (2023).  
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reduce the price of state-owned public transport, which Geneva introduced in December 2014. 
The reduction amounted to up to 29% for annual season tickets, 6% for day tickets, and 20% for 
tickets valid for one hour. The policy intervention was the largest price reduction in a long time. 
As a result, the annual season ticket in Geneva now costs 500 Swiss francs for adults (previously 
700 Swiss francs) and 400 Swiss francs for seniors and juniors (previously 500 and 450 Swiss 
francs, respectively). These prices are more than 200 Swiss francs less than those charged by other 
Swiss cities. For instance, annual season tickets in Lausanne, Berne, Basel, and Zurich cost 740, 
790, 800, and 782 Swiss francs, respectively. The same is the case for single-fare tickets amount-
ing to 3 Swiss francs in Geneva.  
To illustrate the price-reduction effect, we analyze the case of TPG, the main operator in the city 
of Geneva, and its agglomeration belt. To this end, we apply the synthetic control method (Ab-
adie, Diamond, and Hainmueller, 2010, Abadie and Gardeazabal, 2003) to construct a synthetic 
TPG, a counterfactual that mimics the demand the company would have experienced in the ab-
sence of the price reduction. The thing to notice is that the methodology uses a data-driven pro-
cedure to create the synthetic TPG from comparable Swiss transport operators.  

2. METHODOLOGY  

In this section, we outline the synthetic control method used in our empirical analysis. Second, 
we present the assumptions underlying our analysis.  

Methodology and implementation 

Let 𝐷𝐷 denote the binary treatment 'price reduction' and 𝑌𝑌 the outcome 'public transport demand'. 
The treatment 𝐷𝐷, the result of the initiative in Geneva, affects one unit (TPG). All the other units 
(transport companies) in our data are not exposed to the price reduction and thus constitute the 
control group. We can define the observed outcome of TPG, our unit of interest, as 
 

𝑌𝑌𝑡𝑡 = 𝑌𝑌𝑡𝑡𝑁𝑁 + 𝛼𝛼𝑡𝑡𝐷𝐷𝑡𝑡. 
 
𝑌𝑌𝑡𝑡 denotes the observed outcome, 𝑌𝑌𝑡𝑡𝑁𝑁 the outcome without the treatment, and 𝛼𝛼𝑡𝑡 the treatment 
effect at time 𝑡𝑡. It is important to note that the treatment 𝐷𝐷 takes the value 0 for all units during 
the period 𝑡𝑡 < 𝑇𝑇0, with 𝑇𝑇0 indicating the introduction of the treatment. This is because also TPG 
was not exposed to the price reduction during the pre-treatment period. Only looking at the post-
treatment period permits to define the treatment effect as 
 

𝛼𝛼𝑡𝑡 = 𝑌𝑌𝑡𝑡 − 𝑌𝑌𝑡𝑡𝑁𝑁 . 
 
As we observe 𝑌𝑌𝑡𝑡, we merely need to estimate 𝑌𝑌𝑡𝑡𝑁𝑁, the public transport demand of TPG without 
the policy intervention. Using statistical parlance, 𝑌𝑌𝑡𝑡𝑁𝑁 is a counterfactual. That is the outcome one 
would expect if the intervention had not been implemented. To determine 𝑌𝑌𝑡𝑡𝑁𝑁, we use the synthetic 
control method of Abadie and Gardeazabal (2003) and Abadie, Diamond, and Hainmueller 
(2010). To construct the synthetic control unit (𝑌𝑌𝑡𝑡𝑁𝑁), the synthetic control method uses a data-
driven procedure. In our study, the counterfactual 𝑌𝑌𝑡𝑡𝑁𝑁, the synthetic TPG, is created out of already-
existing companies of the control group, the so-called 'donor pool'. For this purpose, the method-
ology assigns a weight to each transport company in the control group. These weights are non-
negative and sum up to one. On the one hand, we assign large weights to companies with a size-
able predictive power for TPG. On the other hand, transport companies in the control group with 
a low predictive power receive a small or a zero weight. The goal is to minimize the difference 
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between TPG and the synthetic TPG in the period 𝑡𝑡 < 𝑇𝑇0, the pre-treatment period. To discuss 
the success of this endeavor, we calculate the mean squared prediction error (MSPE) of the out-
come variable between TPG and the synthetic TPG. In implementing the synthetic control 
method, we use the synth and SCtools packages for the statistical software R by Hainmueller and 
Diamond (2015) and Silva (2020), respectively.  
 
To empirically challenge the results, we calculate the corresponding 95% bootstrap confidence 
intervals to the average treatment effect. Therefore, we randomly draw control units with replace-
ment from our donor pool 2,000 times to arrive at these confidence intervals. In every sample, we 
construct a synthetic TPG and estimate the average gap between TPG and its counterfactual. 

Assumptions 

Identification requires statistical procedures, as explained in the previous subsection. However, 
on the other hand, ensuring that our calculation identifies the effect of the price reduction also 
relies on assumptions about how the world, here the world of public transportation, works (see, 
e.g., Huntington-Klein, 2021). Therefore, in the following, we discuss the contextual assumptions 
underlying our analysis (see also Abadie, 2021). 
 
Assumption 1 (no anticipation) is satisfied when the public transport demand in Geneva did not 
change due to forward-looking customers reacting in advance to the policy intervention. To this 
end, the price reduction effect would be biased if TPG's travelers had already used public transport 
before the intervention because they knew that prices would fall later. 
 
By Assumption 2 (availability of a comparison group), there exists a donor pool. The assumption 
is satisfied when we have a control group with characteristics that are, by assumption, comparable 
to the treated unit. That implies that other public transport companies do not sharply lower fares 
in our natural experiment. 
 
Assumption 3 (convex hull condition) is satisfied when pre-treatment outcomes of the synthetic 
counterfactual can approximate the outcomes of the treated unit. Using statistical parlance, the 
pre-treatment outcomes of the treated unit are not 'too extreme' (too high or low) compared to the 
outcomes of the donor pool. 
 
Assumption 4 (no spillover effects) is fulfilled when the price reduction has no spillover effects, 
eighter positive or negative, on other transport companies in the donor pool. An obvious failure 
of this assumption would be a decrease in public transport demand in other Swiss cities because 
their residents perceive the ticket costs as too high after the price reduction in Geneva. 
 
Assumption 5 (no external shocks): Applying the synthetic control method, we assume that no 
shocks occur to the outcome of interest during the study period (see, e.g., Abadie, 2021). In our 
case, this condition is challenging since public transport companies expand the network from time 
to time, which typically affects the demand for public transport (see, e.g., Brechan, 2017, 
Holmgren, 2007). To account for such changes in supply, we propose an aggregate metric that 
breaks down the demand for public transport per company's supply, which we use as our outcome 
variable. More precisely, we calculate the ratio of passenger trips per vehicle kilometre, being 
robust against changes on the supply side. Finally, note that, to our knowledge, no large-scale 
road or parking policy was introduced in the areas of interest during the study period. 
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3. RESULTS AND DISCUSSION 

We subsequently introduce the data underlying this paper. Then, we present the results of apply-
ing the synthetic control method, evaluate their significance and investigate their robustness. 

Data 

To investigate the effect of the policy intervention in Geneva, we use the annual reports of Swiss 
transport companies, which the Swiss National Library systematically archives. We systemati-
cally gathered the most relevant performance indicators from public transport companies for our 
dataset. TPG operates mainly in the city of Geneva, the densest and second largest city in Swit-
zerland, and its agglomeration belt. Using the synthetic control method, we must choose each unit 
in the donor pool judiciously to provide a reasonable control for TPG, the treated unit (see As-
sumption 2). Therefore, we only consider transport companies that operate trams and buses pri-
marily in cities with more than 50,000 inhabitants. These are Bernmobil (Berne), BVB (Basel), 
SBW (Winterthur), TL (Lausanne), TPL (Lugano), VB (Biel), VBL (Lucerne), VBSG (St 
Gallen), and VBZ (Zurich).  
 
First, we collected the number of passenger trips, which are standardized in Switzerland. The 
number of passenger trips counts how many passengers enter a company's vehicle per year. Pas-
senger trips are essential, as we want to measure the increase in public transportation use. Today, 
companies mainly count passengers automatically, but this was often done by hand in the past. 
This change in the counting system happened in Geneva from the years 2015 to 2016. Therefore, 
we adjust our TPG data from 2016 to 2019 based on the observed growth rate of the passenger 
trips to have a refined panel dataset. Since 2005, TPG has experienced the highest increase in 
passenger trips. However, TPG has also experienced a high increase in vehicle kilometres. The 
increase results from the extension of tram routes. Therefore, to mitigate changes in supply, i.e., 
external shocks increasing companies' networks (see Assumption 5), we use the previously dis-
cussed aggregate metric of passenger trips per vehicle kilometre as the outcome variable. 
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Figure 1 Passenger trips per vehicle kilometre. Note that we restrict our pre-treatment period to 2010 
to 2014 (solid lines). 

 
Controlling for supply changes also makes sense, as several studies show considerable effects of 
vehicle kilometers on demand. For instance, Holmgren (2007) estimates a short-run supply (ve-
hicle kilometres) elasticity of 1.05. Based on this meta-analysis, we assume a considerable supply 
elasticity of about 1 when applying the ratio. However, and also a thing to notice, due to a sub-
stantial increase in vehicle kilometers plied by bus lines in Geneva's agglomeration belt from 
2008 to 2010, the ratio in Geneva declined. This is because the aggregate change in TPG's supply 
occurred in the subarea where public transport is relatively poorly utilized. Therefore, we restrict 
our pre-treatment period to the years 2010 to 2014. However, collecting several observations on 
the unit of interest (TPG) and the donor pool is crucial before the price reduction (Abadie, 2021). 
Therefore, we also perform a robustness check with a more extended pre-treatment period. More-
over, we also oppose our results to estimations without the metric and thus use only passenger 
trips as the outcome variable. This robustness check is crucial, as unexpected low (or high) supply 
elasticities could be an alternate explanation of the treatment effect. 

The effect of the price reduction  

To construct the synthetic TPG, the synthetic control method assigns weights among the control 
group companies. VB (Biel) receives the highest weight with 0.400, while BVB (Basel) has the 
second-highest weight with 0.162, and the VBSG (St Gallen) has a zero weight. Figure 2 plots 
the outcome variable, equal to passenger trips per vehicle kilometre, of TPG and the synthetic 
TPG from 2010 to 2019. We can easily observe that the two trajectories track each other close in 
the pre-treatment period, i.e., the pre-price reduction period. Thus, the mean squared prediction 
error (MSPE) of the outcome variable between TPG and the synthetic TPG amounts to a small 
figure of 0.009. Therefore, our synthetic TPG is a sensible counterfactual of the outcome we 
would expect if the intervention had not been implemented. While demand from customers of the 
synthetic TPG continued its slightly downward trend, the demand for TPG increased. This differ-
ence is relatively constant over four years, from 2016 to 2019.  
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Compared to the synthetic counterfactual, the demand increased by, on average, about 0.72, an 
increase of 10.6% compared to 2014. Thus, we can infer a positive effect on demand in Geneva 
due to the price reductions. Randomly drawing nine control units with a replacement from our 
donor pool leads us to bootstrap confidence intervals. The average estimated effect's correspond-
ing 95% bootstrap confidence interval is [0.423; 0.870].  
 

 
Figure 2: Demand development of TPG and the synthetic TPG 

Robustness analysis  

Here, we challenge our assumptions and study design by performing robustness investigations. 
First, as a methodological robustness check, we apply a recent development of the synthetic con-
trol method, the synthetic difference in differences approach of Arkhangelsky et al. (2019), to 
demonstrate the goodness of our results. Second, we expand our pre-treatment period. Third, we 
expand our donor pool with companies operating in cities with fewer than 50,000 inhabitants. 
Fourth, we estimate the effect of the lower fares on the number of passengers (and not the number 
of passengers per vehicle kilometre). Moreover, in the fourth robustness check, the synthetic TPG 
does not mimic TPG in the pre-treatment period appropriately. Therefore, in a final robustness 
investigation, we re-estimate the effect on the number of passengers using the synthetic difference 
in differences approach.  
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Table 1: Estimates summary of robustness checks 
 

Check  Modification Price effect 
1 Method (SDID) 10.0% 
3 More units in the donor pool 10.5% 
2 Expanded pre-treatment period 9.0% 
4 Passenger trips as outcome variable Insufficient fit 
5 Passenger trips as outcome variable and method (SDID) 3.7% 
Note: In robustness checks 1, 2, and 3, we use passenger trips per vehicle kilometres as 
the outcome variable 

 
In the first, second, and third robustness checks, we use passenger trips per vehicle kilometres as 
the outcome variable (see Table 1). These robustness checks show that the estimate is robust when 
we modify the study design, i.e., applying the synthetic difference in differences approach, longer 
pre-treatment period, or more companies in the donor pool. In the fourth and fifth robustness 
investigations, we replace our metric with the original number of passenger trips. We consider 
the synthetic difference in differences methodology more appropriate to analyze the outcome var-
iable passenger trips. However, note that Assumption 5 (no external shocks) is violated when 
using the outcome variable passenger trips regardless of the methodology.   
 
The results in the fifth robustness check are lower, which shows that our estimate crucially de-
pends on whether we consider the influence of the vehicle kilometres. The demand effect amounts 
to 3.7% when we apply the synthetic difference in differences methodology. A demand increase 
of 3.7% is even lower than naively comparing the passenger trips of TPG after and prior to the 
price discount, amounting to 5.7% additional trips. Moreover, when calculating bootstrap esti-
mates of the effect, we do not get any negative values. The 95% bootstrap confidence interval of 
the average estimated effect points to an increase of between 2.0% and 12.4%, inclusive. There-
fore, we conclude that the effect of 3.7% additional demand is a potential lower bound of the 
effect. 

Elasticities  

Considering the revenue shares per ticket category of 2014, we assess an overall price discount 
of 12.6%. Based on the price discount of 12.6%, we get corresponding point elasticities of demand 
of -0.84 and -0.29 of our main result and the lower bound, respectively. Therefore, we show that 
price reductions in urban areas with high-quality public transport attract customers. However, the 
demand effect is too small to compensate for the loss of revenue due to lower prices. Using the 
metric passenger trips per vehicle kilometre, we assume high supply elasticities, i.e., about 1, due 
to findings in the literature (Holmgren, 2007). On the other hand, as a word of caution, high supply 
elasticity might be lower when public transport quality is high, e.g., Axhausen and Fröhlich 
(2012). In such a case, increasing or decreasing vehicle kilometres could influence the metric and, 
therefore, the estimate of interest. 

4. CONCLUSIONS 

We assess the demand effect of lower urban public transport fares and find that the price reduction 
in Geneva leads to a demand increase of about 10.6%. To isolate the effect of our mechanism of 
interest, the price reduction, we propose an aggregate metric inheriting supply changes of public 
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transport networks. This makes sense as we can block off the effect of increasing and decreasing 
frequencies as an alternate explanation of demand effects, being in the context of public transport 
of crucial importance. Moreover, robustness investigations show that the estimate is robust when 
we modify the study design, i.e., applying the synthetic difference in differences approach, longer 
pre-treatment period, or more companies in the donor pool. However, the estimate is significantly 
lower (i.e., 3.7%) when we consider the outcome variable passenger trips and do not isolate the 
price reduction effect from the supply effects, i.e., representing the lower bound of the effect.  
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SHORT SUMMARY 

This study aims to investigate the effect of users’ personality as well as apps’ transformation to 

the adoption and post-adoption patterns of multi-functional apps/Super-Apps over time. A ques-

tionnaire was distributed to Super-Apps users in four Indonesian cities. Latent Markov model 

(LMM) was used to investigate the users’ Super-Apps usage from 2015 to 2022. Four distinctive 

states were recognized: the Super User (SU) state; the Transport, Consumption, and Finance 

(TCF) state; the Food and Beverage (F&B) and Transport (FT) state; and the Less Explored (LE) 

state. The analysis found that LE users have a higher probability of changing into another state of 

users, while TCF users tend to be more stable than other groups. A higher number of functions 

available does not necessarily lead to highest exploration, but it contributes to making the users 

evolve from LE to other states. Users who more sociable tend to explore the apps more. 

 

Keywords: behaviour changes, users’ personality, apps’ transformation, latent markov model, 

Super-Apps 

1. INTRODUCTION 

Mobile apps (apps) have developed from their beginnings as simple utilities into platforms that 

fulfill variety of personal needs and desires. The substantial number of apps and the opportunities 

that they provide have attracted research on apps’ adoption in various disciplines (Mehra et al., 

2021; Stocchi et al., 2022). However, people’s decision process to adopt apps is complex in their 

consumer journey phases. The phases identified as pre-adoption, which refers to the predisposi-

tion of customers before app adoption; adoption, which refers to the result of a positive predispo-

sition towards the app and therefore, downloading and using the app; and post-adoption, which is 

defined as the continuation of using the app (Stocchi et al., 2022). The customer experience within 

the customer journey also evolves over time in response to users’ characteristics, such as attitude, 

personality, and demography, as well as changes in the app environment, such as the level of 

service quality, features, or design (Kim et al., 2016). The latter has been of interest to various 

technological companies seeking to improve their app environment to increase the level of en-

gagement, including the current evolution of mobile apps that provide multiple functions called 

Super-Apps. 
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Most of previous research has separated the investigation of pre-adoption (Stocchi et al., 2019), 

adoption (Mehra et al., 2021), and post-adoption (Kim et al., 2016). However, research has also 

shown that the continuation of app use is influenced by users' past behaviour (Kang et al., 2015), 

suggesting a pattern in mobile app usage. Attempts to integrate adoption and post-adoption by 

capturing behaviour over time have been done by Horvath et al. (2022) with a three-wave panel 

survey. Despite the study integrating the attitude of the respondents towards the apps, the study 

did not accommodate the effect of personality (Stocchi et al., 2022). The importance of personal-

ity has been underlined because it also drives people’s motivations (Yeh et al., 2021) and con-

sumption characteristics (such as stickiness, willingness to pay, etc.) (Dinsmore et al., 2017). 

Moreover, the relationship between personality and app adoption is might even more complicated 

in Super-Apps due to their evolution from single to multiple functions, leading to different usage 

patterns. 

 

The investigation of Super-Apps use evolution is important from various perspectives. From mar-

keting, investigating the adoption and post-adoption stages can offer strategic recommendations 

for apps developers aiming to optimize user engagement within apps (Kim et al., 2016; Stocchi 

et al., 2022). The importance of this inquiry also lies in the transportation sector, specifically 

urban mobility. The advancement of apps has been recognized to have a substitution, generation, 

modification, or neutral impact on travel demand (Mokhtarian, 2009). Some of Super-Apps func-

tions have found related to change the travel behaviour such as ride-sourcing, food and beverage 

delivery, or e-shopping. Therefore, this examination is relevant to reducing negative externalities 

resulting from Super-Apps usage. 

 

This study aims to explore how the evolution of apps and users’ personalities contribute to the 

users' behaviour of using Super-Apps over time. Specifically, we focus on the adoption and post-

adoption concepts of the customer journey (Stocchi et al., 2022) and extend it with temporal in-

vestigation in response to the changes in the number of functions available on the apps. Addition-

ally, we integrate the effect of users’ personalities, residential location, and socio-demography, 

which prior studies only considered as a factor in a specific phase (Yeh et al., 2021). Conse-

quently, this research aims not only to comprehend the pattern of adoption and post-adoption of 

Super-Apps but also how this pattern evolves over time and is influenced by the apps’ transfor-

mation and users’ characteristics. 

2. METHODOLOGY  

Data Analysis 

For examining the effect of the users’ personality and apps’ evolution to the use of Super-Apps 

over time, this study uses LMM. The LMM is commonly known as extension of the dynamic 

logit model for longitudinal data (Bartolucci et al., 2017).  

 

For this research, we observed the use of Super-Apps services (Yij
t) as the response/indicator var-

iable, for each service j (j ∈ {1, 2, ..., J}), respondent i (i ∈ {1, 2, ..., n), and time t (t ∈ {1, 2, ..., 

T}), by the category of 0 = not using the app and 1 = using the app. Let also xit be the vector of 

respondents’ (i) covariates for t = 1, 2, ..., T. The general LMM formulation assumes the existence 

of latent process, denoted by Uc
t, which affects the distribution of response variables, and the 

process is assumed to follow a first-order Markov chain with state space (c ∈ {1, 2, ..., k}). Under 

local independence assumption (Bartolucci et al., 2017), the response vector (Yij
t) are assumed to 

be conditionally independent given the latent process (Uc
t). The parameter of measurement model 

to determine the latent states are the conditional response probabilities: 



3 

 

 

ϕ𝑦|𝑢𝑥
𝑡 = 𝑃(𝑌𝑖𝑗

𝑡 = 𝑦 |𝑈𝑖
𝑡  = 𝑐 ) (1) 

 

The parameters of the latent process include the initial probabilities of (𝜋c) of each latent state 

and the transition probability (𝜋𝑐|ḉ) between states: 

 

𝜋𝑐|𝑥 = 𝑃(𝑈𝑖
1  = 𝑐 |𝑋𝑖

1 = 𝑥 ) (2) 

 

As the initial probability, where the c = 1, …, k, and the transition probability:  

 

𝜋𝑐|ḉ𝑥
(𝑡)

= 𝑃(𝑈𝑖
𝑡  = 𝑐 |𝑈𝑖

𝑡−1 = ḉ , 𝑋𝑖
𝑡 = 𝑥  ) (3) 

 

Where t = 2, …, T, ḉ, 𝑐 = 1, … , 𝑘, 𝑥 denotes a realization of the covariates Xt, c a realization of 

Ut, and  ḉ a realization of Ut-1. The initial and transition probability (latent model) are adopting 

multinomial logit parametrization (Bartolucci et al., 2017). In this study the latent model: 

 

𝑙𝑜𝑔
𝑃(𝑈𝑖

1  = 𝑐 |𝑋𝑖
𝑡 = 𝑥 )

𝑃(𝑈𝑖
1  = 1 |𝑋𝑖

𝑡 = 𝑥 )
= log

𝜋𝑐|𝑥

𝜋1|𝑥
= 𝛽0𝑐 + 𝑥⟙𝛽1𝑐  , 𝑐 = 2, … , 𝑘  (4) 

 

As the initial probability with having first state as reference, and for transition probability: 

 

𝑙𝑜𝑔
𝑃(𝑈𝑖

𝑡  = 𝑐 |𝑈𝑖
𝑡−1 = ḉ , 𝑋𝑖

𝑡 = 𝑥  )

𝑃(𝑈𝑖
𝑡  = 𝑐 |𝑈𝑖

𝑡−1 = ḉ , 𝑋𝑖
𝑡 = 𝑥  )

= log
𝜋𝑐|ḉ𝑥

𝜋ḉ|ḉ𝑥
= 𝛾0ḉ𝑐 + 𝑥⟙𝛾1ḉ𝑐  , (5) 

 

where t = 2, …, T and ḉ , c = 1, …, k, with ḉ ≠ c. In above expression (4, 5), 𝛽c = (𝛽0𝑐 , 𝛽1𝑐
⟙ )⟙ and 

𝛾ḉ𝑐=(𝛾0ḉ𝑐, 𝛾1ḉ𝑐
⟙ )⟙ are parameter vectors to be estimated. The illustrative framework of the LMM 

of Super-App use, indicators and covariates is described in Figure 1.  

Data Collection 

Data used in this research is part of a 2022 one-week virtual and physical activity diary survey in 

Indonesian cities that also specifically investigates Super-App use behaviour. Grab and Gojek, 

launched in 2015, are the representation of transportation-based Super-apps in this study. We used 

the data of the respondents’ socio-demography, personality traits with the Big Five Inventory 

(BFI), and chronology of Super-Apps use from the survey. The chronology of use section asks 

about the monthly frequency of each use of Super-App service (e.g., transport, goods, food 

transport, etc.) from 2015 to 2022 and we transformed this number into the code of whether they 

use it or not use it for the analysis.  
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Figure 1. Conceptual Framework of Analysis 

 

Convenience sampling method was used for data collection with surveyors distributed the ques-

tionnaire based on the small district within the city. The study location is on four Indonesian Cities 

that are differ in terms of population size, namely Jakarta, a megapolitan city, Bandung, a metro-

politan city, Denpasar, a big city, and Cianjur, a medium city. The survey was conducted between 

May 2022 and January 2023. 1251 data were valid for the analysis and this study only use on 

1051 datasets of Super-Apps users, excluding the respondents that not the users.  

3. RESULTS AND DISCUSSION 

In this study (N=1051), most of the respondents were male (56.2%), employed (70.4%), and pos-

sessed undergraduate degrees (55%). Additionally, most of them had a monthly household in-

come of more than 6 million IDR (394 USD) (39.5%). The respondents were nearly evenly dis-

tributed across four locations based on their residential status, with Jakarta having the highest per-

centage (28.9%), followed by Bandung, Denpasar, and Cianjur. The study also uses secondary 

data about Super-Apps transformation. In 2015, only five functions were available: motorcycle 

and car ride-sourcing (RC), goods delivery, food and beverage (F&B) delivery, and e-groceries. 

In 2016, the function that offered buying entertainment tickets became available, followed by 

various payments (i.e., electricity, bills, stocks, donation, mobile package) in 2017. E-scooters, 

news/information/education, health services and products, and hotel booking became available in 

2019 until now.  

 

The respondents’ personality characteristics are described in Figure 2. The variable that has the 

highest score is persistency in the conscientiousness dimension, while the lowest one is tempera-

mental in negative emotionality. We used Confirmatory Factor Analysis (CFA) to reduce the 

personality dimension based on the five-group classification of BFI. The loading factors of each 

group are shown in Figure 2. 
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Figure 2. Respondents Personality Characteristics (Question: I am person who…) 

 

Determining the appropriate number of states is a crucial factor in LMM. Based on the recom-

mendations of a prior research, we utilize BIC and AIC criteria to assess the states. The assess-

ment, which is presented in Figure 3, indicates that there is no considerable improvement in AIC 

and BIC scores beyond four states. Additionally, the interpretability of the profile for four states 

is satisfactory and therefore, we decide that using four states. 

 

 
Figure 3. Determine Number of States  

 

The profile of states based on Super-Apps function usage is described in Figure 4. The first state 

represents the use of motorcycle and car RC, goods delivery, F&B delivery, and payments, which 

we named the Transport, Consumption, and Finance (TCF) state. The second state is the Super 

User (SU) state, where users explore most of the Super-Apps functions. The third state represents 

situations where users only use a limited function, named the Low Exploration (LE) state. The 

last state represents the use of Super-Apps for motorcycle and car RC, goods delivery, and F&B 

delivery, or the F&B and Transport (FT) state. 
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Figure 4. States Profile Based on the Functions Use 

 

Since we are interested in patterns over time, in this study, we focus on estimating the transition 

probabilities (Table 1). Socio-demographic characteristics were found to influence the transition. 

It was found that older users are less likely to change from the LE state to another state compared 

to younger users. Female users are less likely to change from the TCF state to the LE or FT state, 

but they tend to change from LE states to FT compared to men. Workers tend to change from 

TCF to SU state compared to non-workers or students. Users with higher education tend to change 

from SU to TCF state. Differences in city characteristics were also found to shape the transition. 

All cities have the same negative tendency for transition from TCF to LE states. However, users 

from Bandung, Jakarta, and Denpasar tend to change from TCF to FT state compared to Cianjur 

users. Compared to Denpasar, Bandung users tend to change from TCF to SU states. Jakarta users 

also tend to change to FT from SU state. 

 

The availability of more functions in the apps was found to influence the changes of states when 

users are in the LE state. Personality was also found to influence the behaviour of use over time. 

Users who are sociable, respectful, but disorganized tend to change from LE to TCF state. Users 

who are open-minded are less likely to lower their function use from TCF to FT or LE state. 

People who are respectful/kind-hearted tend to be less stable but have a positive influence on the 

transition. While users who are sociable tend to change from TCF to SU or FT state, they are less 

likely to change from SU to TCF state. 

 

The average transition probability (Figure 4-a) reported that TCF is the most stable state, while 

the LE/3rd state is the least stable compared to others. Significant changes in LE states (Figure 4-

b) were found from 2018 to 2019, five years after Super-Apps launched. Currently, users’ states 

are mostly in TCF and FT. 
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Table 1. Estimation of Parameter Logit for Transition Probabilities 

Transition from  TCF to SU to LE to FT to 

  SU LE FT TCF LE FT TCF SU FT TCF SU LE 

Variables             

Intercept -12.2 ** -83.8 ** 10.82 ** -46.72 ** -34.87 ** -8.42 * -10 ** -15.64 ** -7.03 **  -8.29 ** -23.66 ** 

Age       -0.02 * -0.07 * -0.03 ** 0.03 *  0.11 * 

Female [D]  -10.39 ** -2.4 **  11.05 * 4.11 **   0.38 **    

Household Income -0.68 ** 4.53 *        -0.14 *   

Workers [D] 15.49 ** 7.42 ** 1.32 ** -11.2 **   0.71 **    0.99 *  

Education  12.47 ** -5.9 ** 24.17 **    1.1 * 0.62 ** -0.48 *  -2.77 ** 

Bandung [D] 3.15 ** -22.99 ** 4.97 ** -50.63 ** -74.15 **    1.5 **  3.24 ** -8.54 * 

Denpasar [D] -15.78 ** -25.56 ** 10.61 ** -49.15 ** -64.14 **   4.9 ** 0.93 *  2.74 ** -9.4 * 

Jakarta [D]  -36.45 ** 6.24 ** -28 ** -59.62 ** 5.59 **  -7.15 ** 0.88 *  4.23 ** -17.82 ** 

Cianjur [D]  -12.93 ** -4.65 ** -31.11 ** -60.17 **   4.58 ** 0.88 *  2.13 ** -9.7 * 

Number of Functions Available -0.49 **  -1.27 **  6.44 **  0.69 ** 0.75 ** 0.43 ** -0.31 **   

Extraversion 0.62 *  0.52 ** -14.72 **   0.46 **    0.38 *  

Agreeableness 5.57 ** 1.11 ** 6.03 *   0.31 **    0.76 **  

Open-mindedness -6.53 ** -1.28 **       0.30 *  
 

Conscientiousness      0.26 **  -0.12 * 0.57 **  
  

 [D]: dummy variables; *significant at 5%; **significant at 1% 
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Figure 4. a.) Average Transition Probability, b.) Marginal Distribution Over Time 

4. CONCLUSIONS 

This study explores the effects of the transformation of apps and users' personality, residential 

location, and personal characteristics on the pattern of Super-Apps use over time. The study found 

four states that represent specific use of Super-Apps' functions: the Transport, Consumption, and 

Finance (TCF) state, Super users (SU) state, Low exploration (LE) state, and F&B and Transport 

(FT) state. The study also found that adding more functions to the apps influences the adoption 

of Super-Apps, leading to a transition from LE to other states but not necessarily to the highest 

exploration (SU state). Personality also influences the transition, with sociable users tending to 

explore the apps more, suggesting that Super-Apps might facilitate their outgoing personality 

needs. The economic intensity of a city does not influence greater use exploration, as every city 

has its own transition into the SU state. However, Jakarta stands out from other cities in its ten-

dency to change from the SU to the FT state. 

ACKNOWLEDGEMENTS 

This study is funded by the Research Grant from ITENAS Bandung, the WCR Grant from The 

Ministry of Research, Technology, and Higher Education, the Republic of Indonesia, and the 

DAVeMoS BMK Endowed Professorship in Digitalisation and Automation in Transport Systems 

(FFG project number: 862678). The first author also acknowledged the Ernst Mach Grant ASEA-

UNINET for the doctoral scholarship. We are also thankful for the insightful comments from 

Giovanni Circella in the earliest draft of this paper. 

REFERENCES 

Bartolucci, F., Pandolfi, S., & Pennoni, F. (2017). LMest: An R Package for Latent Mar-

kov Models for Longitudinal Categorical Data. Journal of Statistical Software, 

81, 1–38. https://doi.org/10.18637/jss.v081.i04 

Dinsmore, J. B., Swani, K., & Dugan, R. G. (2017). To “Free” or Not to “Free”: Trait 

Predictors of Mobile App Purchasing Tendencies. Psychology & Marketing, 

34(2), 227–244. https://doi.org/10.1002/mar.20985 



9 

 

Horvath, L., Banducci, S., Blamire, J., Degnen, C., James, O., Jones, A., Stevens, D., & 

Tyler, K. (2022). Adoption and continued use of mobile contact tracing technol-

ogy: Multilevel explanations from a three-wave panel survey and linked data. 

BMJ Open, 12(1), e053327. https://doi.org/10.1136/bmjopen-2021-053327 

Kang, J.-Y. M., Mun, J. M., & Johnson, K. K. P. (2015). In-store mobile usage: Down-

loading and usage intention toward mobile location-based retail apps. Computers 

in Human Behaviour, 46, 210–217. https://doi.org/10.1016/j.chb.2015.01.012 

Kim, S., Baek, T. H., Kim, Y.-K., & Yoo, K. (2016). Factors affecting stickiness and 

word of mouth in mobile applications. Journal of Research in Interactive Market-

ing, 10(3), 177–192. https://doi.org/10.1108/JRIM-06-2015-0046 

Mehra, A., Paul, J., & Kaurav, R. P. S. (2021). Determinants of mobile apps adoption 

among young adults: Theoretical extension and analysis. Journal of Marketing 

Communications, 27(5), 481–509. 

https://doi.org/10.1080/13527266.2020.1725780 

Mokhtarian, P. L. (2009). If telecommunication is such a good substitute for travel, why 

does congestion continue to get worse?: Transportation Letters, Vol 1(No 1), 1–

17. 

Stocchi, L., Michaelidou, N., & Micevski, M. (2019). Drivers and outcomes of branded 

mobile app usage intention. Journal of Product & Brand Management, 28(1), 28–

49. https://doi.org/10.1108/JPBM-02-2017-1436 

Stocchi, L., Pourazad, N., Michaelidou, N., Tanusondjaja, A., & Harrigan, P. (2022). 

Marketing research on Mobile apps: Past, present and future. Journal of the Acad-

emy of Marketing Science, 50(2), 195–225. https://doi.org/10.1007/s11747-021-

00815-w 

To, P.-L., Liao, C., & Lin, T.-H. (2007). Shopping motivations on Internet: A study based 

on utilitarian and hedonic value. Technovation, 27(12), 774–787. 

https://doi.org/10.1016/j.technovation.2007.01.001 

Yeh, C.-H., Wang, Y.-S., Wang, Y.-M., & Liao, T.-J. (2021). Drivers of mobile learning 

app usage: An integrated perspective of personality, readiness, and motivation. 

Interactive Learning Environments, 0(0), 1–18. 

https://doi.org/10.1080/10494820.2021.1937658 

 



Routing Passengers while Timetabling Based on Promises from Line
Planning: A Logic-Based Benders Approach

Fuchs Florian*1, Viera Klasovitá2, and Francesco Corman3

1MSc, Institute for Transport Planning and Systems, ETH Zürich, Switzerland
2MSc, Institute for Transport Planning and Systems, ETH Zürich, Switzerland

3Professor Dr., Institute for Transport Planning and Systems, ETH Zürich, Switzerland

Short summary

Effective line planning and timetabling are critical for enhancing public transport efficiency and
passenger satisfaction. We propose a Logic-Based Benders decomposition approach to optimise a
timetable for a passenger railway system based on the promises made in earlier planning stages.
Our approach ensures that the promised travel times and transfers are available and passenger
routes are chosen according to the shortest available path. We test this approach on real-world
data from the Rhätische Bahn railway system, demonstrating promising results. The proposed
approach has shown to be valuable for optimising transfers, improving efficiency and passenger
satisfaction, and reducing travel times. The method has limitations, including the inability to
consider multiple connections per origin-destination pair, adaptation time at the origin station,
and crowding. Further research can focus on improving and extending the model’s performance to
include these factors.
Keywords: Logic-Based Benders Decomposition, Integrated Public Transport Planning, Railway
Timetabling, Periodic Railway Timetabling.

1 Introduction

Railways play a vital role in the transport system; however, public transport planning is complex
and includes several stages. From these stages, line planning and timetabling are two essential steps
in planning public transport systems (Schiewe, 2020). Line planning involves selecting the routes
and services to operate on each route while timetabling involves assigning the trips to specific
times. While we assume that transfers are possible in the line planning, it might be possible that
such a transfer is then not given in the subsequent timetable. This can result in passengers being
unable to make their intended connections, leading to longer travel times and reduced passenger
satisfaction. Combining the planning stages of line planning and timetabling is a promising step to
overcome this issue. It enables finding a schedule that minimises total travel time while ensuring
that all passengers have a connection and that the following timetable is feasible. However, the
timetabling problem is already complicated, and combining it with line planning further increases
the complexity.
Various approaches have been proposed to integrate line planning and timetabling, including in-
tegrated optimisation methods (Schiewe, 2020) and combining passenger routing with periodic
timetabling (Schmidt & Schöbel, 2015; Borndörfer et al., 2017; Robenek et al., 2016). However,
these methods can be computationally intensive and may need improvements to scale better for
more extensive networks. In response to these challenges, Polinder et al. (2021) proposed a scalable
timetabling approach that considers the passenger perspective and aims to determine a high-quality
timetable outline in the strategic planning phase. In addition, the method includes adaptation
time, i.e., the waiting time at the origin station, to ensure regular connections between passengers’
origins and destinations.
In conclusion, effective line planning and timetabling are critical for enhancing public transport
efficiency and passenger satisfaction. While the line planning problem and periodic timetabling
have established methods, recent research on timetabling with passenger routing looks promising.
Integrated optimisation and passenger routing approaches have shown promising results but re-
quire significant computational resources. Therefore, developing efficient and scalable solutions for
integrated planning and timetabling is crucial for public transport planning.
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Our approach aims to address this gap by creating an optimal timetable for a passenger railway
exploiting the fact that the timetable usually stems from a line plan (Bull et al., 2019). Proposed
approaches to finding optimal line plans typically minimise total travel time by assuming specific
in-vehicle and transfer times. We interpret these assumptions in the line plan as promises made
to passengers and use them to formulate an optimisation model. Our model ensures that the
promised travel times and transfers are available and that passenger routes are chosen according
to the shortest available path. We aim to provide an optimal timetable for passengers by keeping
these promises and optimising travel efficiency.
This leads to the following contributions of this work:

1. We propose a logic-based Benders decomposition approach that optimises a timetable for a
passenger railway system based on the promises made in earlier planning stages.

2. We test this approach on real-world data from the Rhätische Bahn railway system, demon-
strating promising results.

Developing efficient and scalable solutions for integrated line planning and timetabling is crucial for
enhancing public transport efficiency, reducing travel times, and improving passenger satisfaction.

2 Methodology

This section summarises our mixed integer linear programming model before we outline the Logic-
Based Benders Decomposition approach.

Baseline model

We propose routing passengers and scheduling trains on a network using mixed integer linear pro-
gramming (MILP) to minimise travel time while adhering to established schedules. Time windows
are added for each commercial train arrival and departure to prevent schedule violations. Passen-
ger expectations are met by enforcing pre-established in-vehicle travel and transfer times based on
the assumptions taken during line planning. Time windows also aid in identifying optimal transfer
connections. While we aim for all transfers to occur within the time limit, it may not always be
possible. We allow multiple time limits per transfer to address this, which relaxes the transfer
constraint. Our formulation seeks to optimise connections for all passengers within the constraints
to minimise the total travel time.
To model the demand routing through the network, we use the Passenger Graph (PG), a directed
graph representing the transportation network and consisting of trip/dwell/transfer arcs. We
add all trip/dwell arcs to the PG for each train specified by the line plan. We then connect the
arrival/departure nodes at stations according to the connections given in the line plan and add
transfer arcs for each potential transfer between two connected stations. We add multiple transfer
arcs between the exact arrival and departure nodes if a transfer has multiple duration limits.
To integrate the timetabling part into the transfer scheduling problem, we use the periodic event
scheduling problem (PESP) formulation Serafini & Ukovich (1989), which is suitable for periodic
timetabling. Furthermore, we use the Cycle Periodic Formulation (CPF) of Peeters (2003) for the
PESP.

Logic-Based Benders decomposition

The MILP is challenging due to the computational complexity of the timetabling part, as shown
by (Borndörfer et al., 2020). To address this issue, we propose a Logic-Based Benders Decomposi-
tion approach that separates the routing and timetabling problems to improve solution efficiency
(Hooker, 2007). Specifically, we use SAT-based approach for the timetabling subproblem, adapted
from Großmann (2016), allowing for faster feasibility determination and the generation of com-
binatorial Benders cuts from unsatisfiable cores (Codato & Fischetti, 2006). Classical Benders
Decomposition is a two-stage method that optimises the master problem and checks the feasibility
of the subproblem. In contrast, the Branch-and-Cut Benders method combines branch-and-cut
algorithms with Benders Decomposition to reduce computational time (Rahmaniani et al., 2017).
We implement each method and a hybrid approach that uses both, allowing for information ex-
change in the form of feasible solutions to improve efficiency further. We employ two strategies to
improve the cut generation process, relaxing requirements and expanding conflicting transfer cuts.
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3 Results and discussion

We evaluate the performance and suitability of our decompositions using real-world data from
the Swiss railway company, RhB. We compare four different approaches to solving the prob-
lem: Baseline (MILP implementation), Classical (Classic Logic-Based Benders decomposition),
Modern (Logic-Based Branch and Benders Cut), and Hybrid (Modern and Classical parallel). We
use an instance of the RhB network with today’s line plan of ten lines and a real-life dataset for
demand, which includes 1747 origin/destination locations. The line plan is depicted in Figure 1.

 

Figure 1: Current line plan of RhB (RhB, 2023).

We run each model with eight different random number seeds in the MILP solver. We report the
best solution found in the form of total travel time and the remaining optimality gap expressed
as a percentage. We are implementing the approach using Python 3.10 and the OpenBus Toolbox
(Fuchs & Corman, 2019) and solving the MILP formulation using GUROBI 10.0.1 (Gurobi Opti-
mization, LLC, 2023). In addition, we are solving the sat instances using the Glucose 4.1 sat solver
(Audemard & Simon, 2018) with pySAT (Ignatiev et al., 2018). We allow GUROBI to use up to
four threads for each run, while Glucose is single-threaded.

Table 1: Results for a time of three hours. A cell shows the objective (total travel time)
and optimality gap.

Seed Baseline Hybrid Modern Classic
0 -, - 323.62 h, 38.76 % 323.54 h, 91.57 % 323.58 h, 37.09 %
1 -, - 323.55 h, 39.55 % 323.53 h, 79.74 % 324.24 h, 27.34 %
2 -, - 323.58 h, 38.38 % 323.55 h, 89.16 % 324.23 h, 19.57 %
3 -, - 324.23 h, 27.80 % 323.53 h, 79.13 % 324.23 h, 17.84 %
4 -, - 324.24 h, 27.81 % 323.54 h, 75.70 % 324.23 h, 20.64 %
5 -, - 323.56 h, 38.77 % 323.54 h, 90.21 % 323.57 h, 38.58 %
6 -, - 323.53 h, 38.61 % 323.54 h, 82.15 % 323.57 h, 39.09 %
7 -, - 323.57 h, 38.63 % 323.56 h, 76.57 % 324.23 h, 17.40 %

The results presented in Table 1 demonstrate that our proposed decomposition approach out-
performs the Baseline approach. Notably, all runs of the Baseline implementation failed to
yield any results, in stark contrast to all the decomposition approaches. Our comparison of the
Classical, Modern, and Hybrid approaches revealed that they all produce similar objective func-
tion results. However, we observe differences in their ability to close the optimality gap, which
remains a challenging problem. In particular, the Classic approach exhibited superior perfor-
mance on a one-hour time limit, while on an extended three-hour time limit, Classic and Hybrid
approaches performed comparably.
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4 Conclusions

The proposed approach is valuable for optimising transfers, improving efficiency and passenger
satisfaction, and reducing travel times. The Classic approach outperformed the other two de-
composition approaches due to its ability to fix infeasible instances using a heuristic. However,
the optimality gap remains a challenge. Solving the problem as a MILP, as in the Baseline ap-
proach, is not viable. Furthermore, the proposed method has limitations, including the inability
to consider multiple connections per origin-destination pair, adaptation time at the origin station,
and crowding. Further research can focus on improving and extending the model’s performance to
include these factors. Overall, the proposed approach has shown promising results on real-world
data from Rhätische Bahn and can be applied to other transportation systems.
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Short summary

Agglomeration economies arising from the spatial concentration of economic activity have been
known to exist and induce higher productivity for firms. The existing empirical evidence, however,
has two key caveats. First, it mostly assumes a pre-specified (mostly log-log) functional form for the
relationship between firm productivity and agglomeration. Second, it may lack valid instruments
to adjust for potential confounding biases (for instance, from the omission of characteristics of
local input and output markets) in the estimation of this relationship. This study adopts a flexible
Bayesian Non-Parametric Instrumental Variables based approach to quantify non-linear effects
in agglomeration economies. The approach uses innovative external instruments derived from
traffic casualty data. We adopt a two-step framework: we first isolate the firm’s total factor
productivity from a Cobb-Douglas production function and thereafter estimate the non-linear
effects of agglomeration on this productivity. Using data from a sample of firms classed into six
key industry sectors in England, we present novel evidence that indicates the presence of significant
non-linearities in agglomeration elasticities for most industry sectors. Our results provide critical
inputs for the appraisal of transport investments.
Keywords: Agglomeration; Cost-benefit Analysis; Wider Economic Impacts; Elasticity; Non-
parametric statistics; Bayesian machine learning.

1 Introduction

Transport investments are frequently aimed at bringing economic and social benefits to the econ-
omy. However, given their scale, it is important for policymakers to have a rigorous apriori under-
standing of the magnitude of potential benefits arising from the investment. Cost Benefit Analysis
(CBA) provides a well-established theoretical basis to measure these benefits ex-ante and thus
warrant such extensive investments (Graham & Gibbons, 2019; A. Venables et al., 2014; Mackie
et al., 2012). CBA recasts the costs and benefits of the investment in monetary terms to estimate
the net change in social welfare arising from the transport improvement.
The current appraisal process embraced in the UK’s Transport Analysis Guidance (TAG) recognises
two broad categories of such welfare impacts: (1) Direct user benefits (DUBs) and (2) Wider
economic impacts (WEIs). DUBs consist of impacts on existing and new users of the transport
system, generated via changes in the generalised cost of travel (say, via alterations in travel time or
quality of service). Economic theory suggests that DUBs can capture all impacts under idealised
economic conditions: under perfect competition, constant returns to scale, and in the absence
of market failures. DUBs, therefore, formed the crux of the calculations in conventional CBA.
Nevertheless, the above-described market conditions are seldom encountered in practice, thus,
undermining the ability of DUBs to capture economic impacts in exhaustive detail. The scope of
CBA has therefore been extended, primarily in the past decade, to include the economic impacts
caused by market imperfections and externalities. Such wider group of impacts on the economy
are manifested in WEIs. The overarching aim of this paper is to revisit the empirical evidence on
WEIs of transport investments emerging via scale economies of agglomeration.

Background

Agglomeration economies are spatial externalities that arise when economic agents (individuals
and firms) locate in close proximity to each other, or in other words, locate within agglomerations
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of economic mass. Such proximity facilitates greater sharing, matching, and learning interactions
between agents, which are known to be the key drivers of agglomeration (Duranton & Puga, 2004).
For firms, agglomeration translates into benefits in form of improved labour market interactions,
knowledge spill-overs, specialisation, and increased sharing of inputs and outputs (Marshall, 1920).
Given these underlying benefits, economic theory predicts a positive impact of agglomeration on
the productivity of firms. Theory suggests two forms of agglomeration economies: (i) economies
of industry concentration or localisation economies, which includes benefits that occur through
enhanced specialisation; and, (ii) economies of urban concentration or urbanisation economies,
which result from the scale and diversity of markets (DfT, 2016). The former effects are external
to the firm but internal to the industry, while the latter are external to the firm and the industry
but internal to the urban area (or city) (Graham & Gibbons, 2019). Firms mostly experience the
two forms of agglomeration economies simultaneously. It is, therefore, difficult to disentangle the
two effects. The paper focuses on the quantification of urbanisation economies, which are typically
considered in appraisal calculations.
The impact of transport investments on agglomeration economies emerge from transport’s effect
on economic geography (distribution of individuals and firms) and consequent proximity between
economic agents (A. J. Venables, 2007). For fixed geography, transport improvements reduce the
generalised costs of interaction between agents in a cluster, thereby assisting interactions and
changing the effective density of the cluster. These effects are referred to as static agglomeration
effects. Transport investments can also bring about changes in economic geography by making some
locations more attractive to live and work, resulting in the relocation of individuals and firms. Such
movements lead to changes in the physical density of the cluster and facilitate new and different
interactions (DfT, 2016). These effects are termed dynamic agglomeration effects. Static effects
generally appear as a subset of the overall dynamic effects of a transport provision. Interestingly,
dynamic agglomeration effects may have a positive or negative impact on the productivity of
firms in a cluster depending on whether the spatial density of the cluster increases or decreases
as a consequence of the transport investment. In summary, the above discussion suggests that
if increasing effective agglomeration results in productivity gains for firms, and if transport has
an underlying role in determining effective agglomeration, then transport investments may induce
productivity benefits or disbenefits for firms. Therefore, comprehension of these productivity effects
is critical to developing a meticulous assessment of the impact of transport investments.
Consistent with the theory of urban agglomeration, the weight of empirical evidence in the literature
supports a significant positive relationship between agglomeration (often represented by city size or
the degree of access to economic mass (ATEM)) and productivity (measured by wages or by Total
Factor Productivity (TFP)) (see, for instance, Lall et al., 2004; Au & Henderson, 2006; Rosenthal
& Strange, 2008; Baldwin et al., 2010; Graham & Dender, 2011; Combes et al., 2012; Morikawa,
2011; Maré & Graham, 2013; Marrocu et al., 2013; Ahlfeldt et al., 2015). Elasticity estimates
from the literature range between -0.800 and 0.658, with an unweighted mean of 0.046 and median
value of 0.043 (refer to Graham & Gibbons, 2019, for a detailed review). The literature thus
indicates that agglomeration economies exist and cause higher productivity for firms and workers.
Nevertheless, the estimated magnitude of this effect varies substantially across studies. A meta-
analysis of the empirical literature conducted by Melo et al. (2009) indicates that such variation
results from contextual factors associated with the study design such as the nature of economies
and urban systems and the type of industry sectors under study. Additionally, Graham & Gibbons
(2019) highlights that the differences in estimated elasticities also result from the differences in
methodological approaches adopted in previous studies. While most studies concurrently assume
a log-log relationship between agglomeration and productivity, the approaches adopted to identify
this relationship vary substantially. In particular, Graham & Gibbons (2019) note that there are
considerable discrepancies in the extent to which these studies attempt to correct for potential
confounding biases in the estimation of this relationship.
Relatedly, Graham & Gibbons (2019) identify six potential mechanisms via which such biases
may emerge. First, confounding may occur due to the presence of unobserved firm-level sources
of productivity that are not only crucial to the firm’s choice of inputs, and thereby its TFP (see
Van Beveren, 2012, for details), but may be determined by local technology factors such as agglom-
eration. Second, confounding may also occur due to the absence of knowledge on a firm’s market
exit decisions (see Ackerberg et al., 2006, for details), which may be determined by agglomeration.
In particular, firms located in clusters of higher agglomeration may experience more competition,
which could result in the exit of less productive firms from the market. Third, confounding bi-
ases may emerge via unobserved heterogeneity in output prices of firms, which have a systematic
correlation with market competition, and thereby with agglomeration. Fourth, confounding may
appear due to spatial sorting or self-selection of firms, which occurs when firms within the same
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industry derive unobserved productivity benefits by engaging in different activities across different
locations. Such unobserved heterogeneity is often correlated with the level of agglomeration. Fifth,
the relationship between agglomeration and productivity may be simultaneously determined. As
shown by Graham et al. (2010), higher productivity locations may attract more private investment
over time leading to larger agglomeration and a consequent increase in productivity. Failure to
account for this reverse causality between productivity and agglomeration may produce biased and
inconsistent estimates of agglomeration economies. Finally, additional confounding may emerge
from unobserved components of local technology, such as specific characteristics of local input and
output markets, that may be determine both agglomeration and productivity. One of the key
objectives of this research is to deliver agglomeration elasticities that are robust to confounding,
and as such suitable to inform the appraisal of transport investments.

Overview of the Analysis

This paper estimates the relationship between agglomeration and productivity by adopting a two-
step approach Combes & Gobillon (2015). The first stage model within this approach estimates
TFP from the production function. The predicted values of TFP are then used as the dependent
variable in a second-stage regression on agglomeration, which delivers the agglomeration elasticities.
However, contrary to previous studies, we exploit the ability of this approach to model a flexible
non-parametric relationship between agglomeration and productivity. In particular, we note that
existing models in the literature mostly presume a Cobb-Douglas model for the agglomeration-
productivity relationship. We argue that while economic theory suggests a positive impact of
agglomeration on productivity, it does not necessarily imply that the relationship should be log-log.
Furthermore, contextualisation of agglomeration elasticities across studies (as discussed in Section
1) may be indicative of the variation of these elasticities over agglomeration. Hence, we assert
that parametric models with a predefined functional form may fail to capture the non-linearities in
the agglomeration-productivity relationship, thus delivering estimates of agglomeration elasticities
that may be biased.
To address this limitation, in this paper, we empirically estimate the relationship between agglom-
eration and productivity using a Bayesian non-parametric instrumental variables (NPIV) estimator
(Wiesenfarth et al., 2014) that allows us to (i) capture non-linearities in the relationship with a
non-parametric (NP) specification that does not require an assumed a-priori functional form, and
(ii) adjust for any confounding bias using instrumental variables (IVs). As discussed in Section
1, such biases may emerge from reverse causality or from the omission of important covariates.
Critical to the second point, we note that the literature may lack valid IVs for agglomeration, which
could hinder the identification of the agglomeration-productivity relationship. To overcome this
limitation, we recognise a novel external IV for agglomeration that is derived from traffic casualty
records. In particular, we consider the severity of traffic accidents among active mode and mo-
torcycle users during peak hours in a given location and time period as a relevant and exogenous
instrument for agglomeration in that location and time.
We apply the proposed approach to a sample of firms in England, divided into six key industrial
sectors: Manufacturing; Construction; Wholesale and Distribution; Transport; Information and
Communication Technology; and Finance. To measure the TFP of these firms, we make use of
an exhaustive panel dataset recorded by the Department of Trade and Industry. The data relate
to annualised accounting information provided by all companies registered in the UK. For the
purpose of this study, we consider the data between the years 2015 and 2019. Relevant measures
of agglomeration for this period are formed using employment records maintained by the Office for
National Statistics.

Contributions

The major contributions of this study can be summarised as follows:

1. We derive a novel external instrument from traffic accident data to identify the relationship
between agglomeration and firm productivity.

2. Our study delivers a novel comprehension of the non-linearities in agglomeration elasticities
across key industry sectors in England. For instance, we find the finance sector to be asso-
ciated with agglomeration diseconomies at lower levels of agglomeration and agglomeration
economies at higher levels of agglomeration. This result indicates the presence of a critical
economic mass beyond which productivity benefits set in for firms in this industry sector.
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Interestingly, across all sectors, we note that the agglomeration elasticities take more ex-
treme values than those from a linear model. For instance, while the linear model suggests
agglomeration economies of magnitude 0.144 for firms in the finance industry, our non-linear
model finds the elasticity estimates to go up to a level of 0.710.

3. Quantification of non-linearities in agglomeration economies facilitates a novel understanding
of the spatial distribution of the productivity benefits of agglomeration across England.
Such a mapping could be instrumental in identifying the potential gainers and losers of
productivity benefits arising from a transport improvement.

The rest of this paper is structured as follows. Section 2 describes the data and the methodology
used to estimate the agglomeration elasticities. Section 3 presents the results from the empirical
study. Conclusions are drawn in the final section.

2 Model and Data

This section is divided into four subsections. The first subsection elaborates on the measure of
agglomeration used in this study. The second subsection discusses the adopted two-step approach
to estimate the relationship between agglomeration and productivity. The third subsection briefly
describes the Bayesian NPIV method in the context of this study. The final subsection discusses
the data used in this analysis.

Measure of Agglomeration

A crucial prerequisite to understanding the WEIs that arise from agglomeration is to develop a
suitable measure of agglomeration for each location or geographical zone. In line with the current
CBA practice in the UK, we represent agglomeration using ATEM, or in other words, the Mean
Effective Density (MED). The MED ρj for zone, j, j = (1, . . . , n), is calculated as follows:

ρj =
1

n

n∑
j=1

mjf(dij)

where mj represents a measure of economic activity in each zone j and f(.) denotes the deterrence
function, which is a decreasing function of the cost of travelling from origin j to destination k.
The measure is designed to capture the effects of the geographic centrality of the zones, their
size distribution, and the spatial distribution of economic mass (Graham & Gibbons, 2019). We
consider the zonal employment level Ejt as the measure of the economic activity of zone j and year
t and the inverse Euclidean distance between the centroids of each zone dαjk for the construction
of the deterrence function, where α is the distance decay parameter, generally assumed to take a
value of 1.0. The resulting MED for zone j in year t is thus:

ρjt =
1

n

n∑
k=1

Ekt

dαjk
. (1)

Agglomeration and Productivity

As mentioned in the Introduction, to quantify the impact of urban agglomeration on productivity,
we adopt a two-step approach. The first step involves estimating the TFP of a firm by constructing
its production function. The second step comprises regressing the estimated TFP values on the
chosen measure of agglomeration (that is, MED) to derive the agglomeration elasticities δρ, given
by

δρ =
∂ logω

∂ log ρ
(2)

We emphasise that we choose TFP over labour productivity measures such as wage rate as the
latter has the following disadvantages in the context of appraising WEIs. First, they can be de-
termined by transport improvements via routes other than productivity (for instance, via shifts in
labour supply). Second, while TFP is exclusively determined by local technology, output prices
and average labour skills; wages are additionally influenced by the relative prices of other factors
such as land and housing prices. Such dependability can introduce severe confounding biases in

4



the estimation of agglomeration elasticities (Combes & Gobillon, 2015). Third, wage-based mea-
sures carry the assumption that the wage equals the value of the marginal product in competitive
equilibrium. However, the equality assumption seldom holds in practice as wages are typically
proportional to labour productivity (Combes & Gobillon, 2015). Lastly, wage-based measures only
provide a partial representation of productivity as they are limited to the impacts on the labour
input alone. Conversely, TFP provides a more comprehensive measurement of productivity with
respect to all inputs, which in the agglomeration context is more critical as agglomeration may
affect technology in several ways (Maré & Graham, 2009).

Step 1: Estimating total factor productivity

Consistent with the literature, we assume that the production of outputs Y s
it by a firm i in industry

sector s in year t to follow a Cobb Douglas production function structure with inputs; capital Ks
it,

labour Ls
it and materials Ms

it; as covariates:

log Y s
it = βs

k logK
s
it + βs

l logL
s
it + βs

m logMs
it + ωs

it + γst + esit (3)

where βs
k, β

s
l and βs

m are constants representing the elasticities of output with respect to the asso-
ciated factor of production. ωs

it is the unobserved efficiency or productivity of the firm, commonly
referred to as its Total Factor Productivity (TFP). TFP represents the efficiency level that re-
mains unobserved by the analyst, but is known to (or predicted by) the firm. γst are year dummies
that capture the year-specific effects on productivity and inflation. esit is a normally distributed
idiosyncratic error term, or in other words, all random shocks to the outputs. From equation 3,
the firm’s TFP ωs

it can be estimated as follows:

ω̂s
it = log Y s

it − β̂s
k logK

s
it − β̂s

l logL
s
it − β̂s

m logMs
it − γ̂st . (4)

Note that TFP affects the firm’s choice of input factors and market exit decisions, thus rendering the
variable factors of production, labour, and materials, endogenous in the model (De Loecker, 2007).
Identification of the model parameters and estimation of TFP thus requires careful consideration
of the potential confounding biases caused by the endogenous outputs. Following from the review
of the literature on TFP estimation by Van Beveren (2012), we make use of a panel control
function (CF) approach proposed by Ackerberg et al. (2006), which is an extension to Levinsohn
& Petrin (2003). Ackerberg et al. (2006)’s CF approach uses a function with materials and capital
as arguments to proxy for the endogenous unobserved productivity. This function is introduced
into the production function (equation 3) as an additional model component to obtain consistent
estimates of the model parameters.

Step 2: Estimating the effect of agglomeration on productivity

To estimate the causal impact of agglomeration on productivity, we consider the estimated TFP
ω̂s
it to be a function of the agglomeration measure ρsit indicating the MED of the zone j where the

firm i is located.
ω̂s
it = Ss(ρsit) + ηsit + ξsit. (5)

where ηsit consists of the unobserved characteristics of firm-level productivity. ξsit represents an id-
iosyncratic error term capturing all random shocks to the dependent variable. The exact structural
form of how ρsit enters the equation is unknown, so we adopt a non-parametric specification Ss(.)
in which the shape of the relationship is delivered from the data and regression splines. Note that
the percentage change in the estimated Ss(.) with respect to the percentage change in the model
covariate at any level of the covariate ρs gives the corresponding value of agglomeration elasticity
δρ,s.
We expect ηsit to be correlated with ρsit. This correlation follows from the presence of omitted
variables such as specific characteristics of local input and output markets, and functional or occu-
pational differences caused by spatial self-selection by firms (see Section 1 for a detailed discussion).
Further, the relationship between ρsit and productivity ω̂s

it may be simultaneously determined as
higher productivity locations may attract a greater level of private investment over time leading to
larger economic mass, which has a feedback effect on productivity. These estimation issues need to
be carefully addressed to ensure that the agglomeration elasticity estimates are, as far as possible,
causal rather than being simply associational. Therefore, we adopt a non-parametric instrumental
variables (NPIV) regression, which not only enables non-parametric specification of Ss(.) but also
addresses potential endogeneity biases.
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Bayesian Nonparametric Instrumental Variable Approach

IV-based estimators such as two-staged least square (2SLS) are widely adopted in applied econo-
metrics to estimate parametric models that contain endogenous covariates. However, finite-dimensional
parametric models (such as log-log models) for the relationship between agglomeration and pro-
ductivity, are based on assumptions that are rarely justified by economic theories. The resulting
model misspecification may lead to erroneous estimates of agglomeration elasticities. On the other
hand, non-parametric methods have the potential to capture the salient features in a data-driven
manner without making a priori assumptions on the functional form of the relationship (Horowitz,
2011). Therefore, a fairly growing strand in the econometrics literature proposes different ap-
proaches for NPIV regression, but such methods have not been considered in the estimation of
the agglomeration-productivity relationship. Extensive reviews can be found in Newey & Powell
(2003) and Horowitz (2011).
Classical (frequentist) NPIV regression approaches are popular in theoretical econometrics (Newey
& Powell, 2003; Horowitz, 2011; Newey, 2013; Chetverikov & Wilhelm, 2017), but they are chal-
lenging to apply in practice due to two main reasons. First, tuning parameters to monitor the
flexibility of S(.) are often required to be specified by the analyst. Second, standard errors are
generally computed using bootstrap, making these methods computationally prohibitive for large
datasets. Therefore, we adopt a scalable Bayesian NPIV approach, proposed by Wiesenfarth et
al. (2014), that can produce a consistent estimate of non-parametric S(.), even if the analyst does
not observe ηsit. This Bayesian method addresses both challenges of the frequentist estimation be-
cause it learns tuning parameters related to S(.) during estimation and uncertainty in parameters
estimates is inherently captured by credible intervals (analogous to classical confidence intervals).
In addition, it also enables nonparametric specification of the unobserved error component ξsit,
precluding the need for making additional assumptions.
We discuss the adopted Bayesian NPIV approach (Wiesenfarth et al., 2014) for a model with a
single endogenous covariate, that is,

ω̂ = S(ρ) + ϵ2, ρ = h(z) + ϵ1 (6)

Note that η are encapsulated in ϵ2, and z is an instrument for the endogenous regressor ρ. The
relationship between ρ and z is represented by an unknown functional form h(.) and ϵ2 is an
idiosyncratic random error term. For notational simplicity, we drop the firm-year subscripts and
sector superscripts. Bayesian NPIV is a control function approach, and assumes the following
standard identification restrictions:

E(ϵ1|z) = 0 and E(ϵ2|ϵ1, z) = E(ϵ2|ϵ1), (7)

which yields

E(ω̂|ρ, z) = S(ρ) + E(ϵ2|ϵ1, z) = S(ρ) + E(ϵ2|ϵ1)
= S(ρ) + ν(ϵ1),

(8)

where ν(ϵ1) is a function of the unobserved error term ϵ1. This function is known as the control
function.
Conditional on the availability of a valid instrument (see Section 2), Bayesian NPIV can correct
for confounding bias. To account for the nonlinear effects of continuous covariates, both S(.) and
h(.) (refer to equation 6) are specified in terms of additive predictors comprising penalised splines.
Each of the functions S() and h(.) is approximated by a linear combination of suitable B-spline
basis functions. The penalised spline approach uses a large enough number of equidistant knots
in combination with a penalty to avoid over-fitting. Moreover, the joint distribution of ϵ1 and
ϵ2 is specified using nonparametric Gaussian Dirichlet process mixture (DPM), which ensures the
robustness of the model relative to extreme observations. Efficient Markov chain Monte Carlo
(MCMC) simulation technique is employed for fully Bayesian inference. The resulting posterior
samples allow us to construct simultaneous credible bands for the non-parametric effects (i.e., S(.)
and h(.)). Thereby, the possibility of non-normal error distribution is considered and the complete
variability is represented by Bayesian NPIV. We now succinctly discuss specifications of the kernel
error distribution in Bayesian NPIV.
To allow for a flexible distribution of error terms, the model considers a Gaussian DPM with
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infinite mixture components, c, in the following hierarchy:

(ϵ1i, ϵ2i) ∼
∞∑
c=1

πcN(µc,Σc)

(µc,Σc) ∼ G0 = N(µ|µ0, τ
−1
Σ Σ) IW(Σ|sΣ, SΣ)

πc = υc

1−
c−1∑
j=1

(1− πj)

 = υc

c−1∏
j=1

(1− υj),

c = 1, 2, ...

υc ∼ Be(1, ψ).

(9)

where µc, Σc and πc denote the component-specific means, variances and mixing proportions.
The mixture components are assumed to be independent and identically distributed with the base
distribution G0 of the Dirichlet process (DP), where G0 is given by a normal-inverse-Wishart
distribution. The mixture weights are generated in a stick-breaking manner based on a Beta
distribution with concentration parameter ψ > 0 of the DP. The concentration parameter ψ
determines the strength of belief in the base distribution G0.

Estimation Practicalities

We exclude discussion of the Gibbs sampler of Bayesian NPIV for brevity and focus mainly on
implementation details and posterior analysis. Interested readers can refer to Wiesenfarth et al.
(2014) for the derivation of conditional posterior updates.
We use the BayesIV and DPpackage in R to estimate the Bayesian NPIV. We consider 50,000
posterior draws in the estimation, exclude the first 15,000 burn-in draws and keep every 10th draw
from the remaining draws for the posterior analysis. The point-wise posterior mean is computed
by taking the average of 3,500 posterior draws. Bayesian simultaneous credible bands are obtained
using quantiles of the posterior draws. A simultaneous credible band is defined as the region Iθ
such that PS|data(S ∈ Iθ) = 1 − θ, that is, the posterior probability that the entire true function
S(.) is inside the region given the data equals to 1− θ. The Bayesian simultaneous credible bands
are constructed using the point-wise credible intervals derived from the θ/2 and 1− θ/2 quantiles
of the posterior samples of S(.) from the MCMC output such that (1 − θ)100% of the sampled
curves are contained in the credible band. A similar process is used to obtain the credible intervals
of h(.).

Instrumental Variable

To satisfy the identification restrictions presented in equation 7, we need an instrumental variable
(IV) z. The IV should be (i) exogenous, that is, uncorrelated with ϵ2; (ii) relevant, that is,
correlated with the endogenous covariate ρ, conditional on other covariates in the model.
We derive valid external instruments from traffic casualty data. We consider the ratio of serious
and severe traffic casualties to total casualties among active mode (pedestrians and cyclists) and
motorcycle users during morning and afternoon peak hours (that is, 6:30-10:30 hours and 16:00-
20:00 hours) in zone j in year t as an IV zjt for the MED (agglomeration) rhojt in zone j and
year t. We argue that as the MED of a city increases, peak-hour road network congestion in the
city may also increase, and consequently, the average speed of travel in the network may decrease.
As a result of slower vehicular speeds, the proportion of serious and severe traffic casualties to
total casualties among active mode and motorcycle users during peak hours may decrease. Our
argument follows from the traffic safety literature that suggests that a decrease in congestion may
exacerbate the severity of peak-hour traffic casualties amongst active mode users and cyclists (Li
et al., 2012; Noland et al., 2008). We thus expect a strong negative correlation between the chosen
IV zjt and the endogenous covariate ρjt. Nevertheless, we argue that the chosen IV is exogenous
because we do not expect the IV to scale with city size (population) and affect labour supply, and
therefore, not directly determine the response variable (that is, TFP) of any firm i located in zone
j and year t. In other words, we do not anticipate the chosen IV zjt to feature in a model for the
response variable ωjt.

Data

To gauge the presence of non-linearities in agglomeration elasticities, we consider a sample of
firms in England as our case study. We consider the period between 2015 to 2019 as the study

7



period. For this period, we investigate the causal impact of MED and productivity in six most
relevant industry sectors: Manufacturing (MAN), Construction (CON), Wholesale and Distribu-
tion (WAD), Transport (TRA), Information and Communication Technology (ICT), and Finance
(FIN). As geographical regions or zones, we consider the Middle Layer 2011 Census Super Output
Areas (MSOA11) in England, which includes a total of 6,791 units with a mean population of 8185
people.
The data sources for the key variables of interest are detailed in the next two subsections.

Mean Effective Density

We obtain the data on annual employment levels in each MSOA11 unit from the Business and
Employment Register available at Nomis1 (official census and labour market statistics), a public
repository maintained by the Office for National Statistics (ONS). To calculate the distance between
the MSOA11 units, we extract the location information on MSOA11 units available in the ONS
Postcode Directory2, that is a detailed location database of all UK postcodes.
Traffic casualty data for the construction of IVs is obtained from the publicly available road safety
data, maintained by the Department for Transport3.

Total Factor Productivity

The Department of Trade and Industry records all the accounting information provided by all
companies registered in the UK. This information is available via the commercial software package
Financial Analysis Made Easy (FAME)4, co-hosted by Vistra and Bureau Van Dijk. To estimate
the production function in equation 3, we extract the annual data on the following variables for
each registered firm:

1. Turnover (output): The net income of the company.

2. Fixed Assets (capital): The depreciated value of buildings, plants and equipment.

3. Current Assets (materials): The current stocks and debt owned by the company.

4. Total Employees (labour): The total number of employees in the company.

To limit potential endogeneity biases emerging from spatial self-selection by firms (Graham &
Gibbons, 2019), we remove firms with more than one trading address and those that have a
registered office address different from the main trading address. We also filter out firms with
international subsidiaries. Additionally, we only focus on small and medium-sized firms with
a number of employees between 10 and 249 to reduce endogeneity from spatial self-selection of
labour (Graham, 2009). Finally, we class the filtered data into the six industry sectors using their
two-digits Standard Industrial Classification 2007 (SIC07). The resulting number of observations
for each industry sector is reported in Table 1.

Table 1: Classification of firms into industry sectors.

Industry Sector SIC07 Firms Observations
MAN 10-33 842 4210
CON 41-43 368 1840
WAD 45-47 688 3440
TRA 49-56 246 1230
ICT 58-63 357 1785
FIN 64-74 1452 7260

3 Results and Discussion

This section is divided into four subsections. In the first subsection, we describe our MED estimates
for England. In the second subsection, we briefly visit the estimated parameters of the production
function for various industry sectors and the estimated TFP values. In the penultimate subsection,

1Availble at https://www.nomisweb.co.uk/.
2Available at https://geoportal.statistics.gov.uk/.
3Available at https://www.data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/

road-safety-data.
4Available at https://fame.bvdinfo.com/version-202274/fame/1/Companies/Search.
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we discuss the agglomeration elasticities obtained from the Bayesian NPIV estimation. Using these
estimates, we also describe the spatial distribution of agglomeration benefits in England. In the
final subsection, we present the estimated kernel error distributions to illustrate the importance of
the non-parametric DPM specification. The relevance of our instruments is also demonstrated in
this subsection.

Estimated Mean Effective Densities

Table 2 presents the summary statistics for the estimated MED values for each MSOA11 in Eng-
land. The table indicates that the distribution of MED values in England is positively skewed.
While some zones have high levels of MED or agglomeration, most zones have low values. Thus,
only a few zones in England show high values of agglomeration. This observation is further sup-
ported by Figure 1, which maps MED values constructed using total employment in 2019 as mass.
This figure illustrates that whereas regions in and around cities like London, Manchester, and Birm-
ingham correspond to higher levels of agglomeration, they only constitute a small geographical area
in England.

Table 2: Summary of estimated MED for England.

Statistic 2015 2016 2017 2018 2019
Mean 3934.64 4008.44 4071.00 4091.90 4154.83
Median 3375.18 3435.73 3480.50 3502.10 3550.63
Std. dev. 2272.62 2328.46 2374.13 2397.93 2450.14
Max 19706.27 20297.82 20745.36 21064.78 21694.94
Min 663.97 675.28 684.24 687.70 697.25
Skewness 2.43 2.44 2.44 2.48 2.50

Figure 1: Map of MED values for England with total employment in 2019 as mass.

We complement the above-described statistics with Figure 2, which provides a histogram of the
MED levels experienced by firms in each industry sector. We note from this figure that the
majority of firms in the CON, MAN, TRA, and WAD sectors tend to locate in areas with MED
values less than 6000. From a strategic point of view, firms in these sectors require large factories
or warehouses. They may, therefore, prefer to locate these facilities in the periphery of cities where
land prices, rents, and other costs are lower. Nonetheless, additional local maxima in their density
plots at higher levels of MED also reveals the presence of a small number of firms in city centers,
which may choose to locate their offices in central business district (CBD) for an easy commitment
and location status. Conversely, firms in the ICT and FIN sectors, primarily tend to spread across
the CBD, to avail the above-mentioned advantages. In the rest of this section, we quantify how
these location choices translate into productivity benefits for firms.
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Figure 2: Histogram of agglomeration levels experienced by firms in 2019.

Estimated Total Factor Productivity

The parameter estimates of the production function, given by equation 3, for the six industry
sectors are summarised in Table 3. We note that the FIN, ICT, MAN and WAD sectors are
associated with returns to scale (RTS) values less than one, that is, decreasing RTS indicating that
their output increases by less than the proportional change in all inputs. On the contrary, the CON
and TRA sectors are associated with increasing RTS, implying a more than proportional increase
in outputs with respect to inputs. These estimates summarise the technological advantages or
disadvantages to firms in each industry.

Table 3: Parameter Estimates of the Production Function.

Sector No. of firms βl βk βm RTS
CON 1841 0.695 0.467 -0.040 1.123

(0.010) (0.014) (0.012) (0.021)
FIN 7261 0.481 0.477 0.032 0.990

(0.006) (0.008) (0.010) (0.014)
ICT 1786 0.323 0.630 0.006 0.959

(0.008) (0.008) (0.020) (0.023)
MAN 4211 0.332 0.600 0.020 0.953

(0.004) (0.012) (0.012) (0.014)
TRA 1231 0.439 0.539 0.026 1.005

(0.012) (0.050) (0.016) (0.054)
WAD 3441 0.304 0.692 -0.011 0.985

(0.002) (0.002) (0.002) (0.003)

Table 4 presents the summary statistics for the estimated TFP values for each industry sector.
The mean and median statistics suggest that firms in the WAD sector are associated with the
highest level of unobserved productivity, closely followed by firms in the MAN and ICT sectors.
The sectors FIN, TRA, and CON show lower levels of unobserved productivity.

Table 4: Summary of estimated TFP values.

Statistic CON FIN ICT MAN TRA WAD
Min -2.11 -1.29 2.35 -2.09 1.32 5.37
Median 6.93 7.41 8.02 8.07 7.26 8.80
Mean 6.94 7.45 8.04 8.10 7.19 8.90
Max 10.38 14.19 13.18 12.89 12.48 13.48
Std. dev. 0.90 1.09 1.084 0.74 1.11 0.92

Results from Bayesian NPIV Estimation

Figure 3 presents the estimates of S(.) (see equation 6, second-stage) for the six industry sec-
tors. The plots include the mean estimates and the 95 percent credible bands (shown by the
dotted line). The density of tick marks along the X-axis represents the number of observations
in the corresponding domain of agglomeration. The figure indicates the presence of significant
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non-linearities in the agglomeration-productivity relationship. This observation validates our hy-
pothesis that presuming a log-log functional form may yield biased estimates of this relationship
and associated agglomeration elasticities.
In Figure 4, we plot the agglomeration elasticities obtained at different levels of agglomeration
and their corresponding credible bands. Note that these estimates are obtained using the 3,500
posterior draws (refer to Section 2) that are available at multiple points along the support of the
model covariate, that is, MED. To obtain the elasticity at any point ρ, we identify a small interval
[ρ1, ρ2] surrounding ρ, where ρ1 = ρ−∆ρ and ρ2 = ρ+∆ρ. We extract the 3,500 posterior draws
at the two points ρ1 and ρ2 and calculate the change in elasticity for each draw. The mean of
the resulting 3,500 samples gives the reported elasticity estimate at ρ and the quantiles 0.025 and
0.975 give the corresponding lower and upper limits of the 95-percent credible bands.
For the CON sector, we note that agglomeration elasticities remain positive for MED levels be-
low 8000, with values increasing from 0.15 to 0.72 and back to 0.48, and become statistically
insignificant beyond that. For the MAN sector, we observe that the agglomeration elasticities are
statistically significant between MED levels of 8000 to 1000 and 13000 to 18000, and statistically
insignificant otherwise. The estimated elasticities increase from 0.19 to 0.78 until a MED level of
16000 and drop back to 0.17 before becoming statistically insignificant. Our estimates for the WAD
sector suggest that the agglomeration elasticities fall from a value of 0.16 at MED level 2000 to a
value of -0.20 at MED level 8000, while remaining positive (and statistically significant) between
MED levels of 2000 to 5000, become negative (and statistically significant) between MED levels of
7000 to 10000. The agglomeration elasticities become positive (and statistically significant) again
at a MED level of 11000, followed by a steep increase to the value of 0.75 at a MED level of
13000. The agglomeration elasticities, thereafter, fall to a value of 0.22 at a MED level of 15000,
beyond which they become statistically insignificant. The estimated agglomeration elasticities for
the TRA sector remain positive and statistically significant between MED levels of 6000 to 12000,
and range between 0 to 0.50, the maximum being achieved at a MED level of 9000. Higher levels
of agglomeration of the order of 18000 to 20000 MED are associated with negative (and statis-
tically significant) values of agglomeration elasticities ranging between -0.75 to -0.50. Firms in
the ICT sector are found to be associated with positive agglomeration elasticities in the interval
[0.12,0.22] at agglomeration levels between 7000 to 15000 MED, the maximum being observed at
a MED level of 13000. The agglomeration elasticities remain statistically insignificant otherwise.
Finally, for the FIN sector, we first observe negative and statistically significant agglomeration
elasticities between MED levels of 3000 to 5000. The estimated elasticities are of the order of -0.1.
Nonetheless, the elasticities remain positive (and statistically significant) at MED levels between
7000 to 9000, 11000 to 1500, and also beyond MED levels of 18000. The positive values range in
the interval [0.18,0.60], with the maximum occurring at a level of 13000 MED. Overall, Figure 4
indicates that barring the CON sector, the productivity benefits in all sectors comment into effect
beyond a critical mass of agglomeration. This critical mass varies across industries.
Table 5 summarises the estimated agglomeration elasticities. The final column in the table reports
the estimates from a one-step procedure where MED enters as a covariate in the production function
(equation 3). The values in the final column are fairly consistent with the literature in which
elasticity estimates have been derived by assuming the productivity-agglomeration relationship to
be log-log (see Graham & Gibbons (2019) for a summary of 47 international empirical studies on the
effects of agglomeration on productivity). Our results suggest that our non-linear agglomeration
elasticity estimates take more extreme values compared to their log-log counterparts.
Next, we map the estimated agglomeration elasticities to the different zones (that is, MSOA11
units) in England using their MED values. This mapping allows us to understand the spatial
distribution of the agglomeration impacts in England. Figure 5 shows these distributions for each
industry sector. Note that we adopt the same colour key for each map in Figure 5 to allow
comparison of agglomeration impacts across industries.
From Figure 5a, we note that the highest levels of agglomeration benefits (elasticities ranging in the
interval [0.4,0.9]) in the CON sector can be observed in the peripheral regions of the Greater London
Area (GLA) (for instance, Slough, Watford, and Loughton) and within cities of Manchester and
Birmingham. Interestingly, the areas within the GLA are associated with statistically insignificant
productivity effects of agglomeration. All other MSOA11 units are associated with agglomeration
elasticities ranging between 0.1 and 0.3. Figure 5b suggests that the significant agglomeration
benefits in the MAN sector remain confined within the GLA, while remaining the highest in the
regions immediately surrounding the CBD of London (which includes the City of London, City
of Westminster and Kensington and Chelsea, among others). Figure 5c indicates the firms in the
WAD sector avail the highest benefits of agglomeration on their productivity by locating in the
outskirts of the CBD of London. The impacts within the CBD of London and cities such as
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(a) Construction (b) Manufacturing
(c) Wholesale and Distribu-
tion

(d) Transport
(e) Information and Commu-
nication (f) Finance

Figure 3: Estimated relationships between agglomeration and firm productivity.

(a) Construction (b) Manufacturing
(c) Wholesale and Distribu-
tion

(d) Transport
(e) Information and Commu-
nication (f) Finance

Figure 4: Estimated agglomeration elasticities.
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Table 5: Summary of estimated agglomeration elasticities.

Sectors Mean Effective Density (MED) One-step
2000 4000 6000 8000 10000 12000 14000 16000 18000 estimate

CON 0.15 0.24 0.72 0.48 0 -0.1 -1.05 -0.17 0.32 0.045
(0.04) (0.07) (0.09) (0.09) (0.48) (0.69) (0.68) (0.68) (0.57) (0.009)

MAN -0.05 -0.03 0.03 0.19 0.45 0.56 0.73 0.78 0.17 -0.002
(0.02) (0.06) (0.15) (0.16) (0.21) (0.32) (0.22) (0.2) (0.3) (0.005)

WAD 0.16 0.08 -0.02 -0.2 -0.14 0.52 0.51 0.15 0.03 -0.067
(0.02) (0.04) (0.08) (0.1) (0.08) (0.08) (0.09) (0.1) (0.19) (0.002)

TRA -0.02 0.06 0.21 0.49 0.47 0.28 0.06 -0.3 -0.7 0.115
(0.02) (0.05) (0.17) (0.28) (0.23) (0.12) (0.15) (0.23) (0.3) (0.015)

ICT -0.03 -0.02 0.05 0.18 0.15 0.18 0.19 0.02 -0.03 0.072
(0.03) (0.04) (0.06) (0.07) (0.07) (0.08) (0.07) (0.13) (0.15) (0.009)

FIN -0.05 -0.1 0.04 0.17 0.05 0.5 0.4 0.03 0.3 0.144
(0.03) (0.03) (0.08) (0.08) (0.05) (0.15) (0.13) (0.13) (0.16) (0.003)

(a) Construction (b) Manufacturing
(c) Wholesale and Distribu-
tion

(d) Transport
(e) Information and Commu-
nication (f) Finance

Figure 5: Spatial distribution of the agglomeration impacts in England in 2019.

Birmingham and Manchester either remain negative or statistically insignificant. Other regions
show positive impacts of varying degrees as represented by the color key. Similar to the MAN
sector, firms in TRA and ICT sectors (Figures 5d and 5e) observe agglomeration benefits in zones
surrounding the CBD of London. From Figure 5f, we note that firms in the FIN sector derive the
highest agglomeration benefit by locating within the CBD of London. Additionally, while most
areas within the GLA observe positive productivity impacts of agglomeration, the peripheral areas
of the GLA, Birmingham, and Manchester are associated with diseconomies of agglomeration. The
effect in other areas remains statistically insignificant.
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4 Conclusions

Transport accounted for 5 to 8 percent of the total public expenditure on services in the UK
through the years 2017 to 20225. In a typical year, the United Kingdom spends about £45 billion
pounds on construction and maintenance of transport infrastructure. Understanding the economic
and social benefits arising from investments of this order is thus important for policymakers.
This paper contributes to the growing strand in the urban economic literature that focuses on
measuring the Wider economic impacts (WEIs) of transport investments arising via scale economies
of agglomeration.
We make two advances in this agenda. First, we develop a causal statistical framework to quan-
tify the non-linearities in the relationship between agglomeration (represented by Mean Effective
Density (MED)) and productivity (measured as Total Factor Productivity (TFP)). The estimated
relationships, for the first time, provide a quantification of how agglomeration elasticities vary over
different levels of agglomeration. Second, we determine a novel external instrument derived from
traffic casualty data to identify the agglomeration-productivity relationship. Our study suggests
the use of the severity of traffic casualties among active mode users and motorcyclists during peak
hours as a relevant and exogenous instrument for agglomeration.
Our investigation of agglomeration elasticities in six key industry sectors in England suggests that
agglomeration elasticities vary significantly vary over agglomeration levels. For the Construction
Sector, we observe positive agglomeration elasticities only at low and mid levels of agglomeration.
For the other five sectors which include, Manufacturing, Wholesale and Distribution, Transport,
Information and Communication Technology, and Finance, we note the presence of a critical mass of
agglomeration beyond which the positive benefits of agglomeration on productivity can be observed.
Below this critical level, the agglomeration elasticities either remain negative (but statistically
significant) or statistically insignificant at the 95-percent confidence level. Additionally, we note
that agglomeration elasticities in the Transport sector become negative at extremely high levels
of agglomeration, while very low levels of agglomeration show positive agglomeration elasticities
for the Wholesale and Distribution sector, but of lower magnitude. Interestingly, the estimated
agglomeration elasticities in this study take more extreme values than ones derived from a log-log
model of productivity and agglomeration as adopted in the literature. Our estimates thus have
crucial implications for the appraisal of transport investments.
Further, our exploration of the spatial distribution of the agglomeration impacts in England reveals
that the highest levels of agglomeration benefits in the Construction sector are observed in the
regions surrounding the Greater London Area (GLA) and within Manchester and Birmingham. For
the Manufacturing, Wholesale and Distribution, Transport and Information and Communication
Technology sectors, the largest productivity benefits of agglomeration are confined within the GLA,
particularly along the fringes of its central business district (CBD). For the Finance Sector, the
highest positive agglomeration elasticities are associated with the regions in the CBD of the GLA,
while the outskirts of the GLA, Manchester and Birmingham see diseconomies of agglomeration.
Our findings are unsurprising: these spatial patterns are consistent with the sector-wise preferences
for office locations by firms. Refining this investigation with more data, particularly from other
years or from other countries, is an important topic for further research and can provide an empirical
basis for targetting transport investments in a manner that can spread productivity benefits more
evenly.

Acronyms

2SLS two-staged least square

ATEM access to economic mass

CBA Cost Benefit Analysis

CBD central business district

CF control function

CON Construction

DP Dirichlet process

DPM Dirichlet process mixture
5https://www.gov.uk/government/statistics/public-expenditure-statistical-analyses-2022
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DUBs Direct user benefits

FAME Financial Analysis Made Easy

FIN Finance

GLA Greater London Area

ICT Information and Communication Technology

IV instrumental variable

IVs instrumental variables

MAN Manufacturing

MCMC Markov chain Monte Carlo

MED Mean Effective Density

MSOA11 Middle Layer 2011 Census Super Output Areas

NP non-parametric

NPIV non-parametric instrumental variables

ONS Office for National Statistics

RTS returns to scale

SIC07 Standard Industrial Classification 2007

TAG Transport Analysis Guidance

TFP Total Factor Productivity

TRA Transport

WAD Wholesale and Distribution

WEIs Wider economic impacts
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SHORT SUMMARY 

Electric bicycles (e-bikes) are one of the main solutions towards mitigating transport externalities, 
such as traffic congestion and emission, and have thus been promoted in many countries. Despite 
the advantages of e-bikes, users are prone to be involved in crashes, usually due to the high speed. 
Leveraging new technologies could help reduce such crashes; however, e-bike users' willingness 
to accept new technologies still needs to be investigated. Hence, this study explores e-bike users’ 
motivation to use smart e-bikes by adopting the extended Unified Theory of Acceptance and Use 
of Technology (UTAUT2). A cross-national survey was administered in five European countries-
Austria, Belgium, Germany, Greece and the Netherlands, differing in sizes and cycling culture. 
The survey yielded 1116 responses, and the structural equation model (SEM) results indicate that 
‘performance expectancy’, ‘hedonic motivation’ and ‘perceived safety’ are the strongest predic-
tors of users’ acceptance of new technologies on e-bikes to increase safety and comfort.  
 
Keywords: Cycling safety, E-bikes, UTAUT2, User acceptance, SEM 

1. INTRODUCTION 

The Covid-19 pandemic and the recent energy crisis have pushed a significant number of people 
to switch to more active transport modes such as cycling (Nikitas et al., 2021; Shimano, 2022). 
Despite the numerous benefits of cycling, there are also certain barriers such as low fitness levels, 
topographical difficulties, and established habits, preventing more people embrace cycling as 
their everyday transportation (Fishman & Cherry, 2016; Plazier, 2022). E-bikes can help over-
come some of these barriers in front of widespread adoption of cycling. Since with an e-bike 
people can travel faster and longer distances compared to conventional bicycles, several govern-
ments worldwide have lately been promoting e-bikes as one of the main measures to mitigate 
negative transport externalities such as congestion and emission.  

Many European countries subsidise the purchase of e-bikes (ECF, 2023) and as a result, there is 
an increase in the number of e-bikes being sold in Europe in recent years. In 2021, around five 
million new e-bikes were sold in Europe (Sutton, 2022), which is the highest numbers of bicycles 
sold in a decade (Statista, 2020). However, this increase in bicycles lead to major safety concerns 
in many countries which have inadequate cycling infrastructure. Furthermore, e-bikes potentially 
lead to more severe crashes as they are usually faster than regular bicycles and aging people can 
also use them more easily (Gadsby & Watkins, 2020; Panwinkler & Holz-Rau, 2021; J. P. 
Schepers et al., 2014). That is why countries like the Netherlands, with one of the best and well 
design bicycle network (P. Schepers et al., 2017), still experience many e-bike crashes (Statistics 
Netherlands (CBS), 2021). One of the ways to address this increasing safety concern is the 
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adoption of new technologies such as sensors on bicycles and Internet of Things (IoT) to prevent 
crashes and reduce severities. Such systems can be the future of a sustainable cycling environment 
as they could positively influence and increase cycling safety (Boronat et al., 2021; Oliveira et 
al., 2021). Kapousizis et al. (2022) showed that in the last decade, there is a plethora of published 
studies about new technologies that can increase cycling safety, and proposed a classification for 
the ‘bicycle smartness levels’ (BSLs) consisting of 6 levels. This study focused on technologies 
at third level to investigate user acceptance of specific functionalities in their e-bike, considering 
that the Level 3 involves the most feasible and readily available technology given the highest 
Technology Readiness. The level 3 consists of surrounding detection, collision avoidance, speed 
warnings and post-accident notifications. 

While new bicycle technologies are shown to positively affect cyclists’ safety and comfort, less 
is known about users’ acceptance and intention to use these features. There is still scarce literature 
investigating users’ intention to adopt new bicycle technologies to increase safety and comfort. 
To cover this gap, this study aims to investigate users’ intention to accept new technologies on e-
bikes by collecting data and comparing factors across different countries.  

2. METHODOLOGY 

In this study, the framework of the Unified Theory of Acceptance and Use of Technology 2 
(UTAUT2) was adopted (Venkatesh et al., 2012). We used the UTAUT2 as a baseline and ad-
justed it with most appropriate constructs that fit this study. The conceptual model with the con-
structs is presented in Figure 1. Adjustments in the UTAUT2 framework are common, especially 
in transport research such as automated vehicles, since this technology is not available yet and 
researchers are investigating this a priori (Kapser & Abdelrahman, 2020; Nordhoff et al., 2020). 
In an attempt to explore specific factors, we adjusted the model to fit this study’s aim. 

This is the first study that adopted the UTAUT2 framework and tailored it accordingly to examine 
users’ intention to use new bicycle technologies that affect cycling safety and comfort. To develop 
the hypotheses, we have included psychological constructs from other domains, such as advanced 
driving assistance systems and automated vehicles.  

Figure 1: Conceptual model (Extended UTAUT2) 
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Following the UTAUT2, it is hypothesised that users’ intentions to adopt new technologies in e-
bikes are related to performance and effort expectancy, social influences and hedonic motivation. 
Within this framework, an extended version of the framework is considered by including ‘social 
norm’ and ‘perceived safety’ as factors that could affect people’s intention to accept new tech-
nologies. We excluded ‘facilitating conditions’, ‘price value’, and ‘habit’ of the UTAUT2 model 
since these technologies are not commercially available yet. Notably, according to the UTAUT2, 
the antecedents are independent and directly linked to the behavioural intention of technology 
adoption in e-bike. The elements in the conceptual framework are as follows: 

Performance expectancy relates to individual beliefs concerning a system (Venkatesh et al., 
2003). In the context of this study, performance expectancy is defined as the degree of usefulness 
an individual can get using new technologies on e-bikes. We assume that the performance expec-
tancy construct will be a strong predictor. 

Effort expectancy justifies the ease of use of a specific system (Venkatesh et al., 2003) and is 
also associated with the degree of consumers’ ease of use (Venkatesh et al., 2012). In the context 
of this study, we believe that effort expectancy will positively influence behavioural intention. 

Social influence is defined as an individual’s perception of what others believe they should use 
a specific technology and to what extent others’ opinion influences an individual to accept and 
use a specific technology (Venkatesh et al., 2003). 

Hedonic motivation proves an individual's enjoyment using technology (Venkatesh et al., 2012). 
We believe hedonic motivation can be derived from the new technologies on e-bikes and fulfil 
individual satisfaction. 

Social norm refers to individual’s behaviour modification based on their belief of what others 
expect from them.  

Perceived safety is frequently used in several studies predicting the influence of an individual to 
use technology due to their belief that it will improve their safety (Kapser & Abdelrahman, 2020; 
Nordhoff et al., 2020). Hence, we construct the following hypothesis.  

The following research hypotheses are tested from the conceptual model (Fig. 1):  

H1: Performance expectancy positively influences behavioural intention to use new technologies 
on e-bikes. 

H2: Effort expectancy positively influences behavioural intention to use new technologies on e-
bikes. 

H3: Social influence positively influences behavioural intention to use new technologies on e-
bikes. 

H4: Hedonic motivation positively influences behavioural intention to use new technologies on 
e-bikes. 

H5: Social status positively influences behavioural intention to use new technologies on e-bikes. 

H6: Perceived safety positively influences behavioural intention to use new technologies on e-
bikes. 
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Survey 

To investigate the aforementioned hypotheses, we conducted an online survey -translated into 
five languages (English, German, Greek, Dutch and French), which was distributed in five Euro-
pean countries, Austria, Belgium, Germany, Greece and the Netherlands, between November 
2022 and January 2023. All constructs are measured by 3-5 standardised items assessed on 5-
point Likert scales. The focus group of the survey comprised people who already use an e-bike or 
are willing to buy one. This group was chosen to collect more realistic results than asking people 
not interested in cycling. Countries were not selected randomly; on the contrary, they were chosen 
due to the varying quality of cycling infrastructure and cycling culture to understand users’ per-
ceived safety in different scenarios. In total, 1116 responses were collected.  

Table 1: Sample 
Variable Austria Belgium Germany Greece Netherlands 

Number of respondents 75 199 115 199 528 
Gender      
Male 53 106 79 142 322 
Female 18 90 35 56 195 
Other 4 3 1 1 11 
Age      
18-29 3 10 11 26 24 
30-39 16 24 15 54 20 
40-49 10 29 17 61 25 
50-59 23 37 37 39 80 
60-69 18 64 29 19 190 
>70 5 35 6 0 189 

We performed a Structural Equation Model (SEM) to analyse the behavioural framework. The 
SEM in this study contains three sets of equations: measurement equations, structural equations 
linking the latent constructs to observed characteristics of the participants, and structural equa-
tions relating the latent constructs to the dependent variables (user intention of new technologies 
on e-bikes). The model was estimated using the SPSS-AMOS. 

3. RESULTS AND DISCUSSION 

To investigate users’ intention to use new technologies on e-bikes, a SEM model was analysed. 
Maximum likelihood method was used and the model was assessed through the five most com-
monly used goodness-of-fit indexes: Chi-square per degree of freedom (CMIN/DF: 1.0 < χ2 < 3.0) 
(CMIN/DF : 2.80), Comparative Fit Index (CFI: >0.095)(CFI: 0.981), Tucker-Lewis index (TLI: 
>0.95)(TLI: 0.976), Root Mean Square Error of Approximation (RMSEA:< 0.07) (RMSEA : 
0.04) and Standardised Root Mean Square Residual (SRMSR < 0.05) (SRMSR : 0.0266) (Hair et 
al., 2014; Schumacker & Lomax, 2010). In this study, standardised factor loadings are between 
0.638 to 0.949, above the threshold of 0.5 (Hair et al., 2014, p. 618). The model was assessed for 
convergent and discriminant validity; Average Variance Extracted (AVE) was above the cut-off 
criterion of 0.50 (Fornell & Larcker, 1981; Hair et al., 2014), which illustrates the convergent 
validity. Composite reliability (CR) was also above the acceptance threshold of 0.7 (Hair et al., 
2014), supporting internal consistency.  
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A significant positive relationship was found between performance expectancy and behavioural 
intention, hedonic motivation and behavioural intention, perceived safety and behavioural inten-
tion, social influence and behavioural intention, and effort expectancy and behavioural intention. 
Thus, this shows that performance expectancy, hedonic motivation and perceived safety are the 
stronger constructs and are important factors in user intention of the new technologies on e-bikes. 
Social influence is also an important and positive aspect in user intention, while effort expectancy 
has a mild positive significant role. In contrast, there is no significant relationship between social 
status and behavioural intention. The hypotheses and their structural results of this study are pre-
sented in Table 2.  

Table 2: Results of structural relationships 
Hypothesis β Significance Results 
H1 0.398 < 0.001 supported 
H2 0.039 0.017 supported 
H3 0.068 < 0.001 supported 
H4 0.326 < 0.001 supported 
H5 0.027 0.220 rejected 
H6 0.134 < 0.001 supported 

 

The variability of behavioural intention to use new technologies on e-bikes is explained by 84% 
of the proposed model. Investigating cross-country differences is evidence that performance ex-
pectancy has a strong and positive impact on user intention across all countries, while hedonic 
motivation has no significant impact in the Austrian sample. Additionally, perceived safety posi-
tively influences user intention in Belgium, Germany, and Netherlands. Social influence has a 
stronger relationship and is significant to the Dutch and Austrian responders. Finally, there is no 
significance on social status construct; this tendency is similar in all five countries. These results 
are presented in Table 3. 

This model was also tested with a series of controls against user intention. In this attempt, we 
controlled our model to gender, age, lack of infrastructure, and perceived cycling safety (see Table 
3). Note that age was tested as continuous while the rest variables were dummy coded. Results 
show that user intention significantly increases with increasing age in all counties except Belgium. 
Gender significantly impacts user intention in Belgium, while the rest variables are not statisti-
cally significant across all countries.  
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Table 3: Results of cross-country analysis 
Variables Austria Belgium Germany Greece Netherlands 
Dependent variable: Inten-
tion  

     

Performance expectancy 0.455*** 441*** 0.461*** 0.444*** 0.369*** 
Effort expectancy 0.114 0.026 0.043 0.047 0.050* 
Social influence 0.160** 0.004 -0.085 0.069 0.120*** 
Hedonic motivation 0.113 0.273** 0.284** 0.276*** 0.359*** 
Social status 0.068 0.032 0.099 0.077 -0.016 
Perceived safety 0.115 0.190** 0.186** 0.077 0.129*** 
Age 0.045* 0.027 0.059** 0.069** 0.066*** 
Gender (male) 0.044 0.044 0.035 - 0.002 - 0.003 
Perceived cycling safety 
(high) 

- 0.043 - 0.019 - 0.040 0.051 - 0.027 

Lack of cycling infrastruc-
ture (yes) 

0.006 - 0.012 - 0.021 - 0.026 0.007 

***: p-value < 0.001, **: p-value < 0.05, *:p-value < 0.1 

4. CONCLUSIONS 

This study provides novel results for the user acceptance of new technologies on e-bikes as a 
potential solution to improve e-bike safety and comfort. We employed an extended framework of 
the UTAUT2, which applied to survey data from five European countries. We tested six con-
structs, while only five were supported (Performance expectancy, Social influence, Hedonic mo-
tivation, Perceived safety and Effort expectancy), with Performance expectancy, Hedonic moti-
vation and Perceived safety having a strong relationship with users’ intention to use new technol-
ogies on e-bikes in the aggregated sample.  
Regarding the cross-country analysis, performance expectancy has a higher impact across all 
countries. The Netherlands shows a high impact on hedonic motivation and social influence, while 
there is a negative impact and no significance on social status. Perceived safety remains a strong 
impact in the Netherlands, Belgium and Greece. Additionally, we controlled the model with so-
cio-demographic, infrastructure and safety variables. We found that user intention increases with 
increasing age in all countries but not in Belgium. However, no significant effects were found for 
the rest variables.  
The findings from this study are an important added value to the literature since it lacks user 
acceptance. In addition, it offers new insights into deploying new technologies on e-bikes and can 
benefit different stakeholders, such as bicycle manufacturers and cities. While bicycle manufac-
turers and designers of such innovative systems are investigating these features to bring them into 
the market, they can integrate these insights to optimise and develop them better. Also, cities can 
develop and implement new policies for these emerging technologies for a smooth transition.  
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Short summary

The estimation of the Design Hourly Volume (DHV) is an essential step for a tra�c assessment. At
freeway nodes, not all ramps are detected by permanent tra�c count (PTC) stations. Therefore
the German HCM recommends additional short-term counts (STC) to determine the DHV. Since
conducting STC is usually associated with high e�ort, the question arises whether the information
obtained by STC can also be derived from Floating Car Data (FCD). We propose an approach for
processing the FCD in order to apply it instead of the STC for the determination of the DHV at
ramp junctions. The performance of the method is evaluated on �ve nodes, for which FCD from
2017 and a reference database covering all 8,760 hourly volumes of all ramps and main lanes of the
road section are available. The result show, the usage of representative FCD days is possible.
Keywords: Design Hourly Volume Estimation, Floating Car Data, Highway Capacity Manual,
Permanent Tra�c Counts

1 Introduction

Design hourly volume (DHV) estimation is an essential step when it comes to estimating the Level-
of-Service (LOS) of tra�c facilities. In the Highway Capacity Manual (HCM, National Academies
of Sciences (2016)) and the German HCM (FGSV (2015)), the DHV is determined based on a
tra�c volume estimation concept known as the nth hour or respectively the hour of the year with
the nth highest tra�c volume. To calculate this nth hour precisely, a permanent tra�c count (PTC)
station is necessary at the corresponding tra�c facility, since the tra�c volume for all 8,760 hours
of the year must be known. To determine the DHV at ramp junctions of nodes, supplementary
short-term tra�c counts (STC) are also necessary since, usually, not all ramps are recorded with
PTC. The German HCM proposes a method for this process, which was validated and enhanced
to a concept of the nth highest saturated hour by Baumann et al. (2023).
The method proposed by the German HCM determines the representative turning �ows at the
node from STC on the ramps, which are then extrapolated to the DHV using the PTC available at
the node. Conducting STC is generally associated with high e�ort, which is why the question arises
if the required representative turning �ows can be determined using Floating Car Data (FCD).
Ceccato et al. (2022) demonstrate that the use of FCD is competitive compared to traditional data
sources in terms of cost-e�ectiveness. Furthermore, Vogt et al. (2019) and Dabbas et al. (2020)
show that the data fusion of FCD and PTC enables the estimation of origin-destination matrices for
motorway networks. Travel times and route choice probabilities derived from FCD can moreover
be used as input for Dynamic Tra�c Assignment models to map OD matrices to link �ows (Nigro
et al. (2018); Tsanakas et al. (2022)). Nohekhan et al. (2021) use FCD, temporary volume counts
(e.g., a week), and road characteristics to estimate hourly tra�c volumes on o�-ramps. FCD can
also be used to determine travel time (Olszewski et al. (2018)), free �ow speed (Diependaele et al.
(2016)), or operating speed (Bruwer et al. (2021); Lobo et al. (2018)) on motorways.
The literature review demonstrates that tra�c �ow assessment using FCD is possible, but to the
best of the authors' knowledge, there are no approaches in the literature that use FCD to determine
the DHV in the context of the HCM, German HCM, or similar international guidelines. Therefore,
this paper examines the potential of using FCD as a substitute for STC in estimating the DHV at
nodes. We propose an approach for processing the FCD and evaluate the results afterward using
FCD of route sections with a total length of 15 km and compared with STC results from Baumann
et al. (2023).
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2 Methodical approach

Concept and data availability scenarios for DHV estimation at freeway nodes

An example of how to combine PTC and STC using topological relationships of a freeway inter-
change is shown in the German HCM. It assumes that a cloverleaf interchange has eight PTC,
one for each in�ow or out�ow, and at least two STC for each ramp junction. Each PTC de�nes a
speci�c demand-situation, which needs to be analyzed. In the following, these demand-situations
are referred to as PTC demand-situation. Each PTC demand-situation describes a temporary
state with consistent tra�c �ows at the entire interchange, such that in�ow equals out�ow. In
the German HCM these demand-situations are de�ned using the method `50th hour of the PTC'.
In this example it leads to eight demand situations, which may occur on di�erent weekdays and
times of day. STC are usually conducted at a di�erent date. Therefore, the German HCM uses
the day hour of the PTC demand-situation to derive a second demand-situation based on the STC
(STC demand-situation). In the next step a matrix estimation method is applied using the PTC
demand-situation as boundary conditions and the STC demand-situation as initial matrix to derive
DHV for each count station. This procedure is repeated for all eight PTC demand-situations of
the cloverleaf inter-change. After that, all eight demand-situations are evaluated. For each ramp
junction, a separate saturation rate is estimated per demand-situation. The resulting saturation
rate of a ramp junction is the worst-case saturation rate of all demand situations considered.
For this concept for DHV estimation at freeway nodes we compare the usage of tra�c �ows derived
from FCD instead of STC. Furthermore, the number of PTC can be varied. To understand the
impact of these data sources, the following data availability scenarios are de�ned and will be
analyzed:

1. `PTC: in-/out�ow main lanes, STC: -`: This data availability scenario again uses no STC
data, but the numbers of PTC stations are reduced to one count station for each in�ow
or out-�ow on the main lanes of the node. This leads to eight PTC stations at a four-leg-
interchange and to four PTC stations at a freeway exit.

2. 'PTC: in-/out�ow main lanes, STC: all': This data availability scenario adds STC informa-
tion for all counting stations (Figure 4, third row).

3. 'PTC: in-/out�ow main lanes, FCD: all': This data availability scenario equals the data
availability scenario above but uses FCD information instead of STC.

4. 'PTC: in-/out�ow main lanes, FCD: representative tra�c days': This data availability sce-
nario uses representative tra�c days obtained from FCD instead of single days.

Data basis

Hourly FCD-hits are available for 164 working days in 2017 on route sections with a total length
of 15 km. 'Hits' refer to the number of vehicles recorded. The number of hits is a subset of the
total tra�c volume. The route sections are part of 63 ramp junctions for whom PTC are available.
Missing hits on some count stations are derived based on adjacent hits. The ramp junctions are
part of �ve nodes: two interchanges and three freeway exits.

Preprocessing to generate consistent FCD for all count stations

An initial plausibility check reveals some inconsistencies:

� There are some negative values as results of balancing checks considering the topology.

� Con�icts appear if several FCD route sections can be assigned to the same count station,
leading to an over determination of some count stations by FCD route sections.

Thus, a matrix estimation procedure is executed to get consistent FCD using the VFlowFuzzy
algorithm implemented in PTV Visum (PTV AG (2022)). This implementation allows to de�ne
tolerances for each count station in case the hits are too inconsistent. For each hour the related
hourly hits are considered and tolerances are increased successively until a solution of consistent
hits is found. If no solution is found, it is analyzed which count station has implausible hits. This
allows us to ignore these values or increase the tolerance for these count stations.
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Generate representative tra�c days

In order to get more robust daily hits, we use the amount of FCD days to generate representative
tra�c days. A representative tra�c day has a daily distribution, which occurs as often as possible
in this or a similar way.
A method suitable for matching the properties of daily distributions is cluster analysis.
We de�ne three types of tra�c days:

� Monday

� Tuesday, Wednesday and Thursday

� Friday

For the cluster analyses of a tra�c day type we use network load curves containing daily hits of all
count stations for the days belonging to the tra�c day type. Depending on the size of the distance
measure and the clustering algorithm, there will be a di�erent number of clusters and consequently
a di�erent distribution of days per cluster.
We use the average linkage cluster algorithm and the GEH value serves as distance measure for the
comparison of hourly tra�c volumes. The cluster containing most days is de�ned as main cluster.
The smaller the maximal allowed distance, which is given is input by the user, the more clusters
there are. However, the days in a cluster are more similar with a lower distance measure, the
main cluster is more characteristic and it is less in�uenced by smoothing due to averaging of more
divergent days.
We choose GEH 6, resulting in main cluster that represent about 50% of the days belonging to the
tra�c day type (table 1).

Table 1: result of cluster analysis using GEH-value ≤ 6.

tra�c day days total number of

clusters

days in main

cluster

share of days

in main

cluster

Mo 32 9 18 56%
TuWeThu 96 22 51 53%
Fri 34 9 16 47%

DHV estimation combining FCD and PTC on nodes

To adapt the DHV estimation at nodes as described above to representative FCD days, we calculate
for each PTC demand-situation scenarios for all representative days. This leads to three scenarios
per PTC. The day hour of the PTC demand-situation de�nes the hour of the representative day.
Then the day hour of the representative day is used to get the tra�c �ow matrix. After that, the
process using matrix estimation and determination of the worst-case saturation is the same.

3 Evaluation

Combining PTC and FCD enables the DHV estimation for each ramp junction of a node. In
this study, the DHV is de�ned as the 50th hour as it is the common standard in Germany. Since
a consistent determination of the 50th hour based on the tra�c volume is not possible at ramp
junctions due to several tra�c �ows, the 50th highest saturated hour (calculated according to the
methods of the German HCM) is used instead of the hour with the 50th highest tra�c volume
(Baumann et al. (2023)).
For all nodes a reference database is available that provides all 8,760 hourly volumes of 2017 for
all ramps and main lanes (Baumann et al. (2023)). The reference database enables the calculation
of the saturation of each ramp junction for all hours. So the actual 50th highest saturated hour
can be determined for each ramp junction, which is referred to as the reference scenario in the
following. In order to analyze the performance of the proposed method, the method is applied
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Figure 1: Exemplary results of a node for an estimation scenario using FCD representative
days.

to all ramp junctions of the nodes considered, and for each ramp junction, the obtained results
(referred to as estimation scenario in the following) are compared with the reference scenario.
Figure 1 shows the correlation between reference and estimation scenario exemplary for all ramp
junctions of a node. Each point represents the result of one ramp junction. The colored squares
illustrate the corresponding LOS according to the German HCM. If a point is located in one of
the squares, the saturation rate of the estimation scenario results in the same LOS as that of the
reference scenario. Otherwise, the estimation scenario di�ers from the target LOS of the reference
scenario. For a further aggregation of the results, we introduce the metric of the `average LOS-
accuracy'. Based on the results of the estimation scenario, this metric describes the relative share
of the estimation scenario that achieves the target LOS of the reference scenario. Regarding the
visualization in �g. 1, this corresponds to the proportion of points located within one of the colored
LOS squares.

average LOS-accuracy =
n(LOSes = LOSrs)

n
(1)

with n = number of estimation scenarios
LOSes = calculated LOS of estimation scenario
LOSrs = LOS of corresponding reference scenario

n (LOSes = LOSrs) = number of estimation scenarios, which hit the LOS of their
reference scenario

4 Results and discussion

The aggregated results for 63 ramp junctions on the several data availability scenarios are shown
in table 2, �g. 2 allows a less aggregated and more detailed view. Figure 2 shows the range of
saturation for the STC and FCD scenarios for some ramp junctions. Additionally the results of
the reference scenario and for the data availability scenario considering clusters as representative
tra�c days are included in the �gure.
The results lead to the following conclusions:
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Figure 2: saturation using di�erent data availability scenarios for some ramp junctions.

Table 2: LOS-accuracy for di�erent data availability scenarios.

data availability scenario LOS-

accuracy

LOS-

under-

estimation

LOS-over-

estimation

number

of ramp

junctions

`PTC: in-/out�ow main lanes,
STC: -`

33% 2% 65% 63

'PTC: in-/out�ow main lanes,
STC: all'

87% 3% 10% 63

'PTC: in-/out�ow main lanes,
FCD: all'

73% 10% 17% 63

'PTC: in-/out�ow main lanes,
FCD: representative tra�c
days'

78% 10% 12% 63

� STC or FCD on all ramps are crucial for an accurate estimation of the DHV.

� The method recommended by the German HCM - conducting STC at all ramps of a node
with subsequent matrix correction or extrapolation at the nearest PTC stations - provides
a data basis with which the hour with the 50th highest saturation is well met.

� Nevertheless, the saturation (and LOS) varies, depending on the day on which the STC is
conducted.

� In this context, it must be taken into account that for the STC considered, it is assumed for
reasons of convenience that the results of STC and PTC derive from the same year, while
for practical reasons the STC is often conducted a year after the year of the PTC.

� The proposed FCD method underestimates the tra�c �ow on ramps in some cases.

� Using representative days slightly improves the LOS-accuracy.

For further research it would be interesting to expand the approach of using FCD as introduced in
this paper to additional nodes or data sources. Further evaluation of the robustness of clustering to
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get representative tra�c days is necessary. Furthermore, it can be expected that the performance
of the proposed method will increase in the future, as the availability of FCD will improve and will
thus lead to more representative results.
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Short summary

Due to the increasing introduction of new mobility solutions in the transport offers, the market
equilibrium among Mobility Service Providers (MSPs) has become more complex. The focus of this
paper is to develop a novel analytical approach to study competition and/or cooperation between
multiple MSPs within a multi-modal network system. We formulate a novel Equilibrium Problem
with Equilibrium Constraints (EPEC), where each MSP seeks to maximize their own profits at the
upper level. At the lower level, users are divided into classes that capture their heterogeneity in
terms of socioeconomic characteristics and activity-travel behaviour. We consider the multi-modal
network link costs to be non-separable, therefore the lower-level equilibrium is formulated as a
Variational Inequality (VI) problem. A solution approach is proposed and illustrated, based on a
relaxation of the Diagonalization method. Finally, we apply the described methodology to a small
example to illustrate some key properties of the proposed approach.

Keywords: EPEC, Multi-modal Network, Supernetwork, Variational Inequality

1 Introduction

In recent years, transportation systems have been offering travellers an increasing number of multi-
modal options thanks to the introduction of new mobility solutions, such as ride hailing, shared
and pooled mobility services, micromobility, on-demand services, etc. Consequently, the market
equilibrium among Mobility Service Providers (MSPs) has become more complex, with different
competitive or cooperative strategies being observed with the aim of attracting a sufficient share
of customers and hence sustain a profitable business. In such scenario, users’ modal choices are
crucial in determining the durability of mobility services within the transportation system.
In Transport Network Design, the problem of studying the relationships between MSPs and users
has been traditionally focused on uni-modal networks. Reflecting the complexity found in real
transportation systems and individuals’ mobility, more recently attention has been focused on
multi-modal networks (Zhang et al., 2014). Although these works developed relatively complex
models, there is limited research that includes multiple leaders, coexisting, competing or coop-
erating. From an economic and strategic point of view, it is essential to model the interactions
between MSPs and travellers of the transport network to predict the response of these actors as a
consequence of the variation in strategies of the entire system. In particular, scenarios offering a
new transport service, introducing new regulations/incentives, or increasing users’ heterogeneity,
could substantially change the equilibrium of the whole network.
In the literature, few works have analyzed this type of problems. In the context of fast charging
stations for electric vehicles, Guo et al. (2016) developed a Multi-agent Optimization Problem with
Equilibrium Constraints (MOPEC)-based model to study interactions between multiple competi-
tive investors and travellers assigned to a congested transport network. In cordon toll competition,
Watling et al. (2015) formulated an Equilibrium Problem with Equilibrium Constraints (EPEC),
through which they study the competing behaviour of two different public authorities from two cites
aiming to maximize the social welfare of the corresponding residents. Yang et al. (2022), instead,
defined a bi-level model to optimize pricing and relocation in a competitive one-way car-sharing
market.
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Albeit the above-cited works establish important developments in their respective area of appli-
cation, all of them consider that users are homogeneous and assigned to networks in which the
competition between suppliers is limited to uni-modal markets.
In this paper we developed a novel analytical approach to study competition and/or cooperation
between multiple MSPs, while users with heterogeneous characteristics are assigned to a multi-
modal network. We formulate a novel EPEC, where each MSP seeks to maximize their own profits
at the upper level; the objective functions include MSP-specific costs and revenues. At the lower
level, users are divided into classes that capture their heterogeneity in terms of socioeconomic
characteristics and activity-travel behaviour, resulting in different daily trip chains. Due to the
non-separability of the link cost functions, the lower-level equilibrium assignment is formulated as
a Variational Inequality (VI) problem. The proposed methodology is applied to a small example
to show key properties of the model, using an iterative solution approach, based on a relaxation of
the Diagionalization method.

2 Methodology

This study aims to develop models for the economic assessment of different suppliers’ strategies in a
multi-modal network. Hence, the interactions between MSPs and users are modelled and illustrated
using the concept of supernetworks (Sheffi, 1985). This representation has been adopted in the
literature to tackle the complexity of multi-modal networks, being further expanded to include a
time component connected to users’ activity-based trip chains (Fu & Lam, 2014). Our methodology
is applied to a static system in which time of departure/arrival from/to a location or duration of
the activities performed at each destination are not considered in full detail, given the strategic,
economical purpose of the developed model.
In order to build this supernetwork, we use endogenous information regarding users and MSPs. To
represent a more realistic transportation system, travellers are divided into classes based on their
socio-economic attributes and the trips’ purpose; considering that based on the socio-economic
characteristics users associate different costs to the travel time experienced in the network. The
sequence of trips made in a day, their purpose and locations, instead, are included to explicitly
represent the link between daily modal choices of users. It is here argued that each travel choice
made by users is influenced by earlier decisions as well as by planned later trips during a day. We
therefore define users of a certain class those performing a type of activity sequence (e.g. home-
work-leisure-home) in the same sequence of zone(s). Assuming that, during an ordinary weekday,
users of the same class k ∈ K perform the same sequence of trips. This sequence is then modelled
as a directed graph, where a node n ∈ N corresponds to a zone and a link a ∈ A indicates a trip
from one zone to the next (top Figure 1). The first and last location visited by a class of users
represent that class’s origin (O) and destination in the network (D). We assume that a single link
can directly symbolize a trip without the need of defining all the different path alternatives present
in the real network. Considering that, after computing a traffic assignment process, the network
reaches equilibrium for which all used routes have the same generalised cost (Wardrop, 1952). We
use then the information regarding MSPs to take into account the modes of transport available at
each trip connection, and we expand the network into uni-modal layers (colored parallel networks
in Figure 1). Each layer is owned by a specific MSP j ∈ J that collects revenues based on how
many travellers use their service (i.e. link flows), and accrue costs primarily depending on the
size of their vehicle fleet vj (capacity). We formulate the MSP profit objective function to be
sufficiently general to describe different mobility services, such as car-sharing, bike-sharing, bus,
train, e-scooter and taxi. The continuous upper level decision variables are controlled by the MSP
fleet sizes v ∈ V ⊆ R|J|. MSPs decide how to strategically distribute these vehicles amongst the
links of their network layer, with the purpose of maximizing their profit.
We consider each user class to be assigned to the multi-modal network following a fixed demand-
based traffic equilibrium, using a path-based adaptation of the multi-class and multicriteria network
equilibrium model (Nagurney, 2000). In particular, there will be cost (and revenue) components
that vary with the usage of the service, and class-based cost components associated to the time
spent using the service). Please see previous works (Bandiera et al., 2022a,b) for further details
concerning the mathematical representation of MSPs and users, and previous results.
Given the non-separable nature of the network link cost functions, explicit path enumeration is used
in this paper. While this approach is not yet readily applicable for large-scale networks, our current
focus is to develop and understand the methodology presented here, for which small networks
involving a limited number of multi-modal options for each class are sufficient. Undoubtedly, the
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Figure 1: Multi-modal Trip-chain Supernetwork

choice of dividing users into classes increases the complexity of the model. However, the socio-
economic characteristics are only affecting the cost perceived by users of a specific class and not
the network expansion. On the other hand, defining users’ classes based on the combination of
daily trip chains and activity locations could be a non-trivial problem when considering large-scale
networks. However, literature on the topic (Axhausen et al., 2002) shows that during typical
weekdays the majority of travellers tend to perform home-work-home tours when using public
transport or add an additional activity before/after work when travelling with private vehicles.
Moreover, the combination of trip chains, activity sequences and locations are spatially limited
and rather repetitive. Therefore, focusing on the most frequent tours, we cover most of travel the
demand of an area.
The lower level equilibrium decision variables are the path flows represented by the vector x ∈
X ⊆ Rz, with z paths and X the set of demand-feasible flows. Travellers choose a path through
the multi-modal network in order to perform their sequence of trips. A path can comprise three
different types of links. In line with the economic assessment purpose of the model, links represent
the main mode of transport connecting two zones. Access links (black dashed lines in Figure
1) allow users to access a mode of transport from their origin (Home), and egress from a mode
of transport to reach their final destination (Home). These links play an important role inside
the network, capturing costs related to a monthly subscription for a single service or a package
containing a combination of them. Mode-specific links (horizontal links), instead, indicate trips
made from one location to another using a specific mode of transport (designated by colour).
These link costs include three stages of a trip: 1) accessing the selected mode of transport from
the departure node; 2) travelling using the main mode of transport; 3) egress from the selected
mode of transport and reaching the destination. Finally, interchange links (vertical black links)
allow users to move from one mode of transport to another.
Figure 2 shows cost components for different links, which characterize each mode of transport.
The lower level problem is complicated by the presence of multiple classes at the lower-level and
the interdependency between flows on parallel links of the supernetwork. Concretely, some su-
pernetwork links represent copies of the same real transport link of the underlying infrastructure
network e.g. travel time on car-sharing links is influenced by travellers using private car and vice
versa. Consequently, the corresponding link costs are non-separable. For this reason the users’
equilibrium is formulated as a VI (Dafermos, 1980).
Let C(x,v) be the path cost function for the lower level problem, which depends on the capacities,
v, supplied by MSPs. Then a vector of path flows x∗ ∈ X is a Wardrop equilibrium if and only if
it satisfies the VI problem:

⟨C(x∗,v),x− x∗⟩ ≥ 0 ∀x ∈ X (1)

Given MSP fleet sizes v, we denote the set of equilibrium solutions X∗(v).
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Figure 2: Example of detailed costs from Figure 1

Problem formulation and solution algorithm

We formulate the interaction between MSPs and users as an EPEC. An equilibrium at the upper
level corresponds to no MSP wishing to unilaterally change their fleet size, given that the lower
level satisfies the Wardrop equilibrium conditions.
Each MSP j ∈ J seeks to maximize their profit, which is given by a continuous differentiable
function, pj(vj |x), depending on their fleet size, vj , and on the path flows. The equilibrium path
flows depend on the vector of MSP fleet sizes, so with the lower level constraint in place we have
pj(vj |x∗(v)). Each MSP can change only their own fleet size: for a vector v we denote a change
in only the j-th component by v[j]. Collecting the profit functions into p = [pj ] (adopting the
obvious vector notation), v∗ is an equilibrium solution if and only if

p(v∗|x∗)− p(v∗
[j]|x

∗) ≥ 0 ∀j ∈ J (2)

with x∗ ∈ X∗(v∗) (3)

where the lower level equilibrium path flows X∗(v) are defined above (see Equation 1).
EPEC problems are well known in literature for the difficulty of finding equilibrium solutions. In
this paper, we solve the EPEC using the Diagonalization Method: applying iteratively at the upper
level a minimization approach while a the lower level we calculate the equilibrium solution using
the Extragradient Method (EM), often used in the context of traffic assignment (Nagurney, 2000).
Due to challenge of achieving convergence of the general EPEC, relaxation approaches are usually
applied to a standard Diagonalization method. Here we introduce a steplength variation scheme in
the iterations of the upper-level problem, based on the Self-Regulated Averaging Method proposed
by Liu et al. (2007).

3 Example and discussion

In this section, we showcase the implementation of the methodology to a small network. We
consider two classes of users performing two different trip chains, described at the top of Figure 3.
The example may represent a user class performing a home-work-home tour, and a second class
performing a work activity in the same zone, but also chaining another activity in another zone
before returning home. We consider that each trip connection is covered by four modal options:
one-way car-sharing 1, one-way car-sharing 2, a transit service, and private car is available to all
users. The multi-modal network resulting graphically representing the four services and the two
user classes consists of 32 nodes and 40 links (Figure 3). For each OD, users can therefore choose
from four paths, based on the modal options available. For simplicity, in this example we do not
allow travellers to use more than one mode of transport. However, this simplification is not a
restriction of the model nor of the solution algorithm.
Congestion effects inside the network are modelled using the conventional Bureau of Public Roads
(BPR) function, considering that users choosing the car-sharing services, or the private car, expe-
rience a travel time that is influenced by the presence of the other modes of transport on the same
infrastructure. The transit service, instead, is considered to have a dedicated lane throughout the
network, hence this service is affected only by the number of public transport users.
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Figure 3: Example competition between MSPs

In this example, we try to understand the behaviour of the two car-sharing services competing inside
the multi-modal network, applying the solution algorithm described in Section 2. We consider the
two MSPs to adopt different price strategies: Car-sharing supplier 1 sells a cheaper monthly package
compared to Car-sharing supplier 2, whereas the latter charges users a cheaper rate per hour and
per kilometer.
Here we focus on the properties of the EPEC and the algorithm. To do so, we computed the full
objective function (profit) surface for each MSP over a range of fleet sizes. This is computationally
expensive and impractical in most cases, but allows us to verify solutions proposed by the algorithm.
Figure 4 shows the objective functions surfaces of the two car-sharing suppliers. We examine
whether the algorithm converges, and where to, starting from different initial conditions for the
fleet sizes. In each case, the algorithm converges to the same point, indicated in magenta. Note
that at the solution, Figure 4 left hand plot shows MSP1 profit is maximised (with v2 fixed, varying
v1) and similarly, MSP2 profit is maximised in the right hand plot (fixing v1). In this scenario, it
seems that the car-sharing 2, offering a cheaper fixed price for the package, manages to attract more
users, with a bigger feet size (v1 = 74; v2 = 82) and more profitable service (p1 = 421.5; p2 = 538).
In Figure 4 we also indicate on the axis the best strategy for each MSP, which occurs in both cases
when their competitor is not operating in those zones.
It is also interesting to observe the variation of the total travel cost for the lower level (Figure 5).
Obviously, an increase in the fleet size of both suppliers is translated in a reduced travel cost for
users, but this is not economically feasible for the MSPs. It is particularly interesting to see by
looking at the total cost surface that when the fleet size is sufficiently large, only one of the two
suppliers could survive in the market.
The proposed methodology shows promising results on the proposed network. The aim of future
developments is to expand its application to bigger networks considering the competition and
cooperation between multiple suppliers at the upper level with multiple user classes at the lower
level. Through this approach it will be possible to study different dynamics that occur in the
transportation network due to the presence of heterogeneous actors with diverse purposes.
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Figure 4: Profits variation with fleet sizes and equilibrium solution

Figure 5: Total travel cost variation with fleet sizes

Acknowledgement

This research is part of the project MaaS4All funded by Fonds National de la Recherche Luxem-
bourg (GRANT NUMBER: 13769009).

References

Axhausen, K. W., Zimmermann, A., Schönfelder, S., Rindsfüser, G., & Haupt, T. (2002). Observing
the rhythms of daily life: A six-week travel diary. Transportation, 29 (2), 95–124.

Bandiera, C., Connors, R. D., & Viti, F. (2022a). Competition and Cooperation between Suppliers
in Multimodal Network Design Problems. https://tristan2022.org/Papers/TRISTAN_2022
_paper_2182.pdf. ([Online])

6

https://tristan2022.org/Papers/TRISTAN_2022_paper_2182.pdf
https://tristan2022.org/Papers/TRISTAN_2022_paper_2182.pdf


Bandiera, C., Connors, R. D., & Viti, F. (2022b). Evaluating Mobility Service Providers’ Strategies
in an Activity-Based Supernetwork. https://transp-or.epfl.ch/heart/2022/abstracts/
269.pdf. ([Online])

Dafermos, S. (1980). Traffic equilibrium and variational inequalities. Transportation Science, 14 ,
42-54.

Fu, X., & Lam, W. H. K. (2014). A network equilibrium approach for modelling activity-travel
pattern scheduling problems in multi-modal transit networks with uncertainty. Transportation,
41 , 37-55.

Guo, Z., Deride, J., & Fan, Y. (2016). Infrastructure planning for fast charging stations in a
competitive market. Transportation Research Part C-emerging Technologies, 68 , 215-227.

Liu, H. X., He, X., & He, B. (2007). Method of successive weighted averages (mswa) and self-
regulated averaging schemes for solving stochastic user equilibrium problem. Networks and
Spatial Economics, 9 , 485-503.

Nagurney, A. (2000). A multiclass, multicriteria traffic network equilibrium model. Mathematical
and Computer Modelling , 32 , 393-411.

Sheffi, Y. (1985). Urban transportation networks (Vol. 6). Prentice-Hall, Englewood Cliffs, NJ.

Wardrop, J. G. (1952). Road paper. some theoretical aspects of road traffic research. Proceedings
of the institution of civil engineers, 1 (3), 325–362.

Watling, D. P., Shepherd, S. P., & Koh, A. (2015). Cordon toll competition in a network of
two cities: formulation and sensitivity to traveller route and demand responses. Transportation
Research Part B-methodological , 76 , 93-116.

Yang, S., Wu, J., Sun, H., Qu, Y., & Wang, D. Z. W. (2022). Integrated optimization of pric-
ing and relocation in the competitive carsharing market: A multi-leader-follower game model.
Transportation Research Part C: Emerging Technologies.

Zhang, L., Yang, H., Wu, D., & Wang, D. (2014). Solving a discrete multimodal transportation
network design problem. Transportation Research Part C: Emerging Technologies, 49 , 73–86.

7

https://transp-or.epfl.ch/heart/2022/abstracts/269.pdf
https://transp-or.epfl.ch/heart/2022/abstracts/269.pdf


Investigating the preferences for the use of urban ridepooling

Thomas Schatzmann*1, Felix Zwick2, and Kay W. Axhausen1

1Institute for Transport Planning and Systems, ETH Zürich, Switzerland
2MOIA GmbH, Germany

Short summary

This study investigates the preferences for the use of the urban ridepooling service MOIA in Ham-
burg, Germany. A survey with over 4,000 (non-)users was conducted and a discrete choice model
was estimated to understand users’ preferences to use the service. The study provides insights into
the sociodemographic characteristics of ridepooling users, their preferences towards the service and
first findings on the preferences towards an intermodal combination with public transportation.
The results show that factors such as travel cost, time, trip distance and purpose are significant in
influencing the use of ridepooling services. According to the choice experiment, intermodal travel
is a viable choice for trip distances above 10 km, primarily for public transport subscription hold-
ers. The findings of this study can inform the design and marketing of future ridepooling services,
and contribute to the broader debate on the potential benefits and challenges of shared mobility
services in improving urban mobility and reducing the negative impacts of transportation on the
environment.

Keywords: ridesharing, shared mobility, public transport, discrete choice modeling, intermodality,
multimodality

1 Introduction

Urban ridepooling has emerged as a popular mobility solution, particularly in urban areas, as it
provides a more efficient and affordable way for individuals to travel short to medium distances.
Ridepooling is a service that allows multiple passengers who are traveling in the same direction
to share a vehicle, thus reducing the number of vehicles on the road and decreasing congestion,
noise and greenhouse gas emissions (Shaheen & Cohen, 2018; Zwick et al., 2021). In this paper,
we investigate the preferences for the use of urban ridepooling on the example of the MOIA service.

MOIA is a ridepooling service launched in 2017 by Volkswagen Group, which uses electric vehicles
that can carry up to six passengers. It operates the largest European ridepooling fleet with over 250
vehicles in Hamburg, Germany. The recent service expansion with a larger service area (270 km2

instead of 200 km2), integration of wheelchair accessible vehicles and tariff integration into the
public transport (PT) system as part of a funding project served as an occasion for a scientific
long-term monitoring of these measures, in the context of which this research work took place.
We surveyed 4,167 MOIA users and non-users in October and November 2022 to understand their
sociodemographics and general mobility behavior, and estimated a discrete mode choice model to
analyze their mode preferences. Specifically, we examine how factors such as age, gender, income,
and travel distance influence individuals’ choices between ridepooling, private cars, PT, and slow
modes of transportation. The survey was conducted before the introduction of the described mea-
sures in January 2023 and will be repeated in fall 2023.

The study builds upon previous scientific investigations of the use of MOIA as part of MOIA’s
accompanying study by Karlsruhe Institute of Technology and TU Munich from 2019 to 2021
(Kagerbauer et al., 2021). Kostorz et al. (2021) reported the findings of the survey of over 12,000
MOIA (non-)users in 2019. They found that MOIA is used across all age groups and genders, and
enriches multimodal travel behavior. A detailed investigation of users with mobility impairments
and work-related trips was conducted. In contrast to the previous study, we estimate a discrete
choice model and specifically investigate the intermodal use of ridepooling. The intermodal use of
ridepooling was also investigated by Diebold et al. (2021) on the example of ioki in Hamburg. The
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service is designed differently to MOIA and delivers customers for a small fee of 1€ in addition to
a PT ticket to the next railway station in a 15 km2 service area. Thus, it is not surprising that the
share of intermodal trips is very high at 72% and that the average age is with 34 rather young.

We contribute to the literature on ridepooling by examining the preferences for the use of urban
ridepooling, and identifying the factors that influence individuals’ willingness to use these ser-
vices. The estimated discrete choice models provide novel insights into important level-of-service
attributes and values of travel time (VTT) that inform policy-makers and urban transportation
planners in their efforts to promote sustainable and efficient transportation systems through new
digital and smart mobility services.

2 Methodology

This study employed an online two-stage approach using a combination of revealed and stated
preference surveys (RP & SP), which were administered to participants. RP data provide valuable
information about mode choices in real markets, but often lack in variability of the underlying
variables to construct appropriate models and forecasts (Ortúzar & Willumsen, 2011). To better
comprehend the trade-off confronted by individuals in choosing between multiple modes, SP meth-
ods such as stated choice experiments (SCE) have been used as these are often richer in trade-off
information by design (Louviere et al., 2003; Train, 2009). Hence, the mode choice experiment
presented in the SP survey made use of individualized reference trips from data gathered in the
RP survey. A pooled RP-SP Multinomial Logit (MNL) model was then applied to examine the
influence of level-of-service (LOS) and sociodemographic attributes on the choice between the al-
ternatives presented. In addition, population weighted willingness-to-pay indicators were derived
to complement the analysis of mode choices in a multimodal setting.

Recruitment and survey design

Given that MOIA operates predominantly in the city of Hamburg, we focused on participants
residing in the city and its surrounding areas. The recruitment process included two distribution
channels, with current MOIA members being internally recruited by MOIA’s marketing depart-
ment and other respondents being externally sourced via two regional panel providers. Ultimately,
the sample size for the RP survey amounted to 4,167 individuals. Comprehensive data cleaning
and participants not filling out the SCE reduced the sample size to 3,823 individuals for the SP
survey. Both surveys were conducted using the survey software Qualtrics.

The RP survey entailed questions about the participants’ sociodemographic profile on personal and
household level, their mobility tools and behavior as well as a ridepooling assessment with respect
to MOIA. The sociodemographic questions were standardized in accordance with the German
transport census 2017 (MiD - Mobilität in Deutschland; Nobis & Kuhnimhof (2019)) to allow for re-
weighting to population level after model estimation. For the purpose of this study, reference values
for home-based work and leisure trips were generated via the Google API for each participant.
The modes considered in the choice experiment and model were walking (W), cycling (B), car (C),
public transport (PT), taxi (T), MOIA (M) and an intermodal alternative (MPT) consisting of
MOIA and PT, where MOIA was assumed to be feeder for PT. A typical ride with MOIA can
be characterized as a sequence of three stages: Walking to the pick-up location, traveling in a
MOIA vehicle and walking from the drop-off location to the final destination. To simulate this
process, MOIA’s internal virtual stop network with over 12,000 stops was utilized to effectively
route these trips. The RP data contained MOIA as an option only if all of the specified locations
were located within the MOIA service area as of 2023. In addition, level-of-service attributes (e.g.
an arrival window due to ridepooling or wait time for the vehicle to arrive) were included in the
choice experiment.

The overall mode choice experiment entailed six experimental designs which include seven alterna-
tives displayed to a respondent. Dependent on the trip distance, purpose, driver’s license ownership
and car availability, each respondent was assigned to a block of eight choice situations of one of
those designs. In the end, six D-efficient pivot designs were implemented using NGene (Rose &
Bliemer, 2009; ChoiceMetrics, 2021).
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Modeling approach

The data gathered allowed for the estimation of pooled RP-SP MNL choice models. The utility
functions are depicted in Equations 1 to 3. For ease of readability, the subscripts for choice task t
are omitted.

Vi,n,s = αi,s + δshift,i,s · zshift,n,s + βLOS,i · xLOS,n + γsocio,i · xsocio,n+

fc(xdist,n,s, zleis,n,s) · xcost,i,n,s+

ftt,i(xdist,n,s, zleis,n,s) · xtt,i,n,s

(1)

fc(xdist,n,s, zleis,n,s) = (βcost,com + βcost,leis · zleis,n,s) ·
(xdist,n,s

8km

)λcost,dist

(2)

ftt,i(xdist,n,s, zleis,n,s) = (βtt,com,i + βtt,leis,i · zleis,n,s) ·
(xdist,n,s

8km

)λtt,dist,i

, (3)

where alternative i ∈ J = {W,B,C, PT, T,M,MPT} and data source s ∈ {RP, SP}. αi,s repre-
sents the alternative-specific constants (ASC) and δshift,i,s denotes shifts on the ASCs (trip purpose
and MOIA membership) for both the RP & SP model component. βLOS,i denotes the influence
of alternative-specific LOS attributes like access/eggress time (βi,aet) and arrival time window for
M (βM,latewin). Wait time while transferring (βwaittime), wait time for the vehicle (βwaitveh) and
number of transfers (βtrans) were estimated jointly where applicable for alternatives PT, T, M and
MPT. γsocio,i captures alternative-specific sociodemographic characteristics for age, gender and
household income. The travel time and cost coefficient (βtt,com,i, βcost,com) is modeled as a non-
linear function of beeline distance, which also includes a shift for leisure trips (βtt,leis,i, βcost,leis)
to account differences in sensitivities across these trip purposes.

Since an intermodal alternative was introduced in the choice experiment, where MOIA is assumed
to be an access mode to PT (even though that this might already be a use case for MOIA in
reality, the RP survey did not capture it), two model specifications were tested. While MNL 1
treated the in-vehicle travel times for MOIA as separate effects (main mode:βM,tt,com and access
mode:βMPT,M,tt), MNL 2 estimated these two effects jointly in βM,tt,com (see Table 1). As a con-
sequence, this affects the VTT for MOIA, which is discussed in the next section. The proposed
modeling approach accounts for the impact of trip purpose and distance, various LOS and sociode-
mographic attributes on mode choice in the presence of ridepooling. The models were estimated
in preference space, using R and the Apollo package (R Core Team, 2020; Hess & Palma, 2019).

3 Results and discussion

An analysis of the sample in comparison with the German MiD, which was restricted to Hamburg,
uncovered two noteworthy observations: Firstly, the sample was representative in terms of gender
and holders of a driver’s license. Secondly, it demonstrated a slight inclination towards younger
participants, as well as an over-representation of individuals with a high degree of education (uni-
versity or diploma) and high-income households (more than 6,500 Euro per month). Consequently,
post-estimation reweighting was necessary for the measures of interest using sample enumeration.

In the sample, 90% of participants (3,715) responded affirmatively to having booked a ride with
MOIA within the past year, which might be an artefact of the recruitment process, but also demon-
strates the popularity of MOIA’s ridepooling service in Hamburg. The sample’s sociodemographic
profile in general is very similar compared to the work done in 2019 by Kagerbauer et al. (2021).
MOIA users are on average 44 years old, well educated and mostly live in one-person, high-income
households. With regard to their last trip booked, two insights were relevant for the choice ex-
periment. It was found that 60% of the participants reported their last trip as being for leisure,
12.9% for travel to a train station or the airport, and 10.6% for work. Additionally, 14% of the
trips were combined with other modes of transportation, with 70% of those including PT. This
indicated the necessity of incorporating and testing an intermodal alternative in the DCE, also be-
cause the survey did not differentiate between a combination with short-distance and long-distance
PT modes.
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Model results

Figure–1 shows the choice frequencies (market shares) divided by data source. Examining the RP
data, car and PT were the most commonly chosen alternatives (33.8% and 33% respectively), fol-
lowed by bike and walk (18.2% & 13.4%). MOIA exhibits a market share of 1.6%, which is higher
than MOIA’s actual share of roughly 0.1%. This might be related to the large proportion of MOIA
users in the sample. The SP data illustrates a decrease in car, PT and walk market shares, in
favor of the intermodal alternative and MOIA. Taxi was the least chosen mode with 0.1% and 0.7%
market shares in the RP and SP data, respectively. This is unsurprising as taxis are not often the
first choice for commutes or frequent leisure trips. It is important to note that the SP modal splits
presented here are an artefact of the experimental design and the associated distance classes, and
should not be compared to real-world modal splits (Glerum et al., 2013). A closer investigation of
non-trading and lexicographic choice behavior revealed that in 42% of all choice tasks the least ex-
pensive option was chosen, which either indicates a highly price-sensitive sample or an experimental
design that transparently exposed all fares. However, this can be attributed to the assumption of
zero costs for PT season ticket subscribers. On an individual level, 18% of all participants always
(i.e. 8 times) chose the least expensive mode. As a result, in terms of cost, both PT and the in-
termodal alternative were viable options, which could explain the observed popularity of the latter.

Figure 1: Choice frequencies

The model estimates are presented in Table 1. The units of the temporal variables are minutes,
while those of the costs are Euros. Building upon the recommendations of Wasserstein et al. (2019),
the table does not present associated p-values. Thus, researchers should recognize the presence of
uncertainty and should not assume that effects exist simply due to the statistical significance or
lack thereof. The model fit, Adj.ρ2, of both models is almost equal, although slightly higher for
MNL 1, which likely is a consequence of not pooling the travel time attribute for MOIA of the
intermodal alternative (βMPT,tt,com). However, the VTT differ between the two models, as shown
in Figures 2 & 3 and discussed after examining the estimates.

The most substantial shifts on the ASC’s were given by δM,s,nonuser and thus controlling for MOIA
membership, demonstrating that non-users were less prone to choose MOIA and MOIAPT. Fur-
thermore, it was important to also account for trip purpose related shifts on the ASC as they
influence the subsequent calculation of the VTT. Noteworthy findings concerning the sociodemo-
graphical variables considered are the following: With respect to gender, a substantial effect was
only observed for the choice of bicycles. Men were more likely to do so than women. An effect for
high income households was only apparent for private cars. As such, this does not seem to be the
case for choosing a ridepooling service like MOIA. The strongest impact among all variables was
observed for education. While a high education degree has a positive impact on the probability of
choosing a bicycle, it has negative one for all other modes. This finding might be related to the
fact that cycling is a more sustainable way of traveling compared to motorized modes and thus
appeals more to well educated people.
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Table 1: Estimation results

Reference: Walking MNL 1 MNL 2

Parameter Estimate Rob. t-ratio Estimate Rob. t-ratio

αW,RP 0.000 (NA) 0.000 (NA)
αB,RP −1.712 (−2.038) −1.727 (−2.053)
αC,RP −2.442 (−2.961) −2.538 (−3.069)
αPT,RP −1.455 (−1.765) −1.509 (−1.831)
αT,RP −5.499 (−7.951) −5.616 (−8.203)
αM,RP −3.253 (−3.557) −3.237 (−3.526)
δB,RP,leis −0.904 (−1.609) −0.922 (−1.644)
δC,RP,leis −0.121 (−0.212) −0.079 (−0.139)
δPT,RP,leis −0.597 (−1.053) −0.552 (−0.976)
δM,RP,leis −0.044 (−0.070) −0.579 (−0.931)
δM,RP,nonuser −1.495 (−1.456) −1.487 (−1.443)
αW,SP 0.000 (NA) 0.000 (NA)
αB,SP −1.268 (−1.476) −1.266 (−1.469)
αC,SP −2.729 (−3.236) −2.814 (−3.320)
αPT,SP −1.796 (−2.134) −1.845 (−2.189)
αT,SP −3.154 (−5.944) −3.250 (−6.210)
αM,SP −0.846 (−0.921) −0.832 (−0.902)
αMPT,SP −3.275 (−3.760) −2.672 (−3.080)
δB,SP,leis 0.296 (0.491) 0.267 (0.443)
δC,SP,leis 0.364 (0.601) 0.437 (0.725)
δPT,SP,leis 0.259 (0.434) 0.314 (0.524)
δM,SP,leis 0.182 (0.286) −0.329 (−0.526)
δM,SP,nonuser −1.571 (−4.100) −1.592 (−4.165)
δMPT,SP,leis 1.119 (1.741) 0.737 (1.150)
δMPT,SP,nonuser −0.781 (−5.017) −0.777 (−4.915)
γB,male 0.157 (1.012) 0.157 (1.006)
γB,age31−65 0.072 (0.360) 0.075 (0.375)
γB,age66−86 −0.412 (−1.082) −0.422 (−1.098)
γB,educhigh 0.189 (1.178) 0.195 (1.207)
γB,inc1.7−5.5k 0.059 (0.134) 0.060 (0.135)
γB,inc6.5k+ 0.163 (0.350) 0.163 (0.346)
γC,male −0.037 (−0.254) −0.037 (−0.252)
γC,age31−65 0.232 (1.243) 0.236 (1.260)
γC,age66−86 0.187 (0.522) 0.179 (0.499)
γC,educhigh −0.514 (−3.438) −0.523 (−3.487)
γC,inc1.7−5.5k 0.566 (1.344) 0.561 (1.321)
γC,inc6.5k+ 0.650 (1.455) 0.645 (1.434)
γPT,male −0.047 (−0.319) −0.051 (−0.341)
γPT,age31−65 −0.026 (−0.139) −0.027 (−0.145)
γPT,age66−86 −0.191 (−0.536) −0.213 (−0.598)
γPT,educhigh −0.288 (−1.910) −0.294 (−1.942)
γPT,inc1.7−5.5k −0.112 (−0.272) −0.122 (−0.295)
γPT,inc6.5k+ −0.430 (−0.978) −0.443 (−1.002)
γM,male −0.044 (−0.251) −0.048 (−0.270)
γM,age31−65 0.139 (0.655) 0.149 (0.692)
γM,age66−86 0.917 (1.431) 0.964 (1.469)
γM,educhigh −0.638 (−3.627) −0.639 (−3.588)
γM,inc1.7−5.5k 0.047 (0.084) 0.053 (0.093)
γM,inc6.5k+ 0.007 (0.012) 0.003 (0.005)
γMPT,male −0.153 (−0.984) −0.157 (−0.998)
γMPT,age31−65 0.290 (1.458) 0.295 (1.473)
γMPT,age66−86 0.490 (1.303) 0.490 (1.297)
γMPT,educhigh −0.497 (−3.127) −0.508 (−3.179)
γMPT,inc1.7−5.5k 0.105 (0.256) 0.093 (0.226)
γMPT,inc6.5k+ 0.029 (0.066) 0.015 (0.035)
βcost,com −0.292 (−14.970) −0.301 (−15.438)
βcost,leis 0.127 (7.165) 0.139 (7.809)
βW,tt,com −0.130 (−7.736) −0.133 (−7.842)
βB,tt,com −0.144 (−12.704) −0.148 (−13.089)
βC,tt,com −0.037 (−3.537) −0.035 (−3.327)
βC,aet −0.086 (−12.696) −0.087 (−12.828)
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Reference: Walking MNL 1 MNL 2

Parameter Estimate Rob. t-ratio Estimate Rob. t-ratio

βPT,tt,com −0.061 (−10.903) −0.062 (−11.107)
βPT,aet −0.052 (−9.911) −0.053 (−10.085)
βT,tt,com −0.015 (−0.686) −0.012 (−0.571)
βM,tt,com −0.087 (−8.255) −0.092 (−8.893)
βM,aet −0.022 (−2.309) −0.018 (−1.819)
βM,latewin −0.039 (−7.818) −0.039 (−7.810)
βMPT,M,tt −0.018 (−2.823) (NA) (NA)
βwaittime −0.020 (−2.532) −0.019 (−2.362)
βtrans −0.269 (−12.445) −0.268 (−12.350)
βwaitveh −0.021 (−4.934) −0.022 (−5.000)
βW,tt,leis 0.009 (0.476) 0.010 (0.567)
βB,tt,leis 0.016 (1.382) 0.022 (1.875)
βC,tt,leis −0.014 (−1.420) −0.014 (−1.384)
βPT,tt,leis 0.019 (2.608) 0.022 (3.116)
βT,tt,leis −0.016 (−0.559) −0.018 (−0.604)
βM,tt,leis 0.025 (1.791) 0.057 (5.079)
λcost,dist −0.531 (−14.592) −0.502 (−14.057)
λW,tt,dist −0.212 (−2.780) −0.206 (−2.684)
λB,tt,dist −0.276 (−6.043) −0.270 (−5.891)
λC,tt,dist −0.254 (−3.311) −0.216 (−1.987)
λPT,tt,dist −0.077 (−0.777) −0.033 (−0.325)
λT,tt,dist 0.357 (1.146) 0.373 (1.097)
λM,tt,dist 0.090 (1.074) 0.017 (0.220)
µRP 1.000 (NA) 1.000 (NA)
µSP 1.053 (0.982) 1.034 (0.658)

LL(0,RP) −8147.186 −8147.186
LL(0,SP) −34631.630 −34631.630
LL(final,RP) −4728.957 −4724.122
LL(final,SP) −23942.468 −23967.600
LL(final,model) −28671.426 −28691.722
Adj. ρ2 (model) 0.330 0.329
Number of respondents 3823 3823
Number of observations 28907 28907
Number of parameters 86 85

Figures–2 and 2 present the VTTs for all main modes of both models. As can be inferred from the
corresponding legend, the VTT for MOIAPT is not displayed since the main mode is PT, whose
parameter was jointly modeled with the PT alternative. Moreover, the VTTs are only modeled for
the range of distance the modes were available in the data. The Delta method was used to estimate
the VTTs and their 95%-confidence interval (Daly et al., 2012). Despite a very similar pattern of
VTT for commute trips, contrastingly, the two models yield notable differences in the VTT for
leisure trips. The models showed that, in general, travel cost tends to have a more substantial
influence on mode choice than travel time. This also holds for the corresponding shift of the
parameter for leisure trips and distance elasticity. A non-linear interaction of cost with household
income was also tested, but turned out to have no effect. However, the difference in VTTs among
the modes is primarily the result of the different travel time parameters (and their respective
shifts), as the cost coefficient is generic (i.e. the same for all modes). Interestingly, for bicycle,
public transport, and MOIA, leisure travel time sensitivities are less negative compared to their
commutes, suggesting that participants find the time spent using these modes more enjoyable. This
manifests even more in MNL 2, where the VTT for MOIA is much lower due to the joint estimation
of MOIA as a main and access mode. In addition, the distance elasticitiy of travel time for MOIA is
positive (but not significant), indicating that travel time sensitivity is barely influenced by distance.
As such, for MNL 1, this suggests that the VTT for MOIA is comparatively more driven by travel
cost rather than time in relation to the other modes, and hence for shorter distances more similar
to car and PT. For MNL 2, the leisure effect induced by pooling the travel time parameters seemed
to affect the VTT more strongly than cost, resulting in a substantially lower value. This might also
be a result of the rather simply constructed intermodal alternative, and needs further investigation
in the future. Another interesting outcome from the models regarding MOIA is that a larger

6



window of arrival time (e.g. late arrival due to pooling and hence possible rerouting) is perceived
as almost twice as worse than waiting for the vehicle or accessing/eggressing it.

Figure 2: Values of travel time by Beeline-distance (MNL 1)

Figure 3: Values of travel time by Beeline-distance (MNL 2)

4 Conclusions

This study presents a comprehensive investigation of mode choice preferences in the presence of
ridepooling for the city of Hamburg. A combination of RP and SP surveys was employed to
examine the effect of sociodemographic characteristics and level-of-service attributes on the choice
between walking, cycling, cars, PT, taxi, MOIA and an intermodal alternative for commute and
leisure trips. Insights from the RP survey were used and tested in the subsequent mode choice
experiment and model. Key drivers in choosing a ridepooling service like MOIA and its associated
VTT are primarily level-of-service attributes such travel cost and time as well as trip purpose.
There are notable differences in the VTT for leisure, however, if the travel time parameter is
separately estimated for MOIA as a main and access mode, or jointly. Even if the hypothetically
introduced intermodal alternative provides novel insights, the rather simple construction of it can
be considered as a limitation of the study and needs further research. In addition, more complex
models such as for example Mixed Multinomial or Nested Logit models could be estimated to
examine unobserved taste heterogeneity and nesting structures between the modes.
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Short summary

Germany’s Federal Climate Change Act requires the transport sector to reduce its greenhouse
gas emissions by almost half until 2030. The government has set an ambitious goal of increasing
the number of fully electric vehicles to 15 million within the same period. Data on the factors
influencing the purchase of low- or zero-emission vehicles is still scarce. Based on stated preference
data collected in spring 2022, we found that battery electric vehicles are the preferred choice of
respondents in the hypothetical situation of buying a new car, but not in the used car market. Our
results support the high demand for battery electric vehicles, suggesting that stagnating shares
in new registrations could be due to supply shortages. Purchase price and energy costs are the
most important factors leading to the choice of an electric powertrain, indicating that purchase
premiums currently put into place in Germany are highly effective.
Keywords: transformation of transport, electrification and decarbonization of transport, pow-
ertrain purchase decision, low- or zero-emission vehicles, market share, discrete choice modelling,
stated preference survey

1 Introduction

Despite long-lasting political negotiations on global level for reducing greenhouse gas emissions
(GHG emissions) the transportation sector in most countries is still not showing a downward trend
(Lamb et al., 2021; Intergovernmental Panel on Climate Change, 2022). This is especially true for
road transport, which is still highly dependent on fossil oil. Hence, cutting down greenhouse gas
emissions in transportation is still a challenging task (Creutzig et al., 2015) even though policy
instruments, such as energy or carbon tax, exist (e.g., Kok et al. (2011); Stepp et al. (2009); Haasz
et al. (2018); Whitehead et al. (2021); Dahl & Sterner (1991)).
Until 2030, Germany’s Federal Climate Change Act (KSG) (Federal Ministry for the Environment,
Nature Conservation and Nuclear Safety, 2021) requires the transport sector to reduce its GHG
emissions by around 48% compared to 1990. The sector’s emissions must then not exceed 85 Mt
CO2 equivalents. A halving of those emissions in less than ten years represents a challenge based
on the stagnant development of GHG emissions over the past 30 years as described above. Addi-
tionally, the sector missed its KSG sector target in 2021, which puts pressure on the government
to set up an immediate climate action program.
To achieve the climate protection targets for transport, the German government is taking measures
aimed in particular at a transition of powertrains, i.e., increasing the number of vehicle kilometres
travelled electrically via the gradual electrification of the passenger car fleet. These measures
include, for example, purchase premiums, the suspension of the motor vehicle tax or the lower
taxation of company cars for zero- or low-emission vehicles. The German government has set
itself the goal of increasing the number of fully electric passenger cars to 15 million by 2030
(Sozialdemokratischen Partei Deutschlands,BÜNDNIS 90 / DIE GRÜNEN, Freie Demokraten,
2021).
Vehicle purchase decisions by households determine not only the short-term mode choice decision,
but also the size and composition of the national vehicle fleet for longer periods. Modelling this
behaviour accurately is therefore a key factor to secure sustainable transport planning and policy
setting (Kickhöfer et al., 2019).
Car-specific variables such as fuel efficiency (e.g. Alberini et al. (2022)) and a suite of sociodemo-
graphic variables, such as age, gender, presence of young children or employment status have been
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identified for significantly influencing travel behaviour (e.g. Bhat et al. (2009); Frondel & Vance
(2018); Alberini et al. (2022)).
At this point, it is not clear under which circumstances companies and households choose low- or
zero-emission vehicles and which factors play a role in their decision. Data on powertrain selections
when purchasing a vehicle is still scarce.
To help gather data and gain a more profound understanding of the influencing factors on the
decision process when purchasing a car with a specific powertrain, we conducted an online survey
among the German population in spring 2022. Based on the reviewed literature, we aim to fill
the gaps linking consumer purchase decisions of new and used vehicles with different powertrains.
The main objective of the survey is to determine trade-offs and influencing factors on the decision
of buying a car with a classic or alternative powertrain technology. To address these objectives
and derive parameters for car stock models, we estimated an error component logit mixture model
and derived demand elasticities and cross- elasticities respective to changes in the most important
continuous variables.

2 Methodology

Survey

To examine car powertrain preferences, we conducted a survey in which respondents were asked
to make trade-offs between different car powertrain alternatives in hypothetical car purchase situ-
ations. The survey consists of five blocks of questions: screening questions, car-specific questions,
a stated preference part, attitudinal questions, and socio-demographic questions.
In eight labelled discrete choice games, respondents had to choose between the four powertrain
options, petrol, diesel, full plug-in hybrid (PHEV) and battery electric power (BEV) for their car
purchase. In addition, control attributes that can have an effect on powertrain choice were added,
such as fuel price and specific attributes for alternative powertrains such as charging time, range
driving with full electrical power and the availability of charging stations.
Figure 1 shows an example of a choice situation presented to the respondents.

Figure 1: Example of a Choice Situation Presented to a Respondent (Purchase of a New
Car)

The survey contained a maximum of 62 questions. Recruited respondents were participants of a
German automotive panel by an external panel provider. After a soft launch with 209 respondents,
data was collected in March 2022 via a web-link to the survey. After data cleaning, the final sample
contains 16,032 choices of 2,004 respondents. The average response time to answer all questions
was 14.47 minutes.

Method

The choice of the powertrain technology is modelled using an error component model, which
allows analysing the relative importance of the factors listed above by exploiting the Mixed MNL
structure to allow for inter-alternative correlation and heteroscedasticity (Train, 2009). The error
components are added in a “pseudo panel” setting: for each alternative, a different random variable,
normally distributed with variance σEC , is added to the utility. The value of this variable is
considered fixed across the choices of each individual, representing personal a priori preferences.
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Different nested logit specifications, e.g. nests for alternative and classic powertrain, were tested
as well, but were not found to lead to statistically significant improvements in model fit.
The model only represents the choice of powertrain technology in a new or used car scenario. In
particular, the decision to purchase a new vehicle or to replace an old one, as well as the decision
to search on the used or on the new vehicle market are taken as fixed, and are the responsibility of
previous steps in car fleet models for which the estimated parameters shall be used in the future.
Selection of the variables to include in the model was supported through the methodology described
by Hillel et al. (2019). In particular, this method showed that the answers to the attitudinal
questions were a strong predictor of the powertrain technology choice.
Test of various model specifications suggested that the model works better with most continuous
variables transformed by a logarithm, showing a decreasing sensitivity to changes of the variable
with increasing values of the variable.

3 Selected results and discussion

The model results are presented in Tables 1 and 2. Estimation statistics are as follows: the final
Likelihood of our mode is -13301.96, AIC 26681.92 and BIC 26981.53. The adjusted Rho-square is
0.58. Most parameters are significantly different from 0 at the 95% level (two stars) or 90% level
(one star).
Age was found to be an important determinant of the choice. Indeed, respondents between 35 and
45 years old are much more prone to choose an electric or hybrid vehicle than the other age classes.
Surprisingly, while the availability of charging stations is important to the respondents, they do
not seem to react differently to “medium” and “high” availability. Whether it is because the
“medium” level is sufficient for most decision makers, or because the respondents found it difficult
to differentiate the two levels from their descriptions, unfortunately cannot be determined without
additional data.
The availability of a private garage or parking spot does not have a significant effect, even though
including this parameter leads to a significant increase in model fit. A difference is visible, including
the interaction: depending on whether the decision maker is homeowner (who likely can decide to
install a charging station, parameter βgarage,owner) or renter (who needs to accept the decisions of
their landlord, parameter βgarage,renter).
The variance parameter for the error components σEC is much higher than the scale parameter for
the logit error terms (fixed to 1). This indicates a strong influence of personal a priori preference
in the choice of a powertrain, with little variations between the situations for a person that cannot
be explained by the parameters that are part of the model.
In our survey, respondents with a positive environmental attitude (affect and cognition) and envi-
ronmental behaviour prefer an alternative powertrain over a classical one. Respondents with a high
score on environmental affect are less likely to purchase a diesel car. The effect of environmental
cognition on alternative powertrain preferences is the strongest.
The main purpose of this model is to study the determinants of demand for electric vehicles. To
this end, Table 3 shows the elasticities and cross-elasticities of demand respective to changes in
the most important continuous variables, that is, the percentage change in the demand for each of
the alternatives, given a 1% change in the continuous variable.
Elasticities are computed by predicting the demand for the exact situations in the sample, for a
small change in each of the variables, and comparing to the predicted demands without the change
in the variables.
In general, the demand is relatively inelastic, in the sense that a given percentage change in the
studied variables always leads to a smaller change in the demand.
BEV Price is the variable that leads to the largest relative changes in BEV demand, followed by
BEV energy costs, BEV range and then PHEV price. PHEV range only has a small effect on
demand, which is consistent with the selling argument of PHEV that limitations in electric range
can be compensated using an internal combustion engine.
While smaller than purchase price, the elasticities relative to energy costs are still in a similar
range, meaning that an alternative to policies having an effect on purchase price would be policies
that make energy costs for BEVs lower compared to other alternatives, either through subsidies or
taxation.
Interestingly, charging time has a very limited effect on demand: decision makers very likely want
to be able to perform their full trips in one drive, and charge the vehicle while they are performing
their activities, making range a much more important factor than charging time.
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Table 1: Model Estimates (dummies)

Parameter Estimate Std. Dev. T-Test (0)
αpetrol,new 0
αdiesel,new -3.1 0.37 -8.4 **
αphev,new -1.7 0.5 -3.4 **
αbev,new -1.2 0.45 -2.5 **
αpetrol,used 0
αdiesel,used -1.7 0.19 -9.1 **
αphev,used -1.3 0.37 -3.6 **
αbev,used -1.2 0.3 -4.1 **

βclassic,[18,25) 0
βclassic,[25,35) 0
βclassic,[35,45) 0
βclassic,[45,55) 0
βclassic,55+ 0

βalternative,[18,25) 0
βalternative,[25,35) 0.26 0.3 0.85
βalternative,[35,45) 0.65 0.31 2.1 **
βalternative,[45,55) 0.3 0.29 1
βalternative,55+ 0.3 0.28 1.1

βpetrol,children 0
βdiesel,children 1 0.27 3.7 **
βphev,children 0.35 0.29 1.2
βbev,children 0.4 0.28 1.5

βgarage,owner 0.18 0.2 0.91
βgarage,renter -0.2 0.21 -0.98

βav,low 0
βav,medium 0.51 0.049 10 **
βav,high 0.52 0.047 11 **

To test the effect of variables taking only discrete values, market shares under alternative “scenarios”
were computed. Figure 2 presents the results for the “base” scenario (running predictions on the
sample without changes), “high availability” scenario (availability of charging stations for BEV set
to “high” in all choice situations) and “all garage” scenario (all respondents are assumed to have
access to a private garage or parking spot). Two price variations are also included: -15% for all
BEV alternatives, and a simulation of the “Umweltbonus” currently in effect in Germany (-9000
Euros for new BEVs with a price under 40000 Euros, -7500 Euros for new BEVs with a price over
40000 Euros). Predictions are simulated for random values of the parameters sampled from the
asymptotic distribution of the parameters, to get a feeling for results variance.
Availability of charging stations does have a noticeable effect on BEV market shares, both in the
new and used market, but the difference remains small. Access to a private garage does not have
any noticeable effect. In comparison, the effect of the two price policies is much larger.
Overall, the results seem to point to the fact that the technology is mature enough, such that the
most important factor leading to a purchase decision for a BEV is the price.
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Table 2: Model Estimates (Continuous Variables)

Parameter Estimate Std. Dev. T-Test (0)
σEC 2.7 0.056 49 **
λinc -0.051 0.042 -1.2
λinc,fuel 0.049 0.062 0.79

βprice -2 0.055 -36 **
βfuel price -1.2 0.09 -13 **
βfuel price,educated -1.5 0.064 -23 **
βloadtime -0.12 0.037 -3.2 **
βkm -0.82 0.092 -8.9 **

βphev,range 0.15 0.073 2.1 **
βbev,range 0.72 0.071 10 **

βpetrol,dist 0
βdiesel,dist 0.72 0.12 5.9 **
βphev,dist 0.26 0.094 2.7 **
βbev,dist 0.27 0.12 2.4 **

βpetrol,COG 0
βdiesel,COG -0.096 0.12 -0.83
βphev,COG 0.39 0.11 3.4 **
βbev,COG 0.64 0.12 5.3 **

βpetrol,AFF 0
βdiesel,AFF -0.23 0.11 -2.1 **
βphev,AFF 0.24 0.11 2.2 **
βbev,AFF 0.58 0.11 5.4 **

βpetrol,BEH 0
βdiesel,BEH 0.24 0.13 1.8 *
βphev,BEH 0.36 0.12 2.9 **
βbev,BEH 0.4 0.12 3.3 **

4 Conclusions

This paper presents the findings of a stated preference survey on powertrain preference when
purchasing a new or used vehicle. We report on the survey design, experiences made during data
collection, preparation for model estimations and the results of an error component logit mixture
model. It was shown that the collected data set holds rich information with a promising number
of cases suitable for modelling the preferences.
Overall, the results seem to point to the fact that the technology is mature enough, such that the
most important factor leading to a purchase decision for a BEV is the price. These results may
help policymakers for continued or future measures aimed in particular at the transition of power-
trains. In particular, the results show that while the current incentive put into place in Germany
(“Umweltbonus”, a reduction in purchase price) is very effective, a modification of the difference in
price of energy per kilometre between technologies would also have a potentially important impact
on the preference for electric powertrains. Under the hypothesis that the consumers see these
changes as a long-term trend that will impact them for the whole lifetime of their vehicle, rather
than a potentially short-lived policy.
Our survey also reflects a snapshot of how high the registration numbers of electric vehicles could
be if supply shortages implying long delivery times and high purchase prices were overcome quickly.
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Table 3: Demand Elasticities

Elasticities
Petrol Diesel PHEV BEV

Parameter Used New Used New Used New Used New
BEV Price 0.2 0.27 0.2 0.29 0.21 0.28 -0.6 -0.47
PHEV Price 0.2 0.24 0.22 0.26 -0.66 -0.6 0.2 0.21
Petrol Price -0.57 -0.66 0.28 0.24 0.26 0.19 0.25 0.16
Diesel Price 0.18 0.15 -0.7 -0.8 0.18 0.12 0.15 0.1
BEV Charge Time 0.012 0.016 0.012 0.017 0.013 0.017 -0.036 -0.029
BEV Range -0.071 -0.099 -0.071 -0.1 -0.076 -0.1 0.21 0.17
PHEV Range -0.015 -0.019 -0.017 -0.021 0.051 0.047 -0.015 -0.017
BEV Energy Costs 0.14 0.2 0.14 0.21 0.15 0.21 -0.42 -0.35
PHEV Energy Costs 0.14 0.18 0.15 0.19 -0.47 -0.44 0.14 0.15
Petrol Energy Costs -0.4 -0.39 0.2 0.14 0.19 0.11 0.17 0.093
Diesel Energy Costs 0.12 0.11 -0.49 -0.58 0.13 0.092 0.11 0.075

Against the background of halving emissions in less than ten years, it is crucial how quickly battery
electric vehicle’s new registrations (and thus indirectly its stock) increase.
Finally, in our survey only the demand is modelled, but not the supply. In the current (pandemic
and the Russia-Ukraine war) situation, manufacturers cannot produce as many electric vehicles as
they are in demand. This is still foreseeable in the coming years and could therefore be a major
problem for the ramp-up in passenger car traffic.

References

Alberini, A., Horvath, M., & Vance, C. (2022). Drive less, drive better, or both? behavioral
adjustments to fuel price changes in germany. Resource and Energy Economics, 101292.

Bhat, C. R., Sen, S., & Eluru, N. (2009). The impact of demographics, built environment attributes,
vehicle characteristics, and gasoline prices on household vehicle holdings and use. Transportation
Research Part B: Methodological , 43 (1), 1–18.

Creutzig, F., Jochem, P., Edelenbosch, O. Y., Mattauch, L., Vuuren, D. P. v., McCollum, D., &
Minx, J. (2015). Transport: A roadblock to climate change mitigation? Science, 350 (6263),
911–912.

Dahl, C., & Sterner, T. (1991). Analysing gasoline demand elasticities: a survey. Energy economics,
13 (3), 203–210.

Federal Ministry for the Environment, Nature Conservation and Nuclear Safety. (2021). Federal
climate change act. (
http://www.gesetze-im-internet.de/englisch_ksg/englisch_ksg.pdf)

Frondel, M., & Vance, C. (2018). Drivers’ response to fuel taxes and efficiency standards: evidence
from germany. Transportation, 45 (3), 989–1001.

Haasz, T., Vilchez, J. J. G., Kunze, R., Deane, P., Fraboulet, D., Fahl, U., & Mulholland, E. (2018).
Perspectives on decarbonizing the transport sector in the eu-28. Energy strategy reviews, 20 ,
124–132.

Hillel, T., Bierlaire, M., Elshafie, M., & Jin, Y. (2019). Weak teachers: Assisted specification of
discrete choice models using ensemble learning. In 8th Symposium of the European Association
for Research in Transportation (hEART 2019). Retrieved from https://transp-or.epfl.ch/
heart/2019/abstracts/hEART_2019_paper_117.pdf

6

http://www.gesetze-im-internet.de/englisch_ksg/englisch_ksg.pdf
https://transp-or.epfl.ch/heart/2019/abstracts/hEART_2019_paper_117.pdf
https://transp-or.epfl.ch/heart/2019/abstracts/hEART_2019_paper_117.pdf


Figure 2: Market Shares Under Different Scenarios

Intergovernmental Panel on Climate Change, W. G. t. (2022). Climate change 2022, mitigation
of climate change. IPCC, Switzerland.

Kickhöfer, B., Bahamonde-Birke, F. J., & Nordenholz, F. (2019). Dynamic modeling of vehicle
purchases and vehicle type choices from national household travel survey data. Transportation
Research Procedia, 41 .

Kok, R., Annema, J. A., & van Wee, B. (2011). Cost-effectiveness of greenhouse gas mitigation
in transport: A review of methodological approaches and their impact. Energy Policy , 39 (12),
7776–7793.

Lamb, W. F., Wiedmann, T., Pongratz, J., Andrew, R., Crippa, M., Olivier, J. G., . . . others
(2021). A review of trends and drivers of greenhouse gas emissions by sector from 1990 to 2018.
Environmental research letters.

7



Sozialdemokratischen Partei Deutschlands,BÜNDNIS 90 / DIE GRÜNEN, Freie Demokraten.
(2021). Koalitionsvertrag 2021 – 2025 zwischen der Sozialdemokratischen Partei Deutschlands
(SPD), BÜNDNIS 90 / DIE GRÜNEN und den Freien Demokraten (FDP). (
https://cms.gruene.de/uploads/documents/Koalitionsvertrag-SPD-GRUENE-FDP-2021
-2025.pdf)

Stepp, M. D., Winebrake, J. J., Hawker, J. S., & Skerlos, S. J. (2009). Greenhouse gas mitigation
policies and the transportation sector: The role of feedback effects on policy effectiveness. Energy
Policy , 37 (7), 2774–2787.

Train, K. E. (2009). Discrete choice methods with simulation. Cambridge university press.

Whitehead, J., Plötz, P., Jochem, P., Sprei, F., & Dütschke, E. (2021). Policy instruments for plug-
in electric vehicles: an overview and discussion. International Encyclopedia of Transportation,
1 , 496–502.

8

https://cms.gruene.de/uploads/documents/Koalitionsvertrag-SPD-GRUENE-FDP-2021-2025.pdf
https://cms.gruene.de/uploads/documents/Koalitionsvertrag-SPD-GRUENE-FDP-2021-2025.pdf


1 
 

Modelling Travel Time Anticipation  
Under Rational Inattention and Endogenous Information Constraints 

 
Dimitrios Pappelis*1, Emmanouil Chaniotakis2, Tim Hillel3, Maria Kamargianni4 

 
1 Research Assistant, BSEER Energy Institute, University College London, UK, WC1H0NN 

2 Lecturer, BSEER Energy Institute, University College London, UK, WC1H0NN 
3 Lecturer, Civil Engineering, University College London, UK, WC1H0NN 

4 Professor, BSEER Energy Institute, University College London, UK, WC1H0NN 

 

SHORT SUMMARY 

Transportation research has been traditionally grounded on the economic theory of Rational 
Expectations, assuming that individuals are fully informed, optimizing, and self-interested 
decision makers. However, this assumption fails to sufficiently explain the inertia that 
characterizes travellers’ behaviour in face of uncertainty.  In recent years, there has been a rising 
interest in the theory of Rational Inattention, arguing that individuals choose to make seemingly 
suboptimal choices due to the cost of acquiring and processing available information. In this 
paper, we present a continuous quadratic Rational Inattention model of travel time anticipation. 
We showcase that its properties satisfy behavioural hypotheses derived from data collected 
through a case study in the city of Turin on within-day travel re-evaluation. We conduct 
simulation experiments and propose an alternative 2-stage framework for enhancing existing 
neoclassical travel behaviour models, indicating potential biases and discrepancies in the 
forecasted market shares, specifically with regards to rare travel time occurrences.  
 
Keywords: Choice modelling, Dynamic travel behaviour, Inertia, Rational inattention, Traffic 
information 
 

1. INTRODUCTION 

Transportation planning and policy making rely on models to predict and explain the behavior of 
travellers. Traditionally, research on this front has been based on the economic theory of Rational 
Expectations, assuming that individuals are fully informed, optimizing, and self-interested deci-
sion makers.  However, this assumption fails to sufficiently explain the resistance to change that 
characterizes travellers’ behaviour in face of uncertainty.  In recent years, there has been a rising 
interest in the Rational Inattention (RI) theory, originally developed by Christopher Sims (2003). 
The argument is that individuals consciously choose to make seemingly suboptimal choices due 
to the cost of acquiring and processing available information. In recent years, Matejka and McKay 
(2015) expanded the theory for discrete choice under imperfect information and cognitive capac-
ity constraints. As such, RI has emerged as a compelling and neat framework for further under-
standing the behavior of decision makers in complex and dynamic environments. 
 
In the context of transport modelling, Rational Inattention is still relatively unexplored. Fosgerau 
et al. (2019) and Jiang et al. (2020) defined the problems of route and departure time choice under 
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RI and provided simulation findings. Fosgerau et al. (2020) established the general equivalence 
between discrete choice and RI models, providing an alternate point of view in the interpretation 
of typical RUM models. From an application perspective, Habib (2022) investigated empirical 
use-cases and focused on estimable specifications of discrete choice RI models. 
 
In this paper, we present a continuous-quadratic RI model of travel time anticipation. We 
showcase that its properties satisfy our behavioural hypotheses derived from data collected from 
a case study in the city of Turin on within-day travel demand shift choices. We proceed to assess 
the model capabilities through numerical experiments and then propose a 2-stage framework for 
enhancing existing neoclassical models of travel behaviour, given the open challenges associated 
with data collection for RI phenomena. We indicate how ignorance of the priors and information 
capacity constraints could lead to potential biases and discrepancies in the forecasted market 
shares, especially with regards to rare travel time occurrences. 

2. METHODOLOGY 

Data Collection 

The motivation of this paper originates in the investigation of within-day re-evaluation and day-
to-day learning as described by Pappelis et al. (2022). In that study, a joint Revealed Preference 
and Stated Preference (RP-SP) experiment was applied to collect "pseudo" panel data on within-
day demand shift choices. The primary objective was to investigate individuals' adaptation strat-
egies when faced with travel time fluctuations on their habitual schedule, and how the accumu-
lated experience affects their future actions. Participants, whose travel patterns were initially rec-
orded using a smartphone tracking application, were provided with travel information for an up-
coming habitual trip, either during an activity or en-route to their destination. Given this infor-
mation, they were asked to record their response in the form of an adaptation strategy. The strat-
egy could involve modifying trip characteristics such as departure time, mode, or route, or chang-
ing the target activity through replacement or cancellation. At the end of each day, participants 
updated their anticipation of travel time for the following day based on accumulated experience 
and reported whether they would consider long-term adjustments to their habitual schedule.  
 
The described experiment allowed for the exploration of individuals' responses to travel time 
fluctuations and the implications on their future travel behavior. It was applied in the metropolitan 
area of Turin (IT) between February and April 2022, as part of a wider travel demand survey. 
Recruited individuals formed a stratified sample of the travel survey participants, which is repre-
sentative of the population in the Turin region (a survey company was hired for recruitment). The 
RP data collection was performed using a smartphone-based travel survey tool, the MobyApp. 
The habitual activity and travel patterns were tracked from the application in the form of travel 
diaries over the course of 7 days.  In total, 365 individuals accessed the experiment and 351 of 
them completed it, resulting in 702 tracked trips and 4212 observations.  
 
The dataset revealed some interesting behavioural findings with regards to inertia effects of travel 
behaviour and the concept of false certainty adoption. For instance, Figure 1 displays the number 
of trips categorized by re-evaluation strategy, based on the daily fluctuations in travel time. The 
level of fluctuation is determined by the travel factor parameter, which is multiplied by the habit-
ual travel time for a specific trip of the participant in each scenario. The analysis shows that for 
medium levels of travel time fluctuation, the dominant re-evaluation strategy is 'No change,' sug-
gesting that many individuals may prefer to stick with their habitual option rather than make 
changes, even if from a utility maximization perspective this can be seen as “irrational”. This 
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finding aligns with the concept of resistance to change, a heterogeneous factor across the popula-
tion. As travel time increases, schedule constraints and conflicts may increase stress, leading in-
dividuals to consider changing their travel plans (such as adjusting departure time, mode, or 
route). For extreme levels of travel time fluctuation, we observe the highest likelihood of cancel-
lation or replacement of the activity. 
 

 
Figure 1 Resistance to change for different levels of travel time fluctuation 

It is also important to study how the prior expectation of travel time evolves with accumulated 
experience. Figure 2 depicts the participants’ scaled anticipated travel time after each day, against 
the 2-day and 3-day moving average of different travel time orders used throughout the experi-
ment. We observe significant sluggishness and inertia in the travel time anticipation of the partic-
ipants, being influenced from their prior beliefs and experience. While Rational Expectations the-
ory would imply that external stimuli would cause stronger and fast responses, we observe much 
milder adaptations and a “magnet effect” towards the reference level of travel time. 
 

 
Figure 2 Inertia and sluggishness in travel time anticipation  
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Modelling Framework 

Based on these behavioural observations, we proceed to define the travel anticipation problem as 
a static model of choice under Rational Inattention (Mackowiak et al., 2021). Consider an agent 
who plans to perform a daily trip and receives an information signal 𝑠, in order to set her travel 
time anticipation 𝑎, subject to unknown network conditions 𝑡. Let the utility have the following 
log-quadratic form, 
 

𝑈(𝑎, 𝑡) = −𝑏(𝑎 − 𝑡)! 
 
The agent is tracking the unknown random state of the network, which under perfect information 
would be equal to her anticipation. Naturally, this would allow the agent to construct her subse-
quent travel plans most accurately (e.g., departure time, mode, route). However, as the true travel 
time is infeasible to observe constantly and travel information comes at a perceptual cost, the 
agent chooses to receive noisy information that determines the posterior beliefs that she may hold. 
The utility parameter 𝑏 is a scaler, which can account for agent’s heterogeneity with regards to 
traffic information seeking. Under the general quadratic form, we assume that over or under-
estimation of travel time incurs equal losses. In many cases, delayed arrivals might incur costlier 
losses, so it is worth studying different variants of the utility function going forward. The objec-
tive of the agent is to maximize the expectation of her utility less the cost of information C(f), 
which is a function of the information strategy, 
 

𝑚𝑎𝑥
"

∫𝑈(𝑎, 𝑡)𝑓(𝑎, 𝑡)𝑑𝑡𝑑𝑎 − 𝐶(𝑓) (1) 

 
The joint probability f(𝑎, 𝑡) is sufficient to describe the choice of information and action, as they 
are derived such that no two signals lead to the same action. Otherwise, the agent would be wast-
ing attentional resources by distinguishing between signals that do not directly affect their actions. 
As a result, it is possible to make a one-to-one association between the signal and action and 
analyse the relationship between attention, allocation, information acquisition, and decision-mak-
ing in a unified framework. The objective function (1) is maximized subject to the following 
constraints, 

∫𝑓(𝑎, 𝑡)𝑑𝑎 = 𝑔(𝑡),  ∀𝑡 (2) 
 

The prior belief of the agent is described by the pdf 𝑔(𝑡). Constraint (2) ensures the consistency 
of the prior and posterior beliefs of the agent under Bayesian rationality. 
 

𝐶(𝑓) = 𝜆 ⋅ 𝐼(𝑎; 𝑡) = 𝜆 ⋅ [𝐻[𝑔(𝑡)] − 𝐸[𝐻[𝑡|𝑎]] (3) 
 

The cost function (3) is defined in terms of the mutual information between the agent’s anticipa-
tion and the actual travel time. It is based on the difference between the entropy of the prior 
distribution of travel times and the conditional entropy of the distribution of travel times given 
the agent’s prediction. The parameter λ typically referred to as the “attention cost” or “information 
cost” reflects the required effort of acquiring and processing the information.  

 
𝐻[𝑔(𝑡)] = −∫𝑔(𝑡)𝑙𝑜𝑔  𝑔(𝑡)𝑑𝑡 (4) 

 
Entropy (4) is quantified using Shannon's definition, which measures the amount of information 
present in the probability distribution of travel time. The cost function penalizes travel time pre-
dictions that require more attention to achieve a specific level of accuracy. By minimizing the 
difference between the prior and conditional entropy based on the prediction, the cost function 
encourages accurate predictions that require less attention. The solution to the agent's problem for 
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an unknown network state t has a probabilistic logit form. The solution of the agent’s problem for 
an unknown state of the network t is has the following probabilistic logit form. 
 

𝑓(𝑎|𝑡) =
𝑝(𝑎)𝑒#(%,')/*

∫ 𝑝(𝑧)𝑒#(+,')/* 
+ 𝑑𝑧

 

 
In most cases, RI problems do require numerical solution methods. A well-studied exception is 
the case of quadratic utility, Gaussian prior uncertainty, and an unbounded action space, where 
Gaussian signals are optimal Interestingly, for a bounded or truncated action space, the solution 
of the continuous problem is discrete, indicating that the agent contemplates only specific levels 
for a given choice, a phenomenon commonly observed in the stickiness of product prices. In the 
context of travel time, this would imply that travellers choose from a finite set of levels when 
updating their anticipation and might, for instance, set a regular departure time and standard 
“safety” departure when expecting a range of potential delays.  

3. RESULTS AND DISCUSSION 

The collection of data for the practical estimation of RI models is challenging, mainly because 
the concept of cognitive capacity constraints is abstract and difficult to measure. In the context of 
travel time anticipation and travel behavior, an ideal dataset would need to capture multiple fac-
tors simultaneously, including the agent's beliefs (i.e., their prior perception of the probability 
distribution of travel times), the world (i.e., network conditions such as travel time), attention 
allocation (i.e., the choice of signal or level of information), and action (i.e., the agent's choice).  
The design of such sophisticated experiments is an ongoing task in economics research. In ab-
sence of this complete dataset, we proceed to perform numerical experiments on the travel time 
anticipation model and then propose a 2-stage approach to enhance traditional neoclassical mod-
els of travel behaviour. 

Numerical Experiment 

To assess and showcase the properties of the modelling framework, we perform numerical exper-
iments that justify our behavioural hypotheses derived from the data analysis. A triangular prior 
distribution is assumed for the agents’ belief, a common approach in related studies (Figure 1).  
 

 
Figure 3 Triangular prior anticipation of trip travel time distribution 
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We then proceed to solve the RI problem (Eq.1-4) for two different levels of the marginal cost of 
information λ. The optimization problem was solved using the GAP-SQP geometric algorithm 
proposed by Armenter et al. (2021). Figure 2 presents the joint probability of anticipated travel 
times, as well as the conditional probability of the non-zero solutions (discrete choice set). It is 
apparent that the responsiveness of an action to a given state can be increased by altering the 
stakes or reducing the cost of information. When the stakes are high or the cost of information is 
low, individuals are more motivated to make accurate predictions of the travel time and allocate 
their attention accordingly, thus the plurality in possible actions. This increased attention leads to 
greater responsiveness of the action to the state, as individuals are more likely to adjust based on 
the information available to them. On the contrary, for lower stakes or high values of the infor-
mation constraints, the agent might only consider few alternatives and apply them over a range 
of states of the network. 

 

 
Figure 4 Simulated joint and conditional probabilities for higher (λ=0.03, left) and lower (λ=0.005, right) 

values of marginal information cost 

Empirical Findings 

The theory of Rational Inattention and the endogenous processing of information raise important 
questions about what traditional empirical methods, such as controlled experiments, capture in a 
transportation setting. This is particularly relevant for travel re-evaluation behavior, where it is 
most often assumed that individuals are fully aware and process all available advanced infor-
mation. Furthermore, in a revealed preference setting, such effects might already be captured in 
the data, thus there is a need to not only disentangle preferences, but also consider their equilib-
rium relationships with the supply side.  
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Given these open research challenges, we extend the travel re-evaluation framework developed 
by Pappelis et al. (2022). At this point, it is important to clarify that -in this context of RI- we are 
not referring to the cognitive constraints of the participant with regards to the experiment setting 
and attributes, which is also important to be controlled, but with the inattention to information 
(e.g., journey planners, radio) that would be observed in the transition to a real-world setting. 
Figure 5 illustrates a two-stage sequential framework for incorporating RI effects in the demand 
shift models. In the first stage, we utilize the continuous RI model to solve for travel time antici-
pation. In the second stage, we use the output of the RI model as a more realistic depiction of 
travel time when simulating dynamic demand shift decisions. 
 
 

 
Figure 5 Sequential approach for incorporating travel time anticipation under RI 

 
The model selected for the evaluation of the framework is the static Mixed Nested Logit, which 
was designed to generate the probability of specific adaptation strategies being selected, when 
faced with travel time fluctuation during a habitually performed trip. The nesting structure and 
the alternatives of the travel re-evaluation model are depicted in Figure 6 (see full paper for com-
plete specification). 
 

 
Figure 6 Demand shift model choice alternatives and nesting structure (Pappelis et al., 2022) 

Applying the 2-stage framework, we proceed to perform sensitivity analysis on the information 
cost parameter λ of the travel time variable, maintaining the assumption of the triangular distri-
bution, and then comparing the simulated market shares for different ranges of the travel time 
distribution. We observe that for severe delays (travel factor >2.5), the Rational Expectations 
model might overestimate the aggregate response of the travellers, especially when it comes to 
cancellation of a given trip. Comparing it to the extreme case of a marginal information cost above 
the threshold of any signal acquisition, a significant discrepancy of over 20% can be observed in 
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the market share of the “Habit” alternative.  On the contrary, for lower levels of travel time fluc-
tuation (travel factor <1.5), the Rational Inattentive agent might falsely overreact due to false 
signals, when she would be better off following her habitual schedule. Such discrepancies indicate 
the importance of measuring and accounting for the prior beliefs, the information processing con-
straints and marginal cost of information λ in travel behaviour modelling and forecasting. 
 

 
Figure 7 Forecasted shares for different levels of marginal information cost and travel time fluctuation 

4. CONCLUSION 

In conclusion, our paper highlights the potential benefits of incorporating Rational Inattention 
theory into transportation modelling and travel time anticipation in particular. Future steps include 
the extension of the framework to a dynamic setting, allowing for individuals to acquire informa-
tive signals which can also be used as predictors of future actions. Finally, the relevance and 
applicability of the RI theory in transportation needs to be further examined through the design 
of sophisticated data collection experiments. 
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Short summary

Current practices in transport policy appraisal are mostly restricted to partial equilibrium mod-
elling, creating a natural need to explore new ways to understand the spatial general equilibrium
impacts of transport interventions. The emerging literature of quantitative spatial models (QSM)
o�ers new opportunities. However, the direct application of the QSM methodology in transport is
hindered by the assumption of unidimensional `iceberg' travel costs. Due to the presence of both
temporal and pecuniary travel costs, the theoretical characterisation and empirical measurement
of the monetary value of travel time savings has been a central theme of transport research for
decades. We bridge a gap between spatial and transport economics by developing a quantitative
spatial model with endogenous travel time valuations , revealing its previously neglected spatial
heterogeneity. The model yields OD-speci�c values of time in spatial general equilibrium. Numeri-
cal implementation of the model highlights the relevance of our contribution in practical transport
appraisal.

Keywords: transport appraisal; value of time; spatial general equilibrium.

1 Introduction

Transport appraisal models help divert heated debates on large-scale infrastructure projects to a
somewhat more objective quantitative basis. Experience suggests that travel time savings is one of
the biggest sources of bene�ts when a transport intervention reduces the distance and/or journey
time between geographic locations. For this reason, the theoretical underpinning and empirical
estimation of the monetary value of travel time received increased attention in transport research
(Small, 2012). The standard transport appraisal methodology is often criticised, however, for its
partial equilibrium approach, i.e., its inability to predict and quantify the impact of the spatial re-
organisation of economic activity after the implementation of transformative transport investments
(Mackie et al., 2011). Previous attempts in spatial general equilibrium transport appraisal, such
as the so called `land use-transport interaction' models, have not reached a consensual acceptance
among economists, mainly due to the absence of microfoundations behind various assumptions
on model speci�cation and the arbitrary (theoretically inconsistent and/or statistically potentially
biased) identi�cation of model parameters.

This research re�ects on recent developments at the crossroad between urban economics and eco-
nomic geography: a new class of models often referred to as quantitative spatial economics (Redding
& Rossi-Hansberg, 2017) seems to be more widely acknowledged as a tool for empirically relevant
economic analysis in spatial general equilibrium. Quantitative spatial models (QSMs) are based on
discrete-continuous demand models in which the choices of residential and workplace location are
governed by Fréchet distributed multiplicative idiosyncratic shocks and, given the location choice,
consumes optimise their consumption of housing, goods and services on a continuous scale. QSMs
achieved a breakthrough in spatial economics due to very advantageous analytical properties: the
existence and uniqueness of spatial equilibrium can be derived analytically and the model can be
calibrated in a series of theoretically consistent econometrics exercises. Pioneering QSM papers,
such as Allen & Arkolakis (2014), Ahlfeldt et al. (2015), Donaldson (2018), Monte et al. (2018),
Heblich et al. (2020) and Allen & Arkolakis (2022), have been publishing in the leading journals
of economics over recent years.
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We believe that in the long run, QSMs may be suitable to replace the existing partial equilibrium-
based transport appraisal methodologies in practical policy development as well. However, a
prerequisite for that is to bring this new approach closer to transport research and align it more
closely with advances in contemporary transport modelling.

In this research we focus on a common assumption of QSMs which limits their ability to replicate
important characteristics of transport provision. QSMs capture the inconvenience of travel through
the well-known ad-valorem or `iceberg ' formulation. This unidimensional measure of cost is not
suitable to distinguish the disutility of travel time loss from pecuniary expenditure. The practical
consequence is that a very fast but relatively expensive transport service may appear identical to a
slow but relatively cheap alternative. Arguably, these two types of services (e.g., an expensive high-
speed rail link and an a�ordable commuter service) may have fundamentally di�erent structural
impacts on the spatial economy. Several QSMs are based on even simpler assumptions, completely
neglecting the monetary cost of travel. Such models are even less suitable to appraise pricing
policies, a set of measures frequently advocated by transport economists.

This paper documents an initial attempt to capture temporal and monetary costs through separate
time and money constraints facing households in the QSM framework. We derive an analytical
expression of endogenous travel time valuations for each residence�workplace combination of the
spatial model. This generates spatial heterogeneity in the valuation of travel time savings which
is mostly neglected in the current transport appraisal practice. In a numerical implementation of
the model, we provide an illustration of how this novel approach can be applied in transport policy
evaluation and project ranking.

2 Methodology

The paper's key contributions lie in the we model household preferences. Therefore, in the present
short paper, we detail the demand side of the methodology, suppressing other components of the
spatial model into a brief description.

Household preferences

Let us de�ne the utility of a representative worker who resides in location i and commutes to
location j as

Uij =

(
Cij

β

)β (
Lij

γ

)γ

· zij . (1)

In this speci�cation, Cij denotes consumption of a variety of goods, Lij is a measure of leisure
time, β and γ are structural parameters, and zij is an idiosyncratic taste shock associated with
the combination of locations i and j. Households are ex-post heterogeneous in their location
preferences. In our notation we suppress the unique identi�er of households; note, however, that
zij takes a di�erent value for each household.

Commuters face two constraints through which individual labour supply xij will a�ect utility.
This way we adopt the modelling approach of Arnott (2007) and Hörcher et al. (2020) in a spatial
setting. First, wage wj at workplace j and the monetary price of commuting τij determine the
budget available for consumption, where Pi is the price index of the consumption variety.

xij (wj − τij) = Pi · Cij [κ] (2)

Second, leisure time Lij , time spent at work (T , exogenous), and commuting time tij cannot exceed
L̄, the daily time endowment of households.

L̄ = Lij + xij (T + tij) [µ] (3)

With Lagrange multipliers κ and µ, �rst-order condition of the optimal choice of individual labour
supply implies

κ(τij − wj) + µ(T + tij) = 0, (4)

which equates the monetary bene�t of the marginal trip to work with its monetary as well as time
cost. Rearrangement leads to an expression of the ratio of the marginal utilities of time and money:

µ

κ
=

wj − τij
T + tij

= υij . (5)
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We interpret this ratio as a monetary valuation of the incremental relaxation of the worker's time
endowment. We call it the (marginal) value of time and denote by υij . This quantity has been one
of the key variables of the literature of transport economics since its emergence (DeSerpa, 1971;
Small, 2012; Jara-Díaz, 2020). The value of time provides a suitable exchange rate between travel
time savings and monetary expenditures, thus allowing the analyst to quantify in monetary terms
the bene�t of journey time reduction after transport improvements. As one would expect, the
worker's wage is among the determinants of the value of time, as foregone time could always be
used to earn income through work. Equation (5) also reveals that the value of time depends on
the monetary and time cost of commuting as well. The core consequence from a spatial economic
point of view is that the value of time will likely di�er between commuters by the place of residence
and work, which is often neglected in mainstream transport policy appraisal. To emphasise this
feature of the model, we keep the subscripts of υij throughout the forthcoming analysis.

After simple algebraic manipulations, �rst-order conditions lead to the following expressions for
the optimal consumption, labour supply and leisure quantities.

Cij = ξ
υij
Pi

, (6)

where ξ =
(
1 + γ

β

)−1

. Naturally, consumption decreases with the price index at the residential

location (Pi) and increases with the β parameter of our direct utility function. More surprisingly,
υij enters this formula directly. That is, someone with a high value of time is expected to consume
more. It may be more appropriate in the present context to interpret υij as a net hourly wage

instead of a travel time valuation, where both the money cost and the temporal duration of
commuting is part of the net wage. With this interpretation, it is more convincing that consumption
increases with the net hourly wage, indeed.

Combining the �rst-order conditions with respect to Cij and Lij with the monetary budget con-
straint in (2) and (5), we �nd

xij = ξ(T + tij)
−1. (7)

This rule suggests that individual labour supply increases with the utility of consumption through
β and decreases with the utility of leisure time through γ. Commuting time has a negative impact
on xij . Interestingly, the gross wage cancels out in this formula, so it has no direct impact on
individual labour supply under the present assumptions. The consumer problem's solution with
respect to leisure time is

Lij =

(
1 +

β

γ

)−1

. (8)

In this simple formula, β and γ have the expected impact on leisure time, and all the remaining
endogenous variables cancel.

The last four results yield the following indirect utility function for a given combination of resi-
dential and working locations.

uij =

(
υij/Pi

γ + β

)β (
1

γ + β

)γ

(9)

In the speci�c case β + γ = 1, indirect utility simpli�es to

uij =

(
υij
Pi

)β

zij =

[
wj − τij

Pi(T + tij)

]β
zij . (10)

That is, the net hourly wage (or in a di�erent interpretation, the marginal value of time), the local
price index, the β parameter, and idiosyncratic taste are the only determinants of a residence�
workplace combination's attractiveness to households.

Spatial equilibrium

In the rest of this modelling exercise, we follow standard practices in the quantitative spatial
economics literature with some adjustments necessitated by the methodology introduced in the
previous subsection. In particular, household heterogeneity is represented à la Eaton & Kortum
(2002), the production side of the model follows Monte et al. (2018) while the present version of
the model neglects competition in the housing market, just as in Hayakawa et al. (2021). The
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main di�erences are routed in (i) the endogeneity of individual labour supply and (ii) the unique
speci�cation of indirect utility, as derived above.

The idiosyncratic utility shock is speci�ed as a draw from a Fréchet distribution:

Fij(z) = exp(−AiBjz
−ϵ), (11)

where the average amenity (i.e. the scale parameter) is de�ned as the product of residence and
workplace dependent local fundamentals Ai and Bj , and ϵ governs the spread of individual prefer-
ences. These assumptions lead to location choice probabilities that take the form of a commuting
gravity equation.

λij =
AiBj

[
wj−τij

Pi(T+tij)

]βϵ
∑

r

∑
s ArBs

[
ws−τrs

Pr(T+trs)

]βϵ (12)

To model the production side of the economy we follow a conventional appraoch in new economic
geography and Monte et al. (2018) more closely. Varieties of the consumption good are produced
under monopolistic competition, using labour as the sole input. A �xed factor of production and
the constant marginal cost of producing a unit of one of the symmetric varieties in location j imply
increasing returns to scale. Productivity is an exogenous characteristic of each location. Following
the usual derivations, pro�t maximisation and the zero pro�t assumption yield an equilibrium unit
price for a variety produced in j and sold in i under ad valorem trade cost. This setup provides a
separate gravity equation of trade �ows, measuring the fraction of spending in i on goods produced
in j. We use the trade gravity equation to compute the vector of equilibrium wages. Finally, CES
preferences and monopolistic competition yield a price index for each location that we use in the
commuting gravity equation above. Unfortunately, the length limit of this short paper does not
allow for a more detailed elaboration of the model.

In the numerical implementation of the model, we solve for spatial equilibrium by iteratively re-
evaluating the equilibrium conditions of the model and updating the wage and price index vectors.

3 Results and discussion

Figure 1 shows the layout of our simulation framework. This toy network includes 18 locations
arranged in a grid. We mimic a system of two cities connected by a transport link. Each city has
a central node and eight spokes around it. The local fundamentals of the locations are set to the
same values except for the dark shaded ones: productivity in nodes A5 and B5 are set to EA5 = 2.0
and EB5 = 1.5, while in the remaining locations Ej = 1. This implies that city A is somewhat
more e�cient in production. Nodes A2 and B2 feature higher amenity levels than other places;
AB2 = BA2 = 2.0 while all the remaining amenity variables are normalised to one, thus allowing
us to observe the impact of amenities by comparing A2 to A8 and B2 to B8. The attribute levels
of transport links between these notes are depicted in Figure 1. Commuting times and costs in
city B are 10 percent higher than in city A, but there is no di�erence in intracity goods transport.
Finally, commuting through the intercity link is signi�cantly costlier than within the two cities,
which is expected to limit the attractiveness of intercity residence�workplace combinations while
the trade impedance is milder. We set the structural parameters of the model following typical
values in the quantitative spatial economics literature.1

Figure 2 depicts the core results of this exercise: the pattern of heterogeneity in travel time
valuations. Recall from (5) that υij may potentially di�er between each residence�workplace
combination (or origin�destination pair, OD-pair, in transport terminology). In our toy network,
each link can be used by commuters of multiple OD-pairs. To derive the mean value of time of
each link, we take the �ow-weighted average of the relevant i�j combinations.

1In particular, σ = 4, ϵ = 6.83, β = γ = 0.5, L̄ = 1, T = 8/24, F = 50, and population is M = 10, 000.
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Figure 1: Network layout of the simulation framework.
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Figure 2: Travel time valuations, commuting �ow, and the distribution of residential pop-

ulation and price indices in spatial equilibrium.

The result in Figure 2 reveals considerable heterogeneity in the average values of time by link.
Time is valued generally higher in the more productive and better connected city A where the
mean value of time is 157.5 as opposed to 145.4 in city B. The di�erence in commuting �ows
is even greater between the two cities. Note that the correlation between commuting �ows and
travel time valuation is positive but weak: 0.173 under the current set of parameters. That is, as
opposed to �ows, the forces behind the value of time di�er from gravity between residential and
workplace locations. The pattern of �ows follows the regular characteristics of monocentric cities:
tra�c between peripheral locations is moderate due to the lower level of employment in these
areas. Commuting movements are sparse between the two cities due to the relatively high travel
time and cost in this market, even though the only intercity link is shared by more OD-pairs than
regular intracity links. The value of time is also signi�cantly lower for long-distance commuters
who have a higher share on links A5�A6 and B4�B5.
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Figure 3: Relative e�ciency of link-level travel time reduction according to three appraisal

methods.

Let us now explore whether the spatial di�erentiation of the value of time may a�ect policy
decisions in prioritising investments in a transport network. In a series of numerical simulations,
let us reduce travel time on each link of our toy network one by one, by 10 minutes, and rank
these potential improvements according to the economic bene�t they generate. We approximate
the welfare e�ect by three distinct methods:

Method 1 � Multiply tra�c �ow on each link by the 10-minute savings and the mean value
of time considering every trip in the network.

Method 2 � Repeat Method 1 with the link-speci�c values of time derived in the previous
subsection.

Method 3 � Compute the aggregate welfare e�ect of a link-level improvement in general
equilibrium by computing the di�erence of aggregate indirect utilities across all OD-pairs,
before and after the improvement.

Table 1: Ranking of link-level travel time reductions according to three appraisal methods

Link endpoints Method 1 Method 2 Method 3

A6�A5 1 2 1

A2�A5 2 1 2

A4�A5 3 3 4

B2�B5 4 5 6

A8�A5 5 4 3

B4�B5 6 10 10

A9�A5 7 6 7

A7�A5 8 7 8

A3�A5 9 8 9

A1�A5 10 9 5

6



In Figure 3 we observe similarities in the three patterns of the relative performance of the link-
level investment projects we simulated. Table 1 compares the ranking of ten alternative projects
according to the three appraisal methods. Note that the divergence in policy recommendations
is more substantial in terms of rankings. The general equilibrium approach agrees with the most
naive method in that Links A6�A5 and A2�A5 should be prioritised �rst, but most of the remaining
rankings di�er between these methods. The project ranking of Methods 2 and 3 do not di�er in
more than 1 unit which reveals the value of the link-speci�c di�erentiation of the value of time
(that we apply in Method 2). The are only two infrastructure segments from city B in this list,
and Method 1 consistently overestimates their ranking relative to Methods 2 and 3. For example,
link B4�B5 ranks 6th in the �rst column, but when the relatively low value of time of travellers
is taken into account (Method 2) or general equilibrium impacts are considered (Method 3), this
project falls back to the 10th place.

4 Conclusions

This paper builds on the emerging literature of quantitative spatial models with the aim of making
this spatial general equilibrium approach more suitable to assess the economic impact of large-
scale transport policies. We relax the assumption of `iceberg ' commuting costs that expresses the
disutility of travel as a multiplier of consumer utility. We replace this assumption by integrating
a leisure�labour trade-o� and distinct time and money constraints into the consumer problem
of the standard QSM approach. This implies that the monetary value of travel time becomes an
endogenous, heterogeneous, and location-dependent outcome of the spatial equilibrium. Numerical
results showcase the degree of heterogeneity in travel time valuations and the possible bias that
the use of homogeneous value of time estimates imply in practice.

This manuscript documents the �rst stage of a research project. Subsequent stages include (i)
further theoretical work, with particular attention being paid to an adequate representation of the
housing market, (ii) the adaptation of our theoretical framework to granular spatial data and the
analysis of real geographies, (iii) the development of empirical identi�cation strategies to estimate
structural parameters for the new model, and (iv) an analytical exploration of the properties of
equilibrium/equilibria in this framework. Naturally, the endogeneity of travel time valuation is
not the only precondition of the widespread adaptation of quantitative spatial models in transport
policy appraisal. Ideally, QSMs should be adopted to this purpose such that they do not lose the
advantageous properties they have in terms of theoretical and empirical consistency, analytical
tractability and modularity. Our hope is that this research will serve as a starting point for a more
widespread awareness and use of QSMs in the transport �eld as well.
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Short summary

Implementing cycling infrastructure for road users has become a popular transport policy for cities
to create a sustainable urban environment nowadays. A thorough understanding of bicycle traffic
is required to evaluate new infrastructure designs. To fill the remaining knowledge gap in this
aspect, this study aims to investigate bicycle traffic flow characteristics on dedicated bike lanes.
A microsimulation tool is used to simulate various scenarios and compute bicycle traffic states.
From the simulation results, bicycle flow characteristics presented at both link and network levels
are identified and discussed. The findings are expected to be applied to future research regarding
large-scale bicycle traffic flow modeling.
Keywords: Bicycle flow; Dedicated bike lane; Fundamental diagram; Macroscopic fundamental
diagram; Microscopic traffic simulation; None-lane-based traffic

1 Introduction

Cities have been planning to expand dedicated cycling infrastructure over urban areas to enhance
the usage of this active transport mode and foster a more sustainable transport environment
(Pucher & Buehler, 2017). In E-Bike City project, we aim to allocate around 50% of the existing
urban road space to cyclists and other slow modes (D-BAUG ETH Zurich, 2022). It is envisioned
that cycling will become a primary transport mode in the city. Therefore, urban transport systems
need to be re-designed to meet the growing cycling demand. However, traffic and transport mod-
eling nowadays often regards cycling as a auxiliary mode and ignores its congestion dynamics. An
in-depth and universal understanding of bicycle traffic flow characteristics is still lacking, which
hinders the planning for quality cycling infrastructure.

In fact, there were plenty of studies which focused on bicycle traffic flow in the past decades. At
microscopic level, bicycle flow was often simulated by cellular automata (CA), which is a simple
discrete time and space model (Gould & Karner, 2009; Jiang et al., 2004). Although there has
been much research endeavor attempting to overcome its discrete space limitation by introducing
various extensions, CA still fails to account for the large behavioral heterogeneity nature of bi-
cycle flow. There were also studies developing social force models which can better consider the
two-dimensionality of cycling motion (Liang et al., 2018; Zhao & Zhang, 2017). However, they
were known to be too computationally expensive for large-scale modeling purposes. Twaddle et al.
(2014) provided a thorough review and comparison of different bicycle modeling approaches. On
the other hand, microsimulation tools seem to be a good option which lies between these two
types of approaches. Grigoropoulos et al. (2021) used SUMO to simulate the traffic performance
of a bicycle route in various scenarios. Nevertheless, SUMO simulates bicycles through its built-in
sublane function, which divides a bike lane into multiple sublanes for overtaking (Lopez et al.,
2018). The suitability of this setup in simulating bicycle traffic is questioned.

There were studies which investigated bicycle traffic flow with empirical data. By performing a
series of experiments, Wierbos (2021) analyzed the macroscopic bicycle flow properties, includ-
ing capacity, capacity drop, jam density, and queue discharge rate in different scenarios, such as
narrowing bottleneck, merging, and queuing at a stop line. However, the flow performance at
congested states was not reported. Through field observation, Li et al. (2015) constructed FDs for
bicycle-only paths with the presence of bottlenecks. It was found that bicycle traffic can maintain
a relatively high flow rate even when the density is larger than the critical density, which was

1



different from the simulation results of the CA studies. However, the conclusion was based on an
arbitrary curve-fitting. There was no detailed description regarding the empirical observation after
the hypothetical critical density. Guo et al. (2021) also plotted FDs for the wide ring-shaped track
bicycle flow experiments they conducted. A similar trend that a constant flow rate remains across
a certain region of densities was discovered. It was inferred that this phenomenon was resulted
from the staggered formation of bicycles at high density situations which allowed the lateral space
to be utilized more efficiently. Therefore, the flow rate would not start decreasing right from the
onset of congestion. Still, we remain skeptical about the outcome of such effect on FDs since
(1) only few data points were generated in the study and (2) the FDs only specifically described
the traffic states of small wide ring-shaped track experiments, which might be very different from
the real-world cycling environment. More detailed explanations and reflection about the observed
phenomena are required. Hence, the FDs of dedicated bike lanes are yet to be explored.

At the network-level, the macroscopic fundamental diagram (MFD) of a bike lane network is of
interest. Little research effort has shed light on MFD for bicycle traffic in particular. Huang et al.
(2021) used empirical data to investigate the impact of bicycle flow and infrastructure design on
the shape of car MFD. Loder et al. (2021) first intended to capture the tri-modal interactions by
using multi-modal MFDs for each mode. The bicycle MFD was generated and fitted with empir-
ical data following the same method proposed for car MFD without careful consideration for the
unique bicycle flow properties. Later on, Huang et al. (2022) applied the concept of 3D-MFD on
car-bicycle traffic. Both empirical data and Vissim simulation were adopted to generate MFDs.
However, there was no specific discussion on the shape and properties of the resulting bicycle MFD.
To a certain extent, these studies still focused on the mixed car-bicycle traffic flow on urban roads.
Besides, they were based on scarce and heterogeneous bicycle flow data collected in the field. A
basic understanding of MFD for a dedicated bike lane network is still lacking.

To allocate more dedicated road space to bicycles considering its congestion dynamics within an
urban network, the aggregated bicycle traffic needs to be precisely described. FD and MFD are
two proper ways to model the network traffic performance. Hence, this study seeks to investigate
the characteristics of bicycle traffic flow by generating its FDs and MFDs.

2 Methodology

This section first describes the selection of microsimulation tool and the calibration of bicycle-
related simulation parameters. In the second part, the simulation environments and output anal-
ysis methods are explained.

As mentioned in section 1, empirical bicycle flow data containing complete traffic states are still
lacking. Therefore, instead of relying on empirical data, a microsimulation approach is adopted
in this study to investigate bicycle traffic characteristics at the aggregated level. Among all the
traffic simulation tool, PTV Vissim is believed to possess the most sophisticated bicycle simulation
function, which is not a simple projection of car traffic (PTV Group, 2023).

Compared to car driving behavior, tactical-level decisions play an even bigger role in cycling mo-
tion. In addition, bicycle traffic is not regulated by lane markings, which makes it more complex.
Vissim outperforms other simulation tools by including a built-in lateral model, which enables
it to simulate the special features of none-lane-based traffic, such as the overtaking behavior of
two-wheelers. Moreover, the diamond queue function represents the cyclists by a diamond shape
and makes the queue configuration more realistic, as pointed out in Gavriilidou et al. (2019). This
also influences the resulting standstill (jam) density and queue discharge rate. Vissim also allows
users to set the look ahead/back distance and number of interacting objects of each agent. This
function is helpful for simulating road users, like cyclists, which have better anticipation ability.

Although there may still be several detailed cycling behavior features which are not presented
in the bicycle simulation function in Vissim, it is hypothesized in this study that the function is
sufficient to reproduce the bicycle traffic dynamics at aggregated levels. All the bicycle modeling
parameters which need to be calibrated, including desired acceleration distribution, desired speed
distribution, car-following model parameters, and lateral model parameters, follow the setup sug-
gested in Kaths et al. (2021).
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To plot bicycle flow FDs, eight 300-m-long dedicated bike lanes with three different lane widths,
1.5 m, 2 m, and 2.5 m, are built in Vissim. Bottlenecks are placed in the middle of lanes 4 ∼ 8 to
generate congested situations. Two types of bottleneck are considered. The first type of bottleneck
on lanes 4 ∼ 6 reduces the path width by 0.5 m, while the second is 1-m-wide on lanes 7 ∼ 8.
Table 1 lists all the created bike lanes. The one-minute-aggregated density, speed, and flow data
are obtained from a 10-m-long segment before the bottlenecks on these bicycle paths. A five-hour
scenario with varying demand profile is implemented.

Table 1: Dedicated bike lanes for FD generation

Dedicated bike lane no. Lane width (m) Bottleneck width (m)
1 1.5 none
2 2.0 none
3 2.5 none
4 1.5 1.0
5 2.0 1.5
6 2.5 2.0
7 2.0 1.0
8 2.5 1.0

In addition to FDs, this study also aims to derive a bicycle flow MFD. An arterial with 2-m-wide
bike paths in two directions on both sides of the road is built in Vissim. Six intersections divide
the arterial into seven road sections. The green time at every intersection is 40 s, while the cycle
time equals to 70 s. Each road link is 150 m long. Accordingly, the signal offset is set to 35 s.
The average flow and density data are collected every five minutes from the ten road links in the
middle, excluding the inflow and outflow links. A fifteen-hour scenario is designed to mimic the
demand profile of a typical weekday, while the first half-an-hour is considered a warm-up period
for the network to be filled up.

3 Results and discussion

This section describes the analyzed simulation results and research findings based on the results.

Bicycle flow fundamental diagrams

Figure 1 shows the density-flow FDs of bike paths with different widths. In order to compare
the FDs of different lane widths in a convenient way, the density value is transformed into two-
dimensional. The y-axis also becomes flow rate per 1-m-width so that it can align with the
transformed density. By doing so, we keep the speed information (slope) meaningful.
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Figure 1: Flow-density FDs of bicycle flow on bike lanes with different lane widths
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The effect of different lane widths can then be discussed. As can be seen in Figure 1a, few data
points in the decreasing branch can be observed in the 1 m bottleneck case. Only little congestion
effect is shown, which indicates that bicycle traffic flow on 1.5 m width does not have significant
difference with the flow on 1 m width. Still, it implies that bicycles in free flow condition need
more than 1-m-wide lane space to execute overtaking maneuvers. The narrowing bottleneck does
impact the traffic volume. In addition, a large scatter of blue dots can also be observed near the
critical density. This may be resulted from the stochastic stop-and-go disturbance caused by the
desired speed heterogeneity.

Figure 1b plots the FD of the bicycle flow on 2-m-wide lane. Compared to the 1.5-m-wide lane,
the capacity is increased, indicating that there are more overtaking behaviors. By looking at the
blue dots in the free flow branch, one can see that it does not have the same large scatter near the
critical density as shown in the 1.5-m-width case, indicating that a wider lane width can handle
disturbance better. Furthermore, the green data points become more obvious in the decreasing
branch. Even though the lane width reduction is the same, the congestion effect is more significant
when the path width is 2 m before the bottleneck. This indicates that a 2-m-wide bicycle lane
allows cyclists to utilize the existing lane space more efficiently. By looking at the red dots, one
can also see that the capacity drop becomes more significant when the bottleneck is only 1 m wide,
which is caused by the larger lane width narrowing.

The FD of the bicycle flow on 2.5-m-wide lane, as shown in Figure 1c, has a smaller capacity per
unit lane width than the lane with 2 m width does, which seems to be non-intuitive. This means
that widening the lane width does not necessarily increase the degree of lane space utilization. On
the other hand, no obvious decreasing branch can be found in the case of the 2-m-wide bottle-
neck (green dots). These both indicate that the capacity of the bike lane with 2 m width is closer
to the performance limit of dedicated bicycle infrastructure compared to the other two lane widths.

Table 2 summarizes the FD attributes of each lane width. Note that the free flow speed is not
included here and will be discussed later. The capacity is determined by the point with the largest
flow rate, while the critical density is the density of the capacity point. The jam density values are
obtained by running simulations and placing a stop line on each lane. As can be seen in the table,
the jam density values are different in cases of different lane widths, which also demonstrates the
different degrees of lane space utilization.

Table 2: Shape attributes of FDs of bike lanes with different widths

1.5 m width 2 m width 2.5 m width
Capacity (bicycle/h/m) 882.24 1049.91 893.53

Critical density (bicycle/km/m) 113.92 117.32 102.23
Jam density (bicycle/km/m) 408.00 460.50 410.8

To sum up, bicycle flow on 2-m-wide bike lane can utilize the lane space most efficiently. There is
no improvement when widening the lane width to 2.5 m. This can also be understood by consider-
ing that the lateral space required by a cyclist is between 1 m and 1.3 m in the adopted Vissim setup.

Other than the difference between various lane widths, there are a few special characteristics of
non-lane-based bicycle traffic flow regarding the free flow speed. As can be seen in Figure 2a, which
is the speed-density FD of the bike lane with 2 m width in the case without bottleneck, the speed
decreases rapidly as the density increases. This is the result of large desired speed heterogeneity.
Bicycle flow is significantly slowed down by slow cyclists. Table 3 computes the average speed
values in six divided density ranges. It is believed that this phenomenon is more significant in
bicycle traffic than in car traffic. In addition to the speed heterogeneity, the effect of overtaking
is another special characteristics of bicycle flow which was often overlooked. Figure 2b shows the
results of a single-file bicycle traffic flow with no overtaking allowed. It can be observed that the
speed decreases more rapidly as the density increases than in the case with overtaking. In the
single-file case, cyclists loss the possibility to overtake slow cyclists, which further degrades the
bicycle flow performance. Therefore, it is important to consider these two aspects when modeling
bicycle traffic flow.
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Figure 2: speed-density FDs of bicycle flow on a 2-m-wide bike lane (a) with overtaking
(b) without overtaking

Table 3: Free flow speeds of bike lanes in six density ranges

Density (bicycle/km/m) Average free flow speed (km/h)
1.5 m width 2 m width 2.5 m width

0 ∼ 25 13.85 13.19 13.50
25 ∼ 50 10.66 11.75 11.98
50 ∼ 75 10.09 10.83 10.67
75 ∼ 100 8.38 9.82 8.81
100 ∼ 125 6.78 8.32 7.44
125 ∼ 150 5.28 7.19 —

On the other ahnd, the existence of a constant flow branch around critical density pointed out by
the previous studies cannot be observed from the FDs in Figure 1. It is suspected that the constant
flow may actually stem from the better anticipation behavior of cyclists on the short ring-shaped
track. The phenomenon may not appear in FDs of bike lanes in the real-world.

Bicycle flow macroscopic fundamental diagram

Figure 3 presents the MFD of the built bicycle lane arterial. The density variation is shown by the
color of each data point. From the figure, one can observe an MFD curve with low scatter, show-
ing the relationship between accumulation and network traffic performance can also be applied to
bicycle flow. There are only few deviated data points which are caused by hysteresis, as shown
by the color representing the normalized standard deviation of density. Since the simulation was
carried out on a homogeneous arterial with equal link lengths and signal timing plans, no obvious
decreasing branch can be observed.

The MFD is further analyzed by using the method of cuts (MoC) proposed by Daganzo and Geroli-
minis (2008). Each practical cut can be generated according to a moving observer speed and the
number of blocks the observer can pass through γ. In the previous subsection, it was mentioned
that the free flow speed varies a lot across different density values for bicycle flow. Therefore, this
study modifies the MoC for bicycle traffic. The free flow speeds calculated in Table 3 are used
to generate cuts. For each γ value, there is one corresponding speed. The saturation flow rate is
determined by several Vissim simulation runs. Note that unlike typical car traffic, the maximum
flow rates at a free flow lane segment and a stop line can be slightly different due to the staggered
queue formation. No cuts in the decreasing branch are generated since there is no congested traf-
fic state in the designed homogeneous arterial scenario. Figure 4 shows the cuts derived from the
modified method. Compared to the examples which use only a single average speed value in Figure
5, the modified method produces more accurate cuts.
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Figure 3: MFD of the bike lane arterial
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Figure 4: MFD of the bike lane arterial with cuts generated by the modified MoC
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Figure 5: MFD of the bike lane arterial with cuts generated by a single speed value
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In addition, a little decreasing trend can be observed after the critical density in the MFD although
no spillback situation occurs in the simulated scenario. The decreased average flow rate may be
the effect of anticipative cycling behavior. The speed of bicycles discharging from intersections
decreases when there are too many queuing cyclists at the downstream links. This is a special
phenomenon resulted from the look ahead behavior designed in Vissim. In this setup, cyclists look
further downstream to determine their following speed.

4 Conclusions

This study investigates the characteristics of bicycle traffic flow on dedicated infrastructure by
looking at FDs of different lane widths and an MFD of a bike lane arterial which are generated
from microsimulation. The identified features are discussed and compared with the findings in the
previous studies pertaining to bicycle flow modeling.

At link-level, it is found that lane widths greatly influences the FD attributes. A proper width can
be found based on the lateral space required by a cyclist so that they can utilize the lane space
in the most efficient manner. At free flow situations, the speed decreases as the density increases
due to the desired speed heterogeneity. However, the overtaking behavior mitigates such effect by
enabling bicycles to utilize the lateral space. On the other hand, the existence of a constant flow
branch, which was pointed out in the previous ring-shaped track experiment, on real-world bike
lanes is questioned.

This study also applies the MoC to derive the upper-bound MFD for bicycle traffic on dedicated
infrastructure. To the best of our knowledge, this is the very first attempt to discuss bicycle
MFD by using carefully-examined bicycle flow attributes. It is found that the modified method
can better capture the shape of an MFD for none-lane-based bicycle traffic where the behavioral
heterogeneity is large.

The results in this study largely depend on the setup in the microsimulation tool. Although the
representativeness of the calibrated built-in bicycle simulation model may be argued, the overall
macroscopic characteristics of bicycle flow observed from the FDs and MFD are deemed to be
valid. The findings can be used for more complex network-wide bicycle traffic modeling, such as
cell transmission model or MFD-based traffic assignment, and therefore assist dedicated cycling
infrastructure planning by transport authorities which seek to increase bicycle usage.
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SHORT SUMMARY 

There is a fierce competition between two-sided mobility platforms (e.g., Uber and Lyft) fueled 

by massive subsidies, yet the underlying dynamics and interactions between the competing plat-

forms are largely unknown. These platforms rely on the cross-side network effects to grow, they 

need to attract agents from both sides to kick-off: travellers are needed for drivers and drivers are 

needed for travellers. We use our coevolutionary model featured by the S-shaped learning curves 

to simulate the day-to-day dynamics of the ride-sourcing market at the microscopic level. We run 

three scenarios to illustrate the possible equilibria in the market. Our results underline how the 

correlation inside the ride-sourcing nest of the agents choice set significantly affects the plat-

forms’ market shares. While late entry to the market decreases the chance of platform success and 

possibly results in “winner-takes-all”, heavy subsidies can keep the new platform in competition 

giving rise to “market sharing” regime. 

 

Keywords: Two-sided mobility, Ride-sourcing, S-shaped learning, Platform competition, 

Agent-based simulation  

1. INTRODUCTION 

Ride-sourcing companies such as Uber and Lyft have achieved significant market share in a short 

time through the two-sided platform business model. The reason underlying such a tremendous 

potential to grow in two-sided markets is the power of network. The classic definition by Rochet 

and Tirole (2006), characterizes them as the markets in which one or several platforms enable 

interactions between end-users and try to get both sides on board by appropriately charging each 

side. The platforms associated with these markets rely on the critical mass required for their self-

sustainable operations and the network effects to induce growth (Belleflamme & Peitz, 2016). 

Platforms apply various market entry strategies in the early adaptation phase to follow a desired 

growth pattern that includes different stages from their launch up to maturity.  

 

Even though ride-sourcing platforms have the potential to grow rapidly, they fiercely compete 

over the common pool of travelers and drivers. Considering the so-called multi-homing charac-

teristics of the market, in which users can move from one platform to another with ease, it be-

comes extremely challenging for the platform to gain and hold the market share. As for the plat-

forms new to the market, they need to first induce the interactions between the decentralized 

supply and demand to reach market shares sufficient to trigger the cross-side network effects. On 

the other side, existing platforms with stable market share adjust their strategies in accordance 

with other platforms to avoid losing market share. These platform strategies are mostly controlled 

by subsidies and implemented through e.g., discounts, and incentives.  
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There is a wide body of research on the competition between the platforms. Relying on the game 

theory, Zhang and Nie (2021) study ride-sourcing market in which two platforms compete with 

each other, as well as with transit, and Ahmadinejad et all., (2019) examine the competition im-

pact on ride-sourcing parties by adjusting the trip fare. Using analogous methodology, Siddiq and 

Taylor (2022) throw light on the importance of autonomous vehicles for platforms’ profitability. 

In different approaches, Shoman and Moreno (2021), conduct a stated preference analysis to find 

the ride-sourcing impact on the modal split in city of Munich. 

Study approach and contribution 

Previous studies are either equilibrium-based or assume fixed demand and/or supply and they 

neglect the interactions between the parties driving the complex system evolution. Here, we illus-

trate with our experiments, an adequate framework to realistically model the platform competition 

in two-sided model with subsidizing strategies is missing. 

 

Previously, we proposed a novel, microscopic co-evolutionary model which is capable of repro-

ducing platform’s growth mechanism day-to-day. The key element of the model is the S-shaped 

learning curves which enable the agents to adapt and stabilize their behavior and yet to remain 

sensitive to the changes in their environment (Ghasemi and Kucharski, 2022). In this study, we 

extend the previous model with platform competition considering the multi-homing characteris-

tics of the system. We incorporate nested choice modelling to examine the correlation between 

platforms and the possible equilibria in the ride-sourcing market. 

2. METHODOLOGY 

We model two-sided mobility market with MaaSSim1 agent-based simulator (Kucharski and Cats, 

2022), extended here with a coevolutionary model to represent the day-to-day dynamics of two-

sided mobility market. We simulate two classes of agents representing two sides of the system 

and a platform as an intermediate agent matching the demand to the supply. A pool of travelers 

and drivers, who are not formerly notified about our ride-sourcing platform, gradually become 

aware of the ride-sourcing. When an agent gets notified, he/she may decide to participate in the 

market – i.e., supply the demand as a driver or travel to his/her destination as the platform client. 

With the participation, agents start to learn and adapt their behavior through endogenous and 

exogenous factors. 

Platform 

Platform executes the strategy 𝑆𝑡 with the control levers, namely: trip fare 𝑓𝑡 , commission rate 𝑐𝑡 

, discount 𝑑𝑡 and marketing 𝑚𝑡 for each day 𝑡 of the simulation. 

 

𝑆𝑡 = {𝑓𝑡, 𝑐𝑡 , 𝑑𝑡 , 𝑚𝑡}                                                                                                                       (1) 

Traveller 

Each notified traveler 𝑟 on day 𝑡 selects between alternatives from the choice set 𝐶𝑟 = {𝑟𝑠, 𝑝𝑡} =
{{𝑝1, 𝑝2}, 𝑝𝑡} including public transport (𝑝𝑡) and two ride-sourcing (𝑟𝑠) platforms (𝑝1, 𝑝2). While 

the utility of public transport is fixed (formulated with a typical access/egress, waiting times, 

 
1 https://github.com/RafalKucharskiPK/MaaSSim 



3 

 

transfers, etc.), the platforms’ utility is composed of multiple components, each adjusted day-to-

day (as detailed in the upcoming sections). 

Driver 

Analogous to travellers, each notified driver 𝑑 makes a choice from the choice set 𝐶𝑑 = {𝑟𝑠, 𝑝𝑡} =
{{𝑝1, 𝑝2}, 𝑟𝑤} which includes: working for ride-sourcing (𝑟𝑠) platform one (𝑝1) and platform two 

(𝑝2), and working elsewhere, for a fixed reservation wage (𝑟𝑤). The utility of working for plat-

form as a driver is composed of same components of travellers and adjusted day-to-day as detailed 

below. 

Choice Utility 

For any notified agent 𝑖, we propose the generic perceived utility (𝑈) formulation composed of 

three components: experience (𝑈𝐸), marketing (𝑈𝑀) and word of mouth (𝑈𝑊𝑂𝑀): 

 

 𝑈𝑖,𝑡 = 𝛽𝑖
𝐸 . 𝑈𝑖,𝑡−1

𝐸 + 𝛽𝑖
𝑀. 𝑈𝑖,𝑡−1

𝑀 + 𝛽𝑖
𝑊𝑂𝑀. 𝑈𝑖,𝑡−1

𝑊𝑂𝑀 + 𝐴𝑆𝐶 + 𝜀𝑖                                           (2) 

 
Agents every day (t) choose based on experiences collected until the previous day (t-1). Experi-

enced utility is endogenous and comes directly from the simulation: drivers experience the actual 

incomes and operating cost, travelers experience travel time, waiting time and trip fare. Marketing 

is an exogenous factor being positive or negative (e.g., recent Uber scandal). Word-of-mouth is 

shared among agents over the social network. The 𝛽’s in the formula reflect the relative weights 

of respective utility components (ensuring that 𝛽𝑖
𝐸 , 𝛽𝑖

𝑀, 𝛽𝑖
𝑊𝑂𝑀 > 0 and 𝛽𝑖

𝐸 + 𝛽𝑖
𝑀 + 𝛽𝑖

𝑊𝑂𝑀 = 1). 

The 𝐴𝑆𝐶 captures the effect of unobserved factors on the perceived utility of alternatives and 𝜀𝑖 

is the random utility error term. In such form, the utility is consistent with the discrete choice 

theory and can be applied e.g., in the logit model. 

S-shaped learning and adaptation 

The key element of the proposed model is the following adjustment mechanism which allows us 

to realistically represent the agents’ dynamics specific to the platform growth. Agents learn and 

adapt their choice day-to-day based on the perceived utility components. Here, instead of expo-

nential memory curve (used e.g., in de Ruijter et al., 2021), we follow Murre (2014) and propose 

a more adequate formulation of the so-called S-shaped learning curve in the context of urban 

mobility (Ghasemi and Kucharski, 2022).  Fig. 1 provides a basic idea of our model. 

 

The adjustment process can be seen as moving each of the utility components along the S-shaped 

curve with each of the utility components. Positive experience increases the experienced utility 

pushing the perception towards upper tail, and negative experience decreases it pushing the per-

ception towards lower tail. The two extreme points (lower and upper endings) of curve represent 

absolutely negative and positive attitudes and learning can go both directions on any day. Trig-

gered by the consecutive positive/negative experiences, learning proceeds slowly for the agents 

who already have sharp, extreme opinions, and is fast for the neutral agents. To this end, on the 

contrary to state-of-the-art models, we can stabilize the agents’ behavior and, at the same time, 

remain sensitive to the system changes. 
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Figure 1: S-shaped curves used for the day-to-day learning process. The adjustment vol-

ume not only depends on sensitivity 𝛼 but also the signal strength (∆𝑢) and the position 

on the S-shaped curve. 
 

Technically, we obtain the utility of respective components 𝑐 ∈ {𝐸, 𝑊𝑂𝑀, 𝑀} after day 𝑡 (𝑈𝑖,𝑡
𝑐 ) 

as follows. First, we retrieve the cumulative utility on the previous day 𝑡 − 1 by applying the 

inverse sigmoid function (eq. 3).  Then, we update it with the difference coming from today 𝑡 (eq. 

4), i.e. the signal strength. We weight it with the learning speed parameter 𝛼 (determining step 

size on the S-shaped curve). Eventually, to obtain the updated utility at the end of day 𝑡 we use 

sigmoid (logistic) function with shape parameter 𝛽 (5): 

 

𝐶𝑈𝑖,𝑡−1
𝑐 = 𝑙𝑛(

1

𝑈𝑖,𝑡−1
𝑐 − 1)                                                                                                              (3)  

 

𝐶𝑈𝑖,𝑡
𝑐 = 𝐶𝑈𝑖,𝑡−1

𝑐 + 𝛼. ∆𝑢𝑖,𝑡
𝑐                                                                                                            (4) 

 

𝑈𝑖,𝑡
𝑐 =

1

1+ 𝑒𝑥𝑝(𝛽.𝐶𝑈𝑖,𝑡
𝑐 )

                                                                                                                     (5)  

           

The above formulation is generic to represent various kinds of learning new experiences and ex-

posure to effects. For the purpose of this study, we introduce specific formulas for three compo-

nents of utility. 

 

For the experience we adjust the utility as follows. Experienced cumulative utility of drivers 𝑑 on 

day 𝑡 for platform 𝑝 is updated with the relative difference between the reservation wage (𝑅𝑊𝑑 ) 

and the income experienced on that day (eq. 6). Similarly, traveler 𝑟 adjusts his/her experienced 

cumulative utility on day 𝑡 (eq. 7) according to relative difference between the experienced utility 

of the platform 𝑝 (as a function of waiting time, travel time, and trip fare) and the public transport 

(𝑝𝑡). 

 

 ∆𝑢𝑑,𝑡
𝐸,𝑝

=
𝑅𝑊𝑑 −𝐸𝑑,𝑡

𝑅𝑊𝑑

                                                                                                                          (6) 

 

∆𝑢𝑟,𝑡
𝐸,𝑝

=
𝑈𝑟

𝑝𝑡
−𝐸𝑟,𝑡

𝑈𝑟
𝑝𝑡                                                                                                                             (7) 

 

The marketing spreads uniformly among all the agents (target clients) and accumulates in time 

over the period of the marketing campaign. While marketing is constant before and after the cam-

paign, it produces a positive effect on each exposure.  The chance of agent 𝑖 to be exposed to the 
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marketing on day t depends on the campaign intensity (𝑝𝑖
𝑀, from [0,1] range). We update the 

cumulative utility for marketing as follows: 

 

∆𝑢𝑖,𝑡
𝑀,𝑟𝑠 = 𝑝𝑖

𝑀(𝑈𝑖,𝑡
𝑀 − 1)                                                                                                                    (8) 

 

For the word-of-mouth, we assume pairwise interactions through the social network with agents, 

who share their perceived utility with each other. Analogically to the marketing, the WOM inten-

sity (𝑝𝑖,𝑗
𝑊𝑂𝑀) determines the likelihood of agent 𝑖  to share his/her opinion with agent 𝑗 on day 𝑡. 

Influenced by the exchange of views with their peers, agents adjust their cumulative utility of 

word-of-mouth as follows: 

 

∆𝑢𝑖,𝑡
𝑊𝑂𝑀,𝑟𝑠 = 𝑝𝑖,𝑗

𝑊𝑂𝑀(𝑈𝑖,𝑡
𝑊𝑂𝑀 − 𝑈𝑗,𝑡)                                                                                                (9) 

Participation probability 

An agent starts considering a ride-sourcing platform in her mode choice set (𝐶𝑖) only after being 

notified about it. Due to correlation between the ride-sourcing platforms, we apply the nested logit 

model. We assume the agent first selects between the alternative (𝑝𝑡/𝑟𝑤) and ride-sourcing, and 

when she selected ride-sourcing she choose among the competing platforms that she is notified 

about. The participation probability of notified agents is updated every day and depends on the 

perceived utility of alternatives as follows. The probability of choosing alternative 𝑘 (eq. 13) is 

the product of probability of 𝑘 inside the nest (eq. 10) and the probability of nest 𝑛 (eq. 12) based 

on the expected maximum utility of nest (𝑊𝑛).  𝐼𝑖,𝑡
𝑘  is a binary variable switching from zero to 

one when agent gets notified about alternative k. The scale parameters are 𝜃 (at the upper choice 

level) and 𝜃𝑛 (within the ride-sourcing nest) which allows us to calculate the correlation inside 

the nest (𝜌 ∈ [0,1] ) as: 𝜌 = 1 −
𝜃𝑛

𝜃
. 

 

𝑃𝑖,𝑡
𝑘/𝑛

= 𝐼𝑖,𝑡
𝑘

𝑒𝑥𝑝(
𝑈𝑖,𝑡

𝑘

𝜃𝑛
)

∑ 𝑒𝑥𝑝(
𝑈𝑖,𝑡

𝑘′

𝜃𝑛
)𝑘′∈𝐾

                                                                                                       (10) 

 𝑊𝑖,𝑡
𝑛 = 𝜃𝑛. 𝑙𝑜𝑔(∑ 𝑒𝑥𝑝(

𝑈𝑖,𝑡
𝑘′

𝜃𝑛
)𝑘′∈𝑛 )                                                                                   (11) 

𝑃𝑖,𝑡
𝑛 =

𝑒𝑥𝑝(
𝑊𝑖,𝑡

𝑛

𝜃
)

∑ 𝑒𝑥𝑝(
𝑊𝑖,𝑡

𝑛

𝜃
)𝑛′∈𝑁

                                                                                           (12) 

 𝑃𝑖,𝑡
𝑘 = 𝑃𝑖,𝑡

𝑘/𝑛
 .  𝑃𝑖,𝑡

𝑛                                                                                                      (13) 

Experimental design  

We experiment on Amsterdam, with 2000 travelers and 200 drivers. The reservation wage of 

drivers is assumed 10.63[€/hour]. The operational costs (fuel, depreciation costs, etc.) of the driv-

ers amount to 0.25 [€/km]. Each run simulates  4 hours of interactions between the parties. Vehicle 

speed is set to the flat 36 [km/h]. We consider the ride-sourcing fare of 1.2 [€/km] with a minimum 

of 2 [€] (based on the Uber price estimator). The utility weights of three main component are 

fixed as: 𝛽𝐸 = 0.7, 𝛽𝑊𝑂𝑀 = 0.2 , and 𝛽𝑀 = 0.1, while Marketing and WOM intensity are set to 

𝑝𝑖
𝑀 =  𝑝𝑖,𝑗

𝑊𝑂𝑀 = 10%. We assumed the value of time 10.63 [€/hour] to compute the experienced 

utility of travellers. 
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3. RESULTS AND DISCUSSION 

We first illustrate how the single platform competes against public transport in the period of one 

year (Figure 1). As agents get notified, they are initially reluctant to select the new travel mode. 

Yet, once travellers try out the platform and experience its benefits (40% discounts), they start to 

adapt and use ride-sourcing more frequently. This provides adequate income for the drivers. As 

the network gets denser on both demand and supply sides, it generates greater cross-side network 

effects. These effects provide both travellers and drivers with extra utilities in terms of lower 

waiting times and higher incomes, respectively. Thanks to this, the system grows and stabilizes 

around day 200.  

 

 
Figure 2: Single platform evolution with the baseline strategy. Platform applies market-

ing campaign and 40% discount on trip fares only in the initial 100 days (vertical dashed 

line), while commission rate is fixed to 10%.  

Correlation between platform alternative and the market shares 

Next, we introduce a second platform to the system and apply nested logit for the agents’ mode 

choice. We investigate how the assumption of correlations in the nested choice model affects the 

equilibrium market shares. (fig. 3).  

 

 
Figure 3: Ride-sourcing and PT market shares with different correlations between ride-

sourcing alternatives. As correlation increases, total market share of ride-sourcing (both 

platforms) decreases. The dashed lines represent the ride-sourcing market share in the 

monopoly market with single platform. 
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Three scenarios and relevant equilibria 

We fix the correlation rate inside the ride-sourcing choice nest at a moderate value of 0.4, and 

demonstrate the three scenarios with predetermined strategies as illustrated in fig. 3 to examine 

the emerging equilibria. In the first scenario, both platforms (P1, P2) apply baseline strategy, P2 

launches 25 days later in the second scenario without any strategy change. In the third scenario, 

the P2 enter laters, but aggressively, with the 80% discount starting form day 25. 

 

 
Figure 3: Three competition scenarios and resulting market shares.  

 
Two platforms applying the same strategy, at the same time, end up with the same market shares 

(Scenario 1). However, late market entry with the same strategy results in failure (Scenario 2). 

This happens because agents have already started to use the early platform once P2 enters the 

market. Thus, P1 starts the cross-side network effects earlier, and as the utility and market share 

differences increase between two platforms, it becomes impossible for late platform to succeed. 

P2 requires an alternative strategy to compensate the late market penetration which means more 

subsidies on demand or/and supply side. In the Scenario 3, the late platform enters at the day 25 

offering 80% discount for the next 200 days (instead of 100 days of 40% discount) on the demand 

side to overtake the early platform. In contrast to the second scenario, P2 reaches higher market 

share than P1 in the last scenario, at first (until day 225). Yet, as P2 terminates the discount its 

market share decreases and stabilizes (where it is supportable by network effects). Indeed, the  

market share bubble induced by disloyal agents, relying on discount, bursts with discount termi-

nation. While Scenarios 1 and 3 depict the market sharing regime, the second scenario resembles 

the winner-takes-all in the ride-sourcing market. 

4. CONCLUSIONS 

In this research, we shed light on the dynamics of ride-sourcing market in which two platforms 

compete with each other and the public transportation (for travellers) and reservation wage (for 

drivers). We use our day-to-day coevolutionary model featured by the S-shaped learning curves 

to capture the rise and fall of the system in MaaSSim. Our results underpin how correlation inside 

the ride-sourcing choice nest significantly affects the total market share of ride-sourcing plat-

forms, which calls for further empirical studies. Assuming a moderate correlation rate, we 
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analysed the competition in three different scenarios. We found that platforms with late entry to 

the market require more subsidies to trigger the cross-side network effects. However, subsidies 

can induce market share bubble for the platforms which can easily burst with the termination of 

subsidies, i.e., the platform stabilizes later, on the market share supportable by the network effects. 

We conclude that ride-sourcing market reaches an equilibria in long term, and both the “winner-

takes-all” and the “market sharing” are the possible competition outcomes. Nevertheless, the mar-

ket remains sensitive and late-entry alternatives may still reach significant market shares, master-

ing the network effects.  
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Short summary

Ride-Hailing (RH) companies have expanded significantly in urban areas in the past decade. How-
ever, they may compete with Public Transportation (PT) instead of completing them. This work
proposes to use Tradable Credit Scheme (TCS), a quantity-based policy, to encourage RH drivers
to operate in parts of the network not well served by PT. Credits are given to the RH drivers.
Operating in some regions requires credits. RH drivers can trade credits between themselves. We
use a trip-based Macroscopic Fundamental Diagram (MFD) to compute the dynamic and hetero-
geneous RH trips. Customers choose between different PT and RH alternatives. The RH drivers’
decision to operate in a region is a balance between the potential revenue and the credit charge of
this region. We evaluate the equilibrium of different TCS on a test case. TCS fosters multimodal
trips, which combine PT and RH to complete the trips.
Keywords: Macroscopic Fundamental Diagram, Ride-hailing, Tradable Credit Scheme, Traffic
flow theory, Transport economics and policy

1 Introduction

Ride-Hailing (RH) companies introduced new mobility alternatives in many cities (OECD, 2018).
However, RH may negatively affect the transportation network, as they contribute to congestion
(Erhardt et al., 2019) and compete with Public Transportation (PT) (Cats et al., 2022). Never-
theless, RH has the potential to complete the PT network.
When studying how RH services operate and compete with other modes, it is important to keep
track of the transportation system dynamics, as congestion significantly impacts travel times and
service quality. We must also consider the service’s full spatial extent and reproduce the vehicles’
trip patterns over the day. The Macroscopic Fundamental Diagram (MFD) has been proposed by
Daganzo (2007). It defines the average mean speed as a function of the number of vehicles driving
in the road network. The MFD concept permits the design of large-scale and low-computation
dynamic simulations. In particular, the trip-based formulation (Mariotte et al., 2017; Lamotte &
Geroliminis, 2018; Jin, 2020) keeps track of all users’ and vehicles’ moves, which makes it suitable
for reproducing RH driver matching and pick-up.
Several recent contributions regarding RH services are founded on the MFD concept. Nourinejad
& Ramezani (2020) study the equilibrium between offer, demand, and service pricing. They use the
MFD framework to tune a model predictive controller. Beojone & Geroliminis (2021) encourage
passengers to share their rides and park unmatched vehicles to reduce the impact of RH vehicles
on congestion.
RH drivers operate in high-demand areas, which may already have a good PT network, as they
want to increase their profits. However, the regulator wants them to operate in regions with low
PT coverage to achieve system optimum. Traditional taxi license schemes aim to regulate and
redistribute the number of operating taxis in a given zone in the long run. More flexible quantity-
based tools like Tradable Credit Schemes (TCS) can also be applied. The regulator limits access
to a shared resource (access to part of the network) by distributing a given total amount of credits.
Their price is not fixed but results from the trading between users, introducing more flexibility.
Some early concepts on quantity-based instruments to mitigate congestion have been proposed by
Verhoef et al. (1997). Yang & Wang (2011) formulated a TCS to reduce the total travel time in
an urban transportation system dealing with route choice. Balzer & Leclercq (2022) implemented
TCS in a multimodal context to reduce the share of car drivers and decrease the total travel time
and carbon emissions.
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For now, TCS has only been proposed for demand management. Here, we want to extend the
concept to the offer side. The goal is to encourage RH drivers to shift from the city center to the
suburbs, where they can propose efficient first-/last-mile alternatives and complete the PT offer.

2 Methodology

The urban area is divided into NR different regions. The regions are indexed by increasing order
from the center to the outskirts. Each traveler chooses its travel mode m ∈ M according to the
associated costs. The alternatives are riding the PT or using the RH service. The road network is
shared with users driving their personal cars. We assume the number of RH drivers ND is constant.
The regulator enforces a TCS to prevent unnecessary competition between RH vehicles and the PT
in the city center where the transit offer is satisfying. Its strategy is nudging RH drivers to serve
the travel demand in the outskirts to (i) promote PT in the city center (ii) promote multimodal
trips where RH drivers permit travelers from the outskirts to ride an RH vehicle to a transit hub
at the border of the city center and then use the PT for the remaining trip. Figure 1 presents a
schematic representation of the different travel options for a traveler going from the suburbs to the
city center.

3

Figure 1: A trip between an origin o in region 3 (suburbs) and a destination d in region 1
(city center) has three alternatives: RH, PT, or RH till the border i and then PT.

We set a framework based on the trip-based MFD to study the effect of the TCS. It considers
the congestion dynamics and the heterogeneity of the trips: each customer has its own departure
time td, origin o, and destination d. RH drivers move only to pick up or drive a customer to its
destination. The rest of the time, they park on the street and wait to pick up another customer.
Those idle drivers do not contribute to the congestion. The PT mean speed VPT,ro,rd depends
on the regions of origin and destination. It is faster in the city center (subways) and slower in
the suburbs (buses). We use the trip-based MFD to compute RH trips. The mean car speed V
depends on the car accumulation n, i.e., the number of cars driving. It includes RH vehicles and
also private cars. The actual arrival time ta for a RH trip of distance lRH is computed using the
following relationship:

lpu + lRH =

∫ ta

t=td

V (n(t))dt. (1)

It accounts for the time the customer waits to be picked up, i.e., for the RH vehicle to travel the
distance lpu between the current position of the RH vehicle and the customer’s origin.
At their departure times td, the travelers choose their travel alternatives according to the different
perceived travel costs (RH or PT). The user travel costs from origin o to destination d are defined
by the travel time and the service price:

Co,d,PT (td) = αLPT,o,d/VPT,ro,rd + fPT ; (2)
Co,d,RH(td) = α (Lpu,o,d(td) + LRH,o,d) /V (td) + fRHLRH,o,d; (3)

Co,d,RH+PT (td) = α (Lpu,o,i(td) + LRH,o,i) /V (td) + fRHLo,i + αLPT,i,d/VPT,ri,rd + fPT ; (4)
Co,d,PT+RH(td) = αLPT,o,i/VPT,ro,ri + fPT + α (Lpu,i,d(td) + LRH,i,d) /V (td) + fRHLRH,i,d. (5)

α is the value of time. LPT,o,d is the PT trip length from o to d, and LRH,o,d the RH trip length.
fPT is the price of a unitary ticket. We assume the ticket price is independent of the trip. The
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RH travel cost consists of the pick-up time, the travel time, and the RH charge. The RH charge is
the distance-based fee fRH multiplied by the trip length. The pick-up distance Lpu,o,d depends on
the current position, availability, and licenses of the RH drivers. For the RH+PT alternative, the
travel cost is the sum of the RH travel cost until the border i of the destination region and then
the PT travel cost from this border to the destination. The same applies to PT+RH in reverse:
the traveler rides the PT and then takes an RH vehicle.
Travelers starting at td from o to d choose the travel mode m with the probability ψo,d,m(td),
depending on the travel costs following the logit rule:

ψo,d,m(td) =
e−θCo,d,m(td)∑

m′∈M e−θCo,d,m′ (td)
, ∀m ∈M = {PT,RH,PT +RH,RH + PT}. (6)

.
Each driver gets κ credits for free from the regulator per day with the TCS. The drivers need to
spend τr credits to buy a license to operate (i.e., pick-up or drop-off passengers) in the regions
with an index higher or equal to r for a day. Since the regions are defined for TCS purposes, we
assume τr < τr−1, ∀r ∈ [2, NR]. Drivers can trade their credits on a specific market. The law of
the offer and demand determines the credit price p. The regulator does not fix it a priori. It is
budget-neutral, as all trades occur only between RH drivers.
We note xr the number of drivers with a license for region r. They can operate in regions r′ ≥ r.
For an RH trip from an origin in region 2 to a destination in region 1, the driver needs a license
with the smallest index, i.e., 1. The RH drivers are ordered in the list according to their willingness
to acquire licenses. It means the first x1 drivers will acquire license 1, the next x2 license 2, and
the last xNR

will only operate in region NR.
We focus on the within-day process. The drivers’ assignment x, i.e., the choice of operating regions,
balances two markets: the RH market, where travelers buy RH services, and the credit market,
where drivers trade credits. Figure 2 summarizes the different interactions. Travelers’ mode choice

Travelers’ mode choice ψ

Average pick-up distance

Lpu

RH revenues

Drivers’ assignment x

Credit price p

RH market

Credit market

Figure 2: Interactions between drivers, travelers, and credit market.

impacts RH revenue for drivers, which, with the credit price, will change drivers’ assignments. The
average pick-up distance decreases with the number of drivers available for the trip. The pick-up
distance affects the RH perceived costs, thus modifying mode choices.
The equilibrium of drivers’ assignment x and credit price p are linked. The RH revenues from the
trip requiring access to region r (but not r − 1) is

RRH,r =
∑

RH trips with min(ro,rd)=r

fRHLRH,o,d. (7)

It accounts for the RH parts combined trips, where o and d refer to the RH part.
To calculate the equilibrium assignment for drivers, we first define the marginal gain of adding
access to region r for a driver as the difference between the RH market per driver and the price to
access this market. It is the volume of fees paid by travelers using RH for a trip requiring access to
region r but not r− 1, divided by the number of drivers with access to region r minus the increase
in credit charge times the credit price:

Gr =
RRH,r∑
s≤r xs

− p(τr − τr+1), ∀r ∈ [1, NR − 1], (8)
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A positive marginal gain for region r means switching from license r − 1 to r will increase the
driver’s profit. On the opposite, negative marginal gain means accessing the new market is smaller
than the extra credit cost. The equilibrium for RH drivers is reached when they have no incentive
to change their region access, i.e., when the marginal gains of the regions’ access are zero:

Gr = 0, ∀r ∈ [1, NR − 1]. (9)

We do not look at GNR
because every driver has access to region NR, the further away from

the center. We assume operating solely in region NR does not require credits and is thus always
possible. Equation (9) can be expressed as a fixed-point problem (x, p) = Γ(x, p) with

Γ : (x, p) 7→



RRH,1(x)
p(τ1−τ2)

...
RRH,NR−1(x)

p(τNR−1−τNR
)

xNR

p

 ,
(10)

under the following constraints:

xr ≥ 0, ∀r ∈ [1, NR]; (11)
NR∑
r=1

xr = ND; (12)

NR∑
r=1

xr(τr − κ) ≤ 0; (13)

p

NR∑
r=1

xr(τr − κ) = 0; (14)

p ≥ 0. (15)

The first is that the number of drivers per license is non-negative. The second is the conservation
of the number of drivers. The third is the credit cap: the drivers cannot spend more credits than
the distributed amount. The fourth is the market clearing condition: all credits are used, or their
price is zero. The last one is that the credit price is non-negative. The previous three constraints
are specific to the TCS.
Solving the fixed-point problem (Equation (10)) under the different constraints (11, 12, 13, 14, and
15) give the drivers’ assignment and the credit price at equilibrium.
The challenge lies in the complex relationship between drivers’ licenses and customers’ mode choices
through the trip-based MFD. We use Bayesian optimization to minimize the cost function J , the
sum of the magnitudes of the fixed points errors:

J =

NR−1∑
r=1

∣∣∣∣xr − RRH,r(x)

p(τr − τr+1)

∣∣∣∣ . (16)

We use the constraints to reduce the size of the minimization problem. We assume the price is
non-zero. Otherwise, the TCS is non-effective, and the state of the system is the same as without
TCS, where all drivers can operate in all regions, i.e., x1 = ND and xr = 0, ∀r ∈ [2, NR]. Then
the equality holds for the credit cap (Equation (13)). We combine it with the driver conservation
(Equation (12)) to remove two variables. We choose to replace xNR−1 and xNR

with

xNR−1 =
ND(κ− τNR

)−
∑NR−2

k=1 (τk − τNR
)xk

τNR−1 − τNR

;

xNR
= ND −

NR−1∑
r=1

xr.

(17)

3 Results

To illustrate our preliminary work on the proposed methodology, we set an example with NR = 3
regions, ND = 150 drivers, and 1000 travelers. Region 1 is the city center with high demand and
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good PT coverage.
Thanks to the problem size reduction (Equation (17)), there are only two unknowns: x1 and p,
which makes the problem suitable for Bayesian optimization (BO). The agent-based model is run
20 times to remove the stochastic bias for the evaluation of the results. We use the open-source
Python package BayesianOptimization (Nogueira, 2014) to compute the drivers’ assignment and
credit price at equilibrium.
Two different TCS are compared against the status quo (i.e., no RH regulation). Every driver gets
κ = 1 credit. Region 3 is always free of charge. In the first TCS (TCS1), region 2 requires 1 credit,
and region 1 requires 2 credits. The second scenario, TCS2, is more constraining: operating in
region 1 requires 2 credits, and region 1 requires 4 credits. The corresponding equilibriums are
compared in Table 1.

Table 1: Impacts of two TCS on all trips; trips within the region 1 (city center); trips from
or to the region 1 (exclusive or); and trips outside the region 1.

Status quo TCS1 TCS2
Credit charge τ [0,0,0] [2,1,0] [4,2,0]

Credit price p (EUR) 0 23 13
Drivers’ assignment x [150,0,0] [58,34,58] [26,23,101]

All trips
RH revenue (EUR) 1454 1549 1266

Average travel time (min) 18.8 18.4 19.1
Trips within the city center

PT (%) 74 78 89
RH (%) 26 22 11

Average travel time (min) 6.7 6.9 7.2
Trips from or (but not and) to the city center
PT (%) 65 65 73
RH (%) 16 12 6

PT+RH (%) 10 12 12
RH+PT (%) 8 10 9

Average travel time (min) 17.6 17.7 18.3
Trips outside the city center

PT (%) 59 51 55
RH (%) 35 37 30

PT+RH (%) 4 7 9
RH+PT (%) 2 5 7

Average travel time (min) 24.4 23.1 24.1

Without TCS, all drivers choose the license to operate in region 1 and above, as it allows access
to the whole RH market without extra costs. With TCS1 and TCS2, the credit cap forces some
drivers to not operate in regions 1 and 2. The credit price is lower with TCS2 than TCS1, but
the TCS-related cost to operate in region 1 (and above) pτ1 is higher with TCS2 (52 EUR vs.
46 EUR with TCS1). The TCS decreases RH shares and increases PT ridership in the city center
(region 1). For trips from or to the city center, the TCS decreases RH-only trips at the profit of
combinations with PT. For trips outside of the city center, where the PT coverage is low, both
the number of PT- and RH-only trips decreases, and the combinations of RH and PT increase.
The average travel times are better for trips outside the city center by about 5%. The total RH
revenue increases by 7% with TCS1. Forcing some drivers not to operate in region 1 reduces the
pick-up distance in the suburbs and makes some customers choose RH for relatively long trips. It,
however, decreases with TCS2, as it greatly restricts operations in the city center (region 1), which
is a lucrative market because of the relatively high demand.
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4 Conclusions

This work proposes a tradable credit scheme to foster cooperation between ride-hailing services
and public transportation. The TCS nudges RH drivers to serve the suburbs and complete the PT
offer to foster multimodal trips: RH in an area with sparse PT infrastructure (suburbs) and PT in
a dense area (city center). The main effect for the customer is that increasing the number of RH
drivers in the suburbs will decrease the average pick-up distance. We compute the drivers’ operating
regions and the credit price by solving the equilibrium with BO. We evaluate and compute the
equilibrium using the trip-based MFD to calculate the trips. The results in a simplified scenario
show the TCS nudge part of the travelers to combine RH and PT for their trips. It makes the PT
more competitive for travelers outside the city center.
Further work will apply this methodology for a case study based on a real city.

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation
program under Grant Agreement no. 953783 (DIT4TraM).

References

Balzer, L., & Leclercq, L. (2022, 6). Modal equilibrium of a tradable credit scheme with a
trip-based MFD and logit-based decision-making. Transportation Research Part C: Emerging
Technologies, 139 , 103642. Retrieved from https://linkinghub.elsevier.com/retrieve/
pii/S0968090X22000857 doi: 10.1016/J.TRC.2022.103642

Beojone, C. V., & Geroliminis, N. (2021, 3). On the inefficiency of ride-sourcing services towards
urban congestion. Transportation Research Part C: Emerging Technologies, 124 , 102890. doi:
10.1016/J.TRC.2020.102890

Cats, O., Kucharski, R., Danda, S. R., & Yap, M. (2022, 1). Beyond the dichotomy: How
ride-hailing competes with and complements public transport. PLOS ONE , 17 (1), e0262496.
Retrieved from https://journals.plos.org/plosone/article?id=10.1371/journal.pone
.0262496 doi: 10.1371/JOURNAL.PONE.0262496

Daganzo, C. F. (2007, 1). Urban gridlock: Macroscopic modeling and mitigation approaches.
Transportation Research Part B: Methodological , 41 (1), 49–62. doi: 10.1016/j.trb.2006.03.001

Erhardt, G. D., Roy, S., Cooper, D., Sana, B., Chen, M., & Castiglione, J. (2019). Do transporta-
tion network companies decrease or increase congestion? Science Advances, 5 (5). Retrieved from
https://www.science.org/doi/10.1126/sciadv.aau2670 doi: 10.1126/SCIADV.AAU2670/
SUPPL{\_}FILE/AAU2670{\_}SM.PDF

Jin, W.-L. (2020). Generalized bathtub model of network trip flows. Transportation Research Part
B , 136 , 138–157. doi: https://doi.org/10.1016/j.trb.2020.04.002

Lamotte, R., & Geroliminis, N. (2018, 11). The morning commute in urban areas with het-
erogeneous trip lengths. Transportation Research Part B: Methodological , 117 , 794–810. doi:
10.1016/j.trb.2017.08.023

Mariotte, G., Leclercq, L., & Laval, J. A. (2017, 7). Macroscopic urban dynamics: Analytical
and numerical comparisons of existing models. Transportation Research Part B: Methodological ,
101 , 245–267. doi: 10.1016/j.trb.2017.04.002

Nogueira, F. (2014). Bayesian Optimization: Open source constrained global optimization tool for
Python. Retrieved from https://github.com/fmfn/BayesianOptimization

Nourinejad, M., & Ramezani, M. (2020, 2). Ride-Sourcing modeling and pricing in non-equilibrium
two-sided markets. Transportation Research Part B: Methodological , 132 , 340–357. doi: 10.1016/
J.TRB.2019.05.019

6

https://linkinghub.elsevier.com/retrieve/pii/S0968090X22000857
https://linkinghub.elsevier.com/retrieve/pii/S0968090X22000857
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262496
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0262496
https://www.science.org/doi/10.1126/sciadv.aau2670
https://github.com/fmfn/BayesianOptimization


OECD. (2018). Taxi, ride-sourcing and ride-sharing services - Background Note by the Secre-
tariat (Tech. Rep.). Retrieved from http://www.oecd.org/daf/competition/taxis-and-ride
-sharing-services.htm

Verhoef, E., Nijkamp, P., & Rietveld, P. (1997, 11). Tradeable permits: their potential in the
regulation of road transport externalities. Environment and Planning B: Planning and Design,
24 (4), 527–548. Retrieved from http://epb.sagepub.com/lookup/doi/10.1068/b240527 doi:
10.1068/b240527

Yang, H., & Wang, X. (2011). Managing network mobility with tradable credits. Transportation
Research Part B: Methodological , 45 (3), 580–594. doi: 10.1016/j.trb.2010.10.002

7

http://www.oecd.org/daf/competition/taxis-and-ride-sharing-services.htm
http://www.oecd.org/daf/competition/taxis-and-ride-sharing-services.htm
http://epb.sagepub.com/lookup/doi/10.1068/b240527


1 
 

An auctioning process for large-scale ride-hailing vehicles repositioning 
 

M. Seppecher*1, L. Leclercq1 
 

1 Univ. Gustave Eiffel, Univ. Lyon, ENTPE, LICIT-ECO7 UMR T9401, F-69675, Lyon 

(France) 

 

SHORT SUMMARY 

On-demand mobility services are transforming urban mobility. They can provide 
individual and collective benefits when managed optimally, and their successful 
integration within the existing urban transport system can enhance its performance. In 
contrast, inadequate fleet management can inflict high pick-up waiting times and 
passenger drop-out rates. One of the main challenges for on-demand mobility service 
operators is to proactively rebalance their fleets to ensure that the spatial distribution of 
supply matches the demand. This paper proposes to address this problem with a 
distributed auctioning approach. We design an architecture that relies on local controllers 
interacting with idle vehicles, encouraging them to relocate to their service area. We 
conduct simulations on the city of Lyon in France, which reveal a substantial increase in 
the number of passengers served compared to a scenario without rebalancing. 
 
Keywords: auctioning, fleet management, multi-agent modeling, on-demand services, ride-
hailing, simulation. 

1. INTRODUCTION 

Over the last decades, novel mobility services have appeared in cities, such as ride-sourcing (in-
cluding e-hailing and ride-splitting) and vehicle sharing. In particular, ride-sourcing companies 
have multiplied, competing with traditional taxi companies and providing travelers with a vast 
range of services. This new offer can meet an increasingly dynamic and non-regular mobility 
demand, unsatisfied by public transportation or personal car constraints. On one side, ride-sourc-
ing services offer more flexible services than public transit, on-spot and on-demand pick-up, and 
no connections. On the other side, they can be less costly than private car ownership and provide 
satisfying solutions to parking issues. At a collective scale, the services can contribute to limiting 
car ownership and its externalities, such as land occupancy, soil sealing, or congestion.  
 
However, efficiently managing this type of service requires handling several operational issues. 
Fleet rebalancing is one of them. It consists of reorganizing a vehicle fleet in space and time by 
dispatching idle vehicles towards high-demand areas to limit vehicle accumulation in attractive 
zones and ensure continuous and prompt service to passengers.  
 
Rebalancing must preferably be proactive, i.e., anticipate the future demand and reorganize the 
fleet accordingly. Numerous literature studies have looked at this management issue. Yet, most 
offer centralized management methods, raising questions regarding their robustness to scaling or 
communication failures (Alonso-Mora et al., 2017; Miao et al., 2017, 2015; Ramezani and Nou-
rinejad, 2018). In this respect, distributed approaches are interesting alternatives. Recent works 
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have looked into fleet rebalancing through the lens of passengers and drivers-intended incentives, 
with pricing and information-sharing strategies or coverage control (Zhu et al., 2022). In this 
work, we explore this subject through the angle of auctioning. While auctioning approaches have 
been applied for developing (reactive) matching strategies (Manjunath et al., 2021; Nourinejad 
and Roorda, 2016; Wu et al., 2008), this is, to our knowledge the first attempt to extend its appli-
cation to fleet large scale repositioning.  

2. METHODOLOGY 

The method we develop relies on a mesh of controllers that divide the urban network into an equal 
number of service areas. These controllers, which can be associated with physical infrastructures 
such as taxi stations and deposits, are considered at the service of a public authority (e.g., local 
authority or transport agency). Their goal is to ensure that ride requests occurring within the 
boundaries of their service area are served with the minimum waiting time. For this purpose, they 
aim to attract idle vehicles within their perimeter by negotiating with them at regular intervals 
(e.g., every 10 minutes) within a two-sided matching market. 
 
With this frequency, the controllers are first in charge of forecasting the future demand (i.e., the 
number of requests). The specific topic of demand forecasting is out of the scope of this paper, 
and we will assume that historical data allow modeling the future number of requests as a random 
variable 𝑋	 = 	𝑁(𝜇!" , (𝜎!")#). This assumption is supported by recent research in demand predic-
tion (Khalesian et al., 2022). To attract the required number of vehicles, local controllers publish 
within the matching market as many relocating offers as expected ride requests. These offers will 
allow vehicles to which they are assigned to relocate within the corresponding service area. Each 
relocation offer is characterized by: 

1. The likelihood of the expected ride request. We define the likelihood 𝑝$ of the kth ex-
pected ride request as the probability that at least k ride request occur during t. Therefore, 
we have: 

 ∀𝑘 ∈ ℕ, 𝑝$ =	𝑆%(𝑘) = 	𝑃(𝑋 ≥ 𝑘)	 (1) 
 

with 𝑆% the survival function of X. 
2. The expected revenue 𝑔3! for picking up a passenger in service area i, which can be esti-

mated based on historical data.  
 
Then, the matching of vehicles with a relocation offer follows a distributed Gale-Shapley algo-
rithm (Brito and Meseguer, 2006, 2005), often used to solve matching problems (marriage, stu-
dent-college or resident-hospital matching). First, the features of relocating offers allow drivers 
to estimate their utility in applying to one or another relocation option. This utility is estimated as 
the expected net revenue, computed as the difference between expected incomes (expected reve-
nue weighted by request likelihood) and rebalancing costs:  

	
𝑈&(𝑖, 𝑘) 	= 	𝑝$ 	𝑔3! 	− 	𝑐&(𝑖) (2) 

 
Drivers bid on the most useful relocating option and share their expected arrival time within the 
region with the local controller. Then, local controllers rank the received offer according to their 
utility. For each relocation offer, the controller accepts its preferred application and rejects the 
others. Rejected vehicles update their preference list and apply to their second most-preferred 
option. If a controller previously now receives a better application, it can reject the previously-
matched vehicle and accept the new one. The rejected vehicle updates its preference list and ap-
plies to another relocation offer. This process goes on until all cars run out of interesting relocation 
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offers. In the end, vehicles matched relocate to their destination region, and unassigned vehicles 
remain idle at their current position. Although iterative, this process can be close to instantaneous, 
as drivers actually do not interfere in the process. We illustrate this communication protocol in 
Figure 1. 
 

 
Figure 1: Communication protocol supporting the fleet rebalancing 

 
Note that controllers can use several methods to evaluate the utility of the application of a vehicle. 
In the present paper, we use the following approach. A fictive occurrence time within the re-
balancing period is assigned to each expected ride request. Then, the utility of a vehicle applica-
tion is determined according to the delay the travel time the vehicle needs to join the service area 
would inflict on this expected passenger, given this fictive occurrence time. The utility function 
is triangular, maximal when the car arrives right on time, and decreases faster when the vehicle 
comes later than when it arrives in advance, as illustrated in Figure 2. 
 

 
Figure 2: Controllers’ utility 

 

3. RESULTS AND DISCUSSION 

Case study 

We choose the city of Lyon, France, as a case study. The network we model covers 121 km2 and 
includes both the city of Lyon and the city of Villeurbanne, located within a circular ring road. 
To conduct rapid simulations, we model the traffic on a simplified network of the city. The net-
work only includes the primary and secondary urban roads and highways, as illustrated by Figure 
2.a). The supply calibration and the demand scenarios used here have been calculated within the 
ERC Magnum Project (Mariotte et al., 2020). 15% of the inner flows are assigned to ride-hailing, 
while the remaining users are assumed to take their personal cars. The city is partitioned into 50 
service areas, as illustrated in Figure 2.b). The simulations are conducted on the MnMS multi-
agent simulation platform developed at Univ. Gustave Eiffel. This paper presents the results of 
simulations performed with a 4000-vehicle-large vehicle fleet and 10-minute-long passenger 
waiting time tolerance. 
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a) b)  

Figure 2. Simulation network. a) Road network. b) Service areas. 

 

Results 

We compare our strategy to a no-rebalancing scenario and evaluate performance based on several 
KPIs regarding service, users, drivers, and traffic. First, our analyses show that implementing our 
strategy over the city of Lyon allows increasing the number of passengers served by 9.88% 
(+1975 passengers) compared to the base scenario. This service increase is especially significant 
between 8:00 a.m. and 9:00 a.m., during the peak demand hour, as illustrated in Figure 3. Figure 
4 shows the level of service improvement in space. Applying our rebalancing strategy especially 
allows for increasing the service in the western suburban and less connected areas of the city 
(+32% of demand served in some areas) while being slightly detrimental to the service in the city 
center and eastern neighborhoods. We observed that this overall service improvement comes with 
an increase in waiting time before pick-up of 1.39 minutes on average. This increase is explained 
by the decrease in the number of available vehicles, due, on the one hand, to the rise in the number 
of passengers served, on the other hand, to rebalancing vehicles being considered unavailable for 
matching. Exploring variants of this rebalancing strategy that allow rebalancing vehicles to pick 
up passengers should allow limiting this waiting time increase. 
 

 
Figure 3: Number of users being served throughout simulation time. 
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Figure 4: Spatial visualisation of the service improvement thanks to rebalancing. 

 

4. CONCLUSIONS 

In this paper, we propose an original fleet rebalancing strategy based on outsourcing rebalancing 
management to local controllers and implementing a negotiation process between them and the 
vehicles. Our method significantly impacts the number of passengers served, especially in subur-
ban areas less connected to the city center. Although it also seems to increase the average waiting 
time of passengers, this increase is limited compared to the increase in the number of passengers 
served, and more flexible matching strategies will help to mitigate this effect. 
 
As a continuation of this work, future works will focus on conducting advanced sensitivity anal-
yses to fleet size, uncertainty levels, or riding fares. We will also explore different utility functions 
for local controllers and assess their impact on waiting time, amount of passengers served, or 
empty mileage.  
 
In the mid-term, we will use this approach to develop local incentive strategies to encourage ve-
hicles to relocate to service areas with lower accessibility or uncertain demand. We will also look 
at enriching the method to foster cooperation between local controllers rather than competition. 
Finally, this approach based on controllers external to the service could be relevant in managing 
the competition between different mobility services. 
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ABSTRACT 

The main contribution of this study is to derive the crowding valuation of public transport 

passengers in a post-pandemic era entirely based on observed, actual passenger route choices. We 

derive passengers’ crowding valuation for the London metro network based on a revealed 

preference discrete choice model using maximum likelihood estimation. We find that after the 

passenger load on-board the metro reaches the seat capacity, the in-vehicle time valuation 

increases by 0.422 for each increase in the average number of standing passengers per square 

metre upon boarding. When comparing this result to a variety of crowding valuation studies 

conducted before the pandemic in London and elsewhere, we can conclude that public transport 

passengers value crowding more negatively since the pandemic. Our study results contribute to a 

better understanding on how on-board crowding in urban public transport is perceived in a 

European context since the outbreak of the COVID-19 pandemic. 

 

Keywords: COVID-19; Crowding; Public Transport; Revealed Preference; Smart Card Data. 

Word count (incl. abstract and references, excl. tables): 2,947 

1. INTRODUCTION 

In many urban public transport (PT) systems worldwide high passenger volumes result in high 

crowding levels on-board PT vehicles. Over the last two decades, many studies have been per-

formed to public transport crowding valuation, by inferring the PT in-vehicle time crowding mul-

tiplier as a function of the on-board load factor or standing density (average number of standing 

passengers per m2). Initially, most of these studies relied on stated preference (SP) approaches 

where respondents were asked in (online) surveys to indicate which route or mode choice alter-

native they would choose based on hypothetical crowding scenarios (e.g. Batarce et al. 2016, 

Tirachini et al. 2017, Wardman and Whelan 2011, Li and Hensher 2011). In more recent years 

there is an increasing number of studies using revealed preference (RP) for this purpose. With the 

availability of large-scale passenger data from Automated Fare Collection (AFC) systems and/or 

Automated Passenger Count (APC) systems such as load-weigh systems, passengers’ crowding 

valuation can be derived from empirically observed route and mode choice behaviour. RP based 

crowding studies have been applied to case studies in Singapore (Tirachini et al. 2016), Hong 

Kong (Hörcher et al. 2017), the Netherlands (Yap et al. 2020) and Washington, DC (Yap and Cats 

2021). 

 

All abovementioned studies estimate the perception of PT crowding based on data before the 

outbreak of the COVID-19 pandemic. One can expect that passengers are perceiving crowding 

more negatively since the start of the pandemic as crowded environments generally pose a higher 

risk of contracting COVID-19. It is thus of utmost importance to understand how PT passengers 

perceive on-board crowding in this post-pandemic era, as changes in crowding perception might 



2 

 

influence route and mode choice and might hamper a full demand recovery on PT routes being 

perceived as (over)crowded, imposing in effect new de-facto capacity limits. More recently, a few 

studies have been performed which assess passengers’ post-pandemic crowding perception based 

on stated preferences elicited from choice experiments (Bansal et al. 2022, Basnak et al. 2022, 

Flügel and Hulleberg 2022, Shelat et al. 2022). However, as of yet no studies have been performed 

which use observed passenger route choices from large-scale AFC and APC systems to re-estab-

lish public transport crowding perception in the aftermath of the pandemic based on actual pas-

senger behaviour rather than based on stated behaviour in surveys or choice experiments. 

 

The main contribution of our study is deriving the crowding valuation of public transport passen-

gers in a post-pandemic era entirely based on observed, actual passenger route choices. The results 

of our revealed preference approach thereby add to the emerging evidence from studies which 

derive post-pandemic crowding perceptions from SP surveys (see Table 1). By relying on large-

scale, empirical passenger demand data, we derive crowding valuations based on more than 

20,000 observed passenger journeys in the London PT network. 

 

Table 1. Study contribution 

 
PT crowding studies Stated Preference Revealed Preference 

 

 

Pre-pandemic 

 

Li and Hensher (2011) 

Wardman and Whelan (2011) 

Batarce et al. (2016) 

Tirachini et al. (2017) 

 

 

Tirachini et al. (2016) 

Hörcher et al. (2017) 

Yap and Cats (2021) 

 

 

Post-pandemic 

 

Bansal et al. (2022) 

Basnak et al. (2022) 

Flügel and Hulleberg (2022) 

Shelat et al. (2022) 

 

 

This study 

2. METHODOLOGY 

Data input 

As input for our study we use passenger demand and occupancy data derived from the urban PT 

network of the Greater London Area, which is under the authority of Transport for London (TfL). 

For metro journeys in London each row in the AFC data consists of the location and time of the 

first station entry and of the last station exit. For buses only the boarding stop, time and bus route 

are empirically available, whereas the alighting bus stop is inferred. The data format for metro 

and bus journeys is illustrated in Table 2. As metro crowding information is not directly available 

from AFC data, we rely on APC data obtained from load-weigh data for the lines where the rolling 

stock is equipped with load-weigh systems. This provides on-board passenger loads for each line 

segment by train and on average per 15-minute time interval. As London buses are not equipped 

with APC systems, bus crowding information can only be inferred. Therefore, we only focus on 

estimating the crowding valuation for metro journeys for which we can rely directly on APC data, 

while keeping the bus data in the passenger journey dataset. 
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Table 2. An illustration of the structure of the AFC dataset 

 
Mode Route Start Time Start Stopcode End Time End Stopcode 

Metro - 2022-06-15 08:01:12 778 2022-06-15 08:19:53 729 

Bus 43 2022-06-17 16:44:05 BP3065 2022-06-17 16:59:22* BP2336* 

* inferred, not empirically available 

 

In this study we estimate three different models: 

 A pre-pandemic off-peak model based on 3-7 February 2020. We use this as an un-

crowded pre-pandemic baseline model. 

 A post-pandemic off-peak model based on 13-17 June 2022, used to assess whether base 

level in-vehicle time and waiting/walking time valuations have changed since the 

COVID-19 pandemic.  

 A post-pandemic peak model based on the same period 13-17 June 2022. This model, 

focusing on AM and PM journeys, estimates the post-pandemic metro crowding valuation 

based on load-weigh data which is available for this period. 

During the selected post-pandemic period 13-17 June 2022 there were no COVID related re-

strictions in place anymore in London. Additionally, no capacity constraints, social distancing or 

mandatory face covering were in place when travelling by PT. This implies that June 2022 reflects 

a more steady-state situation in the post-pandemic era. 

Choice set generation 

To generate a choice set we apply the following criteria and filtering rules: 

 Exclude incomplete and unrealistic journeys. 

 Include metro journeys entirely made on lines for which load-weigh data is available 

(Central and Victoria Line).  

 Include metro journeys between station pairs with unambiguous routing, to reliably infer 

the in-vehicle time and waiting time corresponding to the route a passenger took. 

 Include journeys made in the off-peak for the two uncrowded models (10-14h or 20-23h), 

and journeys in the AM peak (6-10h) or PM peak (15-19h) for the crowding model. 

 Only include origin-destination pairs with a sufficient number of observations for at least 

two different observed paths, as we rely entirely on observed passenger route choices to 

derive crowding perceptions. 

 For the crowding model, only include OD pairs with sufficient crowding levels (at least 

a load factor of 50%) for at least one of the paths. 

 Exclude OD pairs where one route option is dominant over the other paths. 

 

The resulting choice set inputs for all three models are summarised in Table 3. 

 

Table 3. Choice set description 

 
 Model 1 

Pre-pandemic 

uncrowded model 

Model 2 

Post-pandemic 

uncrowded model 

Model 3 

Post-pandemic 

crowding model 

Observations 50,494 46,400 20,970 

Number of OD pairs 407 377 60 

Number of paths 820 764 126 

Average number of paths per OD pair 2.01 2.03 2.10 

Average number of observations per 

OD pair 

124 123 350 
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Model specification 

We adopt a standard utility maximisation framework. To prevent biased estimates due to possible 

correlations between unobserved components of the different path alternatives 𝑎𝑜𝑑 ∈ 𝐴𝑜𝑑, we 

explicitly account for overlap between paths using a path size correction factor as proposed by 

Ben-Akiva and Bierlaire (1999). Therefore, the total disutility of each path 𝑈(𝑉, 𝑟, 𝜀) is composed 

of the structural, deterministic utility component 𝑉, a path size factor 𝑟 and a random error term 

𝜀 (Eq.1). The probability 𝑃𝑎 for choosing each path 𝑎 can then be calculated using the closed-

form function shown in Eq.2.  

 

𝑈𝑎𝑜𝑑
= 𝑉𝑎𝑜𝑑

+ 𝛽𝑝𝑠𝑙 ∙ 𝑟𝑎𝑜𝑑
+ 𝜀𝑎𝑜𝑑

     (1) 

 

𝑃𝑎𝑜𝑑
=

exp (𝑉𝑎𝑜𝑑
+𝛽𝑝𝑠𝑙∙𝑟𝑎𝑜𝑑

)

∑ exp (𝑉𝑎𝑜𝑑
+𝛽𝑝𝑠𝑙∙𝑟𝑎𝑜𝑑

)𝑎𝑜𝑑∈𝐴𝑜𝑑

     (2) 

 

The structural part of the utility function 𝑉 is a vector of observable route attributes with their 

corresponding weights as defined for the uncrowded off-peak models 1 and 2 (Eq.3) and for the 

crowding model (Eq.4). We specify mode-specific in-vehicle time coefficients 𝛽𝑖𝑣𝑡
𝑏  for bus and 

𝛽𝑖𝑣𝑡
𝑚  for metro, so that potential mode-specific differences in in-vehicle time valuation can be 

captured. A generic waiting/walking out-of-vehicle time coefficient 𝛽𝑤𝑡𝑡 is specified in the utility 

function, in such a way that 𝛽𝑤𝑡𝑡 directly reflects the ratio between waiting/walking time and in-

vehicle time valuation. We use the standing density on-board the metro 𝑑𝑚 as a crowding metric, 

which reflects the average number of standing passengers per square metre as derived from load-

weigh data for each route segment per 15-minute time interval. The standing density equals zero 

if the passenger load 𝑞 is smaller than the seat capacity 𝜅 – implying that all passengers can have 

a seat – and increases up to 4 standing passengers per m2  when all surface available for standing 

𝜃 has been used. In this study we test three different metrics for capturing the crowding perception 

associated with the standing density: the average standing density across all links of a passenger 

journey (Eq.5), the standing density at the first link of a passenger journey upon boarding (Eq.6), 

and the maximum standing density (over all links 𝑒𝑖 ∈ 𝐸𝑖) at the busiest point of the passenger 

journey (Eq.7). This enables us to assess which formulation of standing density is most important 

for passenger’s crowding valuation. The coefficient 𝛽𝑑
𝑚 is specified such that it reflects the in-

vehicle time crowding multiplier as function of the standing density. 

 

𝑉 = 𝑎𝑠𝑐𝑏 ∙ 𝑏  + 𝛽𝑖𝑣𝑡
𝑏 ∙ 𝑡𝑖𝑣𝑡

𝑏 + 𝛽𝑖𝑣𝑡
𝑏 ∙ 𝛽𝑤𝑡𝑡 ∙ 𝑡𝑤𝑡𝑡

𝑏 + 

                𝑎𝑠𝑐𝑚 ∙ 𝑚 + 𝛽𝑖𝑣𝑡
𝑚 ∙ 𝑡𝑖𝑣𝑡

𝑚 + 𝛽𝑖𝑣𝑡
𝑚 ∙ 𝛽𝑤𝑡𝑡 ∙ 𝑡𝑤𝑡𝑡

𝑚     (3) 

 

𝑉 = 𝑎𝑠𝑐𝑏 ∙ 𝑏  + 𝛽𝑖𝑣𝑡
𝑏 ∙ 𝑡𝑖𝑣𝑡

𝑏 + 𝛽𝑖𝑣𝑡
𝑏 ∙ 𝛽𝑤𝑡𝑡 ∙ 𝑡𝑤𝑡𝑡

𝑏 + 

                  𝑎𝑠𝑐𝑚 ∙ 𝑚 + 𝛽𝑖𝑣𝑡
𝑚 ∙ 𝑡𝑖𝑣𝑡

𝑚 ∙ (1 + (𝛽𝑑
𝑚 ∙ 𝑑𝑚)) + 𝛽𝑖𝑣𝑡

𝑚 ∙ 𝛽𝑤𝑡𝑡 ∙ 𝑡𝑤𝑡𝑡
𝑚  (4) 

 

𝑑𝑖
𝑎𝑣𝑔

= max (
∑

𝑞𝑒−𝜅𝑒
𝜃𝑒

𝑒𝑖∈𝐸𝑖

|𝐸𝑖|
, 0)      (5) 

𝑑𝑖
𝑓𝑖𝑟𝑠𝑡

= max (
𝑞𝑒1−𝜅𝑒1

𝜃𝑒1

, 0)      (6) 

𝑑𝑖
𝑚𝑎𝑥 = max (𝑚𝑎𝑥 (

𝑞𝑒𝑖
−𝜅𝑒𝑖

𝜃𝑒𝑖

, 0))    ∀ 𝑒𝑖 ∈ 𝐸𝑖    (7) 
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3. RESULTS AND DISCUSSION 

Results 

Maximum likelihood estimation is performed to infer the coefficients which best explain the ob-

served passenger route choices for the three different models. The Newton algorithm is used as 

iterative method to solve this non-linear optimisation problem. From the model estimation sum-

mary shown in Table 4, it can be seen that the Rho-square-bar of crowding model 3 is 37% higher 

compared to the Rho-square-bar of uncrowded post-pandemic model 2. Model estimation results 

are presented in Table 5. The signs of all coefficients are plausible and in line with a-priori ex-

pectations and findings reported by previous studies. As we don’t have access to information on 

the panel structure of the data, we report the robust t-statistic and robust p-value as sandwich 

estimator with the aim of preventing an overestimation of the model coefficients. The absolute 

value of the robust t-value is larger than 1.96 for all estimated coefficients, which confirms that 

our results are statistically significant. 

 

Table 4. Model estimation summary 

 
 Model 1 

Pre-pandemic 

uncrowded model 

Model 2 

Post-pandemic 

uncrowded model 

Model 3 

Post-pandemic 

crowding model 

Observations 50,494 46,400 20,970 

Number of estimated parameters 6 6 6 

Initial log-likelihood -35,339 -33,177 -12,209 

Final log-likelihood -28,182 -25,936 -8,551 

Rho-square 0.203 0.218 0.300 

Rho-square-bar 0.202 0.218 0.299 

Akaike Information Criterion (AIC) 56,377 51,884 17,115 

Bayesian Information Criterion (BIC) 56,430 51,937 17,162 

 

Table 5. Model estimation results 

 
 Model 1 

Pre-pandemic  

uncrowded model 

Model 2 

Post-pandemic  

uncrowded model 

Model 3 

Post-pandemic 

crowding model 

Coefficients Value 

(robust t-value) 

Value 

(robust t-value) 

Value 

(robust t-value) 

𝑎𝑠𝑐𝑏 – alternative specific constant bus -0.677** (-21.0) -0.792** (-21.2) -0.635** (-16.1) 

𝑎𝑠𝑐𝑚 – alternative specific constant metro +0.677** (+21.0) +0.792** (+21.2) +0.635** (+16.1) 

𝛽𝑖𝑣𝑡
𝑏  – in-vehicle time bus -0.0653** (-23.0) -0.0458** (-17.2) -0.0399** (-14.9) 

𝛽𝑖𝑣𝑡
𝑚  – in-vehicle time metro -0.0520** (-13.9) -0.0388** (-9.07) -0.0220** ( -12.5) 

𝛽𝑤𝑡𝑡 – ratio wait/walk time : in-vehicle time +1.94** (+17.6) +1.93** (+11.5) +1.93 (fixed)1 

𝛽𝑝𝑠𝑙  – path-sized logit factor -0.438** (-3.54) -0.757** (-9.18) -0.573** (-5.95) 

𝛽𝑑
𝑚 – standing density metro   +0.422* (+2.21) 

robust t-values in parentheses. * robust p < 0.05; ** robust p < 0.01 
1 Fixed for the ratio wait/walk time : in-vehicle time as found in uncrowded post-pandemic model 2 estimated for the 

same time period 

Discussion on uncrowded models 

Based on the ratio between the metro and bus in-vehicle time coefficients 𝛽𝑖𝑣𝑡
𝑚 :𝛽𝑖𝑣𝑡

𝑏  of the un-

crowded pre-pandemic model 1, we find that on average uncrowded in-vehicle time on-board a 

metro is perceived 20% less negatively than uncrowded bus in-vehicle time. The same ratio for 
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post-pandemic uncrowded model 2 shows that metro in-vehicle time is now on average valued 

15% less negatively compared to bus in-vehicle time. Whilst this still confirms a generic passen-

ger preference for metro over bus regarding in-vehicle time, this result suggests that the relative 

attractiveness of the metro compared to bus has decreased somewhat in terms of in-vehicle time. 

A possible explanation is that since the COVID-19 outbreak passengers value travelling in en-

closed, underground environments such as a metro system more negatively than pre-pandemic, 

as these might be perceived as areas with higher infection risks. In contrast, bus travel on the 

surface with frequent door openings at stops and the possibility for passengers to open windows 

can be perceived as a travel mode providing better ventilation and thus reducing COVID-19 in-

fection risks. 

 

𝛽𝑤𝑡𝑡, the coefficient which reflects the ratio between waiting/walking time and uncrowded in-

vehicle time, equals 1.94 for the pre-pandemic model. This implies that on average passengers 

value one minute of out-of-vehicle (walking or waiting) time as almost two minutes of in-vehicle 

time. In the post-pandemic model we see that on average out-of-vehicle time is perceived 1.93 

times more negatively compared to uncrowded in-vehicle time. As 𝛽𝑤𝑡𝑡 remains almost un-

changed between the pre-pandemic and post-pandemic off-peak models, we can conclude that PT 

waiting/walking time valuation relative to in-vehicle time did not change since the COVID-19 

pandemic. 

Discussion on crowding model 

For the post-pandemic crowding model the estimated metro crowding coefficient 𝛽𝑑
𝑚 is signifi-

cant at a 95% significance level, with the robust t-statistic of 2.21 being larger than 1.96. The 

value of this coefficient implies that after the passenger load on-board the metro reaches the seat 

capacity, the in-vehicle time valuation increases by 0.422 for each increase in the average number 

of standing passengers per square metre. When we linearly extrapolate the estimated crowding 

coefficient – as observed crowding levels averaged per 15-minute interval in our choice set did 

not exceed 3 standing passengers per m2 – we can estimate that the in-vehicle time multiplier 

would be equal to 2.69 when a train operates at full capacity (assumed at 4 standing passengers 

per m2). The model using the crowding level upon boarding (𝑑𝑓𝑖𝑟𝑠𝑡) was the only model resulting 

in a statistically significant standing density crowding coefficient. This suggests that the PT 

crowding level upon boarding best captures passengers’ crowding valuation. An explanation for 

this is that the crowding level upon boarding is related to the passenger’s seat probability, as this 

is an important determinant of whether a passenger will be able to have a seat during the entire 

journey.  

 

In Figure 1 we compare the in-vehicle time crowding curve as derived from our model to previous 

studies. Compared to the three pre-pandemic RP studies performed based on large-scale AFC data 

(Singapore, Hong Kong,Washington DC) we can conclude that our post-pandemic crowding mul-

tiplier found for London is substantially higher. The same conclusion is reached when comparing 

the SP results between a pre-pandemic and post-pandemic study conducted in Santiago de Chile. 

Specifically for London we refer to two pre-pandemic studies on crowding valuation. The first 

one is a RP study performed in the 1990s by Transport for London. The resulting crowding mul-

tiplier of 2.32 at 4 standing passengers per m2  is notably higher than other pre-pandemic studies, 

although this study has been performed several years ago using a different methodology than 

more recent RP studies. We can derive a more recent average pre-pandemic crowding multiplier 

for London using the SP based coefficients estimated for seated and standing passengers by 

Whelan (2009), which results in an average pre-pandemic in-vehicle time multiplier of 1.77. Our 

equivalent RP based estimated crowding multiplier for London in the post-pandemic era of 2.69 

provides strong evidence that PT passengers value metro crowding substantially more negatively 
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in London since the COVID-19 outbreak compared to both pre-pandemic studies in London, de-

spite their differences in methodology. The crowding valuation found in our study is comparable 

to the post-pandemic crowding valuation derived from SP research for Santiago de Chile by 

Basnak (2022), which gives confidence in the magnitude of our estimated crowding coefficient. 

 

 
 

Figure 1. In-vehicle time crowding multiplier as function of standing density 

4. CONCLUSIONS 

Based on the three estimated discrete choice models we can formulate three main conclusions. 

First, the average post-pandemic out-of-vehicle time valuation remains unchanged at almost twice 

the uncrowded in-vehicle time valuation. Second, whilst our study results confirm that there is a 

generic passenger preference for metro over bus regarding in-vehicle time, we find that the rela-

tive attractiveness of metro compared to bus has decreased somewhat post-pandemic in terms of 

in-vehicle time. This possibly echoes a more negative perception of metro travelling in a more 

enclosed, underground environment compared to bus travel. Third, our crowding model estima-

tion results show that passengers’ average in-vehicle time valuation increases by 0.422 for each 

increase in the average number of standing passengers per square metre. In contrast, this same 

value equals 0.22 as average across the six studies to pre-pandemic crowding valuation as reported 

in Figure 1. Compared to the results of these SP and RP studies conducted before the pandemic 

in London and elsewhere we thus clearly see a steeper slope of the post-pandemic crowding curve 

as found in our study, based on which we can conclude that PT passengers value crowding more 

negatively since the COVID-19 pandemic. 
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Short summary

Speed and reliability are the keys to high quality on-demand meal delivery service. The rebalancing
of couriers locations according to future demand remains an operational challenge in the indus-
try. This study proposes an adaptive framework to identify and predict the near-future demand
hotspots, utilizing the semi real-time predictive information as input. This framework provides
demand insights to assist meal delivery platforms in making operational forward-looking resource-
demand rebalancing decisions in real time, such as fleet management and demand management.
To generate fast and accurate demand forecasting, we incorporate time series features and data-
driven machine learning methods to create an adaptive forecasting approach. We create a dynamic
demand hotspot clustering algorithm which takes predictive and geographic information as input.
In the case study, our predictive forecasting model outperforms the time series and deep learning
benchmarks in deterministic forecasting. The hotspots clustering performance is improved by using
probabilistic predictive input.
Keywords: short-term demand forecasting; on-demand meal delivery; data-driven methods

1 Introduction

The on-demand meal delivery business has created a global market valued at over 150 billion dol-
lars. However, competition among on-demand meal delivery service platforms (OMDPs), such as
DoorDash, Uber, and Grubhub, is intense. Good delivery service quality is essential for maintain-
ing high customer satisfaction, which improves customer loyalty in the long run. Delivery speed
and reliability are the key factors in determining service quality. To generate higher profits while
providing high-quality service, the platform should operate its limited courier resource efficiently.
Various studies have been conducted to enhance the delivery efficiency of OMDPs. Reyes et al.
(2018) and Yildiz & Savelsbergh (2019) study the meal delivery routing problem (MDRP) to min-
imize the travel time. An anticipatory customer assignment strategy is proposed by Ulmer et al.
(2021) to study the stochastic dynamic pickup and delivery problem.
To operate efficiently, on-demand meal delivery service platforms should also act proactively in
responding to the dynamics of demand in the city. With a limited number of hired couriers,
platforms can strategically prioritize assigning couriers to areas with higher predicted demand in
the near future. By doing so, more couriers will be available in high-demand areas, reducing the
average waiting time for order pickups. To support real-time operational decisions, accurate and
fast-to-generate short-term demand predictions of the city are necessary. However, to the best of
our knowledge, little attention has been paid to short-term demand forecasting problem of OMDPs.
Hess et al. (2021) compare the performance of mainstream forecasting methods in generating
deterministic demand predictions per hour. In their case study, an exponential smoothing based
model achieves the best performance when a rich amount of historical data is available, while
random forecast regression outperforms the rest when the training data is limited.
This study has two main objectives. Firstly, we combine the benefits of both parametric time
series and data-driven methods to create a fast-to-generate forecasting approach for the demands
arising from different parts of the city in the next 15-minute. Secondly, we propose an adaptive
framework to identify and predict the next demand hotspots, utilizing the semi real-time predictive
informtion as inputs. Addressing these two objectives, we propose the dynamic demand hotspots
forecasting framework, which can be used by the platforms to proactively optimize their fleet and
demand management decisions in real-time.
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2 Methodology

In this study, we propose the novel dynamic demand hotspots forecasting framework to assist the
rebalancing decision-making of on-demand meal delivery platforms by predicting the areas with
higher demand in the next 15-minute interval. Our framework consists of two major steps. Firstly,
we generate demand predictions for different areas of the city. Then, we generate demand hotspot
clustering of the city utilizing the predictive outcomes and the geographic information of these
areas.
Compared to the forecasting for a longer time interval, short-term demand predictions are more
volatile and prone to fluctuations caused by latent events. Parametric time series models are good
at interpreting recent signals for forecasting, but they require manual effort for selecting suitable
parameters during training. On the other hand, non-parametric data-driven machine learning
models are able to capture the non-linear patterns in data and interpret the interactions between
features. To combine the advantages of both sides, we propose an adaptive forecasting approach
that recurrently applies lagged-dependent features to generate predictions, based on data-driven
machine learning models. Inspired by autoregression analysis, the lagged-dependent features are
the previous values of demand, e.g. yαt−i meaning the demand of area α from i time steps ago. In
our model, each time step is a 15-minute interval. To distinguish the regular hourly seasonality
and the unexpected temporal fluctuations of demand, we choose to include four lagged-dependent
features yαt−1, yαt−2, yαt−3, yαt−4, covering the demand information from the recent one hour. And we
adopt random forest regression (RF) and eXtreme Gradient Boosting (XGBoost) as the baseline
machine learning models. Their adaptive versions we create are called LD-RF and LD-XGBoost
respectively.
Although deterministic demand forecasting is the focus of many demand forecasting literature, the
determination of future hotspots might be benefit from probabilistic predictive information, which
provides distributional insight of demand. The probabilistic predictive information feature Ŷt we
adopt in the dynamic demand hotspot clustering framework is a weighted average of the 25%, 50%
and 75% quantile prediction vectors, Ŷi = 0.25 · Ŷi,0.25 + 0.5 · Ŷi,0.50 + 0.25 · Ŷi,0.75. The quantile
prediction vectors are provided by quantile regression forest (QRF) by Meinshausen & Ridgeway
(2006) or its adaptive version LD-QRF in this study.
Besides of the predictions, we also include the geographic features latitude and longitude of the
area centers as input to the clustering algorithm. Constrained K-means clustering proposed by
Bradley et al. (2000) is utilized to generate clusters of areas with a condition of no less than three
zones per cluster, where the optimal number of clusters is chosen between 3 to 6 based on the
highest mean silhouette coefficient.

3 Results and discussion

Data analysis and feature engineering

Our case study uses the meal order placement data of a city, which is collected from April 1st,
2020 to September 14th, 2020. Each instance contains the placement time, pickup and delivery
destination locations. The locations are hashed into hexagonal zones using Uber’s H3 geospatial
indexing system at a resolution level of 8. The average area per zone is 0.737 km2. We denote
the location of the restaurant as the pickup zone, and the location of delivery destination as the
destination zone. Our data covers 20 pickup zones and 50 destination zones.
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Figure 1: The average total number of received orders per hour for weekdays (i.e. Monday
to Thursday) and weekends (i.e. Friday to Sunday), the error bars represent standard
deviations.

Figure 2: The daily average total number of received orders for each pickup zone at whole
day, day shift, and evening shift respectively.

According to our data analysis, all days of the week exhibit a dual-peak demand pattern, which
shows the demand level is much higher around dinner time compared to lunch time. Also, Friday,
Saturday and Sunday attract more orders than other days in general. To distinguish this demand
difference we visualise the average number of orders received per hour during the week and on
weekends in Figure 1. We consider Friday to Sunday together as weekend days since the demand
on Friday evening is much closer to the patterns of weekend days. A higher demand level is showed
among the weekend group than the weekday group. Inspired by the within-day demand pattern,
we can further split a day into the day shift (10:30-17:00) and the evening shift (17:00-21:30). To
explore the demand level difference among pickup zones, we compare their daily average number of
orders received in Figure 2. We observe a variation in the relative demand levels between the day
and the evening shifts, indicating a change of comparative demand levels of the city throughout a
day.
In this case study, we are interested in predicting the near future demands in the city, i.e. the
aggregated amount of orders coming in the next 15 minutes from all the restaurants in each pickup
zone. The per 15-minute demands are the aggregated number orders for each pickup zone according
to the 44 different 15-minute time windows each day. We denote this target variable order demand
of pickup zone α at the ith time interval as yαi . To capture the within-day and within-week double-
seasonal demand patterns in data, we include the temporal features hour and day of a week. A
binary variable is adopted to indicate whether the date is a national holiday. Considering that
weather also affects the interests of customers in online meal ordering, we include three exogenous
weather features, namely the average temperature, precipitation amount and wind speed. The
weather features are solely time-dependent, implying that the values measured at the same time
are consistent across different zones.

Experimental design, evaluation metrics and baseline models

For model training, we use the first 21 weeks’ data (6468 samples) from the processed dataset.
And the predictions are generated for the last 1 week’s data (308 samples) in a one-step-ahead
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rolling window fashion. The predictions of each pickup zone are generated in parallel at each step
by the corresponding predictors.
The first forecasting experiment involves performing deterministic demand forecasting for the next
15-minute. To gain an overview of model performance, we report the accuracy of each subset
of data by properties ‘types of shift’ and ‘partition of week’. In addition to reporting the mean
prediction errors averaged from predictions for all the pickup zones, we are also interested in
comparing the individual prediction errors measured per pickup zone to inspect whether certain
type of pickup zones are consistently better predicted by a kind of predictor. We apply the
root-mean-squared error (RMSE) and mean absolute error (MAE) as the evaluation metrics for
deterministic forecasting. To investigate the gains in deterministic forecasting using the data-
driven lagged-dependent models, namely lagged-dependent regression forest (LD-RF) and lagged-
dependent XGBoost (LD-XGBoost), we include the vanilla regression forest (RF) and XGBoost
models as the baselines. Moreover, we also include Trigonometric, Box–Cox, Auto-Regressive-
Moving-Average, Trend, and Seasonality (TBATS) model proposed by De Livera et al. (2011) as the
conventional time series benchmark for its superiority in capturing complex seasonal patterns and
convenience in automatic hyperparameters tuning function. Additionally, we include a two-layer
Long short-term memory networks (LSTMs) as the deep learning benchmark, given its similarity
in recurrent feature processing to our lagged-dependent methods.
The second forecasting experiment concerns identifying the demand hotspots of the city in the next
15-minute interval using the adaptive clustering framework we propose. The actual and predicted
within-cluster median demand values are the medians taken from the clusters generated by actual
demand and predictions inputs respectively. The deviation between the actual and predicted
within-cluster medians serves as an indicator of predictive clustering performance. Again, RMSE
and MAE are applied as error measurements.

Results of Case Study

The deterministic prediction accuracy of different models are reported in Table 1, measured by the
averaged RMSE and MAE. The performance of the vanilla data-driven machine learning models
well as their lagged dependent versions are rather close to each other, although XGBoost con-
sistently predicts most accurately for the forecasting of day shift. And all data-driven models
outperform the benchmarks TBATS and LSTMs by some margin in terms of prediction errors.
To confirm the statistical significance of prediction errors between models, we perform Diebold-
Mariano tests for all pairs of models. Only the forecasting performance difference between RF and
XGBoost is tested to be insignificant.
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Table 1: The one-week point forecast results of various models trained with 21 weeks’
data, measured by MAE and RMSE.

Period Model Whole Week Weekday Weekend

RMSE MAE RMSE MAE RMSE MAE
Whole Day TBATS 1.762 1.395 1.653 1.373 1.851 1.438

LSTM 1.975 1.330 1.506 0.961 2.190 1.515

RF 1.145 0.830 1.110 0.851 1.229 0.895
LD-RF 1.155 0.838 1.092 0.835 1.237 0.906
XGBoost 1.145 0.829 1.103 0.843 1.235 0.902
LD-
XGBoost

1.174 0.859 1.106 0.849 1.255 0.934

Day Shift TBATS 1.514 1.272 1.613 1.424 1.500 1.257
LSTM 1.029 0.698 0.551 0.370 1.169 0.815

RF 0.770 0.582 0.664 0.566 0.847 0.655
LD-RF 0.780 0.591 0.656 0.556 0.865 0.669
XGBoost 0.769 0.582 0.654 0.555 0.847 0.658
LD-
XGBoost

0.796 0.611 0.680 0.575 0.885 0.697

Evening Shift TBATS 2.040 1.572 1.675 1.336 2.205 1.700
LSTM 2.799 2.244 2.163 1.719 3.087 2.527

RF 1.514 1.185 1.489 1.238 1.607 1.242
LD-RF 1.523 1.197 1.466 1.218 1.604 1.249
XGBoost 1.515 1.185 1.484 1.234 1.619 1.256
LD-
XGBoost

1.549 1.216 1.478 1.220 1.627 1.275

Figure 3 shows the average RMSE and MAE per pickup zone obtained from different forecasting
methods. As we analyzed in Figure 2, the average number of orders received per day increase as
we move from pickup zone 1 to zone 20. The rise of demand level seems to be positively correlated
to the average forecasting errors. And the forecasting performance of benchmarks TBATS and
LSTMs are much poorer compared to that of the tree-based methods when applied to the high
demand pickup zones.

(a) RMSE (b) MAE

Figure 3: The RMSE and MAE of different models measured for each pickup zone at the
general (i.e. whole day and whole week) level.

From the deterministic forecasting experiment, RF, LD-RF, XGBoost and LD-XGBoost have
shown good performance. Therefore, we continue to apply these four predictors and utilize their de-
terministic predictions as part of the input for dynamic demand hotspots clustering. Additionally,
we include the quantile forecasting approaches QRF and LD-QRF. The vanilla data-driven models
are treated as the benchmarks here to evaluate the benefit of using lagged-dependent models as
well as applying probabilistic predictive information as input.
Figure 4 shows an example visualization of demand hotspots clustering, where the grids are colored
based on the within-cluster average actual/predicted demands. In this example, adaptive predictors
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LD-RF and LD-QRF manage to identify the central hotspot, although predicted within-cluster
demands are all less than actual.

(a) Actual (b) LD-RF (c) LD-QRF

Figure 4: Visualization of clustered hotspots for 19:00-19:15 on Monday, September
14th using (a) actual demands, (b) predicted deterministic demands by LD-RF, and (c)
predicted quantile demands by LD-QRF respectively.

The RMSE and MAE evaluations of the real and predicted within-cluster median difference are
presented in Table 2. On the whole day level, the best RMSE and MAE are obtained by the
adaptive predictors using lagged-dependent features, namely the LD-RF, LD-XGBoost and LD-
QRF. Also the accuracy measured by MAE suggests the probabilistic predictors to perform better.
It means using probabilistic predictive information generate less errors on average, although it is
punished by some occasional larger errors.

Table 2: The RMSE and MAE of one-week’s predicted within-cluster median demand by
dynamic clustering method using deterministic and probabilistic predictions from models
trained by 21-week data.

Period Model Whole Week Weekday Weekend

RMSE MAE RMSE MAE RMSE MAE
Whole Day RF 0.791 0.810 0.729 0.770 0.867 0.863

XGBoost 0.795 0.808 0.730 0.762 0.874 0.869

LD-RF 0.784 0.794 0.721 0.761 0.861 0.838
LD-
XGBoost

0.788 0.801 0.730 0.759 0.859 0.857

QRF 0.831 0.716 0.781 0.660 0.893 0.791
LD-QRF 0.820 0.699 0.767 0.648 0.886 0.766

Day Shift RF 0.657 0.601 0.647 0.551 0.671 0.668
XGBoost 0.660 0.599 0.648 0.543 0.677 0.673

LD-RF 0.660 0.601 0.652 0.552 0.670 0.667
LD-
XGBoost

0.666 0.614 0.659 0.554 0.675 0.694

QRF 0.718 0.483 0.729 0.412 0.713 0.577
LD-QRF 0.712 0.484 0.727 0.422 0.691 0.568

Evening Shift RF 0.952 1.112 0.834 1.086 1.090 1.145
XGBoost 0.956 1.109 0.834 1.078 1.099 1.151

LD-RF 0.935 1.072 0.811 1.063 1.080 1.084
LD-
XGBoost

0.936 1.071 0.822 1.055 1.070 1.092

QRF 0.971 1.054 0.851 1.020 1.112 1.099
LD-QRF 0.954 1.008 0.820 0.975 1.109 1.052

Again, we perform Diebold-Mariano tests on the within-cluster median predicting outcomes for
each pair of models covered in the second experiment. Results show that the forecasting perfor-
mance between RF and XGBoost, and between XGBoost and LD-XGBoost are not significantly
distinguishable from one another. The statistical test is significant for other pairs.
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4 Conclusions

This study proposes a dynamic demand hotspots forecasting framework that is able to assist
operational decision making for on-demand meal delivery platforms. Through a case study, we
show that the performance is improved by using the adaptive data-driven forecasting methods we
propose, and the probabilistic predictive feature we create from the quantile demand predictions as
input. A further study could focus on generating real-time resource-demand rebalancing decisions
by incorporating the predicted insight provided by our framework.
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SHORT SUMMARY 

Discrete choice models (DCM) are widely used in travel demand analysis to understand and 
predict choice behaviors. However, a priori specification of the utility functions is required for 
model estimation, leading to subjectivity and potential inaccuracies. Machine learning (ML) 
approaches have emerged as a promising solution but lack interpretability and may not capture 
expected relationships. This study proposes a framework that supports the development of 
interpretable models that incorporate domain knowledge and prior beliefs. The framework 
includes pseudo data samples and a loss function to measure relationship fulfillment. This 
approach combines the flexibility of ML structures with econometrics and interpretable 
behavioral analysis, improving model interpretability. The proposed framework's potential is 
demonstrated through a case study, providing a promising avenue for the advancement of data-
driven approaches in DCM. 
 
Keywords: Deep neural networks, discrete choice models, domain knowledge, interpretability 

1. INTRODUCTION 

Discrete choice models (DCMs) are used in travel demand analysis to understand individuals' 
decision-making processes. Most DCMs are formulated as random utility models (RUMs) that 
assume individuals make decisions based on maximizing utility. However, specifying a plausible 
utility model that captures these complexities is a challenging task (Torres et al., 2011). Recently, 
data-driven approaches using machine learning (ML) methods have emerged as a promising 
avenue to overcome the limitations of RUM specifications. Deep neural networks (DNNs) are an 
increasingly popular data-driven approach that has shown higher prediction accuracy in many 
tasks. 

Unlike RUM, DNN models require essentially no a priori beliefs about the nature of the true 
underlying relationships among variables. DNN models can find complex non-linear 
specifications, and their high flexibility means that the role of the analyst is minimized. However, 
their “black box” form limits their interpretability, and the extracted relationships may not be 
consistent with domain knowledge (Van Cranenburgh et al., 2021; Wang et al., 2020b). 

To address these limitations, some studies combine RUM and ML. For example, Sifringer et al., 
(2020, 2018) added a DNN-learned utility term to the traditional interpretable RUM utility 
function. This improves the model's fit to the data but the unbounded DNN term may dominate 
and prevent interpretation. The decision on which variables enter each part is subjective. 
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Another approach that was proposed by Wang et al., (2020a) is to use an alternative-specific 
utility deep neural network (ASU-DNN) architecture, which maintains separate utility functions 
for each alternative that depend only on its own attributes, resembling RUM. The model is more 
interpretable compared to fully connected DNNs and achieved comparable or better fit to the data. 
However, it still might suffer from unreasonable relationships among explanatory variables and 
choices. 

Current methods for interpretability lack control over the relationships among variables and 
choices, making them inconsistent with domain knowledge and limiting their application in 
predicting new policies (Alwosheel et al., 2021, 2019). This study proposes a framework that 
incorporates domain knowledge through constraints and a loss function to penalize violations. 
The proposed approach preserves flexibility and can be implemented on any model architecture, 
providing control over the model's behavior for better travel choice predictions. 

2. METHODOLOGY 

The idea behind incorporating domain knowledge in DNNs involves augmenting the data given 
to the model and modifying the loss function that the model optimizes. To achieve this, additional 
data, termed pseudo data, is generated to hold the targeted knowledge that the model is expected 
to capture. The loss function is then formulated to include terms that use this data, in combination 
with the original model loss function, such as the negative log-likelihood. The additional loss 
terms measure the extent to which the trained model is consistent with the domain knowledge. 
 
The overall framework for incorporating domain knowledge into DNNs is shown in Figure 1 and 
is independent of the model structure, allowing for seamless integration with existing DNN 
architectures. The model is trained on two sets of inputs: the originally available observed data 
and domain knowledge, which is mathematically formulated as a set of constraints on the 
outcomes of the trained model. The observed data represents the available dataset collected, 
including socio-economic characteristics of decision makers, attributes of the alternatives, and 
choices. The domain knowledge represents the knowledge that the modeler wants to incorporate 
into the model and expects to be captured (e.g., directions of sensitivities). 
 
In this work, the modeler's prior expectations are related to signs of the effects of an alternative’s 
attributes on its own utility. For example, these may be negative effects of mode travel times and 
costs on the utilities of these modes. In this case , the model is constrained to learn a monotonically 
decreasing probability of choosing an alternative with respect to its travel time and cost and, 
consequently, monotonically increasing probabilities of choosing the remaining alternatives. 
 
Consider a training set consists of 𝑁 samples {(𝑥! , 𝑦!)}, 𝑖 = 1,… ,𝑁, where 𝑥! is a feature vector 
in 𝑥 ∈ ℝ𝒟, and 𝑦! is the discrete choice among 𝒞 alternatives, 𝑦! ∈ {1, . . , 𝒞}. Let 𝑝#(𝑥!) be the 
probability of choosing alternative 𝑐 given input 𝑥!, and 𝑥![𝑚]  is the value of feature 𝑚 in the 
feature vector. The estimated model is considered to be monotonically increasing in 𝑝#with 
respect to feature 𝑚 if 𝑝#(𝑥!) ≥ 𝑝#7𝑥$8 for any two feature vectors 𝑥! , 𝑥$, such that 𝑥![𝑚] ≥ 𝑥$[𝑚] 
and 𝑥![ℎ] = 𝑥$[ℎ], for all ℎ ∈ 𝒟\𝑚. The opposite applies for decreasing monotonicity. The rest 
of the components are described as follows. 
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Figure 1. Overall framework for incorporating domain knowledge 

Generating Pseudo Data 

Following monotonicity constraints above, pseudo data can be generated as pairs of samples to 
numerically approximate the probabilities' derivatives that are constrained. For each monotonicity 
constraint with respect to a feature 𝑚, 𝐾 pseudo samples are generated uniformly along the region 
values of that feature 𝑥%,'∗ . Each pseudo sample is then paired with another pseudo one, such that 
the second pseudo sample has a positive incremental change applied to feature 𝑚. The 
relationship required for an increasing monotonicity constraint of probability of choosing 
alternative 𝑐 with respect to feature 𝑚 is 𝑝#7𝑥%,)∗ 8 − 𝑝#7𝑥%,'∗ 8 ≥ 0. 
 
The pseudo data does not require labels (i.e., chosen alternatives), as they are only used for 
capturing domain knowledge, not for predicting the chosen alternative. This ability to generate 
pseudo samples enhances the model in three ways: 
 

1. When the dataset is small, the pseudo dataset helps increase the dataset size to learn the 
model's parameters.  

2. When the input feature region is imperfectly covered, the pseudo data helps fill gaps and 
enforce the model to learn along the full range of possible values. 

3. Generating pseudo data outside the range of current values for specific features helps 
enforcing better learning, hence enabling extrapolation in the outer regions (i.e., unseen 
scenarios). 

Loss Function 

The loss function includes two components: prediction loss and domain knowledge loss. The 
prediction loss quantifies the accuracy of predictions and can be calculated for example using the 
negative log-likelihood (ℒ*++) method commonly used in RUMs. This calculation is performed 
only for samples with observed choices and is represented by the following formula: 

ℒ*++ =	−	∑ ∑ 𝑔!,# ⋅ 𝑙𝑜𝑔7𝑝!,#8	#∈𝒞
*
!.' 																																												  (1) 

Where 𝑔!,# equals 1 if alternative 𝑐 is chosen by individual 𝑖 and 0 otherwise. 
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The domain knowledge loss measures the violation of monotonicity constraints on the probability 
of choosing alternative 𝑐 with respect to feature 𝑚. This is determined using pseudo sample pairs 
that estimate the derivatives of the probabilities, represented by the following formula: 

ℒ#,/ =	∑ max I0, 𝑑#,/ ⋅ 0!
12",$

∗ 340!12",&
∗ 3

∆2'∗
K6

%.' 																																					  (2) 
Where 𝑑#,/ equals 1 if the probability of choosing alternative 𝑐 with respect to feature 𝑚 should 
be increasing and -1 otherwise. 
 
If it is assumed that when the probability of choosing alternative 𝑐 with respect to feature 𝑚 is in 
one direction, the probability of choosing other alternatives should be in the opposite direction, 
the total loss to be minimized can be expressed as follows: 

minℒ7879: =	ℒ*++ + ∑ ∑ 𝑤#,/ ⋅#∈𝒞/∈; 	ℒ#,/																																					  (3) 
Where 𝑀 represents the indices of the features that constrain the probabilities, and 𝑤#,/ represents 
the weight of each constraint violation penalty. 

Model Training 

The training process is illustrated in Figure 2. Observed data, represented as vector 𝐱, and a vector 
of pseudo sample pairs 𝐱∗ = R7𝑥','∗ , 𝑥',)∗ 8, … , 7𝑥%,'∗ , 𝑥%,'∗ 8S are fed into the model. The total loss, 
calculated as a combination of the prediction loss from the observed samples 𝐱 and the domain 
knowledge loss from the pseudo data 𝐱∗, is minimized using the backpropagation technique. This 
process continues iteratively until convergence is achieved. 
 

 
Figure 2. Model training process 

3. RESULTS AND DISCUSSION 

The methodology outlined above was applied to a mode choice dataset to assess the potential of 
incorporating domain knowledge in a DNN model and examine the impact of such knowledge on 
the resulting economic information. 
 
Dataset 
 
The experiment was based on the Swissmetro dataset, which is a publicly available stated 
preference survey collected in Switzerland in 1998 (Bierlaire et al., 2001). Participants were asked 
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to provide information regarding their preferred mode of transportation between the new 
Swissmetro (SM) mode, car, and train. Travel time and cost were considered as the key 
descriptive variables for each alternative mode. Observations with missing alternatives or outliers 
were removed. The dataset was then divided into training, validation, and testing sets in the ratio 
of 60:20:20. 
 
Experimental Design 
 
The proposed methodology was implemented on two model architectures: DNN and ASU-DNN. 
The DNN model was an off-the-shelf model, while the ASU-DNN model was proposed by Wang 
et al., (2020a) and calculates alternative-specific utilities. Both models were estimated in both an 
unconstrained and a constrained (i.e., with domain knowledge) version. The constrained models 
are referred to as C-DNN and C-ASU-DNN, respectively. In addition, a Multinomial Logit 
(MNL) model was also estimated for comparison.  
 
The domain knowledge incorporated in the constrained models includes negative own-
sensitivities of choice probability to travel time and cost and positive cross-sensitivities. All 
constraints are incorporated simultaneously. The models' negative log-likelihood and prediction 
accuracy were measured on each of the datasets. Predicted market shares were also calculated for 
each model. Choice probabilities with respect to each feature were then presented to demonstrate 
the fulfillment of domain knowledge. 
 
Results 
 
Prediction performance 
 
Table 1 presents the negative log-likelihood (NLL) and accuracy of each estimated model. The 
results indicate that the DNN model provides the best NLL and accuracy, thanks to its high ability 
of empirical fit to data. The ASU-DNN also demonstrates good fit to data. When domain 
knowledge is introduced, constrained models become less flexible and achieve lower fit to data 
compared to unconstrained ones. This is expected since the introduction of constraints to the 
models limits the search space for the optimal fit and might restrict the flexibility of the model. 
Nonetheless, the decrease in accuracy in testing is only 2.1%. 
 

Table 1. Negative log-likelihood (NLL) and prediction accuracy 
 
 
 
 
 
 
 
 
 
 
Market shares 
 
While prediction accuracy relates to predicting choices at the level of individuals, transportation 
policy planners are mainly interested in prediction at the market level. Table 2 shows the predicted 
market shares by the different models and the root mean square error (RMSE) in each model. The 

  Training Testing 
Model NLL Acc [%] NLL Acc [%] 

DNN 3182 70.5 1133 69.2 
Constrained DNN 3336 68.7 1189 67.1 
ASU-DNN 3438 68.3 1188 67.7 
Constrained ASU-DNN 3577 66.7 1235 65.6 
MNL 3508 67.9 1209 66.2 
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constrained models provide better market shares in terms of RMSE in the training set compared 
to the unconstrained models but perform worse in the testing set. The DNN and ASU-DNN 
models outperform the MNL model in terms of RMSE in the testing set, which was guaranteed 
to provide exact market shares in training. Although the constrained models have worse 
performance than the unconstrained models, the RMSE values are within a range of 2.4% and are 
not much different from the observed shares in the sample. 
 

Table 2. Market shares of travel modes 

Training set 

  DNN C-DNN ASU-DNN C-ASU-DNN MNL Observed  
Train 5.5% 6.0% 7.6% 4.6% 6.2% 6.2% 
SM 55.0% 58.3% 54.7% 56.3% 56.9% 56.9% 
Car 39.5% 35.7% 37.7% 39.1% 36.9% 36.9% 

RMSE 1.9% 1.1% 1.6% 1.6% 0%  

       
Testing set 

  DNN C-DNN ASU-DNN C-ASU-DNN MNL Observed  
Train 5.4% 6.1% 7.5% 4.5% 6.2% 7.4% 
SM 55.9% 58.7% 55.2% 56.8% 57.7% 55.4% 
Car 38.7% 35.1% 37.4% 38.6% 36.1% 37.2% 

RMSE 1.5% 2.4% 0.2% 2.0% 1.6%  

 
 
Choice probabilities 
 
To demonstrate the consistency with expected domain knowledge, choice probability functions 
provided by the different models were calculated as a function of each of the six variables. They 
were calculated using the partial dependence plots (PDP) method which calculates choice 
probabilities for every possible value of the variable for each observation (Friedman, 2001). Three 
of them are illustrated in Figure 3-5. In remaining three, the constrained models satisfied the 
constraints while unconstrained ones did not. They are not presented due to paper length 
constraints. 
 
The estimated coefficients in the MNL are with the expected sign (i.e., negative coefficients of 
travel time and cost in all utility functions), therefore, the directions of choice probabilities are 
consistent with domain knowledge as can be seen in Figure 3-5. However, choice probabilities 
may not always be consistent with domain knowledge when derived from unconstrained models, 
even in ASU-DNN where utilities are calculated independently from the others following RUM. 
This inconsistency could be restrained when domain knowledge is incorporated into the models. 
 
For example, Figure 3 presents choice probabilities as a function of train travel time. It is 
expected that SM and car shares would increase at the expense of the decrease in train shares, as 
train travel time increases. Figure 3(a) shows that DNN, while the most accurate, reveals 
unreasonable decreasing of SM choice probability. This finding is unreasonable since train 
becomes less attractive, and SM shares should not be negatively affected. This knowledge is 
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considered in C-DNN, and choice probabilities become more reasonable as illustrated in Figure 
3(b). The rest of the models behave as expected. 
 

 
Figure 3. Alternatives’ choice probabilities as a function of train travel time 

 
In Figure 4, choice probabilities are calculated as a function of train cost. It is expected that SM 
and car shares would increase at the expense of the decrease in train shares, as train cost increases. 
However, DNN fulfills this expectation only up to about 150 CHF train cost, as shown in Figure 
4(a). At this point, SM shares increase drastically at the expense of car shares, which start 
decreasing. This is unexpected since increased train cost must not negatively affect car shares. At 
worst, car shares would not change (i.e., would not increase), and train users would shift only to 
SM. Another unexpected finding can be found in the ASU-DNN model in Figure 4(d). Around 
a train cost of 150 CHF, all choice probabilities switch directions. Both models were corrected by 
incorporating knowledge, as shown in Figure 4(b) and Figure 4(e) for C-DNN and C-ASU-
DNN, respectively. 

 
Figure 4. Alternatives’ choice probabilities as a function of train cost 
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Figure 5 presents choice probabilities as a function of SM cost, where train and car shares are 
expected to increase at the expense of decrease in SM shares. In Figure 5(a), DNN fails to fulfill 
this knowledge at costs above 170 CHF, where car shares start decreasing, as if higher SM cost 
makes using the car less attractive. Although domain knowledge was incorporated, C-DNN was 
not corrected. In ASU-DNN, however, all choice probabilities switch directions at 300 CHF SM 
cost, as illustrated in Figure 5(d), which had been overcome by incorporating knowledge, as 
shown in Figure 5(e). 
 

 
Figure 5. Alternatives’ choice probabilities as a function of SM cost 

 
In conclusion, while accurate, unconstrained models that rely solely on data may produce 
unreasonable interpretations of choice probabilities, making them unsuitable for use in policy-
making processes. The results obtained through the proposed methodology of incorporating 
domain knowledge into these models demonstrate the potential of achieving more interpretable 
results while still relying on data in a controllable manner. In C-DNN, only one constraint out of 
18 was not fulfilled (i.e., increasing car choice probability as a function of SM cost, Figure 5 (b)), 
whereas all constraints were fulfilled in C-ASU-DNN. While constraints may not always be fully 
satisfied, they can significantly enhance the models' consistency with domain knowledge, making 
them more useful for choice analysis and planning purposes. 

4. CONCLUSIONS 

This study addresses the limitations of uncontrollable DNN application in discrete choice 
analysis. Incorporating domain knowledge into DNN is crucial for its interpretation and usability. 
The proposed framework enhances model consistency with domain knowledge by introducing 
constraints, making it easy to implement on different architectures. The case study on Swissmetro 
dataset demonstrates a tradeoff between accuracy and interpretability, showing promising results 
in combining domain knowledge with DNN models for choice analysis. Future research could 
explore the proposed framework's generalizability to other discrete choice modeling problems 
and datasets. The proposed framework could also be extended to incorporate other types of 
domain knowledge, such as prior distributions on model parameters or constraints on the 
functional form of the model. 
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SUMMARY (147 WORDS) 

Improving opportunities for bicycle parking is essential for promoting cycling. However, there is 

a lack of approaches for predicting the demand for bicycle parking based on the facility type and 

the facility's location. Considering both during planning could help improve bicycle parking 

according to user needs. This is particularly applicable when cyclists face several parking options, 

such as on university campuses, as in our case study. The paper presents a stated preference-based 

model, which was additionally calibrated using bicycle parking count data. 

Considering facility types improves the model fit substantially. Furthermore, the stated 

preference-based, original model underestimates the sensitivity to walking distances between 

facilities and buildings. When cyclists can choose between multiple parking facilities, it is critical 

to consider walking distances to realistically predict the demand for bicycle parking facilities. 

This confirms previous findings, that positioning parking facilities close to destinations is 

essential for attractive parking infrastructure. 

 

Keywords: Bicycle parking, cycling, cycling behavior, demand modeling 

 

Conference topic: Cycling and walking behavior and design 

SHORT PAPER (2,842 WORDS WITHOUT TABLES) 

1. INTRODUCTION 

Improving bicycle parking infrastructure is, in addition to measures for moving bicycle traffic, 

essential to promote cycling (Heinen and Buehler, 2019). Even though many previous studies 

analyzed bicycle parking behavior and preferences, research does not yet cover modeling the 

demand for single facilities considering facility type and position. We present a model for bicycle 

parking facility demand at RWTH Aachen University, one of the largest technical universities in 

Germany (45.000 students, 8.000 employees). We model bicycle parking behavior based on a 

stated preference experiment among RWTH students and staff, focusing on privately owned 

bicycles. Specifically, we analyze to which degree the following factors are relevant for the 

prediction of bicycle parking demand: 

 

1. Type of parking facility 

2. Cycling detour (additional cycling distance to access the parking facility compared to 

parking the bicycle directly at the destination building entrance) 

3. Walking distance between parking facility and destination (building entrance) 

 

First, we review previous studies regarding bicycle parking before we describe our method, 

present our results, discuss them, and draw a conclusion. 
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2. REVIEW 

Promoting cycling is one approach to increase the sustainability of mobility, especially in dense 

urban areas. One way is the improvement of bicycle parking facilities. For a general review of 

bicycle parking preferences and behavior, particularly at the workplace, we refer to Heinen and 

Buehler (2019). 

Studies show that improving parking facilities increases the probability of commuting by bicycle. 

Several studies found a strong impact (Bueno et al., 2017; Hunt & Abraham, 2007; Noland & 

Kunreuther, 1995), while others only estimated a low or even statistically insignificant one 

(Handy & Xing, 2011; Stinson & Bhat, 2004). Furthermore, research showed that cyclists prefer 

sheds over parking racks (Lusk et al., 2014; Moskovitz & Wheeler, 2011; Yuan et al., 2017).  

Less literature focuses on the influence of parking facility location-related factors. E.g., Molin 

and Maat (2015) found that the utility of bicycle parking facilities decreases when walking time 

increases. Papers and guidelines recommend short distances between parking facilities and 

buildings because users otherwise do 'fly parking' at facilities not intended for bicycle parking 

(Dufour, 2010; FGSV, 2012; Gamman et al., 2004; Larsen, 2015). 

 

Previous models predicting the parking demand do not focus on single facilities and their 

attributes as in our paper, e.g.: 

 

• Xu et al. (2012) developed a model for a university campus based on time series and 

attraction rates per building. 

• Pfaffenbichler and Brezina (2016) analyzed the demand for public bicycle parking 

facilities in Vienna based on mode share and differentiating city districts, but not single 

facilities. 

• Veillette et al. (2018) modeled the demand for bicycle parking on the grid cell level for 

Québec city. 

3.  METHODOLOGY 

Figure 1 shows our approach to model bicycle parking choices. Firstly, we generated a synthetic 

university student and employee population commuting by bicycle based on mobility data and 

RWTH statistics. Hence, our total demand for bicycle parking includes the number of relevant 

students and employees per building. 

 

Secondly, we calculated cycling detours and walking distances from parking facilities to the 

building entrances of their destination using a GIS. Thirdly, we used a mixed logit model to 

analyze a stated preference experiment. Fourthly, we applied the model to the synthetic population 

of bicycle commuters in order to predict their choice of bicycle parking and, thus, the total demand 

for bicycle parking per facility. Fifthly, we compared the predicted bicycle parking occupancy 

with bicycle parking count data. Finally, based on discrepancies between predicted and measured 

occupancy rates, we returned to the model and calibrated model parameters to reflect real bicycle 

parking behavior more adequately. 
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Figure 1: Model overview (own illustration) 

Synthetic student and employee bicycle commuter population 

In order to apply our model to the RWTH campus, we required a synthetic bicycle commuter 

population including a) group affiliation (students, professors, scientific employees, 

administrative and technical staff (ATS)), b) geographic direction of residential location (i.e., 

origin of commute trip) and c) building of work or study place (i.e., destination of commute trip). 

We used the results of a university mobility survey (n = 3,841) mailed out to all students and 

employees to generate the cycling commuters and assigned them by space usage data to buildings. 

Stated preference experiment 

For our analysis, we use the results of a web-based stated preference experiment conducted among 

RWTH students and employees in July 2022 (n = 2960). In this experiment, participants had to 

choose one of the following alternatives to park their bicycle: 

 

• indoor parking in the building of their place of work respectively study (if possible in the 

status quo) 

• a traffic sign pole representing 'fly parking' 

• uncovered parking rack 

• covered parking rack 

• bicycle parking station 

 

These alternatives were associated with varying cycling detours, walking distances, and prices, 

enabling us to analyze the attributes' influence with a mixed logit model using the R package 

Apollo (Hess & Palma, 2022). 

Table 1 shows the models' coefficients for different facility types, taking the interactions with the 

resale value of the bicycle (RV) and group affiliation (scientific employees (reference category), 

students, professors, and ATS) into account. 

 

Overall, the results show that – while there are differences between the various groups – the type 

of parking facility, whether it is covered or not, and the walking distance matter to cyclists. Our 

later findings in this paper will support these results, where we compare predicted and real bicycle 

parking on the RWTH university campus. However, the stated preference model also indicates 

that cycling detours significantly influence the probability of choosing a parking facility. Later 

on, our application to the campus will not confirm this finding. 
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Table 1: Coefficients mixed logit model 

  Est. Std. err. t-ratio p-value 

𝐼𝑛𝑑𝑜𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝝁(𝜷) -2.940 0.299 -9.828 <2E-12 

𝝈(𝜷) 5.146 0.160 32.237 <2E-12 

𝐼𝑛𝑑𝑜𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝜷 -2.419 0.271 -8.929 <2E-12 

𝐼𝑛𝑑𝑜𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔𝐴𝑇𝑆 𝜷 1.784 0.375 4.758 1.96E-06 

𝐼𝑛𝑑𝑜𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔𝑅𝑉 > 500 € 𝜷 1.740 0.300 5.808 6.32E-09 

𝐼𝑛𝑑𝑜𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔𝑅𝑉 > 1,000 € 𝜷 1.304 0.441 2.955 0.003 

𝐼𝑛𝑑𝑜𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔𝑁𝑜 𝑑𝑒𝑠𝑔𝑖𝑛𝑎𝑡𝑒𝑑 𝑠𝑝𝑎𝑐𝑒 𝜷 -0.965 0.287 -3.359 7.82E-04 

𝐼𝑛𝑑𝑜𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔𝐹𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛 𝑖𝑛 𝑏𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝜷 -0.894 0.272 -3.282 0.001 

𝐼𝑛𝑑𝑜𝑜𝑟 𝑝𝑎𝑟𝑘𝑖𝑛𝑔𝐹𝑜𝑟𝑏𝑖𝑑𝑑𝑒𝑛 𝑎𝑡 𝑑𝑒𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡 𝜷 -0.936 0.420 -2.230 0.026 

𝑃𝑜𝑙𝑒 𝑜𝑓 𝑎 𝑡𝑟𝑎𝑓𝑓𝑖𝑐 𝑠𝑖𝑔𝑛 𝝁(𝜷) -2.032 0.075 -26.953 <2E-12 

𝝈(𝜷) 1.945 0.072 26.972 <2E-12 

𝑈𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑟𝑎𝑐𝑘 𝝁(𝜷) fixed 

𝝈(𝜷) 1.381 0.065 21.104 <2E-12 

𝐶𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑟𝑎𝑐𝑘 𝝁(𝜷) 0.656 0.066 9.899 <2E-12 

𝝈(𝜷) -1.547 0.065 -23.936 <2E-12 

𝐶𝑜𝑣𝑒𝑟𝑒𝑑 𝑏𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑟𝑎𝑐𝑘𝑅𝑉 > 500 € 𝜷 0.874 0.104 8.368 <2E-12 

𝐵𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝝁(𝜷) 0.876 0.164 5.349 8.86E-08 

𝝈(𝜷) 2.864 0.085 33.552 <2E-12 

𝐵𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑆𝑡𝑢𝑑𝑒𝑛𝑡 𝜷 -0.495 0.181 -2.733 0.006 

𝐵𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝐴𝑇𝑆 𝜷 -0.620 0.333 -1.861 0.063 

𝐵𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑅𝑉 > 500 € 𝜷 1.489 0.199 7.488 6.99E-14 

𝐵𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑅𝑉 > 1,000 € 𝜷 1.258 0.254 4.961 7.03E-07 

𝐵𝑖𝑐𝑦𝑐𝑙𝑒 𝑝𝑎𝑟𝑘𝑖𝑛𝑔 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝐷𝑖𝑠𝑡.  𝑡𝑜 𝑅𝑊𝑇𝐻 [𝑘𝑚] 𝜷 0.045 0.018 2.551 0.011 

𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝑑𝑒𝑡𝑜𝑢𝑟 [𝑚] 𝜷 -0.006 3.21E-04 -19.104 <2E-12 

𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝑑𝑒𝑡𝑜𝑢𝑟𝑆𝑡𝑢𝑑𝑒𝑛𝑡[𝑚] 𝜷 -0.002 3.93E-04 -5.840 5.23E-09 

𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝑑𝑒𝑡𝑜𝑢𝑟𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟[𝑚] 𝜷 -0.002 0.001 -2.868 0.004 

𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝑑𝑒𝑡𝑜𝑢𝑟𝐴𝑇𝑆[𝑚] 𝜷 0.001 0.001 1.950 0.051 

𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 [𝑚] 𝜷 -0.016 4.23E-04 -38.871 <2E-12 

𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑆𝑡𝑢𝑑𝑒𝑛𝑡[𝑚] 𝜷 -0.002 0.001 -4.380 1.19E-05 

𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑃𝑟𝑜𝑓𝑒𝑠𝑠𝑜𝑟[𝑚] 𝜷 0.004 0.001 3.147 0.002 

𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐴𝑇𝑆[𝑚] 𝜷 0.006 0.001 8.588 <2E-12 

Parking facilitiy data 

In the stated preference experiment, we only included u-racks, also known as Sheffield racks, 

allowing for locking the bike frame to the stand. However, several facilities on the campus only 

allow locking the front wheel ('front racks'). To consider a higher theft risk, we applied the 



5 

 

coefficient for 'pole of a traffic sign' to them; for covered front racks, we used the coefficients for 

'covered bicycle parking rack' on top. 

We also aggregated the demand for close together located parking facilities of the same type. As 

a result, the number of analyzed facilities decreased from 163 to 99 shown in Table 2. 

 

Table 2: Bicycle parking facilities in our analysis 

 
Front rack Bicycle parking rack Bicycle 

parking 
station 

 
Uncovered Covered Uncovered Covered 

Number of aggregated 
facilities 

15 2 73 8 1 

Total capacity (bicycle 
parking spaces) 

650 15 3814 452 543 

 

To calculate the cycling detour to reach each facility, we measured the beeline distance between 

each geographic center of the residential addresses (trip origin) and parking facilities. Then, we 

calculated the distance between the trip origin and the building entrance (trip destination). The 

difference between them defines the (positive or negative) cycling detour. (This simple approach 

led to unrealistic results for eleven buildings and eight parking facilities, and we manually 

measured cycling detours with aerial images for these instances.) We used the beeline distance 

between the parking facility and the building entrance to determine the walking distance. Further, 

we assumed that poles of traffic signs (i.e., 'fly parking') at a walking distance of 60 m are 

available at each building. 

Count data 

We counted the occupancy of parking facilities at RWTH primarily on Thursday, 28.04.2022, in 

the morning (10-12) and afternoon (13-15), during a week with changing weather conditions. The 

counting phase took place shortly after the expiration of COVID-19 restrictions when many 

employees were still working from home, and many lectures and exercises were still web-based. 

Furthermore, our model does not consider temporal overlap. Therefore, we scaled our predicted 

demand by the quotient of counted and predicted demand, around one-third. Because the morning 

and afternoon results are similar, we only show the results for the afternoon. 

Calibration 

We used the count data to assess to which degree our prediction realistically reflects bicycle 

parking behavior. In the process, we calibrated the model by multiplying the cycling detour and 

the walking distance by factors (𝐹𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝑑𝑒𝑡𝑜𝑢𝑟, 𝐹𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒). We analyzed values between 0 

and 5 regarding the correlation and the root mean square error (RMSE). The model names 

represent the factors, e.g., C1W3 means that 𝐹𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝑑𝑒𝑡𝑜𝑢𝑟 = 1 and 𝐹𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 3. 

4. RESULTS 

Apart from several models with different 𝐹𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 and 𝐹𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝑑𝑒𝑡𝑜𝑢𝑟, we evaluated a base 

model, as shown in Table 3. The base model assigns all demand generated by buildings to the 

closest bicycle parking facility, already explaining more than half of our demand differences 

between facilities. While the model based on the stated preference experiment using the calculated 
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beelines once has a lower correlation than the base model, increasing the 𝐹𝑊𝑎𝑙𝑘𝑖𝑛𝑔 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 improves 

the correlation to the counts up to two-thirds and reduces the RMSE. However, the calibration of 

the 𝐹𝐶𝑦𝑐𝑙𝑖𝑛𝑔 𝑑𝑒𝑡𝑜𝑢𝑟 showed no significant contribution for the prediction quality of our model. 

 

Table 3: Model accuracy 

Model 
Base-

model 
C1

W0 
C1

W1 
C1

W2 

C1

W3 
C1

W4 
C1

W5 
C0

W3 
C2 

W3 
C3 

W3 
C4 

W3 
C5 

W3 

𝐹𝐶𝑦𝑐𝑙𝑖𝑛𝑔 
𝑑𝑒𝑡𝑜𝑢𝑟

 - 1 1 1 1 1 1 0 2 3 4 5 

𝐹𝑊𝑎𝑙𝑘𝑖𝑛𝑔 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

 ∞ 0 1 2 3 4 5 3 3 3 3 3 

Correl. 0.55 0.18 0.51 0.63 0.66 0.66 0.65 0.66 0.66 0.65 0.63 0.61 

RMSE 22 33 22 19 18 19 19 18 19 10 19 20 

 

In the following, we analyze the predictions for the C1W3 model. As Table 4 shows, the model 

overestimates the demand for covered parking racks and, in contrast, substantially underestimates 

the demand for front racks. 

 

Table 4: Counted and modeled demand after calibration (C1W3) 

 
Indoor 

parking 

Pole of 

a traffic 

sign 

Front rack Parking rack Bicycle 

parking 

station 
Uncovered Covered Uncovered Covered 

Predicted 806 747 72 7 1,536 286 32 

Counted - - 132 11 1,504 201 85 

Ratio - - 0.55 0.64 1.02 1.42 0.38 

 

Regarding the facilities' geographic locations, Figure 3 shows some underpredictions due to 

missing demand data for specific buildings based on a lack of space usage data. For some places, 

an overprediction of the demand is also explainable. For example, the RWTH guest houses have 

a diverging mobility behavior compared to other university buildings, causing less demand than 

predicted. Furthermore, some locations with overpredicted demand have other facilities of the 

same or another facility type nearby. Taking only the closest facility of each type into account 

might cause prediction inaccuracies, and additional aggregation would be one solution. 

 

Figure 2: Predicted and counted demand per parking facility (C1W3) 
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Figure 3: Ratio of predicted and counted demand per parking facility (C1W3) 

 

5. DISCUSSION 

Our findings show that the facility type is relevant for predicting the demand for bicycle parking 

because the consideration increases the correlation to 0.66. However, that almost three-fourths 

were uncovered parking racks might explain this limited increase in the correlation. In many 

cases, preferences slightly influence the parking choice because cyclists do not have the 

opportunity to choose between different facility types realistically. 

 

According to our findings, the inclusion of cycling detours does not contribute to improving 

parking demand prediction. One explanation is that, in line with existing guidelines, most bicycle 

parking facilities are placed between the points of access to the respective property from public 

streets and building entrances (FGSV, 2012). Consequently, cycling detours hardly ever carry any 

weight, as cyclists usually arrive from the direction in which the parking facility is located. 

Nevertheless, we believe that our stated preference experiment's coefficients are proper. However, 

calculating exact cycling detours is complex, and their effect is limited compared to other factors 

such as walking distances and facility type. Finally, as close to the destination-located parking 

facilities have short cycling detours and walking distances in most cases, the correlation between 

both factors explains why considering cycling detours does not contribute substantially to the 

explanatory power of the prediction. 

 

On the contrary, walking distances between parking facilities and trip destinations turned out to 

be more influential than our stated preference experiment suggested. One reason is that walking 

distances in the real-world built environment are longer than the beeline. While we assumed this 

would lead to a factor with a maximum of 1.5, we estimated a value of 3, optimizing our model. 

On average, real-world cyclists may not appreciate good parking facilities as much as our 

experiment participants. We deem it likely that survey participation was biased towards 

individuals with heightened interest in better parking facilities; one possible reason is that they 
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own expensive (e-)bikes. Therefore, survey participants may have been more willing to walk for 

better parking. This self-selection bias might also explain why the stated preference experiment 

overestimates the demand for low-quality front racks. However, our results underline the 

importance of good positioning of parking facilities. Otherwise, cyclists choose other options as 

street furniture, initially not designed for that purpose (FGSV, 2012; Gamman et al., 2004). 

6. CONCLUSIONS 

Our findings show that including the type of parking facility and the walking distances to building 

entrances improves the prediction of bicycle parking demand relative to a model solely based on 

the shortest distance to building entrances substantially. In this study, a stated preference 

experiment provided the user preferences constituting the basis for such an improved model. 

Bicycle parking counts contributed real-world bicycle parking data, which we used to perform a 

reality check of our model and to calibrate it to real-world circumstances. 

There were some issues in our data that need to be taken into account. Firstly, our RWTH 

university mobility survey results indicate a higher demand for bicycle parking than counted. 

Abating COVID lockdown phenomena (e.g., a high proportion of people working and studying 

from home) and selectivity in our mobility survey may have contributed to this. Secondly, our 

results indicate a discrepancy between stated preference data-based parking preferences and real-

world parking behavior. Hence, for further improvement of the approach presented in this paper, 

updated data collection and an in-depth investigation of the data discrepancies would be desirable. 

Another improvement of the approach would be the inclusion of effects induced because of 

occupancy, i.e., the question of to which degree demand for bicycle parking is diverted to other 

facilities if the desired facility is (completely) occupied. Due to low occupancy during our data 

collection period, we could not include these effects. 

Nevertheless, we are confident that our model represents a substantial improvement in predicting 

the demand for bicycle parking compared to preexisting approaches. It is acknowledged that 

different groups of cyclists have diverging requirements regarding parking infrastructure 

concerning facility type and proximity to the destination. Simplistic models are not able to take 

account of that. Moreover, a model such as ours, which accounts for various attributes, may also 

be used to design a multi-optional bicycle parking facility layout that maximizes user benefit. 

Therefore, we believe that approaches such as ours will be increasingly needed to assess changes 

in the bicycle parking infrastructure and optimize extension strategies for bicycle parking in the 

context of promoting bicycle travel, e.g., regarding growing shares of e-bikes. 
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Dynamic location for charging operations of shared free-floating e-scooters
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Short summary

Shared electric scooters (e-scooters) have recently become a popular mode of micromobility solu-
tion and this rapid growth causes significant operational challenges. One of the challenges micro-
mobility companies face is collecting idle low-charge fleets from different corners of the city. The
collector is usually a truck that needs to make a tour in town to collect these e-scooters. One solu-
tion can be for the operator to dynamically define special zones where e-scooters with low-charge
are collected. In this paper, we propose a two-layered approach to tackle the problem. We propose
a dynamic programming approach to investigate the required number and locations of designated
low-charge drop-off points for the first layer of the problem. A simulated origin-destination data
set of 30 e-scooters on TU Delft campus area is used for a time horizon of 8 working days and a
time discretization level of 15 minutes. The results suggested consolidating low-charge e-scooters in
three low-charge drop-off locations considering the state of charge (SOC) and distance of e-scooters
from the low-charge drop-off zones. Then, we discuss the potential implications of our findings on
recharging operations and spatial efficiency that are defined dynamically.

Keywords: Shared electric micro-mobility, dynamic programming, data-driven zoning, real-time
operational decision, fleet rebalancing.

1 Introduction

A free-floating shared mobility system gives the user the flexibility to pick up and drop off the
vehicle anywhere in the operating area. Operational issues are brought on by this flexibility, par-
ticularly in vehicle charging operations. A dynamic route design for the charging truck or overnight
charging can be used to empower shared micromobility systems, but both of these methods are
either very expensive for the system’s performance or cause computational complexity Osorio et
al. (2021).

In free-floating shared micromobility, the majority of the studies focus on dynamic routing prob-
lems and consider locations of gathering points as given for collecting vehicles or rebalancing Luo et
al. (2022). In Mahmoodian et al. (2022) a dynamic hubbing strategy was addressed to satisfy the
first demand of the following day and improve the efficiency of the shared bike rebalancing scheme.
However, their main focus is on the rebalancing plan for simulated hubs. A unified overnight
charging and vehicle rebalancing approach is suggested by Osorio et al. (2021) to carry out these
tasks for a shared e-scooter system more effectively. They provide a charging-and-routing plan that
concurrently determines an effective pickup and drop-off strategy while taking into account the
SOC of all onboard e-scooters. Although they recommend breaking up a large zone into smaller
zones in order to lessen the computational complexity for future studies, it has neither been im-
plemented nor dynamic data-driven zoning discussed.

One potential approach to defining and addressing such problems is through the utilization of time-
space network modeling techniques, as demonstrated in the context of logistic networks by Akyüz
et al. (2023). However, it should be noted that this approach can be computationally intensive
and time-consuming. As an alternative, dynamic programming modeling may offer significant
advantages in terms of optimization performance, as demonstrated in the work of Al-Kanj et al.
(2020). Unlike the current literature, we consider a dynamic and data-driven approach to decide
on consolidating the low-charge e-scooters and in the second layer of the network charging them
with a moving charger on spot. Specifically, in our proposed method as soon as the first zone is
selected for the first low-charge e-scooter to drop off, this zone becomes the point of interest for
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all future e-scooters whose charge drops in this zone and its neighboring zones. While considering
the service level indicator for the rider which is the distance deviation that the selected low-charge
drop-off zone causes from the rider’s destination.

2 Methodology

To investigate the designated low-charge drop-off areas, a dynamic programming model based on
the destination and SOC of the low-charge e-scooter is designed. We considered real-world prac-
tices for e-scooters that become unavailable after their battery level dips below 18% (Felyx.com).
Therefore, we set a robust battery level threshold of 25% to define the low-charge e-scooter. The
decision epochs or time steps are modeled in discrete time t = {0, 1, 2, ..., 32} with 15 minutes
duration over 8 working hours. If the decision epoch is at time t, then all information arriving
between t− 1 and t is collected and assigned at time t. t = 0 indicates the beginning of the oper-
ation. An e-scooter is shown with i index where i ∈ {1, ...,N} and N refers to the total number of
low-charge e-scooters. To improve the computational complexity of the model, the operating area
is discretized into several same-size hexagons. Each hexagon is considered as a potential low-charge
drop-off location. The zones are shown j where j ∈ {1, ...,Z} and Z represents the total number
of hexagons.
Using the language of dynamic resource management, e-scooters, and potential low-charge drop-off
locations are resources (R). The physical system state vector is then given by SR

t = (Rti, Rtj), in
which Rti and Rtj indicate the states of e-scooters and potential low-charge drop-off areas at time
t, respectively. The state vector of e-scooters over time is defined below.

Rti =

(
i1
i2

)
=

 current location of e-scooter

SOC


Where the current location of the e-scooter equals to user’s destination and corresponds to the lati-
tude and longitude coordinates of where the low-charge e-scooter is located at time t and searching
for a low-charge drop-off location. Also, the state vector of potential low-charge drop-off locations
changes over time in terms of the number of low-charge e-scooters parked at the low-charge drop-off
location and is defined as following

Rtj =

(
j1
j2

)
=

 zone index

sum of low-charge e-scooters
parked in the zone till time t


The action of the dynamic model is a binary variable indicating whether the potential low-charge
drop-off location with attribute Rtj should be offered to a low-charge e-scooter with attribute vec-
tor Rti at time t.

xt
ij =


1 if e-scooter i is sent to low-charge drop-off location j at time t

0 otherwise
(1)

The decision variable xt
ij must satisfy the following constraints:

Z∑
j

xt
ij = 1 ∀ t, i (2)

N∑
i

T∑
t

xt
ij′ ≤

N∑
i

T∑
t

M(1− xt
ij) ∀ (j, j′) ∈ adjacent zones (3)

xt
ij = {0, 1} ∀ t, i, j (4)

Equation (2) indicates that each low-charge e-scooter should only be assigned to one zone at each
time step. In equation 3, we define the neighboring zone context. In zoning the operating area,
we obtained adjacent sets for each zone. If the grid distance between zones is less than one grid,
those zones are instant neighbors (they have common boundaries) and are in the same adjacent set.
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Equation 3 states that if zone j becomes a drop-off location, then all of the zones in its adjacent
set cannot be an option (M refers to a big number). Equation (4) shows the variable domain. In
addition, we consider the feasibility of trips from the final destination of e-scooters and selected
low-charge drop-off locations based on the distance between these two locations at time t (dtij).
If this distance equals traveling more than three zones the trip becomes infeasible. Similarly, the
insufficiency of the SOC to perform the trip makes the trip infeasible.

Transition function

The transition function represents how the system evolves over time. We model the transition func-
tion deterministically. E-scooters’ current location or user’s destination can be obtained through
GPS information. However, in this study, we simulate the OD trips based. The SOC of e-scooters
is calculated using the OD matrix by eq. (5), under the assumption that each e-scooter at most
can perform one trip during each time step.

SOCt
i = SOCt−1

i − (δ ∗ travelled distance of e-scooter i between time (t− 1) and t) (5)

where δ indicates the rate of discharge per kilometer. The value of this parameter is calculated
by considering the e-scooter battery Volt, the maximum distance, and the maximum speed it can
perform. Regarding changes in zone states, the attribute of the drop-off zones will change as the
number of low-charge e-scooters parked in the zone till time t (i.e. j2) changes.

∑t−1
t=1 qt(j) captures

the number of parked low-charge e-scooters at zone j up to time t. Equation (6) specifies that
at the beginning of the planning horizon, there is no low-charge e-scooter parked in the system,
and equation 7 calculates the number of parked low-charge e-scooters at time t in zone j based
on the state of the system in the previous time step (t− 1), it shows the summation of all parked
low-charge e-scooters till t− 1 and the number of e-scooters that are sent to the low-charge drop-
off location at time t. This parameter is a post-decision parameter and will be updated after the
decision is made at time t. The model uses the value of the parameter for the previous time step
to make a decision at time t.

qtj = 0 t = 0,∀j (6)

qtj = qt−1
j +

N∑
i

xt
ij ∀ t > 0, j (7)

When the e-scooter is not low-charge, its SOC will be updated through equation 5 based on its
trip between time t− 1 and t. Therefore, We denote the transition function by

St = SM (St−1, Xt) (8)

where SM () governs the transition from pre-decision state St−1 to pre-decision state St, and Xt

is a decision vector containing xt
ij decisions. SM () is a general statement for all of the transition

functions we mention in this section.

Objective function

Each decision in the system produces a contribution ctij to the system, especially to the routing costs
of the charging truck. Collecting low-charge e-scooters in designated areas within the operating
zone intends to save the system’s routing costs for recharging operations. Hence, the objective
function of the model aims at assigning low-charge e-scooter i to the nearest feasible low-charge
drop-off zone j, if there is any. We aim at maximizing the reward that might obtain by the
consolidation of low-charge e-scooters by equation 9.

ctij =


∑

t=0 q
t−1
j − dtij if xt

ij = 1

0 otherwise
(9)

Where the contribution is defined based on the number of parked low-charge e-scooters till time
t − 1 at location j (qt−1

j ) and the service level indicator which assures that the distance between
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the low-charge drop-off location j and the final destination of the e-scooter i trip should be small
(dtij). We assume linear contribution, as shown in equation 10.

Ct(St, xt) =

N∑
i

M∑
j

ctijx
t
ij (10)

Policy maps a state to an action/ decision. The optimal policy (π ∈ Π) maximizes the sum of
contributions over all time periods as shown in equation 11.

F ∗
t (St) = max

π∈Π

(
T∑

t=0

C(St, X
π
t (St))|St−1

)
(11)

where Xπ
t (St) is a function that determines xt

ij given St when we are taking policy π, and Π is
a set of decision functions or policies. To find the best policy, we intend to maximize the reward
function subject to the above-mentioned constraints.

3 Results and discussion

We used simulated data of 30 e-scooters operating on the campus of TU Delft in one working day
(8 hours), which was divided into 32 time slots as we considered every 15 minutes as a time step,
to solve a toy problem as a proof of concept for our model. The rate of discharge is set at 8% per
km. At the start of the planning period, it is expected that e-scooters are fully charged. Each of
the 37 regular hexagons, each with a side length of 60 m, that make up the operating area can
serve as a low-charge drop-off location.

The outcomes of using the model on this set of data are shown in Table 1, where 12 low-charge
e-scooters emerged in 12 separate zones. The first column indicates the time steps in which low-
charge e-scooters show up. The second column contains e-scooters’ specific ids. The third column
shows the final destination of e-scooters trips. The term ’outside’ in this column specified that the
destination of the e-scooter trip is outside of the operating zone. Therefore, it should be left within
the operating area. Column 5 indicates the final selected consolidated low-charge drop-off zones.
Also, the SOC of low-charge e-scooter before and after their assignment to the drop-off zone are
shown in columns 4 and 6, respectively.

The optimality gap of the obtained results is 0%, which tells at each time step, the model finds
the optimal solution. At the end of the planning horizon, selected zones are zone numbers 14, 20,
and 3 with 4, 5, and 3 low-charge e-scooter parked in these zones, respectively. The mean occurred
deviation from the destination is 114 m, and 41 m and 194 m are the minimum and maximum
values of the deviations from the riders’ final destinations, respectively.

The model will determine the initial e-scooter(s) that showed up as low-charge, calculate the dis-
tance between the location of the e-scooter and its surrounding zones, and then provide the rider
with a drop-off zone that is close to her destination while also following the neighboring zone con-
straint equation 3. For instance, in Table 1, the first low-charge e-scooters appeared at time step
19, in zones 9 and 27. If allowed to be left at the destinations, these zones have 4 neighboring zones
in common (i.e., {10, 12, 29, 30}). Also, the required travel distances for e-scooters to reach the
centers of the destination zones are 40 m, and 50 m for vehicles 3 and 25, respectively. Whereas,
selected drop-off locations i.e. zones 14 and 20 have fewer common neighboring zones (i.e., {24,
29, 30}) and the distances between the locations of e-scooters and the centers of the selected zones
are not much larger (70 m for both e-scooters). Therefore, zones 14 and 20 are selected as the
first low-charge drop-off zones, and the number of parked low-charge e-scooters in these zones will
increase, which means they become more relevant to be a drop-off zone for the e-scooters appear in
the next time steps. Using the same logic, the model sends the e-scooter to zone 14 at time step 20.

At time 21, one low-charge e-scooter appears in zone 3, which is farther than the permitted dis-
tance (service level assurance) from the selected drop-off zones 14 and 27, and {31, 15, 28, 23, 19}
zones are in a neighboring distance of the selected drop-off locations so they can not be a potential
drop-off location, then it is allowed to be left at its destination (as its distance from potential zone
6, 19, 21, 13, and 18 are greater than the distance to the centroid of zone 3). For the rest of the

4



time steps, the low-charge e-scooters are consolidated in these three drop-off locations following
the same reasoning. It is worth noting that, we also assure that e-scooters are able to perform
the trip to low-charge drop-off zone with sufficient SOC. Figure 1a shows the zoning structure of
the operating area. In Figure 1b the selected low-charge drop-off zones are shown in green circles,
and the zones which are in adjacent sets of the selected drop-off zones are shown in black color.
Zones in blue color are neither a low-charge e-scooter destination nor under the coverage area of
the selected zones.

Regarding recharging operations, in the upper level of the recharging operation problem, a routing
problem arises, where the charging truck’s traveling distance needs to be minimized. The routing
problem involves determining the optimal path that the charging truck should take to recharge
the e-scooters, taking into account the locations of the consolidated low-charge e-scooters and
the charging truck’s constraints. The objective of this routing problem is to minimize the total
traveling distance of the charging truck while satisfying the demand for e-scooter charging. By
applying this method, we are shrinking the size of the network for the charging truck by decreasing
the visiting nodes. In the proposed example, the charging truck has 3 nodes to visit to recharge
the low-charge e-scooters instead of visiting them scattered in 12 nodes. Then, the upper level of
the problem, which is the routing problem of the recharging truck and will be studied in a further
step of this research.

(a) Discritizing the operating zone (TUD) (b) Optimal low-charge drop-off locations

Figure 1: An overview of zoning and optimal low-charge drop-off location

4 Conclusions

This study addressed one of the operational challenges faced by shared electric scooters (e-scooter).
In this study, we propose a data-driven approach to dynamically define designated drop-off areas
for low-charge e-scooters by capturing the spatial and temporal characteristics of the e-scooters and
potential drop-off zones. A simulated data set of 30 e-scooters in TU Delft campus area is used.
The results suggest that the low-charge e-scooters can be consolidated in three drop-off locations
among 37 potential zones over 8 working hours. By adopting this approach, the average deviation
in distance of e-scooters from their intended endpoint is found to be 114 meters, a distance that
is generally considered to be within the range of what is typically considered suitable for walking
distance.

One of the significant advantages of our approach is the optimization of spatial usage by e-scooters,
which is particularly crucial for low-charge e-scooters. Furthermore, our model ensures that the
travel of the e-scooter to the suggested drop-off zone is feasible in terms of the deviation from
the destination and its state of charge after performing the trip. Moreover, defining consolidated
low-charge drop-off zones out of a discrete space of operating area can have a considerable im-
pact on minimizing the traveling distance of the charging truck and decreasing the computational
complexity of solving the model in continuous space. Overall, the approach of limiting visiting
nodes to recharge low-charge e-scooters through consolidating can lead to a reduction in opera-
tional costs and improved system performance in shared micromobility systems. The subsequent
routing problem of the charging truck can further optimize the recharging operations and enhance
the overall efficiency of the system.
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Table 1: Overview of the studied sample and selected drop-off zones

Time
step

e-scooter
id

low-charge
e-scooter
location

The SOC before
trip to drop-off
zone (%)

Selected
drop-off
zone

The SOC after
trip to drop-off
zone (%)

19 3 9 24.4 14 23.2
25 27 24.0 20 22.9

20 16 12 24.5 14 22.8
21 6 3 24.4 3 23.9
22 23 outside 24.4 14 21.4
23 0 9 24.4 14 21.3

24
10 outside 24.6 3 22.3
19 20 24.8 20 24.4
22 7 24.3 20 21.3

25 20 23 24.8 20 22.9
27 29 0 24.8 20 22.9
30 17 19 24.4 3 23.4
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Short summary

Person-to-person contact is fundamental to the spread of epidemics. Human mobility is important
for understanding the pattern of person-to-person contact. Therefore, understanding human travel
behavior is crucial to the understanding of the geographic spread of infectious diseases. Transporta-
tion models built to give details on human movement and contact can then be used to simulate
epidemic spread. Such has been done in the epidemic model Episim. In addition, there is also
research showing people’s social networks have strong influence on their travel behavior, such as
destination choice. Therefore this study sets out to verify whether adding social network and coor-
dinated destination choice to the epidemic model has impact on the spatio-temporal transmission
progression of epidemics. Results show that though the total number of infections do not change,
the addition of a social network and coordinated destination help capture during what kind of
activities infection events are taking place. Coordinated travel with social networks contribute to
a more rapid spread in the beginning. Moreover, results emphasize that social networks should
be integrated in conjuncture with joint-travel to better capture social travel behavior and in turn
epidemic spread.

Keywords: agent-based modeling, epidemic modeling, social networks, transportation network
modeling

1 Introduction

Human mobility, like many other aspects of human behavior, is socially driven. In recent years, the
transportation modeling field has increasingly tried to capture the undeniable link between social
connections and travel behaviorKim et al. (2018). Various elements of travel behavior, including
the creation of travel activities, choice of destination and mode of transportation, amongst others,
are affected by social connections (Kim et al., 2018). Person-to-person contact is crucial to epidemic
spread models. Since social networks can strongly influence travel behavior and contact patterns,
it is beneficial to add in social networks when using travel demand models to simulate disease
spread.

Previous researchers have used agent-based epidemic models to better understand and predict the
spread of infectious diseases in Singapore (Sun et al., 2014; Mo et al., 2021), the Twin Cities (Bóta
et al., 2017; Hajdu et al., 2020) or Berlin (Müller et al., 2020). Epidemic transition models varied
from the simplest Susceptible-Infected model (SI), in which agents are exposed only while traveling
(Hajdu et al., 2020), to the more complex Susceptible-Exposed-Infections-Removed (SEIR) model
with exposure while traveling and at destinations (Müller et al., 2020; Mo et al., 2021). On the
other hand, travel demand generation was rather simplistic, as it replicated transit trips (Bóta et
al., 2017; Hajdu et al., 2020) or smart-card bus trips (Sun et al., 2014; Mo et al., 2021). A notable
exception is Müller et al. (2020), who replicated activity-based trajectories from mobile phone data
and used traffic and transit assignment in MATSim. Furthermore, Müller et al. (2020) validated
the results of Episim with COVID-19 hospital cases in Berlin.

Social connections could potentially affect many aspects of travel behavior and by extension travel
demand modeling. Socially connected people may share destinations, which has been seen in the
studies by van den Berg et al. (2010) and Moore et al. (2013). Moreover, Ronald et al. (2012), Ma et
al. (2011) and Dubernet & Axhausen (2015) presented an agent based system which integrate joint
decision-making mechanisms based on rule based simulations of a bargaining process, but none
have integrated and implemented a social network in a complete travel demand model framework.

In addition, none of the studies have explicitly considered the impact of social networks in epidemic
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spread. This research seeks to fill the gap by adding in a synthesized social network to the process.
As a first step, we focus on adding coordinated destination in travel demand generation, and
infection rules influenced by social connections in Episim to see the impact of social network on
infection spread patterns and rates.

2 Methodology

In order to simulate the epidemic spread, we generate travel demand with the open-source mi-
croscopic transportation orchestrator (MITO) (Moeckel et al., 2020), which we later assign to the
road and transit networks using the Multi-Agent Transport Simulation (MATSim) (Horni et al.,
2016). The event files from MATSim are later fed into Episim (Müller et al., 2020) that runs for
an entire year.

The base input data for any agent-based model is the synthetic population, specifically, the syn-
thetic population for the Munich metropolitan area. It comprises 4.5 million persons in 2.3 million
households, but lacks social networks and group quarters (Moreno & Moeckel, 2018). For this
research, a social network and nursing homes are implemented. The social network is built for
the Munich metropolitan area. We also utilize the social network in conjunction with rule-based
coordinated destination in the travel demand generation to account for joint destination.

This section summarizes the generation of the social network, the incorporation of the social
network into MITO for coordinated destination, and the incorporation of the social network into
Episim.

Geolocation-based social network

We generate a geolocation-based, ego-centric social network for the study area. They are so-called
personal social networks or egocentric networks, consisting of an ego or focus point, connected
to alters, e.g. family members, co-workers, etc. Due to the lack of relevant collected data on
social network structures in the area, the network is currently built on characteristics present
in the synthetic population. As such, the generated network reflects a degree of homophily and
reciprocity.

Homophily describes how like attracts like, that people tend to be socially connected with those
similar to them. Reciprocity is how social connections are bi-directional. If A is friends with B,
then B is friends with A. However, it does not take into account the transitivity property of social
networks, which means that if A is a friend of B, and B a friend of C, then A would also have a
higher chance of being friends with C.

Figure 1: Network type and build criterion

The social network is currently built on five kinds of relationships, household, neighborhood,
education, work and nursing home. Those who reside in the same household are connected to each
other. Those who share the same dwelling location and a similar dwelling type, such as single-
family-unit, are socially connected. Those who attend the same school and are of the same age are
presumed to be socially connected. Those who share a job location and job type have a chance of
being socially connected. Residents in the same nursing home also forge social connections with
each other. For neighborhood, education, work and nursing home locations, social connections are
built using a small-world network algorithm with a maximum clique size of 10. Social connections
forged from household, neighborhood, education or work categories are built with the criteria
indicated in Figure 1. Figure 1 also shows the average degree forged in each type of social tie using
these criteria. For example, a person attending school is on average connected to 9.5 others who
attend the school with them. A person’s total social connections comprise of connections from all
five of these relationship types.
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Travel demand model and rule-based coordinated destination

The second part of this study uses an agent-based travel demand modeling suite to generate daily
movements of individuals. To achieve this, the synthetic population with the geolocation-based
social network were fed into MITO (Moeckel et al., 2020). MITO is an agent-based travel demand
model that uses econometric statistical models to estimate trip generation, trip distribution, mode
choice, and time of day for each individual in the synthetic population. After that, MATSim
(Horni et al., 2016) is used as a dynamic traffic assignment model to assign car trips to the road
network and simulate public transport trips on the transit system (Swiss Federal Railways, 2020).
The individual movements are estimated for a typical 24-hour day for the following trip purposes:
home-based work (HBW), home-based education (HBE), home-based shop (HBS), home-based
recreation (HBR), home-based other (HBO), non home-based work (NHBW) and non home-based
other (NHBO).

This study extended MITO by adding the rule-based coordinated destination choice. In Figure 2
the modifications to the existing MITO model sequence is shown. After the Trip Distribution step,
we add an Arrival Time Choice step in which we compare the trip list of an agent with the trip lists
of those in their social network. Compatible trips are defined as trips that have arrival times within
six hours of each other, and are of the same purpose. We also give a hierarchy to coordinated trips
depending on social network type. Agents prioritize coordinating with household members, then
with coworkers or schoolmates and lastly with those from the ‘neighbor’ social connection type. If
compatible trips are found, we then proceed to the next step, Destination Coordination. In this
step, the destination and arrival time of the trip belonging to the agent’s social connection is set
to be the same as the agent’s.

After any changes of destination have been made to the trip, the mode choice is ran without any
modifications. The departure time can then be calculated based on the chosen mode and projected
travel time.

Figure 2: MITO modified model sequence

Epidemic spread model Episim

Episim is an infection dynamics model build on top of a person’s movement trajectories as devel-
oped by the Sebastian Müller et al. at the Technical University of Berlin (Müller et al., 2020). It
allows testing of intervention policies such as home-office mandates, mask-wearing mandates, etc.
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Episim is comprised of several models, the contact model, infection model, and disease progression
model (Müller et al., 2020). The contact model defines who comes into contact with whom. Persons
at the same location or facility can come into contact and infect each other. These facilities could
either be in transit or at an activity location such as home or work. When two persons come
into contact, a probability of infection is calculated using the infection model, which gives this
probability based on contact intensity, contact duration, viral shedding and intake. If a person
becomes infected, the disease progression model then gives the probability that this newly exposed
and infected person progresses to the next stage of the disease. The exposed person can become
infectious, recover, or get worse. The simulation runs for a year or until no more infections occur.
For more details on Episim, please refer to (Müller et al., 2020).

To see the effect of social networks on epidemic spread, we extended the Episim model to account
for social networks. Firstly, the contact model was modified. This contact model looks at agents
when they leave a facility. Instead of randomly selecting other agents who are at the facility at the
same time, we increased the likelihood of being selected if they belong to the same social network.
Secondly, we changed the infection model parameters to consider that persons in the same social
network may reduce social distancing, and therefore, the viral load may be increased. This is
accomplished by increasing the contact intensity factor. For contacts from within the agent’s
social network, the contact intensity is multiplied by a factor of 10. Short of observed data, this
factor is an exogenous assumption that ensures a higher infection rate within social networks. The
current contact intensities and infection probabilities are set according to those specified in (Müller
et al., 2020) for the COVID 19 virus.

Scenarios

By varying the addition of social network and coordinated destination choice, we look at a total
of four scenarios, as seen in Figure 3.

Figure 3: Scenario description

Figure 4: Episim contact rules for different scenarios regarding social network

In the Base scenario, for an agent at a certain location/facility, a maximum of three contacts
are randomly selected from those who are at the same location and the same time as the agent.
This number is the base assumed setting in the calibrated Episim Berlin scenario (Müller et al.,
2020).The infection probability is calculated between the agent and each of these three contacts.
This is graphically represented in Figure 4, in the left box.

In the Base.SocialNetwork scenario, similarly, a maximum of three contacts are selected, but
selection priority is given to those within the agent’s social network. If there are less than three
contacts at the location in the agent’s network, then random agents are selected until there are
three contacts. This is seen in the right box in Figure 4.
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The above scenarios are then repeated, but with a travel demand that now takes into account
coordinated destination choice based the social network. To reduce model runtime, all scenarios
are ran for a 5% scaled-down population for computational time savings. The social network is
generated after scaling down. Episim results are reported after upscaling factors to 100%.

3 Results and discussion

Epidemic spread with and without social networks, with and without coordinated destination are
compared. The main hypothesis is that the total number of infected persons would not vary,
as agents perform the same number of activities. But the spatial and temporal distribution is
expected to be affected by the presence of social networks and coordinated destination choice. For
example, we would be able to better capture the outbreak in nursing homes or large employment
centers; reducing contact at such hotspots may be more sensitive to interventions than limiting
social contacts in general.

Figure 5: Number of infections from day 1 to day 50

In the Figure 5, the Episim total infected curve for the Munich region for each of the four scenarios
is shown. As expected, the total number of infections do not vary much between each scenario.
The trajectory and the peak of the graph are only slightly staggered. We zoom in on the first 14
days of the epidemic outbreak in Figure 6.
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Figure 6: Daily number of infections

Figure 7: Number of infections by infection location and social network status
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Figure 6 shows the day-by-day number of infection events for each scenario. In addition, the fig-
ure shows the proportion of infection events between socially connected agents (dark gray) and
between strangers (light gray). At this more micro-temporal scale, we see that coordinated des-
tination scenarios have a quicker start compared to the base scenarios, with infections in Coordi-
nated.SocialNetwork scenario spreading most rapidly. Within the Base and Coordinated scenarios,
the scenario with social-network contact rules also spread faster than scenarios without. This figure
also shows that the early disease transmissions tend to be from social contacts. Once the epidemic
is more wide spread, infection events between strangers begin to make up the larger proportion.
Infections from the social network scenarios with social network contact rules have a higher share
of being infected by someone within their social network.

We then break down the infection events by activity type. Figure 7 shows the proportion of in-
fection events from the social network and from strangers. The proportion of infection from social
network ties increased for Coordinated Destination scenarios compared to the Base scenarios in
the Other, Recreation and Shopping activities. The addition of coordinated destination choice
captures how non-essential leisure activities may be conducted together with friends, family and
acquaintances, and captures the disease transmission that may happen as a result. Without co-
ordinated destination, agents would seldom meet others in their social network, whereas activities
like home, work, education and being in a nursing home usually guarantees that agents are in the
same location as someone from their social network.

Figure 8 shows the percentage of infection from social network contacts per total number of in-
fections. The addition of social networks has increased the share of infections that come from
social network ties. The Coordinated.SocialNetwork scenario has the highest proportion of social
network related infection events.

Figure 8: Percentage of infection from social network contacts per total number of infections

The percentage of infection from social network contacts per number of infections varies by ac-
tivity purpose. For example, in Base.SocialNetwork and Coordianted.SocialNetwork scenarios,
social network in nursing homes only account for 0.75% of total infections, because the population
of nursing homes is rather small. However, social network ties account for a big proportion of
infections occurring in nursing homes, as seen in Figure 6.

4 Conclusions

We combined a simple synthesized social network with an agent-based travel demand model and
epidemic spread model to see possible effects on epidemic spread patterns. Our social network
and coordinated travel, though simplistic, demonstrate that social networks have some influence
on disease spread patterns. It can affect how fast the disease spreads, and where disease is spread.

Future research should focus on implementing more comprehensive joint travel logic based on social
network connections in the travel demand model, as the scenarios with coordinated travel showed
a marked effect on epidemic spread compared to those without. Another angle for refinement is
the social network. Currently the social network is based on shared home, neighborhood, work or
education locations in the synthetic population. The next iteration can include social connections
outside of household, neighborhood, education and work. These connections can reflect general
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friendship and social ties. In addition to homophily and reciprocity, this social network can incor-
porate the transitivity properties of social connections. Nevertheless, this research presents a novel
coupling of synthesized social networks, travel demand modeling and epidemic spread modeling.
It demonstrates a way to model human connections in human movement, and how an epidemic
travels through the human network.
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Short summary

The emergence of GPS-enabled smartphones and crowdsourcing tools are unique opportunities for
understanding transport behaviour. However, the datasets they generate are often unbalanced, as
individuals may use the service collecting data at different frequencies and periods. This raises
important questions: are typical discrete choice models robust to this unbalance? Are model
estimates biased towards over-represented individuals?

This paper tackles the issue of handling unbalanced panel datasets for route choice modelling. It
first develops a simulation experiment to study to which degree Mixed Logit Models with panel
effects reproduce the population preferences using unbalanced data. It then investigates bias
reduction strategies, using subsampling and likelihood weighting. These strategies are compared
to give guidelines that fit the model purpose. We show that weighting and subsampling techniques
can reduce the bias when interpreting the model output for tastes. Combining these techniques
helps to find an optimal trade-off between bias and variance of the estimates.

Keywords: Unbalanced panel, panel mixed logit model, subsampling, likelihood weighting, bias-
efficiency trade-off

1 Introduction

An increasing number of large crowd-sourced datasets are available for choice modelling. For
instance, smartphone GPS datasets bring researchers new opportunities when analyzing bicycle
traffic. They overcome some limitations related to stated preference data or small sample sizes
(Nelson et al., 2021; Lee & Sener, 2021). However, due to their crowd-sourced opt-in nature, such
datasets may suffer from having a large proportion of the data collected by only a few active
users. This may be problematic if the models estimated on these datasets are used for policy
implications or forecasting purposes, for instance if the preferences of these active users differ from
the population mean.

The issue of repeated observations per individual in the panel setup for the mixed logit model
has been addressed in the literature in the context of stated preference (SP) data. Bliemer &
Rose (2010) recognized the advantages of panel setup and studied the construction of an optimal
experiment design (in terms of the statistical properties of the model) for stated choice surveys
with panel information. Rose et al. (2009) found that adding repeated choice observations per
individual improves the model accuracy only until a certain point. Including multiple repeated
observations from an individual, which are identical in terms of both the set of attributes and the
choice outcome, can be used to account for the effect of e.g. habit (Cherchi & Cirillo, 2014) or
correlation patterns (Cherchi et al., 2017).

Yáñez et al. (2011) found that the most significant improvement to the model in terms of fit can
be attributed to the introduction of panel correlation. Furthermore, including multiple identical
observations should not influence the efficiency of the estimated parameters and does not contribute
to the improved capability to retrieve the true parameters. The latter can, however, be improved
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by introducing weighting since it increases the influence of the fixed part of the utility over the
random part.

Two recent studies (van Cranenburgh & Bliemer, 2019; Ortelli et al., 2022) recognize the challenges
of estimating models based on rapidly emerging massive data sources. They propose strategies
for a dataset size reduction by optimizing multiple criteria, such as model efficiency, estimation
bias, out-of-sample performance, computational time, and value of time for relevant parameters.
They propose optimizing the mixed logit model setup based on a simpler multinomial model
(MNL).

However, these papers do not answer the question: are estimates biased toward individuals con-
tributing more to a crowdsourced dataset? How to deal with a bias-efficiency trade-off? This paper
aims to fill this gap, first testing whether discrete choice models estimated with unbalanced data
represent the average tastes of the individuals of the sample population and then finding solutions
to eliminate the potential sources of bias.

2 Methods

Estimated model: the Panel Mixed-Logit model (PMXL)

The Mixed Logit model with panel effects, also denoted Panel Mixed-Logit (PMXL), builds on
the traditional Multinomial Logit (MNL) model (McFadden et al., 1973; McFadden & Train, 2000;
Train, 2009).

The Panel Mixed-Logit model can be derived as follows: a decision maker n ∈ {1, ..., N} has Tn

choice situations t ∈ {1, ..., Tn}. For each situation t, the decision maker n can choose an alternative
i from choice set Cnt, whose utility Unti can be written as:

Unti = V (βn, Xnti) + ϵnti

βn is a parameter representing the tastes of decision maker n, Xnti is a vector of attributes and ϵnti
is a stochastic error term. Under the logit assumption, the ϵnti’s are independently and identically
distributed (iid) according to Gumbel(0,1). The choice probability of alternative i by decision
maker n in choice situation t (i.e., the event (ynt = i)) is given by:

P(ynt = i|βn, Xnti) =
eV (βn,Xnti)∑

j∈Cnt

eV (βn,Xnti)
(1)

We assume the utility is linear in parameters, i.e. that V (βn, Xnti) = β⊤
n Xnti. The PMXL

model assumes that tastes vary across individuals and that these tastes βn ∼ f(β|θ) are iid across
decision-makers. The PXML probability of the sequence of choices in = i1, ..., iTn for decision
maker n is then given by:

Pin(β) =

∫ Tn∏
t=1

P(ynt = it|β, Xnt)f(β|θ)dθ (2)

This probability is approximated through simulation, using:

P̂in(β) =
1

R

R∑
r=1

Tn∏
t=1

P(ynt = it|βr, Xnt) (3)

Where the βr are drawn from the distribution f(β|θ). The parameter β is estimated through
Maximum Simulated Likelihood Estimation (MLSE). We define the simulated log-likelihood of the
observations (y,X) as:

LL(β|y,X) =

N∑
n=1

ln P̂in(β) (4)
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Path-Size correction

Route choice modelling often involves choice sets with overlapping routes, leading to correlated
alternatives and violating the independence assumption of irrelevant alternatives (IIA) in the MNL.
To account for this, each alternative receives an additional attribute measuring their overlap with
other routes of the choice set. For an alternative i of choice situation t or an individual n, the
Path-Size correction (Ben-Akiva & Ramming, 1998) is defined as:

PSnti =
∑
a∈Γi

la
Li

1∑
j∈Cnt

δaj
, (5)

where Γi is the set of links for alternative i, Cnt it the set of alternatives for choice situation t, la
is the length of link a, Li is the length of alternative i, and δaj equals 1 if j includes link a and 0
otherwise. The utility of an alternative Unti can be written as:

Unti = V (βn, Xnti) + βPS lnPSnti + ϵnti (6)

Where βPS is the Path-Size coefficient to estimate.

Model evaluation

To compare model outputs, we need metrics evaluating bias and precision of the estimations. We
denote the Maximum Likelihood estimator of a true parameter vector β = (β1 . . . βK)⊤ of size
(1×K) as β̂ = (β̂1 . . . β̂K)⊤.

Bias The bias of an estimator is the difference between this estimator’s expected value and the
true value of the estimated parameter. It is given by Bias(β̂) = E(β̂) − β. In the case of a

multidimensional estimator, we calculate ∥Bias(β̂)∥2 =
K∑

k=1

Bias(β̂k)
2

D-error The D-error is an efficiency metric commonly used in experimental designs (see Kessels
et al. (2006) for an overview). It is defined as the determinant of the AVC matrix, exponentially
scaled w.r.t. to the number of parameters. We calculate the AVC matrix Ω = H−1 as the inverse
of the log-likelihood Hessian matrix at the estimates. For i, j ∈ {1, ...,K} the Hessian matrix
coefficients Hij are given by,

Hij(β̂) = E
[
∂2LL(β)

∂βi∂βj

]
β=β̂

Then, the D-error is given by:
D-error = detΩ1/K (7)

Minimizing the D-error is minimizing variances and covariances of the estimates. Lower D-error
values indicate higher efficiency of the estimated parameter results regarding standard errors.
However, it does not provide information on the bias of the estimated parameters.

3 Simulation experiment

In order to test if the Panel Mixed Logit model reproduces the population parameters, we need
to conduct a simulation experiment with known true parameters and sample composition. The
following simulation mimics a route choice modeling framework. For one of the population
parameters (linked to Elevation gain), we will assume that the number of observations in our
dataset is correlated to the parameter individual value.

Step 1 - Network and attributes: We design a small network, with p ∈ {1, ..., P} Origin-
Destination (OD) pairs and choice sets Cp of routes linking them. These routes have k attributes.
For an alternative l of a pair p, we can store these attributes in a vector Xl,p ∈ Rk. We call Xp

the matrix storing the attributes of all the alternatives of Cp.

The network consists of three OD pairs, A-B, B-C, and A-C (see Figure 1), each linked by 9
routes, composed of all the combinations of links going closer to the destination. Each link has
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four attributes: Length (associated to parameter βL), Elevation Gain (βE), Bicycle Infrastructure
(βI) and Surface type (βS). A Path-Size correction term (βPS) (see Equation 5) handles the
correlation between routes.
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Fig. 1: Network, composed of three ODs and 24 links

Step 2 - Draw population: Assume that the general population follows a multivariate
normal distribution for their parameters, i.e., the parameter vector β ∼ N (β|µ,Σ). Σ =
diag(σ2

1 , ..., σ
2
k).

In our simulation, we assume the true parameters values given in Table 1, and that σS = σL =
σPS = 0.

We draw samples of N = 100 individuals. The distributions and histograms for the random
parameters are plotted below (see Figure 2). We write βn =

(
βL,n βE,n βI,n βS,n βPS,n

)⊤the
individual parameter drawn for individual n.
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Individual parameters draws
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Fig. 2: Histogram of 100 draws (a population sample) for the random parameters βE and
βI

Step 3a - Draw OD pairs: For each individual n, draw uniformly a permutation πn of the
trip purposes fulfilled on each OD. For each drawn individual, the points A, B, C can either be
their "home", "work/study place" or "leisure" place. These are allocated randomly with an equal
probability of 1

3 .

Step 3b - Draw number of observations: The number of drawn observations depends on the
βE values. This means individuals with more observations in the dataset are the least sensitive to
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elevation gain. For n ∈ {1, ..., N}:

Tn = ϕ(βn) = ⌈a exp(b ∗ λ(βE,n))⌉ (8)

λ(βE,n) is the index of βE,n in the sequence of βE,n in increasing order. The maximum number
of draws per individual has been set to n∗ = 200, so we chose a = n∗

exp(bN) so that n1 = 1 and
nN = n∗. b = 0.075 is a scaling constant. We draw a total of 2819 observations.

Step 4 - Draw of observations For n ∈ {1, ..., N} and t ∈ {1, ..., Tn} do:

1. Draw the used OD pair pn,t ∼ Categorical(q1, ..., qP |πn) using the probability distribution of
bicycle trip purposes given by the Danish National Travel Survey (Christiansen & Baescu,
2022). q1 = P(Home-Work) = 0.46, q2 = P(Home-Leisure) = 0.24, q3 = P(Work-Leisure) =
0.3.

2. Draw the chosen alternative yn,t ∼ Categorical(L(βn,Xpn,t
)), where

L(βn,Xpn,t
) =

exp(β⊤
n Xpn,t)∑

l∈Cpn,t

exp(β⊤
n Xl,pn,t

)
(9)

Step 5: Based on these observations re-estimate a discrete choice model.

Step 4 is repeated Nexp = 100 times, to account for the randomness of the dataset creation process.
The flow-chart (Figure 3) illustrates the described steps.

Design a toy network with
 origin-destination pairs

and  attributes,  for

For each individual  and
observation :
- Draw the observation OD pair

- Draw chosen alternative

Draw population of size ,

Assume population
parameters

,

For each individual 
calculate  = 

the number
 observations

For each invividual , draw
uniformly a permutation of
trip purposes on each OD

pair 

Re-estimate the
parameters using

MLE

Assume distribution of
trip purposes 

over the ODs

Fig. 3: Flowchart of the simulation experiments

All models are estimated using the Python library xlogit (Arteaga et al., 2022).
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4 Results: base models

Three base models have been estimated: a Multinomial Logit model (MNL), a Mixed Logit model
(MXL) and a Panel Mixed Logit Model (PMXL). The estimated parameters are summarized on
Table 1. The estimated distributions are also plotted on Figure 4. We calculate the Marginal rates
of substitution (onwards referred to as tastes) Taste(x) = µx

µL
as the ratio of any coefficient and the

Length coefficient. This allows separating the issue of the estimation of the model scale and the
derivation of people’s preferences. While the model scale defines one’s sensitivity to an attribute
change on choice probabilities, tastes allow understanding the relative value of distance of each
attribute.

The bias of tastes is defined as:

Bias of tastes =
(
µE

µL
− µ̂E

µ̂L

)2

+

(
µI

µL
− µ̂I

µ̂L

)2

+

(
µS

µL
− µ̂S

µ̂L

)2

Tab. 1: Estimates, tastes, bias of tastes and D-error for the base models

µL µE µI µS µPS σE σI
µE
µL

µE
µL

µE
µL

Bias of
tastes D-error

True value -10 -2 3 1 1.5 0.5 1 0.2 -0.3 -0.1 - -
MNL -5.783 -0.775 1.729 0.486 1.327 - - 0.133 -0.299 -0.0849 0.0584 0.0011
MXL -9.938 -1.334 2.991 0.974 1.518 0.345 0.945 0.134 -0.302 -0.0982 0.0657 0.0028
PMXL -9.964 -1.694 2.986 0.993 1.491 0.484 0.863 0.170 -0.300 -0.0997 0.0296 0.0013
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Fig. 4: Base models estimated parameters for elevation (left distribution) and infrastruc-
ture (right distribution) or distribution against true distributions

For the MNL model, the model marginal substitution rate is -13.3% for elevation gain, while the
actual value is -20%. For bicycle infrastructure, the model outputs a taste of +29.9%, while the
actual value is +30%. The MXL shows similar bias. Moreover, the MXL estimates a standard
deviation for elevation gain that is way lower than the actual value. The PMXL shows less bias
than the other base models, and estimates closer standard deviations to the true values. However it
does not represent the average tastes of the individuals in the dataset. The taste for elevation gain
is still shifted towards over-represented individuals (see also Figure 4). For the other parameters,
however, all models show almost no bias. This is because the individual number of observations is
uncorrelated with the other parameter values.

These estimations allow us to search for ways to decrease the taste bias. The developed strategies
are presented in the following section.

5 Sampling and weighting strategies

We implement a number of strategies to correct the bias in tastes of the Panel Mixed Logit
model estimated on unbalanced data. These methods use subsampling, weighting techniques, or
a combination of both.
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Sampling strategies

To correct the dataset unbalance, several sampling strategies have been tested out. Their pur-
pose is to reduce the bias in the estimated parameters compared to the actual parameters of the
population.

Naive subsampling: We reduce the dataset size by randomly drawing a subset of the obser-
vation. This method does not aim to reduce the bias, but is used as a benchmark for bias and
efficiency.

Pruning: We remove any individual with less then k0 observations from the dataset.

Uniform random subsampling: To keep the same number of choice experiments for each
individual, we choose k as the minimum number of observations for an agent in the dataset and
select k observations for each individual randomly. This method is naive, but some extensions
could be added, e.g. keeping dissimilar observations.

Uniform random truncation: For many experiments, some individuals will only have one
observation in the dataset (k = 1). Thus, another method would be to randomly choose n > 1 and
select n observations per individual. If an individual has less than n observations in the dataset,
all their observations would be selected.

Subsampling of repeated observations: Another possibility for subsampling that would keep
more variability in the dataset is to have a subsampling method that keeps, for each individual,
one observation per choice scenario. The unbalance in the resulting dataset can again be handled
by weighting the likelihood function.

A Maximum Weighted Likelihood Estimation (MWLE)

Sampling strategies reduce bias by reducing the potential over-representation of some individuals
in the dataset. However, it also leads to lower efficiency of the estimates. Another way to deal
with this bias would be to modify the likelihood function so that the estimator accounts for the
dataset unbalance by penalizing over-represented individuals.

We implemented a new method to weigh the likelihood function. Let β = (µ,Σ) be the model pa-
rameters. The goal of the weighting algorithm we describe below is that each individual contributes
equally (has the same weight) in the likelihood function. For individuals n ∈ {1, ..., N}, we note
w = (w1 . . . wN ) the vector of individual weights. We note LL(β) =

(
ln P̂i1(β) . . . ln P̂iN(β)

)
the vector of individual contributions to the log-likelihood. The weighted likelihood function is
thus given by:

LLw(β) = w⊤LL(β) =

N∑
n=1

wn ln P̂in(β)

Our goal is to find the vector of weights w∗ for which each individual gives the same contribution to
the weighted likelihood function evaluated at the estimated parameters. Each iteration calculates
weights that are inversely proportional to the weighted likelihood contribution of an individual,
using the weights of the previous iteration. This is equivalent to solving the following fixed-point
problem: w∗ = F (w∗), where, for an element wj of w, we have:

F (wj) =
(wj ln P̂ij(β̂))

−1

1
N

N∑
n=1

(wn ln P̂in(β̂))
−1

; β̂ = argmax
β

LLw(β) (10)

ϕ =

(
1
N

N∑
n=1

(wn ln P̂in(β̂))
−1

)−1

is a normalizing constant ensuring that
N∑

n=1
wn = N ; which will

be useful to compute the AVC matrix of the estimates.

To solve this fixed-point problem, the solution algorithm builds a sequence of weight vectors w(k) =(
w

(k)
1 . . . w

(k)
N

)
which can be described by the pseudo-code below.

7



Algorithm 1: Algorithm to determine optimal weights; w∗ = F (w∗)

Input: X,y, n0, ε
Result: w∗, the vector of optimal weights
Initialization:
w(1) ← (1 . . . 1)
k ← 1
while ∥F (w(k))−w(k)∥ > ε; // F also depends on X,y
do

ŵ(k+1) ← F (w(k)) ;
if k > n0 then

w(k+1) ← λkŵ
(k+1) + (1− λk)w

(k) ; // Method of successive averages
else

w(k+1) ← ŵ(k+1);
end
k ← k + 1

end

The Method of Successive Averages (MSA) (Robbins & Monro, 1951), ensures the convergence of
the sequence. We use λk = 1

k−n0
, so that the kth calculated weight vector is the arithmetic mean

of the previously computed weights, i.e. w(k) = 1
k−n0

k∑
i=n0

ŵ(i). This method begins to be applied

after n0 iterations, so the first weights are not included in the average.

The simulation experiment described in section 3 is then carried out for the following setups:

1. Whole dataset, weighted

2. Random naive subsampling at 500 observations

3. Pruning individuals with less than 5 observations

4. Randomly truncated at 2, 5, 10, 20, 50 observations, unweighted and weighted

5. Randomly subsampled at the minimum number of observations per individual (equivalent
to a truncation at 1 observation with this dataset)

6. Random subsampling of unique observations

Setups 2 to 5 use random subsamples of the generated datasets. The subsampling algorithms are
used 100 times for the same dataset, and the results are averaged (the standard deviation is also
calculated). With 100 different generated populations and observations, these setups are repeated
10000 times.

6 Results

This section compares two metrics for the different strategies: Bias of tastes and D-error, stored
in Table 2. Some insights given by these tables are:

• For the models using the whole datasets, the bias in tastes has been significantly reduced
by the weighting algorithm while not affecting the model efficiency (see Figure 5 for a plot
of the estimated mixing distributions).

• As expected, the naive and pruning strategies, used as benchmarks, give worse results than
the base model in efficiency and bias.

• The unweighted truncation give the best results in terms of Bias of tastes for low truncation
thresholds (see Figure 6). The more the dataset is truncated, the more it is balanced, and
the more the estimates are close to the population’s mean. Conversely, lower truncation
thresholds also lower the estimated parameters’ efficiency, and increase variability between
random subsamples. The bias-variance trade-off is higlighted by the green curve on Figure
8.
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• The weighted truncation, while slighltly increasing the D-error for the same truncation
threshold, shows a decrease in bias of tastes when the threshold increases at 50 (see Figure
7). The red curve on Figure 8 shows that the weighting algorithm breaks the bias-variance
trade-off when a certain truncation threshold is exceeded.

• Removing repeated observations behave similarly to truncation.

Moreover, random truncation to lower thresholds gives more variability to the model output; it is
important to repeat random truncation several times and average the results to lower bias.

Tab. 2: Estimates, tastes, bias of tastes and D-error for the base models

βL βE βI βS βPS σE σI
βE
βL

βI
βL

βS
βL

Bias of
tastes D-error

True value -10 -2 3 1 1.5 0.5 1 0.2 -0.3 -0.1 - -

MNL -5.783 -0.775 1.729 0.486 1.327 - - 0.133 -0.299 -0.0849 0.0584 0.0011
MXL -9.938 -1.334 2.991 0.974 1.518 0.345 0.945 0.134 -0.302 -0.0982 0.0657 0.0028
PMXL -9.964 -1.694 2.986 0.993 1.491 0.484 0.863 0.170 -0.300 -0.0997 0.0296 0.0013

PMXL, w -10.307 -2.136 3.162 1.021 1.529 0.617 0.960 0.207 -0.307 -0.0991 0.0107 0.0011

Naive -10.188 -1.538 3.154 1.002 1.530 0.365 0.998 0.150 -0.310 -0.0987 0.0395 0.0093
Pruned -9.979 -1.509 2.954 0.993 1.495 0.357 0.838 0.151 -0.296 -0.0996 0.0490 0.0013

Trunc 2 -10.333 -1.999 3.109 1.002 1.574 0.423 1.018 0.193 -0.301 -0.0975 0.0071 0.0421
Trunc 5 -10.038 -1.849 3.067 0.982 1.522 0.379 1.003 0.184 -0.306 -0.0981 0.017 0.0143
Trunc 10 -9.989 -1.786 3.082 0.984 1.497 0.369 1.005 0.179 -0.309 -0.0987 0.023 0.0074
Trunc 20 -9.988 -1.749 3.104 0.989 1.491 0.373 1.006 0.175 -0.311 -0.0992 0.0271 0.0042
Trunc 50 -10.001 -1.727 3.094 0.992 1.496 0.402 0.975 0.173 -0.309 -0.0993 0.0288 0.0023

Trunc 2, w -12.908 -2.600 3.990 1.257 2.073 0.473 1.199 0.201 -0.309 -0.0980 0.0106 0.0703
Trunc 5, w -11.421 -2.252 3.612 1.113 1.743 0.451 1.126 0.197 -0.316 -0.0978 0.0175 0.0194
Trunc 10, w -10.927 -2.165 3.501 1.072 1.636 0.465 1.097 0.198 -0.320 -0.0983 0.0214 0.0091
Trunc 20, w -10.687 -2.161 3.438 1.051 1.589 0.495 1.073 0.202 -0.322 -0.0985 0.0228 0.0048
Trunc 50, w -10.460 -2.163 3.311 1.033 1.554 0.545 1.015 0.207 -0.317 -0.0988 0.0189 0.0023

Obs -9.977 -1.781 3.076 0.993 1.524 0.362 1.001 0.178 -0.309 -0.0997 0.0231 0.0075
Obs, w -11.886 -2.338 3.735 1.169 1.778 0.464 1.148 0.196 -0.314 -0.0989 0.0156 0.0397
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Fig. 5: Estimated distributions for elevation gain (left) and infrastructure (right), PMXL
and PMXL weighted
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Fig. 7: Estimated distributions for elevation gain (left) and infrastructure (right), Trun-
cated at 2, 10 and 50, weighted
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Fig. 8: Bias of tastes vs. D-error for all the different strategies

7 Conclusion and Future work

The simulation study has shown that it is possible to remove bias by applying weighting and
subsampling methods. However, it also shows the bias-variance trade-off a modeller may face
when choosing an optimal strategy. The newly-developed weighting algorithm breaks this trade-
off by evening the contribution of each individual in the likelihood function. This allows maximum
potential efficiency, while keeping a reliable explanatory model that is not biased towards over-
represented individuals.

This simulation included one mixed parameter that was correlated (βE) to the number of observa-
tion and one that was not (βI). The results show that the models estimates are mostly unbiased
for the parameter that did not correlate. As individual parameters are randomly distributed in
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the population, we deduce that if the over-representation of some tastes is randomly distributed,
the change in estimation may be negligible. The next step is to test these different strategies on
different datasets to see how the preferences may change, i.e. how the number of observations
correlates with the individual taste. Future work could also encompass a more thorough anal-
ysis on large-scale datasets, showcasing and tackling further challenges, such as bias in scale or
computational burden.
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SHORT SUMMARY 
Public transport systems are typically designed based on estimated passenger demand and supply 

patterns, yet may often be called to operate under vastly different operational settings. To system-

atically design resilient transit systems, it is necessary to “weave” resilience-oriented thinking 

into the established public transport network design process, moving from an abstract concept to 

an implementable methodology. This study aims to effectively and efficiently design resilient 

public transport networks through the integration of Reinforcement Learning (RL), Local Search 

operators and Particle Swarm Optimization. We present a redundancy indicator and integrate it 

within a hybrid RL-enhanced metaheuristic solution framework to design more resilient route 

structures. We apply the proposed Memetic algorithm to an established benchmark from the lit-

erature and validate the proposed approach under a series of random and targeted attacks, simu-

lating link disruptions. Results demonstrate that resilience can be enhanced through redundancy 

without adversely impacting average travel times.  

 

Keywords: Transit Route Network Design, Resilience, Vulnerability, Redundancy, Memetic 

algorithms, Reinforcement learning. 

1. INTRODUCTION 

Most existing systems are over-optimized to predefined design inputs. However, as a great deal 

of uncertainty persists, these systems become fragile to ever-changing external conditions. This 

is especially true when it comes to transportation systems, and particularly public transport net-

works (Mattsson and Jenelius, 2015). Indeed, these systems were once designed for predicted 

passenger demand and supply patterns, yet are now called to operate under vastly different oper-

ational settings. Still, medium and long-term disruptions (e.g. road closures, maintenance works) 

can induce significant changes in supply and trigger shifts in passenger demand, rendering public 

transport systems vulnerable and often unviable. In such cases, associated costs incurred by pas-

sengers and operators are unaccounted for in the design process, albeit significant. Due to rigid 

constraints and limitations of the underlying network structure, strategic interventions are limited 

in such cases, with disruptions associated with wide and sustained implications (Jenelius and Cats, 

2015).  

 

Under this scope, an important consideration refers to the ability of transport networks to with-

stand perturbations and maintain their serviceability. Towards this goal, several concepts have 

been introduced in the literature to evaluate the performance of transport networks under disrup-

tion, notably robustness, vulnerability, and resilience (Ge et al., 2022). In transportation-related 

literature, vulnerability and resilience are viewed as core properties of public transport systems, 
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both considering the decrease in network performance under perturbations (Ge et al., 2022; Matts-

son and Jenelius, 2015). 

 

Under this scope, a large stream of studies sought to identify critical network links/segments, a 

posteriori investigating the link between network design and vulnerability (Cats, 2016; Mattsson 

and Jenelius, 2015; Rodríguez-Núñez and García-Palomares, 2014; von Ferber et al. 2012). De-

spite these observations, in terms of a priori designing resilient transit networks, there is a large 

gap in the respective literature. The problem of optimally designing surface public transportation 

systems, referred to as Transit Route Network Design Problem (TRNDP), has attracted the in-

terest of the research community for over five decades (Iliopoulou et al. 2019). Still, despite the 

vast literature on the general TRNDP, methods for designing resilient transit networks are lacking.  

 

Motivated by the gap in the respective literature, this study presents a methodological framework 

for enhancing resilience within the TRNDP, without negatively impacting performance. To 

achieve this, we incorporate Reinforcement Learning (RL) within a metaheuristic solution frame-

work to reinforce the resilience of transit networks, under the planning paradigm for enhanced 

connectivity. In particular, the availability of trip alternatives, i.e. the amount of redundancy of-

fered, allows for the impacts of link-based incidents to be absorbed (Rodríguez-Núñez and Gar-

cía-Palomares, 2014). To that end, a particle swarm optimization (PSO) algorithm integrated with 

neighborhood operators which manipulate the degree of connectivity, referred to as Memetic 

PSO, is developed and enhanced through RL to reinforce path redundancy. We adopt the view 

that resilience is related to the network’s performance decrease, as computed based on demand 

coverage and transport efficiency, under a shift in operating conditions and develop a set of bi-

directional link-based disruption scenarios to be investigated, representing full link closures (Cats, 

2016).  

2. METHODOLOGY 

This section presents a general formulation for the TRNDP, the proposed redundancy indicator 

and outlines the components of the developed algorithmic framework. 

The TRNDP 
In general, there is no commonly accepted mathematical programming formulation for the 

TRNDP due to its inherent complexity and discrete nature (Iliopoulou et al., 2019). A high-level 

mathematical formulation for the TRNDP can be given as follows. Let: 

 

ATTRS: Average Travel Time for route set RS 

C:  the vector of path costs on the transit network 

d0RS: Percentage of passenger demand satisfied without transfers for route set RS 

d1RS: Percentage of passenger demand satisfied with one transfer for route set RS 

d2RS: Percentage of passenger demand satisfied with two transfers for route set RS 

dunRS: Percentage of unsatisfied demand for route set RS 

R:  Route  RS  

R̂S : Vector of optimal routes 

RM:     Maximum number of routes R in RS 

RS:  Set of routes {R} 

Q:   the vector of segment flows on the transit network 

pRS:  Path redundancy score for route set RS 

sR:  Number of stops per route R 
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smin: Minimum number of stops  

smax: Maximum number of stops  

U:   the user route choice model function 

ω:  Weighting factor 

 
ˆ( ) arg min ( , )Z=RS RS Q                    (1) 

RS RSZ ATT p= −         (2) 

 s.t. 

0 1 2( , , , , , , ) ( ( ))RS RS RS RS unRS RSATT d d d d p U C=Q RS     (3) 

min maxRs s s  ,        R RS         (4) 

R K                  R RS         (5) 

RS RM
         (6) 

0unRSd =
          (7) 

  

The problem seeks to determine the route set that minimizes the objective function (Eq. 1). The 

latter represents the user cost associated with the route set, defined in this case as a score resulting 

from the weighted difference of average travel time (ATT) and the redundancy indicator (Eq. 2). 

In this case, ATT is the most important metric, as it also reflects direct ridership due to transfer 

penalization  (Fan and Mumford, 2010). The values of ATT, the redundancy indicator and other 

route evaluation criteria, are derived from the transit assignment process, which is represented by 

Equation (3). Equation (4) specifies the minimum and the maximum number of stops for routes. 

Equation (5) states that two individual routes cannot coincide, while Equation (6) specifies the 

maximum number of lines. Last, Equation (7) states that the percentage of unsatisfied passengers 

must be zero.  

Redundancy 
The challenge in statically capturing resilience through a performance indicator is that one should 

account for the behaviour of the network under several disruption scenarios, as a full network 

scan is not computationally feasible for each candidate solution during the optimization. To that 

end, the number of alternative paths offers useful insights and is linked to better performance 

under disruptions, as route redundancy allows for flexibility to passengers (Cats, 2016). Based on 

this observation, we propose the use of a modified global efficiency indicator, which we name 

path redundancy, defined as follows: 

 

w w

w W

w

w W

d m

p
d





=



         (8) 

Where w denotes an OD pair, dw the corresponding demand and mw denotes the number of distinct 

transit paths offered based on the physical network. This distinction is important, as, different 

route combinations could use the same physical path. We filter the number of available paths 

through the physical road network to determine the number of distinct physical paths exploited 

by the route network. However, physical path overlap must still be taken into account, as it may 

lead to overestimating the number of distinct alternatives. To account for the reduction in redun-

dancy due to overlapping segments we scale the number of physical paths by considering an 

overlap coefficient. More specifically, given a set of feasible paths Lw serving a specific OD pair 

w, the number of distinct physical paths is computed by considering the equivalent path index ol 

for each path l, defined as follows: 
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      (9) 

Where u is an edge of path l, Ul the set of edges comprising path l, kw
u the number of paths for the 

specific OD pair w traversing segment u. Finally, the total number of distinct paths for a pair w is 

given by summing the corresponding values for all paths l in Lw: 

 

w

w l

l L

m o


=         (10) 

So that mw is the number of distinct physical paths for OD pair w, accounting for similarities. 

The proposed Memetic RL-enhanced PSO algorithm 

Motivated by the performance of emerging RL-enhanced PSO algorithms and Memetic PSO var-

iants, we propose a discrete-space Memetic PSO where Q-learning is employed to select the 

search actions of each particle, referred to as MQLPSO. The proposed algorithm flexibly incor-

porates the discrete PSO operators for the TRNDP to effectively perform exploration for promis-

ing solutions within the entire region, a local-search procedure as the refinement step and a Q-

learning framework as the operator selection mechanism. We employ four local search operators 

in total, which specifically target connectivity and thus, path redundancy, allowing the algorithm 

to perform exploitation for solution improvement in subregions. Each action contains a set of 

movements; three global search operators are used to move particles towards the global and per-

sonal best and four local search operators are used to refine individuals. The framework of the 

proposed algorithm is shown in Figure 1.  
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Figure 1 MQLPSO framework 

In this specific instance, we are interested in designing a network that offers low average travel 

times with as much redundancy as possible. Therefore, the following three-piece reward function 

is defined, after experimentation:  

 

 

1     , if '  and '

0.5  , if '  or '

1   ,  otherwise

ATT ATT p p

r ATT ATT p p

  
 

=   
 − 

      (11) 

Where ATT and ATT’ denote the value of ATT for the previous solution and the current, respec-

tively; p and p’ are the redundancy scores of the previous and current solution, respectively.  

3. RESULTS AND DISCUSSION 

The road network used as input by the proposed MQLPSO algorithm is based on a real Swiss 

road network (Mandl, 1980), comprised of 15 nodes and 21 links., and is the widely accepted 

benchmark for the TRNDP. The demand matrix is symmetric, and the routes run in both direc-

tions. The configuration is shown in Figure 2. 
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Figure 2. Mandl’s Network configuration 

 

In this case, we simulate link-based attacks, by removing links both at random and based on their 

criticality. For random attacks, we simulate the removal of 1- 10 random links and run 100 ex-

periments per case to assess the impact on network performance to evaluate a representative set 

of scenarios (Matisziw et al., 2009). For targeted attacks, we consider scenarios without the most 

critical link and the most critical sequence of up to 10 link disruptions. This process enables the 

identification of links absorbing trips that have been diverted because of disruption in different 

scenarios. We identify critical links based on the value of the passenger betweenness centrality 

indicator (Cats, 2016). The measure is defined as follows: 

 

1
( )u w w

w Ww

w W

PBC g u d
d 



= 


       (18) 

 

Where gw(u) denotes the fraction of shortest paths for OD pair w traversing link u. We recalculate 

betweenness centrality after each edge removal. 

 

For evaluation, we will compare the following algorithmic setups using the same random seed, 

conducting 20 experiments in all cases: 

i. MQLPSO with coefficient ω=0.1 in the objective function, so that ATT and redundancy 

are incorporated both at the objective and reward functions.  

ii. MQLPSO with coefficient ω=0 in the objective function, so that ATT minimization is the 

optimization objective and redundancy is enforced only through the reward function.  

iii. The PSO global search step combined with random selection of local search operators, 

referred to as Memetic PSO (MPSO) aiming to minimize only ATT. We use this as a 
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benchmark reflecting the typical TRNDP design process while capturing the exploitation 

capabilities of the neighborhood operators to some extent. 

Table 1 shows the results for transit network configurations with 4 routes. 

Table 1. Comparison of solutions generated among methods for 4-Route Case 

Performance 

Criteria 

Algorithm 

 

MQLPSO 

best 

MQLPSO 

best 

MPSO 

best 

MQLPSO 

avg 

MQLPSO 

avg 

MPSO 

avg 

ω 0.1 0 0 0.1 0 0 

ATT (min) 10.6 10.51  10.54 10.7 10.68 10.71 

p 3.42 3.42 3.03 3.17 3 2.97 

d0 (%) 89.21 90.88 91.59 89.71 89.94 89.86 

d1 (%) 10.79 9.12 7.71 10.03 9.86 9.85 

d2 (%) 0 0 0.71 0.26 0.2 0.29 

dun (%) 0 0 0 0 0 0 

Run time (s)    72 60 78 

 

As seen in Table 1, MQLPSO produces similar quality results in both cases. The best solutions 

produced in this case feature the same redundancy value (3.42 vs 3.03 of MPSO, i.e. a 13% im-

provement), yet the solution under ω=0 features a lower value for ATT and improved direct de-

mand coverage, which is reasonable. In the average case, higher redundancy values are generated 

if both criteria are enforced through the objective function (3.17 on average), with a slight im-

provement of passenger-related performance criteria observed under ω=0. Both cases of 

MQLPSO produce superior solutions to MPSO with zero two-transfer shares, demonstrating that 

the proposed RL scheme can improve both ATT and redundancy at the same time. To illustrate 

the value of reinforcing redundancy we compare the route configuration generated by MPSO with 

the route configuration under ω=0.1, as on average it yields improved values for redundancy. 

Figure 3 shows the performance decrease of the network with p=3.42 vs p=3.03 under a series of 

random attacks, with boxplots summarizing 100 random runs. 

 

 
Figure 3. Random attack impacts for the 4-route case. 

Figure 3 clearly shows the difference in performance decrease between the two network config-

urations, across all relevant indicators. As a general observation, a clear trend may be discerned 

where the route network with the smaller redundancy exhibits larger variability in terms of de-

mand coverage under random attacks, with proportionally more scenarios resulting in worse out-

comes. In fact, for the route network with the lowest path redundancy 25% of scenarios feature 

direct coverage between 45% and 64%, after the removal of 3 links versus 56% - 69% with 



8 

 

p=3.42, besides a couple of outliers. After 4 link removals, the median value for unsatisfied de-

mand is consistently higher in the unprotected network, with discrepancies becoming larger with 

the extent of disruption. The removal of a 4th link seems to be a turning point for performance 

loss, as a notable rise in unsatisfied demand and an abrupt decline in the efficiency of both net-

works is observed with consistently inferior values for p=3.03. For 7-link disruptions, the differ-

ences between the two networks become more pronounced, with the more redundant network 

retaining a larger portion of its serviceability with under 25% of unsatisfied passengers in the 

median case, compared to 33% for the less redundant network. Even in the case of an extended 

10-link disruption, the former maintains a 10% advantage in terms of demand satisfaction over 

the latter. 

Figure 4 shows the performance decrease under targeted attacks up to 10-edge disrup-

tions. 

 
Figure 4. Targeted attack impacts for the 4-route case.  

As seen in Figure 4, the value of redundancy becomes apparent after 3 consecutive removals, with 

unsatisfied demand higher across all cases after that point for the network with the lower redun-

dancy measure. The efficiency and thus the passenger carrying capacity drops more abruptly in 

this case, with 4-link disruptions being the critical point. Indeed, for a sequence of 4 critical links 

removed, there is more than 25% difference in unsatisfied demand between the two networks and 

20% in efficiency. Even though the relative gap becomes smaller with successive removals, the 

results for the unprotected network are consistently superior to those for the reinforced network. 

Even at 10 successive removals of the most critical link, the more redundant network serves 6% 

more passengers. 

 

4. CONCLUSIONS 

This study showcased a two-pronged resilience-oriented design framework: on the one hand, a 

redundancy indicator was developed and incorporated in the TRNDP solution process within an 

intelligent optimization framework and on the other hand, multiple simulation runs were per-

formed to assess generated solutions and evaluate the design process. Results demonstrated that 

redundancy can reduce the impacts of link disruptions, reducing associated repercussions on de-

mand coverage, with negligible costs in terms of average travel times. The more redundant net-

work incurred a lower share of unsatisfied demand for multiple-link disruptions, either random 

or targeted, and a smoother decline in efficiency, retaining a larger portion of its serviceability. 

Respectively, the networks with lower redundancy exhibited more unpredictable behavior under 

attacks, with higher variability and more damaging worst-case scenarios. For targeted attacks, the 

value of redundancy is still evident, yet relatively lower compared to the case of random attacks. 
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This may perhaps be expected, as targeted attacks are based on the maximum weighted between-

ness centrality measure, which may still be high even in redundant networks. 
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SHORT SUMMARY 

Major cities are increasingly willing to reclaim public space from cars. This paper analyses the 
acceptance of car-reducing measures by different segments of the population. The respondents of 
a stated preference survey in Munich, Germany, were asked whether they accept one or more 
measures designed to decrease the ownership and use of private cars, and to state their opinion on 
theoretical statements regarding private cars and the environment. Factor analysis and binomial 
regression were employed to model the relationship between the established travel behaviour, 
socio-demographics and latent attitudinal constructs on the one side, with acceptance on the other. 
The results showed that age, education, occupation and income, as well as environmentally 
friendly travel behaviour and attitudes play a major role in acceptance, thus providing valuable 
policy recommendations. 
 
Keywords: attitudes, factor analysis, socio-demographics, travel behaviour, transport policy 

1. INTRODUCTION 

Measures against private cars have the goal to reduce traffic congestion, to mitigate the external 
costs of transportation and to reclaim urban space for social, commercial and recreational activi-
ties. With this aim, many researchers proposed relevant measures such as road pricing, parking 
restrictions, improved infrastructure for active modes, incentives for public transport, within-
neighbourhood mobility and concentration of land uses to reduce distances (Gärling, Gärling, & 
Johansson, 2000). However, the public acceptance of those measures varies and turns out to be a 
key issue for their success (Banister, 2008). 
 
Such measures can be distinguished based on their coerciveness. According to Loukopoulos et al. 
(2005), coercive measures, also named hard or structural measures, are less acceptable by the 
public than noncoercive measures – an example of the former is the prohibition of car traffic in 
city centres. By contrast, noncoercive measures (e.g. reduced fares in public transport), also called 
soft or psychological measures, may be politically and socially more feasible (Friman, Larhult, & 
Gärling, 2013). Similarly, push measures are perceived as ineffective, unfair and not acceptable, 
whereas pull measures are perceived to be effective, fair and acceptable (Eriksson, Garvill, & 
Nordlund, 2008). 
 
Another important factor is the effectiveness of those measures. Romero et al. (2019) investigated 
the influence of driving restrictions in Madrid and found the modal shift towards public transport 
to be modest, explained likely by the large number of cars driving into the city from the outskirts. 

 
*Corresponding author: filippos.adamidis@tum.de 
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Yan, Levine, & Marans (2019) investigated the responses of travellers to different parking attrib-
utes, e.g. search time and parking cost, and found that the primary response was changing parking 
location rather than shifting to another mode. In Gonzalez, Gomez, & Vassallo (2022) parking 
restrictions and low emission zones were found to encourage greener mobility, although owners 
of cleaner vehicles were unwilling towards shifting to public transport due to the perceived ben-
efits stemming from their vehicles. Becker, Ciari, & Axhausen (2018) stated that free-floating 
car-sharing could reduce car ownership, however, there are differences compared to station-based 
schemes. 
 
The objective of this study is to provide insight into the factors associated with the acceptability 
of measures against private cars. These factors can be related to the established travel behaviour, 
the socio-demographics and the underlying attitudes of individuals when concerned with ques-
tions about car ownership and the environment. More information about the dataset, the method-
ology, the results and the main findings are presented in the next sections. 

2. METHODOLOGY 

Data collection 

The dataset was collected through an online panel (Schlesinger Group) as part of a stated prefer-
ence mode choice survey in Munich, Germany. The survey includes four bundles of measures 
that aim to reduce the ownership and use of private cars and to encourage the use of active and 
environmentally friendly alternatives: 

1. Extending the existing mobility hub network. 
2. Removing on-street parking spots in favour of multipurpose garages. 
3. Promoting neighbourhood mobility by creating attractive public spaces. 
4. Facilitating active mobility and restricting motorised private transport. 

 
The respondents could accept one or more bundles or to reject the measures altogether (None of 
the above - everything should remain as it is). Furthermore, the survey included twelve attitudinal 
statements (Table 1) about car ownership and the environmental concerns of the individuals. The 
participants were asked to express their opinion about the statements in a five-level rating (Likert) 
scale from Strongly disagree to Strongly agree. Other collected data include information about 
their usual travel behaviour and socio-demographic questions. 

Data analysis 

Two modelling techniques were used in this study, namely factor analysis and binomial regres-
sion. Exploratory factor analysis (EFA) is a statistical technique that aims to explore the underly-
ing correlations between measurable variables. The result of EFA is a latent construct (factor) and 
the association strength between the latent construct and the measured variables (loadings). Con-
firmatory factor analysis (CFA) is a structural equation modelling technique that investigates re-
lations between latent constructs and observed variables in an a priori specified theoretical model. 
Therefore, to apply CFA in this study, we assume that underlying attitudes that influence the 
acceptance of the bundles of measures exist. Further, we assume that the acceptance is influenced 
by the established travel behaviour and to the socio-demographics of the sample. The null hy-
pothesis in factor analysis is that the correlation matrix of the assumed model does not differ from 
the one implied by the data.  
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To construct the models, we assume that pro-environmental attitudes are associated with the ac-
ceptance of measures, while attitudes in favour of cars contribute to the rejection of the measures. 
The structural models are estimated using the R-package lavaan (Rosseel, 2012). Between EFA 
and CFA we employ binomial regression in order to perform a first selection of the observed 
variables. 
 

Table 1: Statements regarding car ownership and the environment 
 

Statement Variable  
Car ownership  

A car is a symbol of social status for me. 
Having access to a car invokes to me a feeling of independence and 
freedom. 
The brand/manufacturer is important to me when choosing to buy a 
car. 
I deserve to own a good car because I have been successful in life. 
I feel accomplished and fulfilled after buying a car. 
A car is essential to my everyday mobility needs. 
 

Symbol 
Independence 

 
Brand 

 
Success 

Accomplishment 
Essential 

Environment  
The use of individual motorised transport threatens the environment Threat 
It is my obligation to protect the environment through my transporta-
tion mode choice. 
The government should increase the price of fuel in order to invest in 
public transport.* 
A way to reduce congestion is to ban cars from city centres. 
I am concerned about the future of our planet. 
I have already moved towards a more environmentally friendly life-
style. 

Protection 
 

Fuel Price 
 

Carfree 
Future 

Lifestyle Change 
 

*Source: Schmid, Schmutz, & Axhausen (2016)  
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3. RESULTS AND DISCUSSION 

Established travel behaviour and socio-demographics 

Some observations were filtered out of the initial sample, either because the respondents speeded 
through the questionnaire (completion time less than one third of the estimated time of 15 
minutes), or because their socio-demographic category was underrepresented, e.g. gender Diverse 
or I prefer not to say. The resulting sample size was N=1497. At least one bundle was selected 
by 1230 respondents, whereas 267 respondents declined all measures. A comparison of the sam-
ple with the latest published census (Federal Statistical Office, 2011) can be seen in Table 2. 

 
Table 2: Key characteristics of the respondents 

 
Variable Answer Sample (%) 

N=1497 
Census (%) 

2011 
Gender Female 46.8 51.7 
 Male 53.2 48.3 
Age ≤17 

18-29 
30-39 
40-49 
50-59 
60-69 
70-79 
≥80 

0 
18.0 
21.6 
18.7 
21.0 
14.8 
4.9 
0.8 

14.6 
17.2 
16.7 
16.2 
11.8 
10.7 
8.4 
4.4 

Occupation Full-time work 
Part-time work 

Pupil, student or apprentice 
Retired 

Housewife/Househusband 
Other 

No answer 

60.5 
16.2 
6.5 
11.4 
1.9 
2.4 
1.1 

56.5 
 

4.5 
18.3 
2.9 
17.8 

 
Size of household 
(no. of people) 

1 
2 
3 

≥4 

30.0 
37.3 
13.4 
18.9 

50.3 
28.8 
10.6 
10.3 

Driving license Yes 
No 

90.0 
10.0 

88.9* 
11.1* 

Car ownership 0 
1 

≥2 

29.8 
52.0 
18.2 

44.0* 
49.0* 
7.0* 

*Mobilität in Deutschland  (infas, DLR, IVT & infas 360, 2018) 
  



5 
 

Attitudes about car ownership and the environment 

The answers to the attitudinal statements are summarised in Figure 1.  
 

 
Figure 1: Responses to attitudinal questions 

 
To check the conformity of the dataset with the assumptions of EFA, two inspection metrics are 
calculated. The χ2-statistic with 66 df, calculated by Bartlett’s test of sphericity, is close to 500, 
which indicates that the data are not an identity matrix at 95% confidence level. Furthermore, the 
Kaiser-Meyer-Olkin measure of sampling adequacy is 0.88, which suggests that the data are suit-
able for EFA (Howard, 2016). The eigenvalues of factors suggest empirically that between two 
and four factors should be retained in the model. Comparing the full model (four factors) with the 
parsimonious model of two factors results in a loss of explained variance of 0.05, while gaining 
in interpretation. Table 3 shows the factor loadings of the EFA model with two factors after 
oblique rotation, which results in an interpretable structure when the factors are correlated. It can 
be seen that: 

1) All variables about environmentally friendly travel behaviour were associated with Factor 
1 and 

2) All variables related to car use and ownership were associated with Factor 2. 
 
Therefore, Factor 1 is interpreted as “Pro-Environment” and Factor 2 as “Pro-Car” attitudes. We 
expect pro-environment attitudes to be associated with higher willingness to accept any of the 
measures, while attitudes in favour of cars are could be more resistant to changes. 
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Table 3: Factor loadings for attitudes towards car ownership and the environment 
(loadings ≤ 0.3 not presented, ≥ 0.7 highlighted) 

 
 

Variable  Factor 1 Factor 2 
Symbol  0.718 
Independence  0.605 
Brand  0.686 
Success  0.820 
Accomplishment  0.828 
Essential  0.531 
Threat 0.741  
Protection 0.834  
Fuel Price 0.647  
Carfree 0.713  
Future 0.727  
Lifestyle change 0.673  
Summary statistics   
Proportional variance 0.269 0.251 
Cumulative variance  0.520 
χ2-statistic 644.12   
   
Factor interpretation Pro-Environment Pro-Car 
   

Modelling the acceptance 

First, we model the acceptance by binomial regression using as explanatory variables the meas-
urable travel behaviour and the socio-demographics of the respondents. We check for separation 
effects in terms of the levels of the response variable and remove all instances with less than five 
occurrences in the sample. Non-significant variables with the appropriate sign are grouped with 
significant variables to enhance the interpretability of the model (AIC = 1170.9, McFadden 
pseudo-R2 = 0.45). The main findings are summarised below: 
 
(1) Age: people 30-59 years old seem to disregard the measures, a possible explanation being that 

individuals in working age have less time to investigate alternatives and habitually select one 
mode of transport. 

(2) Education: basic education (finished high school) and other types of education, e.g. profes-
sional training in Germany, are also connected with lower willingness to accept. Those edu-
cation types are probably associated with out-of-office activities that require freedom of mo-
bility. 

(3) Occupation: students seem to accept the measures, while housewives and househusbands 
seem to disregard them. Students often use public transport, on the contrary, housewives and 
househusbands travel often for shopping trips, where avoiding the car is not always an alter-
native. 

(4) Household income: medium to higher income households (4000-7000 € per month) tend to 
accept the measures; due to their financial flexibility, they are likely willing to try alternatives. 

(5) Duration of residence: living in Munich for 1-3 years is associated with the adoption of 
measures, while other durations did not result in any significant relation.  

(6) Subscription for public transport: regular users indicate their agreement with the measures, 
which also aim to shift much of the demand to public transport. 
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(7) Driving license: the positive association may relate to the fact that the vast majority of re-
spondents hold a license. In contrast, people without a license are probably driven around by 
others or belong to a population segment that was not captured well by this survey. 

(8) Home office: 2-5 days per week seems to contribute to the acceptance, because people do not 
have to change their commute patterns. By contrast, no conclusion can be drawn for those 
who work remotely one day per week or less. 

(9) Modes of transport: active transportation, such as walking and bike, are associated positively 
with the measures. As expected, using a car for leisure trips relates to a negative impact. Fur-
thermore, commuters to work with travel companions are also more likely to accept, possibly 
because they have a lower sensitivity to changes of travel time. 

(10) Ownership of vehicles: bike owners are willing to accept the measures, which largely could 
improve the conditions for them, while no pattern could be identified for owners of other 
vehicles, including private cars, e-scooters and cargo bikes. 

(11) Use of micromobility: respondents that indicated to use on-demand micromobility regularly 
stated that they will accept, as the measures aim to improve conditions for micromobility too. 

 
Νo meaningful relation was found for disabled people, which were expected to vastly disregard 
the measures. Additionally, households owning or planning to buy a private vehicle were not 
related with the acceptance of the measures. The household size did not impact the acceptance of 
the models, despite our expectation that having children could impact the acceptance negatively. 
 
The detailed results of the binomial model are not given. Instead, we add the latent factors Pro-
Environment and Pro-Car and create a structural equation model to reveal the correlation between 
the underlying attitudes and the acceptance of the car-reducing measures. Although the coefficient 
estimates of the measurable characteristics change slightly in comparison to the binomial model, 
they remain consistent in sign and magnitude (Table 4). 
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Table 4: Structural modelling results 
 

Indicator Estimate Std. Error t-stat. 
    
Regressions    
Age 30-59 -0.27 0.10 -2.85** 
Education High School -0.18 0.09 -1.95 . 
Education Other -0.72 0.27 -2.66** 
Occupation Student 0.55 0.29 1.93 . 
Occupation Housewife/husband -0.53 0.25 -2.09** 
Household income 4000-7000 €/month 0.21 0.10 2.12** 
Home office 2-5 days 0.24 0.09 2.60** 
Resident 1-3 years 0.60 0.28 2.13** 
Subscription Public Transport 0.28 0.11 2.60** 
Driving License 0.35 0.14 2.49** 
Car to Leisure -0.42 0.10 -4.26*** 
Public transport to work 0.43 0.12 3.76*** 
Bike to Work 0.47 0.17 2.82** 
Bike to shopping 0.27 0.14 1.94 . 
Walk to Shopping 0.22 0.10 2.15** 
Car with companion to Work 0.94 0.29 3.29** 
Own Bike 0.22 0.10 2.13** 
Use micromobility 0.70 0.12 5.76*** 
Pro-Environment 0.71 0.05 13.82*** 
Pro-Car 0.08 0.06 1.32 
    
Covariances    
Pro-Environment ~ Pro-Car -0.17 0.01 -12.57*** 
    
Summary statistics  
R2 0.537   
χ2-statistic 2838.958 with 279 df  
CFI 0.904  
TLI 0.973  
RMSEA 0.078, 90% CI [0.076, 0.081]  

Significance: 0 ‘***’ 0.001 ‘**’ 0.05 ‘.’ 0.1 
 
The results suggest that pro-environmental attitudes partially explain the willingness to accept 
car-reducing measures. On the other hand, attitudes in favour of owning and using a private car 
do not necessarily associate with the rejection of the proposed measures. This is indicated by the 
t-statistic, which is large in the case of Pro-Environment, meaning that the null hypothesis of the 
coefficient estimate being equal to zero can be rejected, whereas it is low for Pro-Car, meaning 
that there is not enough evidence to reject the null hypothesis at a confidence level of 90% at least. 
Overall, the assumed model is valid as indicated by the Comparative Fit (CFI) and the Tucker-
Lewis (TLI) indices being over 0.9. 

4. CONCLUSIONS 

In this short paper, citizens’ acceptance of car-reducing measures is assessed using data from a 
survey. Through explanatory factor analysis, the responses of individuals to questions relating to 
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the environment and to private cars were clustered into latent attitudinal constructs. Subsequently, 
binomial regression and structural equation modelling reveal that pro-environmental attitudes are 
affiliated with a higher willingness to accept the measures, whereas attitudes associated with own-
ing and using a car do not provide sufficient evidence against them. Other key factors include 
medium to high household income, possibility to work from home, public transport subscription, 
driving license and the habitual use of active modes of transport and micromobility. 
 
A methodological limitation is that the presented models do not account for interactions between 
variables. Further, some answers in this study might be biased; the respondents were not aware 
of the goal of this project, which was to achieve modal shift towards alternative modes of transport 
but may have been able to infer this from the context and the formulations of the four bundles of 
measures. In the future, further effort should go into understanding which are the factors that 
influence each measure separately. 
 
Overall, this work can be seen as a tool to target the relevant audiences when local authorities 
take decisions to curb motorised traffic. They can either target the mentioned population groups 
and maximise their acceptance of the measures or nudge the groups that would otherwise not 
accept the measures and shift their grounds. 
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An activity-based latent class modelling approach to assess the impact of
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Short summary

After COVID some employees can continue to work from home or at their work location. This
hybrid way of working can impact transport demand and traffic conditions. Current models can
not fully capture mobility patterns caused by hybrid working. We developed a dedicated latent
class hybrid working model to predict which individuals will choose to WFH and how frequently
they will WFH and integrated it into an activity-based model. We illustrate the potential of the
model by simulating travel demand in a metropolitan region in the Netherlands. The results show
that under some scenarios hybrid working can reduce mobility demand but under other scenarios
these gains in work-home travel is lost by additional activities.
Keywords: activity-based, travel demand, hybrid working, latent class

1 Introduction

After the COVID19-pandemic, employees were allowed to continue to partially work from home
(WFH) and partially at office, thus providing a hybrid way of working. However, the level of
impact of hybrid working on the mobility patterns remains to be fully investigated.
Caldarola & Sorrell (2022) studied hybrid working in England and indicated that it leads to fewer
commutes but not necessarily reducing the distance travelled by employees. In the United States,
the traffic worsened because of cuts in the transit network (resulting in less public transport) during
the pandemic (Mack et al. (2021)) and more solo driving. The vehicle kilometres travelled in July
2020 were restored to 104% of pre-COVID levels in NYC (Wang et al. (2021)). A survey conducted
in Melbourne, Australia also reported increased car usage post pandemic (Currie et al. (2021)).
In the Netherlands, 27% of hybrid workers expected to WFH more often in the future, according
to a study using the Netherlands Mobility Panel 2020 (de Haas et al. (2020)). A 2020 survey
(MenE-team (2020)) by the Dutch Ministry of Infrastructure and Water Management shows a
similar pattern. Both surveys have shown that people prefer to use cars, bikes and walking than
pre-pandemic.
Since hybrid working potentially impacts transport demand and traffic conditions (Beck & Hensher
(2022)), it is important to understand its role in mobility patterns. However, current traffic and
transport models do not capture the extra activities that employees may do while working from
home, which leads to inaccurate mobility assessments and traffic management, which may cause
errors in decisions in congestion management and for large infrastructural investments.
Hybrid working may depend on many factors e.g. the type of work, socio-demographic attributes,
living/work locations, employer’s willingness to allow WFH. Since the decision to WFH is largely
person-specific, it fits well with the domain of activity-based modelling (ABM), where detailed
personal and household data is used to predict daily activity and travel schedules. The schedule
includes the individuals’ mobility patterns, where and when they are carried out, and the travel
modes used.
The study by Cruz (2021) analysed the impact of COVID-19 on travel behaviours and in-home
activities using ABM. However, the method used in that study has not yet fully integrated within
an ABM and uses aggregated values for activity choices. These may underestimate the impact of
hybrid working on people’s destination choices, travel patterns and joint activities among household
members. A case study by Wang et al. (2021) in New York City, using MATSim (Horni et al.
(2016)), captured the preferences of WFH by updating the mode choice utility functions for the
synthetic population and the travel schedules are modified to have the suitable WFH ratio based
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on Dingel & Neiman (2020) and GTFS (General Transit Feed Specification) data to reflect its
effect.
To the best of our knowledge, a dedicated ABM model determining the individual’s choice of
hybrid working is missing in the literature. In this paper we fills this gap by initially applying
latent class models and segment employees regarding their level of hybrid working, using empirical
data from the Netherlands Working Conditions Survey (NWCS Hooftman et al. (2020)). The
model aims to capture the heterogeneity of individuals and take gender, size of the company, work
sector, household income, urbanization degree and age into account when creating latent segments
of employees based on their decision to WFH.
Next, we use the latent class hybrid working model outputs to integrate them within an existing
ABM framework. The improved ABM model has the capability of evaluating the effect of hybrid
working-related mobility patterns. To demonstrate the potential of our hybrid working decision
model within ABM, we simulate the potential impact of hybrid working in an illustrative study in
the Metropolitan Region Rotterdam The Hague (MRDH) in The Netherlands.
The remainder of this paper is organized as follows: Section 2 explains the construction of the
hybrid working model using survey data, section 3 presents the estimation results, and the results
of an illustrative example using ABM model with the integrated hybrid working model. Finally,
Section 4 presents the conclusions, discussion, and recommendations for future research.

2 Methodology

The latent class hybrid working model has been developed as a component of an agent-based model
(ABM). To explain how this model interacts with an ABM framework, we use a specific framework
called ActivitySim (Gali et al. (2008)). Using a population synthesizer (Snelder et al. (2021)), the
ABM determines individuals’ work or school locations, their level of hybrid working, and their
daily activity patterns (DAP). Based on this information, the model predicts the number of tours
that an individual will undertake in a given day, as well as the number of stops in each tour. This
includes information about the start time, duration, destinations, and modes of each tour. The
trip mode chosen at this stage is considered the main mode. Next, our tour-based mode chain
choice model determines the access and egress modes to generate a feasible trip mode combination
for each tour (Zhou et al. (2023)).

Survey data

Data used to develop the models in this study are taken from NWCS (Hooftman et al. (2020)), a
periodic survey carried out jointly by TNO and CBS and focusing on the labour situation among
Dutch employees since 2003. It provides information on the working conditions, employability and
health of a representative sample of the working population (age range between 15 and 75) in
The Netherlands. Since the COVID-19, NWCS surveys added questions, amongst others, about
employees’ expectations of working from home. The survey from November 2021 has been adopted
to reflect better people’s opinions on the number of hours WFH at the time of the survey and in
the future.
We have filtered out those respondents who did not complete their desired days of WFH in the
future (post-pandemic), which resulted in 6359 respondents being used for latent class estimation.
The sample distributions of several relevant socio-demographic and work attributes are explored
(Figure 1).

Latent Class Cluster Analysis (LCCA)

We used LCCA (Vermunt & Magidson (2004)) to group individuals into different latent classes
based on their responses to observed indicators (Molin et al. (2016)), which we call manifest
indicators. The goal is to create latent segments based on the available data to maximize the
homogeneity within the latent classes and the heterogeneity between clusters. Using the LCCA
method, one can predict a probability of a respondent belonging to a particular class. We used
Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) criterion, Chi-Squared
and Log-likelihood ratio test as indicators to determine the best model fit (Oberski et al. (2013)).
Furthermore, the LCCA models can incorporate covariates, which in this case are the socio-
demographic characteristics of individuals. These covariates are used as additional predictors of
class membership. This is based on the probability of observing a particular sequence of responses,
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Figure 1: Distribution of several attributes
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i.e. the response pattern, on the questions asked from the respondents.
This research is posited on the assumption that various groups exist in the population that have
different approaches towards hybrid working, which are determined by working situations, e.g. less
active work (such as sitting behind a desk) or being active at work or having the possibility to
work at home (or at a distance from the employers’ location) and socio-demographic covariates,
e.g. age, gender, work sector, household income, urbanization degree and company size, number
of contract hours per week or per month etc.

Hybrid working model within ABM

We have integrated a hybrid working component into our ABM framework using the outputs of
the LCCA model described in Section 2. The the membership likelihood function is used to predict
which cluster each employee belongs. The component also incorporates the probabilities of each
hybrid working alternative from the LCCA model outputs and selects an alternative based on these
probabilities. Once the hybrid working alternative is determined, the ABM predicts individuals’
daily activity pattern (DAP), which includes mandatory activities such as work or school, non-
mandatory activities, and home activities, using a multinomial logit model (MNL).

3 Results

First we show the LCCA results and then present the hybrid working outcomes that is integrated
in the ABM model. We define different levels of hybrid working by the number of hours/week an
employee could WFH in four ordinal categories: category 1 is the ones that can not WFH, which
we call "No-hybrid", category 2 are called "light-hybrid" for employees that WFH for less than
16 hours/week, category 3 was called "moderate hybrid" referring to those who WFH for 16 to
24 hours/week and category 4 is called "heavy hybrid" refering to those that WFH more than 24
hours/week.

LCCA model to determine hybrid working latent classes

The LCCA model was estimated from 1 to 6 classes, and based on the statistical criteria of Log-
likelihood, BIC and AIC shown in table 1, we conclude that the 4 latent class model gives the
best-fit.

Number of Classes Log-Likelihood BIC AIC Chi-square goodness of fit
1 -29081.89 58268.98 58187.89 32335.57
2 -23157.33 46638.7 46388.67 9335.125
3 -22139.75 44822.48 44403.51 5811.823
4 -21293.41 43348.72 42760.81 3113.202
5 -22576.24 46133.33 45376.47 5726.725
6 -27892.79 56985.37 56059.58 17234.99

Table 1: LCCA model fit statistics, 4 class model is selected

To estimate these LCCA models, we used 4 manifest variables and 6 demographic variables. The
manifest variables are 1) the number of hours/week the employees worked at home (at the time
of the execution of the survey Nov. 2021), 2) the number of hours/week the employees wished
(i.e. desired) to work at home if things went back to normal and if they were able to choose, 3)
the number of hours/day the employees worked behind a desk, 4) the number of hours/day the
employees worked with a computer, tablet or laptop which had a screen. The socio-demographic
variables used as covariates in the model were the following: 1) the size of the company the
employee worked for, 2) the urbanisation level of the place of living of the employee, 3) total
household income, 4) the number of work hours per week, 5) the sector to which the employee
worked for, 6) the gender of the employee.
Figure 2 shows the percentage of employees among different manifest variables per latent class
cluster. And Figure 3 shows percentages among different covariates per latent class.
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Figure 2: Distribution of manifest indicators of each latent class.

The description of each latent class is derived from the distribution of the manifest variables from
figure 2. We see that latent classes 1 and 3 are mainly include employees that have not reported
WFH and additionally have no intention to WFH. This is mainly due to their work types. However,
these 2 classes differ from each other when it comes to work hours behind the screen and seated.
Workers of classes 2 and 4 are working +2 days per week from home and intent to keep WFH
but slightly less than what they were already doing at the time of survey (Nov 2021). Table 2
presents more features of each of the 4 classes and descriptions, together with the probabilities of
each hybrid-working alternative per latent class.

Illustration example

In this section, we explore whether the hybrid working model leads to different travel behaviour.
To do this, we run the entire ABM model for the MRDH region in the year 2022 with the integrated
hybrid working component. We chose this year because the hybrid working survey was conducted
at the end of 2021, which gives a reasonable prediction for 2022.

Input data

The MRDH region, located in the Netherlands, has an area of about 1130 km2. The synthesized
population of the region of MRDH is generated through a population generator based on data from
the Dutch State Statistics (CBS) (Centraal Bureau voor de Statistiek (2020)). This synthesized
population consists of 2,387,032 individuals spread over a total of 1,322,202 households. It includes
characteristics such as age, vehicle ownership, education level, work sector, company size etc.
The second type of data is the land use from the V-MRDH 2.6 model (Schoorlemmer (2020)). It
concerns the land use of 7,011 pre-specified traffic analysis zones (TAZ) in the Netherlands. Of
these, 5924 TAZs are within the MRDH; see Figure 4. Each TAZ contains information such as the
number of employment places (offices, shops, etc.), the number of education places (i.e., schools),
the actual area of the TAZ and its urbanisation level (i.e., the population density), the number of
paid and non-paid parking spots and the average hourly parking costs.
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Figure 3: Distribution of covariates of each latent class.

The third type of input data concerns level-of-service data for each pair of TAZ’s (origin-destination
pair). For each possible pair and each of the seven unimodal travel modes (i.e. walk, bike, ebike,
car, car-passenger, demand response transport and public transport (i.e.,bus, metro, tram and
train) that we consider, we generate travel time, cost, and distance for three different periods over
the day (morning peak, evening peak, and off-peak).

Scenario description

The following three scenarios are considered::

1. The first scenario is the "Reference" which assumes that the transport system is not affected
by the hybrid working since 2020.

2. The second scenario, "Hybrid working fix", which allows people to choose to work sometimes
at home and sometimes in the office. in this scenario we assume that employees stay at home
as much as possible and are not further mobile while working.
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Class Description No-WFH Light-
WFH

Moderate-
WFH

Heavy-
WFH

1

very limited WFH, mainly working on-site
limited screen & sit-work more active work types
Female-dominated (61%)
working in small to medium companies

99.39% 0.16% 0.27% 0.18%

2

light hybrid workers
intention to WFH 2 or 3 days/week;
female dominated
relatively better-paid jobs in larger companies

4.22% 59.83% 35.95% 0.00%

3
very limited hybrid work
mainly screen & sit-work (e.g. administrative)
Working in relatively bigger companies

99.25% 0.31% 0.31% 0.12%

4

moderate to heavy WFH
high behind screen & sit-work
work mainly in large companies;
intention to continue WFH ≥ 3 days/week
male-dominated (58%)

6.02% 5.53% 64.01% 24.44%

Table 2: Description of latent classes and the corresponding probabilities of WFH for each
latent class

Figure 4: The Netherlands consists of 7011 TAZs, 5924 of which represent the MRDH
region.

3. The third scenario, "Hybrid working flex", assumes that people have the flexibility to arrange
their working time while WFH. Employees may engage in other activities, such as shopping,
picking up children, or walking/cycling, in addition to working from home.

Simulation results

We use the integrated ABM model described in Section 2 to simulate the three scenarios described
in the previous section. Table 3 presents the indicators derived from the simulation results of each
scenario. Additionally, Figure 5 shows the number of trips per trip purpose, and Figure 6 displays
the departure time distribution of all trips.
In both hybrid working scenarios (Table 3), 73% of employees in the study area cannot WFH. This
is not surprising, as not all types of work can be done remotely. However, this percentage is higher
than the result reported by the NWCS survey (63.1%). This discrepancy could be explained by the
fact that the synthesised population in MRDH area has a lower income, works shorter hours per
week, and lives in more densely populated urban areas than the main survey population. These
factors may contribute to a higher percentage of people who cannot WFH in the MRDH area.
Among those who can WFH, 8.1% choose to work less than 2 days per week, while 14.8% would
like to WFH 2 or 3 days. Only 4.1% of employees would like to WFH more than 3 days per week.
In scenario 2, we saw on average a 3% decrease in the number of trips per person in a day. This
decrease is expected because in this scenario we assumed people who WFH do not further adjust
their activity patterns. This reduction in trips leads to a significant decrease of 2.93% in the total
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Indicators Reference Hybrid Working Fix
(% change w.r.t. reference)

Hybrid Working Flex
(% change w.r.t. reference)

Hybrid working

no hybrid: 73%
light hybrid: 8.1%
moderate hybrid: 14.8%
heavy hybrid: 4.1%

(The same as
the ’Fix’ scenario)

Tours p.p 1.132 1.096 (-3.2%) 1.138 (0.5%)
Trips p.p. 2.795 2.709 (-3.1%) 2.808 (0.5%)
Total trips 6,672,069 6,465,695 (-3.1%) 6,703,805 (0.5%)
Car kilometer
traveled(million km) 15.962 15.495 (-2.93%) 15.912 (-0.3%)

Table 3: Indicators

car travel distance. However, there is no remarkable difference in the distribution of the departure
time of the trips(Figure 6), which is not surprising since employees who do not work at home do
not adjust their departure time in the model.
In scenario 3, employees still make fewer work-home trips but more other tours/trips, especially
for groceries, visiting doctors (Figure 5) as they are more flexible during working hours. The total
car travelled distance is higher than scenario 2 (see Table 3), which is justifyable since people may
make non-work tours/trips during their work hours instead of staying home. However, it is still
lower than that of the reference scenario, which can be explained by the fact that the non-work
activity destinations are closer to their homes. The departure time shifts slightly towards off-peak
hours since more non-work trips are made.
Overall, we conclude that the integrated ABM provides insights into the changes in travel be-
haviour.

atwork eatout escort othdiscr othmaint school shopping social univ work
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Figure 5: Number of trips per trip purpose

4 Conclusions and discussion

In this study, we used empirical data to develop latent class clusters of employees based on their
hybrid working levels. Our analysis showed that several factors, such as company size, urban area
type, household income, weekly working hours, work sectors, and gender, play a crucial role in
people’s choice of hybrid working. The developed hybrid working model was then integrated into
an ABM framework and applied to a synthesised population of the MRDH region. In the scenario
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Figure 6: Distribution of trip departure time

where we assumed employees do not further travel during the day while they WFH, we saw a
2.93% reduction in car travel distance. We conclude that hybrid working has the potential to
reduce the total travel demand. And policies regarding the departure time, especially during peak
hours, could be explored to make further improvements on the travel demand.
In the scenario in which people who WFH are allowed to be flexible in doing other activities, the
car travel distance is hardly reduced, because of an increase in shopping and other maintenance
trips due to hybrid working. We conclude that this way of hybrid working (i.e. scenario 3) could
positively and negatively affect travel demand. On the one hand, fewer work trips could reduce
traffic congestion during peak hours. On the other hand, more non-work trips could increase overall
travel demand, increasing traffic congestion during off-peak hours.
As the trend towards hybrid working is expected to continue, it is important to develop better
models to evaluate its impact on cities and urban areas and inform policy decisions. In this regard,
we recommend that future research focuses on calibrating the mode choices while accounting for
hybrid working. Such updates could provide a more accurate representation of the impact of hybrid
working. In addition, we recommend surveys to add questions about employees’ mobility patterns
while they work at home. Including this information in the model can increase the accuracy of the
whole ABM model.
Notably, there is no significant difference in the distribution of departure times of trips. This could
imply that travellers not working from home are not adjusting their departure times, which could
be a potential area for further exploration in future studies.
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Short summary

Zero emission policies in urban centers are promoting the conversion of transit agencies fleets to
battery electric buses (BEBs). This transition raises questions about battery management and
more specifically about the best way to mathematically model this resource in order to respect en-
ergy feasibility constraints while being as little conservative as possible. In an attempt to partially
answer these questions, this work presents a two-stage stochastic model with recourse for the mul-
tiple depot electric vehicle scheduling problem with stochastic travel time and energy consumption
(S-MDEVSP). Vehicles are allowed to be partially recharged and a non-linear charging function is
considered. Our model takes advantage of the full information on the current state of charge that
is available in operation by allowing planned charge time to be extended when energy consump-
tion deviations are observed. We propose a column-generation-based heuristic featuring stochastic
pricing problems to solve a real-life instance from the city of Montréal, Canada. An analysis of the
relevance of our approach for different commercially available BEBs is also provided.
Keywords: column generation, electric bus, two-stage stochastic program, vehicle scheduling

1 Introduction

The multiple depot electric vehicle scheduling problem (MDEVSP) is an extension of the multi-
ple depot vehicle scheduling problem with additional limitations, including shorter driving range,
longer refueling time, and special charging infrastructure. It aims at finding a set of vehicle routes
that covers each timetabled trip exactly once while minimizing the operational costs and respecting
energy feasibility and depot capacity constraints. These vehicle routes are subject to operational
uncertainties (e.g., traffic jams, extreme weather conditions, or special happenings in the city)
that impact travel time and energy consumption. Nevertheless, the MDEVSP is generally solved
without taking these uncertainties into account. This strong assumption may compromise schedule
adherence and lead to solutions with sub-optimal true costs (including recourse costs). A simple
way to guarantee energy feasibility is to adopt a robust optimization approach, i.e., ensuring that
energy feasibility is respected for the worst case energy consumption scenarios (see for example the
work of Bie et al. (2021)). Some less conservative approaches, that we group into stochastic opti-
mization (Li et al., 2021), robust optimization with cardinality constrained set (Jiang et al., 2021),
and dynamic optimization (Tang et al., 2019), have been proposed in the literature to address the
MDEVSP with uncertain travel time and/or energy consumption.
This work presents the first stochastic model for the MDEVSP with stochastic travel time and en-
ergy consumption (S-MDEVSP). We formulate the S-MDEVSP as a two-stage stochastic program
and introduce a recourse policy to recover energy feasibility when the vehicle routes outputted a
priori turn out to be infeasible. The main idea of our approach is to take advantage of the fact
that charging time can be adjusted from day-to-day to cope with energy consumption deviations.
This flexibility in the charging time could allow us to output less conservative vehicle routes than
the robust optimization approach while guaranteeing energy feasibility. However, this flexibility
may also induce delays. To control the build-up of delays, that can also be caused by travel time
deviations, we add a penalty for delays in the objective function as in Ricard et al. (2022). Our
objective is to access the relevance of our two-stage stochastic model for commercially available
battery electric buses (BEBs). Precisely, we want to verify if a substantial reduction in the optimal
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fleet size can be archived by introducing a recourse policy. We propose a branch-and-price algo-
rithm to solve this challenging optimization problem and test our solution approach on a real-life
instance of the city of Montréal.
This paper is organized as follows. Section 2 deals with the problem definition and a two-stage
stochastic program is introduced. We devise a method compute the second stage cost analytically.
A column generation-based solution approach is presented in Section 3. We present the results
of computation in Section 4 and discuss the relevance of our approach for different commercially
available BEBs. Our main conclusions are stated in Section 5.

2 Mathematical model

Let a timetable of trips T , where trip i ∈ T is schedule to start at di, a set of depots D, such
that |D| ≥ 2, and a set of charging stations Q. Each charging station q ∈ Q is time-expanded
as q̃ = {qs1, . . . , qsk}, where s1, . . . , sk are k time intervals of ρ minutes. We denote the set of
time-expanded charging stations Q̃. The S-MDEVSP is defined on the acyclic connection-based
networks Gd(Vd, Ad), for d ∈ D, with node set Vd = T ∪ {nd

0, n
d
1} ∪ Q̃, where nd

0 and nd
1 represent

depot d at the beginning and the end of the day, respectively, and arc set Ad. Given the probability
mass function (PMF) with finite supports of the travel time (hi(t)) and the PMF of the energy
consumption (ei(µ)) of each timetabled trip i ∈ T as well as the travel time tij and the energy
consumption eij between the end location of node i and the start location of node j, for all pairs
of nodes i, j ∈ Vd, the first stage problem of the S-MDEVSP consists of finding an a priori set of
vehicle routes R∗ that covers exactly once each trip i ∈ T and respects the capacity bd of each
depot d ∈ D. A vehicle route is defined as a sequence of timetabled trips and time-expanded
charging nodes starting and ending at a depot d ∈ D. The amount of energy recharged at each
time-expanded charging node included in a vehicle route is derived from a piecewise linear function
similar to the one used in Montoya et al. (2017). In the second stage, the travel time and energy
consumption values are revealed and the a priori plan is modified with respect to a recourse policy
to guarantee energy feasibility. A vehicle route is considered feasible if the state of charge (SoC)
of the BEB never falls below σmin (e.g., 0%), or if one or several recourse actions can be taken
to regain energy feasibility. A recourse action is taken at the second stage if the SoC of a bus is
under ω (e.g., 50%) after a charging activity. It consists in extending the charging activity by one
or several time intervals in order to reach a SoC of at least ω.
Our model for the S-MDEVSP uses the following notation. Let R be the set of all feasible vehicle
routes, Rd be the subset of these routes starting and ending at the depot d, yr be a binary variable
equal to 1 if vehicle route r is selected, and air be a binary parameter equal to 1 if route r covers
trip i ∈ T . The S-MDEVSP can be formulated as the following integer linear program:

min
∑
r∈R

c̄ryr (1)

s.t.
∑
r∈R

airyr = 1, ∀i ∈ T (2)∑
r∈Rd

yr ≤ bd, ∀d ∈ D (3)

yr ∈ {0, 1}, ∀r ∈ R, (4)

where c̄r = cr + βE[Wr(t, µ)] is the expected cost of vehicle route r, cr is the operational costs
of r, β is a weighting factor, and E[Wr(t, µ)] is the expected second-stage cost or r. This latter
cost penalizes the delay a passenger is likely to encounter in route r. Specifically, E[Wr(t, µ)] =∑

i∈r∩T αiE(Xr
i ), where αi is the relative passenger flow (or demand volume) on timetabled trip

i and Xr
i is the secondary delay of timetabled trip i covered by route r (in minutes). A vehicle

route r may be delayed because the travel times of its trips deviate from the planned time, because
buffer times before trips are not sufficient, or because recourse actions are required. By adjusting
the weighting factor β, one can find solutions with different trade-offs between operational costs
and the expected second-stage cost. In general, the larger the β the more reliable the S-MDEVSP
solutions. Analytical equations to compute in the first stage E[Wr(t, µ)], for all r ∈ R generated,
are developed in the following two sections.
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Probability of using a recourse action.

Consider a vehicle route r = (1, 2, . . . , i, i+1, . . . , j−1, j, . . . , n) with trips i and j ∈ T interspersed
by a charging activity of j− i time intervals (i.e., i+1, i+2, . . . , j− 1 are time-expanded charging
nodes). Let mr

j(z) be the PMF with finite supports of the SoC of bus r just before trip j. The
probability of not having to extend the charging time is

Pr{0 extra charge periods before j ∈ r} =

100∑
z=ω

mr
j(z), (5)

and the probability of having to extend the charging time of ϕ charge periods is

Pr{ϕ extra charge periods before j ∈ r} = Pr{z|Λω(z) = ϕ}

=

ω−1∑
z=σmin

mr
j(z)[Λω(z) = ϕ], ϕ = 1, 2, . . . , k,

(6)

where Λω(z) is a function outputting the minimum number of additional charge time periods to
be performed when the initial SoC of a BEB is equal to z in order to get an updated SoC of at
least ω. We use the Iverson bracket (Iverson, 1962) notation (i.e., [P ] is equal to 1 if P is true and
0 otherwise).

Delay propagation.

Let fr
i (y) be the PMF with finite supports of the actual start time of activity i assigned to route

r and gri (x) be the PMF with finite supports of Xr
i , i.e., of the secondary delay of trip i, such that

gri (x) = fr
i (x+ di) when i ∈ T . For i ̸∈ T , gri (x) is not defined.

Consider a route r = (1, 2 . . . , n) and denote P 0
ir := Pr{0 extra charge periods before i ∈ r} and

Pϕ
ir := Pr{ϕ extra charge periods before i ∈ r}. We assume that the first timetabled trip of a

vehicle route r is never delayed (i.e., fr
1 (d1)) = 1). Consider a trip j ∈ (2, 3, . . . , n) preceded by a

trip i. The distribution of the actual start time of trip j can be recursively computed as

fr
j (y) =



tmax
i∑

t=tmin
i

hi(t)

dj−t−Υ(i,j)∑
y′=di

fr
i (y

′)P 0
jr +

k∑
ϕ=1

fr
i (y

′ − ρϕ)Pϕ
jr

 , if y = dj ;

tmax
i∑

t=tmin
i

hi(t)

fr
i (y − t−Υ(i, j))P 0

jr +

k∑
ϕ=1

fr
i (y − t−Υ(i, j)− ρϕ)Pϕ

jr

 , if y > dj ;

0, otherwise,
(7)

where tmin
i and tmax

i are the minimum and the maximum possible travel time values of timetabled
trip i ∈ T , respectively, and Υ(i, j) is equal to tij + τ if there is no charging activity between trips
i and j, or tiq + tqj + τ + (j − i)ρ if there is a charging activity of j − i time intervals at station
q ∈ Q between trips i and j. Here, τ is the minimum layover time before each timetabled trip.
The expected secondary delay of a trip j assigned to r is expressed as E(Xr

j ) =
∑xmax

jr

x=0 x×fr
j (x+dj),

where xmax
jr = di+xmax

ir +tij+τ+tmax
i −dj is the maximum possible secondary delay of trip j when

covered by vehicle route r. It should be observed that fr
j (y), mr

j(z), P 0
ir, and Pϕ

ir are, by definition,
route-dependent. Since the routes are not enumerated but rather generated in our algorithm, is it
impossible to compute fr

j (y), mr
j(z), P 0

ir, and Pϕ
ir for all i ∈ T and r ∈ R beforehand. Instead, the

latter are dynamically generated throughout the solution process.
Every time a trip i is delayed of 1 minute, a penalty of βαi is paid. Depending on the transport
agency’s level of delay aversion, the weighting factor β can be adjusted to find an appropriate
trade-off between the operational costs and reliability. Generally speaking, the larger the β, the
more reliable (or delay-tolerant) the S-MDEVSP solutions.

3 Heuristic branch-and-price algorithm for the S-MDEVSP

Since there is generally a very large number of feasible vehicle routes in the S-MDEVSP, we
propose a branch-and-price solution approach that generates columns (i.e., vehicle routes) instead
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of enumerating them. We use the same heuristic branching strategy as in Ricard et al. (2022) to
obtain integer solutions in a reasonable amount of time.
To identify columns that could be potentially useful to add, we solve one pricing problem per depot
d ∈ D at each iteration. These pricing problems are defined on the networks Gd, for d ∈ D, with
modified arc costs c̃rij defined as

c̃rij =

{
c̄rij − πd, if i = nd

o

c̄rij − ui, if i ∈ T ,
(8)

where (ui)i∈T and (πd)d∈D are dual variables associated with constraints (2) and (3), respectively.
Since the cost of the arcs is stochastic and path-dependent in the S-MDEVSP, these pricing prob-
lems correspond to shortest path problems with stochasticity (Boland et al., 2015; Wellman et al.,
2013) that can be solved by a modified version of the labeling algorithm (see Ahuja et al. (1993)
for more details on this algorithm). Next, we specify the main characteristics of the dynamic
programming algorithm, namely the labels, the extension functions, and the stochastic dominance
criteria.

Labels.

Each label stores a representation of the actual start time cumulative distribution function (CDF),
a representation of the SoC CDF, and the accumulated reduced cost. Let F p

j (y) be the CDF of
fp
j (y) at node j defined as

F p
j (y) =

y∑
y′=dj

fp
j (y

′), (9)

and let Mp
j (z) be the CDF of mp

j (z) at node j defined as

Mp
j (z) =

z∑
z′=σmin

mp
j (z

′). (10)

The label Lp
j of path p at node j is defined as Lp

j = (F p
j (dj), . . . , F

p
j (y

max
jp ),Mp

j (σ
min), . . . ,Mp

j (100), C
p
j ),

where ymax
jp is the maximum value of F p

j (y) and Cp
j is the accumulated reduced cost.

Extension functions.

We want to extend a label Lp′

i = (F p′

i (di), . . . , F
p′

i (ymax
ip′ ),Mp′

i (σmin), . . . ,Mp′

i (100), Cp′

i ) associ-
ated with node i along arc (i, j) to create label Lp

j . The accumulated reduced cost Cp
j at node j is

given by

Cp
j = Cp′

i + c̃pij . (11)

In Section 2, we devised a method to analytically compute the propagation of delays in a sequence
of timetabled trips. Here, we specify this method in the form of an extension function. The PDF
of the actual start time of trip j covered by path p is given by

fp
j (y) =



∑tmax
i

t=tmin
i

hi(t)
∑dj−t−tij−τ

y′=di
fp′

i (y′), if i, j ∈ T and y = dj∑tmax
i

t=tmin
i

hi(t)f
p′

i (y − t− tij − τ), if i, j ∈ T and y > dj or i ∈ T and j ∈ Q̃
fp′

i (y − ρ), if i, j ∈ Q̃∑dj−tij−τ
y′=di

[
fp′

i (y′)P 0
jp +

∑k
ϕ=1 f

p′

i (y′ − ρϕ)Pϕ
jp

]
, if i ∈ Q̃, j ∈ T , and y = dj

fp′

i (y − tij − τ)P 0
jp +

∑k
ϕ=1 f

p′

i (y − tij − τ − ρϕ)Pϕ
jp, if i ∈ Q̃, j ∈ T , and y > dj

0, otherwise.
(12)

The components Mp
j (·) are computed as
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mp
j (z) =



∑100
µ=σmin ei(µ)m

p′

i (z + µ+ eij), if i ∈ T∑100
z′=σmin mp′

i (z′)[λ(z′, ρ× Λω(z
′)) = z], if i, j ∈ Q̃

mp′

i (z + eij), if i ∈ Q̃, j ∈ T , P 0
jp = 1

mp′

i (z + eij) +
∑ω−1

z′=0 m
p′

i (z′)[λ(z′, ρ× Λω(z
′)) = z], if i ∈ Q̃, j ∈ T ,

z ≥ ω, 1− P 0
jp > 0

0, otherwise,

(13)

where λ(z, t) is a piecewise linear function giving the final SoC of a battery after a charge of t
minutes that started with an initial SoC of z. We assume all BEBs start the day fully charged.

Stochastic dominance criteria.

Consider two paths p1 and p2 with resident node i. Path p1 dominates path p2 when the following
conditions hold:

1. Cp1

i ≤ Cp1

i

2. F p1

i (y) ≥ F p2

i (y), for all y ∈ {di, di + 1, . . . , di + max{ymax
ip1 , ymax

ip2 }}

3. Mp1

i (z) ≤ Mp1

i (z), for all z ∈ {σmin, σmin + 1, . . . , 100}

All dominated paths can be safely discarded because they are not part of the Pareto-optimal set
of paths or will not be extended into Pareto-optimal paths.

4 Computational results

We tested our model on a real-life instance from the city of Montréal of 273 timetabled trips, 2
depots, and 2 charging stations. To minimize battery degradation, σmin is set to σmin = 25%. We
compared our approach for two different types of commercially available BEBs; an electric shuttle
with battery capacity (C) of C = 80 kWh, charger power (W ) of W = 60 kW, and an average
consumption rate of 0.76 kWh/km (Gao et al., 2017) and a 35-foot transit bus with C = 492 kWh,
W = 221 kW, and an average consumption rate of 1.57 kWh/km (Proterra, 2022). We assume the
energy consumption distributions follow a normal distribution.
The heuristic performance of our solution approach and the quality of the solutions are reported in
Table 1 and 2, for the first and second type of BEB, respectively, for β values ranging from 0 to η,
where η is the cost per bus used, and ω values ranging from σmin to 75% of the battery capacity.
When ω = σmin, our approach is equivalent to a robust optimization approach (i.e., no corrective
actions). The columns display the relative difference in percentage between the upper bound and
the lower bound (Gap), the number of branching nodes explored (Nodes), the computing times
(CPU time), including the total time in seconds (Total), the portion of the total time dedicated to
solve the root node (Root) and the pricing problems (Pricing), the operational costs (Op. costs),
the fleet size (bus) and the total penalty for delays (

∑
r∈R∗ E[Wr(t, z)]).

For both vehicle types, all problems are solved in less than 2 hours with almost all the computing
time spent on solving the pricing problems. Also, the solutions obtained with our approach are at
most 0.16 % more expensive than their corresponding lower bound, suggesting that our heuristic can
find near-optimal solutions. Generally speaking, when β increases, the operational costs increase
and the reliability improves.
For the first type of BEB, namely the shuttle with C = 80 kWh and W = 60 kW, the introduction
of the recourse policy provides significant cost savings. Indeed, the fleet size can be reduced from
30 BEBs to 29 BEBs by introducing a recourse policy with ω ≥ 50, which could be considered
as a substantial reduction since the number of vehicles used constitutes the major part of the
operational costs. Furthermore, the deterioration in reliability that the charging policy introduces
can be compensated for by a higher weighting factor β.
For the second type of BEB, namely the 35-foot transit bus with C = 492 kWh and W = 221 kW,
introducing a recourse policy does not improve the cost of the solutions found nor does it reduce
the size of the fleet. Thus, for this second type of vehicle with larger battery capacity and higher
charging power, our approach is not useful and a simple robust optimization approach should be
used to find vehicle routes such that the vehicles never run out of energy. Indeed, for this type of
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Table 1: S-MDEVSP heuristic performance and quality of the solutions, with C = 80 kWh
and W = 60 kW

Heuristic performance Quality of the solutions

CPU time

β ω Gap (%) Nodes Total (s) Root (%) Pricing(%) Op. costs Bus
∑
r∈R∗

E[Wr(t, z)]

0 σmin 0.05 28 1,361 39.0 99.4 32,301.8 30 0.57
35 0.05 28 1,362 39.4 99.5 32,301.8 30 0.57
50 0.05 27 1,567 42.1 99.5 31,374.0 29 0.70
75 0.09 27 2,054 38.5 99.6 31,438.4 29 0.67

avg. 0.06 28 1,586 39.8 99.5 31,854.0 30 0.63

η/2 σmin 0.13 28 3,264 34.7 99.8 32,364.0 30 0.24
35 0.13 28 3,152 34.2 99.8 32,364.0 30 0.24
50 0.14 28 5,170 24.9 99.9 31,451.6 29 0.26
75 0.16 29 6,341 28.3 99.9 31,430.8 29 0.33

avg. 0.14 28 4,482 30.5 99.8 31,902.6 30 0.27

η σmin 0.09 27 3,236 38.2 99.8 32,431.2 30 0.12
35 0.09 27 3,226 37.8 99.8 32,431.2 30 0.12
50 0.14 30 5,681 25.8 99.9 31,526.0 29 0.15
75 0.08 25 6,032 36.3 99.9 31,471.0 29 0.22

avg. 0.10 27 4,544 34.5 99.9 31,964.8 30 0.15

Table 2: S-MDEVSP heuristic performance and quality of the solutions, with C = 492
kWh and W = 221 kW

Heuristic performance Quality of the solutions

CPU time

β ω Gap (%) Nodes Total (s) Root (%) Pricing(%) Op. costs Bus
∑
r∈R∗

E[Wr(t, z)]

0 σmin 0.02 21 1,059 49.7 99.6 27,290.4 26 0.49
35 0.02 21 1,434 53.8 99.6 27,290.4 26 0.49
50 0.02 21 1,145 49.4 99.6 27,290.4 26 0.49
75 0.01 19 1,106 53.3 99.6 27,286.4 26 0.41

avg. 0.02 21 1,186 51.5 99.6 27,289.4 26 0.47

η/2 σmin 0.01 19 2,025 49.2 100.0 27,325.2 26 0.16
35 0.01 19 2,855 53.4 100.0 27,325.2 26 0.16
50 0.01 19 2,051 49.1 100.0 27,325.2 26 0.16
75 0.01 21 2,567 49.1 99.9 27,325.2 26 0.16

avg. 0.01 20 2,374 50.2 100.0 27,325.2 26 0.16

η σmin 0.01 21 2,091 46.7 100.0 27,362.6 26 0.11
35 0.01 21 3,002 50.1 100.0 27,362.6 26 0.11
50 0.01 21 2,294 47.0 99.9 27,362.6 26 0.11
75 0.01 22 2,051 47.5 99.9 27,364.0 26 0.11

avg. 0.01 21 2,360 47.8 99.9 27,363.0 26 0.11
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BEB, the battery capacity is large enough that vehicles only need to charge once or twice a day.
Because timetables of trips typically include off-peak periods with fewer trips to make, charging
activities can easily be scheduled during these periods and batteries are often charged to their
maximal capacity. In this context, the recourse policy we introduced is never activated.

5 Conclusions

In this work, we introduced a stochastic model for the MDEVSP that we formulated as a two-stage
stochastic program with a recourse action. We proposed an efficient branch-and-price algorithm to
solve this challenging problem. Our results indicated that the use of recourse actions is beneficial
for shuttle BEBs with relatively small battery capacity and charging power, but not for 35-foot
transit BEBs with larger battery capacity and charging power. Medium- to large-scale transit
agencies are typically equipped with up-to-date BEBs that resemble the second type of vehicle
tested, so our approach is probably not relevant for them. However, our two-stage stochastic
model may be relevant for smaller transit agencies or those with access to fewer resources. Future
work includes translating our approach to other routing problems with smaller electric vehicles,
for example the electric dial-a-ride problem.
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A heuristic approach to improve the robustness of a railway timetable in a
bottleneck area
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Short summary

In this paper, a heuristic is presented to improve the robustness of a given railway timetable in a
bottleneck area. The timetable can be adapted by adjusting the timing and routing of trains, but
cannot deviate too much from the current timetable. Robustness is measured with an objective
function that considers the buffer times between train pairs. The developed algorithm updates
the routing and the timing in separate steps. It is applied to a bottleneck area of the Belgian
network. The results show that the objective can be improved by about 10% when alternative
routing options are considered. Additional experiments with smaller instances indicate that the
heuristic is capable of finding near-optimal solutions.
Keywords: Operations research, Public transport, Railway transport, Timetable robustness

1 Introduction

Railway networks are often heavily used. In nearly saturated parts of the network, limited capac-
ity is one of the main reasons for delay propagation (Burggraeve & Vansteenwegen, 2017). Often,
delay propagation is closely related to timetable robustness (Dewilde et al., 2014). Robustness
is a concept that has many definitions and interpretations, an extensive survey on this topic can
be found in Lusby et al. (2018). The aim of this work is to adjust a given timetable to improve
its robustness. Our objective function is based on the work of Dewilde et al. (2014) and looks
for a good spreading in time of the trains by considering the buffer times between trains. Both
the timing and the routing of the trains can be adjusted. However, the new timetable cannot
deviate too much from the current timetable. This is required by the Belgian railway companies to
ensure the practical applicability. Additional constraints for the timing of the trains are included
to guarantee this. Several methods to improve the robustness of a timetable by making relatively
small changes have been presented in literature. Some examples can be found in Andersson et al.
(2015), Jovanović et al. (2017) and Högdahl et al. (2019). They all present methods to optimize
the allocation of time supplements in a given timetable. These methods do not allow alternative
routing options, as will be considered in this work.

Thus, in this paper it is examined how the robustness of a given timetable can be improved by
changing both the timing and routing of trains, while not deviating too much from the original
timetable. The timetable is considered on a microscopic level. A heuristic to solve this problem is
presented and applied to a case study for a part of the Belgian railway network.

2 Problem description

Denote the set of all considered trains as T . A path p is associated with each train to indicate the
route that it takes through the network. We refer to a trainroute (t, p) when talking about a train
t that uses path p. A path is a sequence of infrastructure resources that are used by the train.
The set of resources that is used by a trainroute (t, p) is denoted by R(t,p). Each resource r in a
trainroute (t, p) will be blocked by the train during a certain period of time, meaning that no other
train is allowed to use the resource. The blocking times are determined according to the blocking
time theory. Thus, for each r ∈ R(t,p) the reserve and release time indicate the time when the
blocking time of the resource starts and stops, respectively denoted by resr(t,p) and relr(t,p). These
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times are determined relative to the start time of the train t, denoted by St. This is the time
when a train enters the considered zone. In this work, alternative routing options for trains are
considered. Thus, for each train t there are multiple possible paths p ∈ Pt that can be selected.
The point where a train enters and leaves the considered zone is assumed to be fixed for all paths.
The reserve and release times for the resources in an alternative path are estimated based on the
timing for the path that is used in the current timetable.

The absolute reserve and release times for a resource r in a trainroute (t, p) can be written as:

RESr
(t,p) = St + resr(t,p), (1)

RELr
(t,p) = St + relr(t,p). (2)

The buffer time, between a pair of trainroutes (t, p) and (t′, p′) is defined as

B(t,p),(t′,p′) = min
r∈R(t,p)∩R(t′,p′)

br(t,p),(t′,p′) (3)

where br(t,p),(t′,p′) is the minimum time span between the two trainroutes on resource r. It is defined
as:

br(t,p),(t′,p′) =

{
min(RES′ −REL,RES +H −REL′) if t ≺ t′,

min(RES −REL′, RES′ +H −REL) if t′ ≺ t.
(4)

Here, the notation of the absolute reserve and release times is simplified by omitting the explicit
reference to the trainroute and resource. Additionally, t ≺ t′ means that trainroute (t, p) uses
resource r before trainroute (t′, p′) does. The parameter H is the time period that is considered,
1 hour in this case. Note that this definition takes into account that the timetable is cyclic.

Similar to the work of Dewilde et al. (2014), a cost c(t,p),(t′,p′) is associated with each buffer time
as follows:

c(t,p),(t′,p′) =



100 if B ≤ 0,
−1
10 B + 10 if 0 < B ≤ 60,
−1
30 B + 6 if 60 < B ≤ 120,
−1
390B + 90

39 if 120 < B ≤ 900,

0 else,

(5)

where B(t,p),(t′,p′) is simply denoted by B. This is a piecewise linear, monotone decreasing function.
A small buffer time will thus correspond to a large cost. The objective is to minimize the sum of
all costs:

minimize
∑

c(t,p),(t′,p′). (6)

With this objective in mind, let us look more closely at the definition of the cost. A cost of 100 is
given when the buffer time is smaller than or equal to 0, i.e. when there is a conflict between the
two trains. When the buffer time is larger than 900 seconds, the cost is set to 0 based on the idea
that these trains are far enough apart such that they do not influence each other (Dewilde et al.,
2014). The slope of the functions that are used for the different intervals for B becomes less steep
when B becomes larger. This is done to include the following idea: improving a buffer time from
30 seconds to 1 minute is much more valuable than increasing a buffer time of 10 minutes with 30
seconds. Note that the same principle can be obtained by defining the cost as 1/B. However, we
opt for a piecewise linear function because this allows a MILP formulation of the problem.

In conclusion, the aim of this work is to obtain a new feasible timetable such that the value of the
objective function (6) is minimal. A timetable is completely defined when the start time St and
the selected path p ∈ Pt is known for each train t. As stated in section 1, the new timetable cannot
deviate too much from the current timetable to ensure the practical applicability. Additional
timing constraints are imposed to achieve this, but they are not discussed further in this short
paper.

3 Heuristic approach

Solving the problem described in section 2 with an exact model is not possible within a reasonable
amount of time for the instances considered in the case study (see section 4). Therefore, a heuristic
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approach is developed. Updating the timing and the routing is done in separate steps. In the
remainder of this work, a route selection refers to the set of trainroutes (t, p) that are used in the
timetable. In a single iteration of the algorithm, a new solution is determined by first calling the
routing update to find a new route selection, while the timing is fixed, followed by the timing
update function to change the start times. These functions are now discussed in more detail.

Routing update

The routing update is a function that takes the current start times as input. The aim of this
function is to find a feasible route selection such that the timetable defined by this route selection
and the current start times has the lowest possible cost. Note that the complete impact of the route
selection on the cost of the timetable is only known after the timing update is applied. However,
observations show that timetables with a low cost after only applying the routing update lead
to timetables with a low cost after the timing update is also applied.

The crucial concept in the routing update is the cost graph. Each trainroute (t, p) is a node in
this graph. An edge is added between two nodes if the corresponding trainroutes can be simulta-
neously included in the route selection. Two conditions must hold for this. First, there cannot be
a conflict between the trainroutes. Second, the additional timing constraints must hold, if there
are such constraints defined between the trainroutes. The cost c(t,p),(t′,p′) is associated with the
edge between two trainroutes. Denote the set of edges in the cost graph as E. The trainroute
combinations that are not connected by an edge are included in the complement set EC .

A feasible route selection corresponds to a clique of the cost graph where the number of nodes in
the clique is equal to the number of trains, since a route must be selected for each train. As stated
before, we aim to find the route selection that leads to the timetable with minimal cost. This is
done by solving the following ILP model. The decision variables are:

x(t,p) = 1 if the node (t, p) is included in the clique, 0 otherwise,
y(t,p),(t′,p′) = 1 if the edge ((t, p), (t′, p′)) is included in the subgraph induced by the clique,

0 otherwise.
The objective function is given by:

minimize
∑

((t,p),(t′,p′))∈E

c(t,p),(t′,p′) · y(t,p),(t′,p′). (7)

For each train, exactly one route must be included in the clique, thus:∑
p∈Pt

x(t,p) = 1 ∀t ∈ T. (8)

If two nodes are not connected in the cost graph, then at most one of them can be included in the
clique:

x(t,p) + x(t′,p′) ≤ 1 ∀((t, p), (t′, p′)) ∈ EC . (9)

An edge is included in the subgraph induced by the clique if both its incident nodes are included
in the clique. The following constraints hold ∀((t, p), (t′, p′)) ∈ E:

y(t,p),(t′,p′) ≤ x(t,p), (10)
y(t,p),(t′,p′) ≤ x(t′,p′), (11)
y(t,p),(t′,p′) ≥ x(t,p) + x(t′,p′) − 1. (12)

The trainroutes that are included in the clique give the new route selection.

Timing update

In the timing update function, the current route selection and start times are given as input.
The aim is to adjust the timing of the trains to decrease the cost of the timetable. The function
keeps iterating until no decrease larger than a certain threshold can be found or when a maxi-
mum computation time, for example 1 second, is reached. In a single iteration, first the possible
improvements function is applied to create a list of possible timings that can be changed. The
select improvements function is then used to determine which of these possible changes will
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actually be applied. These functions are now discussed in more detail.

Because the route selection is fixed in the entire timing update function, we simplify the notation
by omitting the reference to the path p and refer to train t instead of trainroute (t, p). For each
train t the total cost related to this train in the current timetable is defined as follows:

Ct =
∑

t′∈T\t

ct,t′ . (13)

The current start times are used to calculate this cost. Now, the possible improvements function
runs over all trains. For each train t, the aim is to find the optimal start time ŝt, while the start
times of the other trains remain fixed. The definition of the cost related to a train can be extended
to be dependent on the start time of that train. Thus Cs

t is calculated as in expression 13, but the
start time of train t is now equal to s, instead of its current start time. We look for the value s that
gives the minimal related cost Cs

t . Discrete times, with a time step of 6 seconds (0.1 minutes), are
considered for s. For a possible start time s it is first verified if this start time leads to a feasible
timetable, i.e. there are no conflicts, and if the additional timing constraints are satisfied. If this
is the case, the cost Cs

t is determined. The time that leads to the minimum cost is denoted by ŝt.
The improvement that can be made to the objective by changing the start time of train t is defined
as Ct − C ŝ

t . If this value is greater than a certain threshold, for example 0.1, then t is added to
the list of possible improvements.

Not all of these possible changes can be applied at the same time. When two trains have an impact
on each other, meaning that they have common resources or have a timing constraint defined
between them, the calculated improvements are no longer correct if their timing is updated at
the same time. Therefore, the select improvements function determines a subset of the possible
improvements such that none of the selected trains have an impact on each other. The total
improvement in the objective is then given by the sum of the improvements of the separate trains.
Selecting such a subset is done by creating an improvement graph. Each train that is included in
the list of possible improvements is a node in this graph. An edge between two nodes indicates
that they have an impact on each other. Thus, finding trains that can be updated at the same
time corresponds to finding an independent set in the improvement graph. This is done in a greedy
way as follows. Select the node in the improvement graph with the largest improvement. Remove
this node and its adjacent nodes from the graph. Repeat this process until there are no nodes left
in the graph. The timing of the selected trains can then be updated.

Overview of the algorithm

Algorithm 1 now presents an overview of the heuristic algorithm. The update routing and update
timing functions that were discussed in the previous sections are the core of the algorithm.

Algorithm 1: Overview of the heuristic algorithm
Data: original_solution
Result: optimal_solution

1 solution← find initial solution(original_solution);
2 while comp_time ≤ max time do
3 new_route_selection← routing update(start_times);
4 new_start_times← timing update(start_times,new_route_selection) ;
5 if new_objective < objective then
6 solution← new_solution
7 if new_objective < optimal_objective then
8 optimal_solution← new_solution
9 end

10 else
11 solution← generate random solution(new_solution)
12 end
13 end

The algorithm starts from the original timetable. The function find initial solution adapts
the timing of the trains to obtain a better spreading. The routes are not adjusted yet. In this func-
tion, a MILP model is used to minimize the overall maximum cost that is found in the timetable,

4



while satisfying the feasibility constraints. Then the timing update is applied to create a better
spreading in time. As stated before, an iteration starts by calling the routing update to generate
a new route selection. This route selection and the current start times are then used as input for
the timing update. Together, the new start times and the new route selection completely define
a new timetable. The objective value related to this timetable is referred to as new objective.
If this new objective is better than the current objective, the current solution is updated. It is
also checked if the new objective is better than the optimal solution found until now, if so, the
optimal solution is updated. If the new objective is not better than the current objective, then a
new random, feasible solution is generated to continue with in the next iteration. The algorithm
continues until a maximum computation time is reached.

4 Results and discussion

A part of the Belgian network that is centered around the station of Halle is considered. This
is located just outside of Brussels, which is the main bottleneck of the Belgian railway network.
Figure 1 shows a macroscopic view of this area. A small part of it is shown in microscopic detail
on figure 2 to illustrate the complexity of the network. In this case study, zone 1 and 2 indicated
in figure 1 are considered. All the trains that use this part of the network during one hour of the
morning peak (between 7:00 and 8:00) are selected. This leads to 35 trains for zone 1 and 40 trains
for zone 2. More data and information related to this case study can be found in Uyttendaele et
al. (2022). A regular laptop with an 11th Gen Intel Core i7-1185G7 @ 3.00 GHz processor, 16 GB
RAM was used to run the experiments.

Figure 1: Macroscopic view of the considered part of the network.

Figure 2: Microscopic view of the switch area Y.ND Halle, which corresponds to the blue
dot in zone 1 indicated in figure 1.
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The problem is considered for zone 1 and 2 with 5 and 10 possible paths for each train. Only the
routes with the shortest duration are considered. It is unlikely that longer routes will lead to good
solutions because this typically corresponds to routes with some detours that are not desirable in
practice. As stated before, solving this problem with a MILP model is not possible in a reasonable
amount of time. After 48 hours of running for zone 1 with 5 alternative routes, the best objective
found was 68.08, but there was still an optimality gap of 25%, so no conclusions can be drawn from
this. Therefore, the heuristic algorithm was developed. Because the heuristic contains randomness,
it is run 10 times for each instance. Each run has a maximum allowed computation time of 30
seconds. The best obtained objective and the average objective are reported in table 1. The
improvement compared to the initial objective is given between brackets. This initial objective is
the objective after the find initial solution is applied.

Table 1: Results of the heuristic algorithm for zone 1 and 2 with 5 and 10 possible routes.

Initial objective Heuristic: best
(improvement)

Heuristic: average
(improvement)

Zone 1 - 5 routes 79.03 69.63 (−11.89%) 71.85 (−9.09%)
Zone 1 - 10 routes 79.03 69.93 (−11.51%) 71.01 (−10.15%)
Zone 2 - 5 routes 205.97 180.11 (−12.56%) 183.03 (−11.14%)
Zone 2 - 10 routes 205.97 184.15 (−10.59%) 184.43 (−10.46%)

The heuristic clearly finds solutions with a lower objective value than the initial objective. For
the different instances, the best obtained objective is quite close to the average objective. This
indicates that the heuristic performs consistently over the different runs. For both zones, the best
solution that is found for 5 possible routes is better than for the case with 10 possible routes,
although the difference for zone 1 is quite small. This is an unexpected result because the solution
that is found for 5 possible routes is of course also a possible solution when 10 routes are considered.
The fact that these solutions are not found by the heuristic is possibly a consequence of the larger
search space in the case with 10 routes.

Because the optimal solution is not known for any of the instances, some additional experiments
are conducted to gain some insight in the performance of the heuristic. For both zone 1 and 2 with
5 possible routes, 5 instances are generated by randomly selecting 10 trains to consider instead of
all the trains that use the zone. For these instances, the optimal solution can be calculated by
a MILP model in only a few seconds. It can then be compared with the solution found by the
heuristic. Like before, the heuristic is run 10 times, with a computation time of 30 seconds for
each run. The results for zone 1 and 2 are presented in table 2 and 3, respectively. The results
show that the heuristic is able to find good solutions, i.e. with a small gap. For instances A and
D of zone 2, there is a larger gap. These experiments show that the heuristic is indeed capable of
finding near-optimal solution. This does however not guarantee that this is also the case for the
larger instances of the case study.

Table 2: Results of the smaller instances for zone 1.

Optimal
objective

Heuristic: best
(gap)

Heuristic: aver-
age (gap)

A 13.40 13.41 (+0.07%) 13.56 (+1.19%)
B 11.19 11.19 (+0.00%) 11.20 (+0.09%)
C 11.01 11.13 (+1.09%) 11.56 (+5.00%)
D 13.62 13.69 (+0.51%) 13.82 (+1.47%)
E 9.16 9.17 (+0.11%) 9.17 (+0.11%)
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Table 3: Results of the smaller instances for zone 2.

Optimal
objective

Heuristic: best
(gap)

Heuristic: aver-
age (gap)

A 5.14 6.21 (+20.82%) 6.21 (+20.82%)
B 9.64 9.66 (+0.21%) 9.66 (+0.21%)
C 15.33 15.39 (+0.39%) 15.88 (+3.59%)
D 13.05 14.09 (+7.97%) 14.75 (+13.03%)
E 11.18 11.50 (+2, 86%) 11.58 (+3.58%)

5 Conclusions

In this paper, a heuristic is presented to improve the robustness of a given timetable by adjusting
the timing and routing of the trains. Robustness is measured by considering the buffer times
between train pairs. The developed algorithm consists of separate steps to first update the routing
and then the timing of the trains. The heuristic is applied to a bottleneck area of the Belgian
network. The results for the different instances show that the value of our objective can be
improved by about 10% by considering alternative routing options and not only changing the
timing. Additional experiments with smaller instances show that the heuristic is capable of finding
near-optimal solutions.
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SHORT SUMMARY 

Deep Neural Networks (DNNs) are accurate and powerful tools for modeling travel decisions. 

Nonetheless, the black-box characteristic of DNNs has decreased their potential implication in 

discrete choice modeling. In this study, we investigate the potentials of cutting-edge post-hoc 

interpretation tools in providing behavioral insight into DNN architectures. We evaluate the rela-

tionship between the output probabilities and input features using the Shapely Additive explana-

tions (SHAP) and Local Interpretable Model-agnostic Explanations (LIME). Using SwissMetro 

dataset, we demonstrate that the outputs of SHAP and LIME are consistent with theory when the 

architecture of DNN is designed based on the Random Utility Maximization (RUM) theory. How-

ever, for a fully connected DNN architecture, SHAP and LIME do not provide behaviorally in-

terpretable outputs. Additionally, the prediction accuracy shows the DNN model based on RUM 

avoids overfitting. 

 

Keywords: Discrete choice modeling, Deep Neural Networks, Explainable AI 

1. INTRODUCTION 

DNN models have become ubiquitous in Intelligent Transport System (ITS) due to their powerful 

predictive and efficient learning algorithms and fixable modelling structure. ITS, as an integrated 

transport management system, refers to the use of data communication, information processing, 

traffic management technologies and Artificial Intelligence (AI) in transport (Chen, Liu et al. 

2020). All applications in ITS that rely on DNNs are categorized into four groups of computer 

vision, time series prediction, classification, and optimization (Wang, Zhang et al. 2019). Most 

studies of DNNs in ITS belong to the time series prediction group to model variables such as 

travel time, traffic flow, and traffic speed prediction. On the other hand, the number of applica-

tions in classification using DNNs, particularly modelling travel mode choice, is fairly limited 

(van Cranenburgh and Alwosheel 2019). Traditionally, discrete choice modelers have mostly 

used econometric methods, including discrete choice models. These models are based on a theo-

retical foundation with predefined assumptions and underlying relationships between dependent 

and explanatory variables (Train 2009). Econometric methods are inferior to DNN methods in 

terms of prediction accuracy. This is one of the main reasons that DNNs have become pervasive 

in modelling individuals' behavior (Golshani, Shabanpour et al. 2018).  

DNNs encompass a wide range of architectures such as Convolutional Neural Networks (CNN) 

and Recurrent Neural Networks (RNN) (Goodfellow, Bengio et al. 2016), but the applications of 

DNNs in discrete choice modeling are mainly limited to the most basic DNN’s architecture, called 

Multi-Layer Perceptron (MLP). Even this basic MLP model is shown to achieve higher prediction 

accuracy in comparison with traditional discrete choice models (Assi, Nahiduzzaman et al. 2018). 

Accurate modelling of travel behavior is essential, and it is equally important that high accuracy 

is resulted from an interpretable model. Despite all the advantages of DNNs, they are considered 

as complex black-box (non-interpretable) models because of the numerous parameters in the 

model. In other words, the structure of DNNs is not directly interpretable, as hundreds of 
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parameters need to be described (Zhao, Yan et al. 2020). Nonetheless, a wide range of interpret-

able tools known as Post-hoc explainability techniques are proposed to extract knowledge from 

complex DNN models (Arrieta, Díaz-Rodríguez et al. 2020). The post-hoc approaches justify how 

and why a DNN model has arrived at its prediction (Lipton 2018).  

 

Almost all applications of DNN in discrete choice modeling have applied a post-hoc approach to 

interpret the DNN models. For example, Sifringer, Lurkin et al. (2020) proposed a DNN archi-

tecture inspired by RUM, consisting of an interpretable and a fully connected part. The authors 

calculated the importance of each input variable to the fully connected part using a traditional 

post-hoc approach named the saliency map. However, in addition to finding the importance of 

input variables, the main purpose of post-hoc approaches is evaluating the output of complex 

machine learning models such as DNNs. In other words, the output of the DNN model needs to 

be evaluated using post-hoc approaches to increase the trust in DNN’s decisions. Although there 

is a wide variety of post-hoc explanation approaches in the literature, only a few traditional ap-

proaches of post-hoc analysis can be found in recent studies e.g. (Wang, Mo et al. 2020, Wang, 

Wang et al. 2020, Wang, Wang et al. 2021, Wong and Farooq 2021). 

This study seeks to evaluate recent DNN models in discrete choice modeling using the state-of-

the-art post-hoc approaches. The performance of two novel post-hoc approaches in the literature, 

Shapely Additive explanations (SHAP) and Local Interpretable Model-agnostic Explanations 

(LIME) are tested on a fully connected DNN model and a DNN model based on RUM theory. 

Our study contributes to evaluating the performance and reliability of the recent DNN models in 

discrete choice modeling. Furthermore, this comparison and evaluation process will help the re-

searcher to select the appropriate DNN architecture and interpretation approach.  

2. METHODOLOGY 

Deep Neural Networks and Random Utility Maximisation 

The architecture of DNNs models used in discrete choice analysis can be divided into two groups. 

The first group are those that use a fully connected architecture e.g. (Assi, Nahiduzzaman et al. 

2018, Zhao, Yan et al. 2020), and the second group are those who use customized architectures 

to make the model consistent with behavioral theories such as RUM (Wang, Mo et al. 2020, Wong 

and Farooq 2021). The Fully connected DNN (F-DNN) connects input variables to the output 

probabilities through several layers with hundreds of parameters (Goodfellow, Bengio et al. 

2016). In F-DNN, the utility of each alternative is connected to the attributes of all alternatives. 

The second group encompasses specific types of DNNs developed based on RUM which com-

putes the utility of each alternative based on its corresponding attributes.  

A recent DNN architecture with alternative-specific utility functions (ASU-DNN) proposed by 

Wang, Mo et al. (2020), could achieve high accuracy levels in modeling discrete choice data. 

ASU-DNN contains an input layer, two hidden layers and the output layer. Assume input varia-

bles to be a vector of 𝒙, and the input variables are divided into a vector of alternative specific 

variables denoted by 𝑥𝑖𝑘 and a vector of individual specific variables denoted by 𝑥𝑖 where 𝑖 ∈
{1,2, … , 𝑛} and 𝑘 ∈ {1,2, … , 𝐾}. Then, consistent with RUM (Train 2009), the utility of each al-

ternative is defined as a function of individual specific variables and its corresponding alternative 

specific variables as indicated in equation (1). 

 

 𝑉𝑘 = 𝑉(𝑥𝑖, 𝑥𝑖𝑘) = 𝑤𝑘(𝑔1 ∘ 𝑔2 … 𝑔𝑀2
)((𝑔1

𝑥𝑖𝑘 ∘ 𝑔1
𝑥𝑖𝑘 … 𝑔𝑀1

𝑥𝑖𝑘)(𝑥𝑖𝑘), (𝑔1 ∘ 𝑔2 … 𝑔𝑀1
)(𝑥𝑖)   (1) 

 

In this equation 𝑀1 and 𝑀2 are the number of neurons in the first and second hidden layers re-

spectively; 𝑔(𝑡) = 𝑀𝑎𝑥(𝑡, 0) is the RELU activation function, and 𝑤𝑘 is the vector of parameters 
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to be estimated. In the last layer, the Softmax activation function, shown in equation (2) is applied 

to the utilities in order to calculate the output probabilities (Goodfellow, Bengio et al. 2016): 

 

 𝑆(𝑉𝑖𝑘) =
𝑒𝑉𝑖𝑘

∑ 𝑒𝑉𝑖𝑗
𝑗

  (2) 

Interpretation methods 

The demands for interpretability in DNNs have increased in recent years (Arrieta, Díaz-Rodríguez 

et al. 2020). Therefore, many approaches as the post-hoc expainability methods for DNNs, have 

been developed. The existing post-hoc explainability approaches fall into six categories of text 

explanation, visual explanation, local explanation, explain by examples, explain by simplifica-

tion, and feature relevance explanation. For further details about each category, the reader is re-

ferred to Arrieta, Díaz-Rodríguez et al. (2020). In this study, we apply two approaches, Shapely 

Additive explanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) 

from the local explanation category.  

SHAP is a game theory interpretation method of machine learning methods that evaluates the 

negative and positive impact of input variables (Lundberg and Lee 2017). For a given input 𝑋 and 

a DNN model 𝑓(𝑋), SHAP utilizes an Explanation Model (EM) to evaluate the contribution of 

each input variable 𝑥𝑖 to the model 𝑓. 𝐸𝑀 sets up a relationship between 𝑥𝑖 and the model outputs. 

The parameters of this model are called SHAP value denoted by 𝜑𝑖. SHAP values are defined as 

the weighted average of the marginal contributions over all possible coalitions |𝐹|! and are cal-

culated as indicated in equation (3). 

 

 𝜑𝑖(𝑓)  = ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!{𝑆⊆𝐹}\{𝑖} [𝑓(𝑥𝑆⋃{𝑖}) − 𝑓(𝑥𝑆)]  (3) 

 

In this equation, 𝐹 is the total number of features, and 𝑆 is a subset of 𝐹. 𝑓(𝑥𝑆⋃{𝑖}) is the model 

output using feature 𝑖 and features in S, and 𝑓(𝑥𝑆) is the model output using features in S but 

without feature 𝑖. As computing the exact value of 𝜑𝑖 is challenging, several methods have been 

introduced to approximate SHAP values (Lundberg and Lee 2017). In this study, we apply Kernel 

SHAP as it is a model-agnostic method that can be used for all types of machine learning models, 

and it is a reasonable approach when number of input variables are small in the dataset (Lundberg 

and Lee 2017). 

Similar to SHAP, the LIME belongs to the local interpretation category that measures the impact 

of input variables on the variations of model output (Ribeiro, Singh et al. 2016). LIME generates 

new datasets around an observation 𝑥 consisting of the corresponding outputs of the model. Then, 

an explainable model 𝑔 is trained on the new dataset that is weighted by the proximity of the 

sample observations. With the new explainable model 𝑔 and trained DNN model 𝑓, it is possible 

to provide a rough estimate of the contribution of input variable 𝑥 to the model 𝑓. To accomplish 

this, the following objective function is minimized: 

 

 𝜉(𝑥) =  argmin
𝑔∈𝐺

𝐿(𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔) (4) 

 

Where 𝐺 denotes the set of all interpretable models, and Ω(𝑔) is the complexity of model 𝑔. 𝜋𝑥 

is the proximity measure between generated data to sample 𝑥. 𝐿 measures how unfaithful g is in 

the approximation of 𝑓 in the locality defined by 𝜋𝑥. 

Although it is expected LIME and SHAP yield similar results, they have different structures in 

interpreting models. While LIME generates a perturbed dataset to fit an explainable model, SHAP 

requires an entire sample to approximate SHAP values. 
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3. RESULTS AND DISCUSSION 

This study uses the Swissmetro dataset for evaluating the interpretation of DNNs. This dataset 

was compiled in Switzerland in 1998 (Bierlaire, Axhausen et al. 2001). It contains 1192 respond-

ents who were asked to choose their preferred transportation mode among three alternatives of 

train, Swissmetro and car. This dataset contains 9,036 observations after cleaning. In the current 

study, Travel Time (TT), Travel Cost (CO), AGE and INCOME are selected among available 

variables for choice analysis.  

The two models of ASU-DNN and F-DNN are developed using the Swissmetro dataset. Then the 

two methods are SHAP and LIME are used to provide insight into how these models make pre-

dictions. SHAP and LIME also show which features are most important in both models separately. 

In the end, the performance of ASU-DNN and F-DNN is compared through accuracy and log-

likelihood. In this experiment, ASU-DNN includes two layers with 𝑀1 = 𝑀2 = 100. Similar to 

ASU-DNN, F-DNN includes 2 layers with 100 neurons in each layer. 

In this study, the impact of an input variable on each class will be calculated using SHAP and 

LIME. In contrast to an image input with a 2D set of pixels (which is the common application for 

post-hoc explanation methods), the position of the input variables always has the same meaning. 

For example, if the first input variable of all observations is age, then the first LIME and SHAP 

values will always be the impact of a passenger’s age on each class. The average of absolute 

SHAP values for all features in each class is reported in Figure 1. The first line illustrates the 

SHAP values in ASU-DNN and F-DNN corresponding to each class, and the second line ranks 

the summation of SHAP values for each feature. As shown in plot (a), features related to each 

utility have the most contribution to probability of that utility. For example, Swissmetro Cost 

(SM_CO) and Swissmetro Travel Time (SM_TT) have the highest impact on Swissmetro. How-

ever, from (b), there is no specific connections between input variables and utilities. For example, 

Train Travel Time (Train-TT) has the highest impact on Swissmetro and Car. Plots (c) and (d) 

demonstrate the overall importance of input variables on the output probabilities in ASU-DNN 

and F-DNN. Both models show that SM_CO, SM_TT and Car Travel Time (CAR_TT) have the 

highest impact on the mode choice decision. Also, INCOME and AGE have the least feature 

importance in this classification task. 

    

  

(a) ASU-DNN SHAP values (b) F-DNN SHAP values 
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(c) Ranking SHAP values of ASU-DNN (d) Ranking SHAP values of F-DNN 

Figure 1: Interpretation results of ASU-DNN and F-DNN using SHAP 

 

Figure 2 demonstrates the local interpretability analysis with LIME for instance numbers 130 

and 2137 (randomly selected). All four bar graphs reflect the contribution of each feature to the 

classification of respective 130 and 2137 instances. The true classes of both instances are Swiss-

metro. For ASU-DNN, both (e) and (g) showed that SM_TT and SM_CO have the most contri-

bution in the output probability SM.  On the contrary, (f) and (h) shows CAR_TT has the most 

impact on the probability of Swissmetro in F-DNN model. 

 

  

(e) ASU-DNN LIME values 

Instance = 130 

(f) F-DNN LIME values 

Instance = 130 
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(g) ASU-DNN LIME values 

Instance = 2187 

(h) F-DNN LIME values 

Instance = 2187 

Figure 2: Interpretation results of ASU-DNN and F-DNN using LIME 

For training the DNN models, the dataset is divided into 70% training dataset and 30% test da-

taset. Table 1 shows the number of parameters, loglikelihood and accuracy of  F-DNN and ASU-

DNN for the test and train datasets. Although the performance of F-DNN in training is pressive, 

ASU-DNN outperforms it in terms of accuracy and loglikelihood on the test dataset. This indi-

cates that overfitting is less likely when the RUM theory is implemented in the DNN architecture. 

In ASU-DNN, the number of parameters is reduced from 21,403 to 1,803 which means in this 

architecture, connections that are not supported by the theory are removed from the model. There-

fore some spurious correlations that potentially could cause overfitting are avoided in this archi-

tecture (Yang, Chou et al. 2022). 

 

Table 1: The loglikelihood and accuracy of F-DNN and ASU-DNN for the test and 

train datasets 

 

 Train dataset Test dataset 

Number of      

parameters 

Loglikeli-

hood 
Accuracy 

Loglikeli-

hood 
Accuracy 

F_DNN 21,403 1330.17 98.79 8861.69 67.20 

ASU_DNN 1,803 3519.97 74.92 1831.45 71.78 

 

 

4. CONCLUSIONS 

In this study, DNN models for choice modelling are analyzed using state-of-the-art interpretation 

techniques. It is crucial to clarify how predictions are formed by DNN models when it comes to 
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artificial intelligence in discrete choice modeling. The contribution of this research is the use of 

recent post-hoc approaches to uncover new insights from the recently developed DNN model 

based on RUM theory. We apply SHAP and LIME, two of the most recent interpretation ap-

proaches, to evaluate the performance of ASU-DNN and F-DNN. The contributions of each input 

variable in both models F-DNN and ASU-DNN are retrieved using SHAP and LIME. The inter-

pretation analysis of DNN models shows that DNNs with a theory-based architecture (ASU-

DNN) have more consistency with the RUM theory, in contrast with conventional DNN models 

(F-DNN). Additionally, the results revealed that ASU-DNN could reduce overfitting by eliminat-

ing unsupported connections.  

This research indicates a new research direction of using post-hoc analysis in discrete choice 

modeling. Future studies can concentrate on extracting information from DNN models using other 

post-hoc approaches such as DeepLift.  
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Short summary

Large-scale traffic simulation models are a crucial tool for simulating and evaluating different trans-
port solutions. However, due to the scale and complexity of these models, numerous parameters
exist that can significantly influence their outputs. The problem of estimating these parameters
is referred to as the Dynamic Traffic Assignment (DTA) calibration problem. After more than 30
years of research, several algorithms have been proposed that can - with a certain degree of success
- address this challenge, even for large instances or in the presence of noisy data. Two challenges,
however, remain critical today and are addressed in this paper. From a purely methodological
perspective, DTA calibration is a highly under-determined problem, meaning multiple plausible
solutions exist. This is particularly relevant when calibrating demand parameters. Therefore, in
this paper, we propose two techniques inspired by the field of computer science that allow for
enhancing robustness: bagging and Stochastic Parameter Averaging (or SPA). The second contri-
bution of this research is more practical. While many algorithms have been proposed, the source
codes of these algorithms are often not shared with the scientific community. As a consequence,
most papers still use as a benchmark model the SPSA, an algorithm proposed roughly 30 years ago.
Therefore, this study introduces an end-to-end open-source framework for DTA calibration. The
model can calibrate supply and demand parameters, include state-of-the-art optimizers (W-SPSA,
SPSA, Bayesian Optimization), an auto-tuning option to calibrate their parameters, and the bag-
ging/SPA extension already mentioned. The conceptual framework proposed in this research is
general and includes a few algorithms already. It is currently linked with the open traffic simulator
SUMO to demonstrate its effectiveness. Researchers can use this framework as a benchmark or
extend it using new simulators and optimizers. The method is tested both in controlled settings,
as well as using the real-world large scale network of Munich.
Keywords: DTA calibration, ensemble, large-scale optimization, OD estimation, open-source
(Topics: Transport Network Modelling, Big data analytics, Operations research applications)

1 Introduction

A transportation system is made up of different parts and their interactions, which results in travel
demand and supply of transport services (Cascetta, 2001). Dynamic Traffic Assignment (DTA)
simulators are advanced tools commonly used by researchers and practitioners to represent the
traffic flow variations and behavioral choices in a large-scale network (Ben-Akiva et al., 2012).
Due to the scale and complexity of these models, numerous parameters exist that can significantly
influence their outputs. DTA calibration is the process of estimating the value of these parameters
so that the difference between the simulated data (counts, travel time, speed) and observed data
is minimized. The resulting optimization problem, however, is notoriously complex to solve. One
issue is whether to calibrate supply and demand parameters together or separately (Toledo et al.,
2014). Second, it is virtually impossible to guarantee optimal solutions in real-life settings. That
is because the problem is highly under-determined (due to a large number of variables compared
to a relatively small amount of observations), highly nonlinear (due to congestion dynamics), and
non-convex (non-unique optimal solution). For an extensive review of these issues, as well as their
solutions, we refer to (Antoniou et al., 2016). In general, many algorithms have been proposed
that can partially cope with the above-mentioned challenges. However, two aspects remain critical
and are addressed in this study. First, many models proposed in the literature are difficult to
reproduce. This is because the code is not publicly available, often due to restrictions in data
availability or in the DTA model (e.g., commercial software). As a consequence, many authors
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benchmark their models against the SPSA (an algorithm proposed in 2006) or spend considerable
time reproducing algorithms from the literature. In addition, while the DTA calibration process has
been tested in many real-life experiments, due to the non-convex nature of the problem, obtaining
robust and reliable estimates is still an open challenge. The work proposed in this research aims at
answering these two questions. First, we propose an end-to-end open-source framework for DTA
calibration that includes state-of-the-art solvers. The framework is designed for the open source
DTA model SUMO (Lopez et al., 2018) and can be used to benchmark new models. Second, we
propose to use parameter ensembling techniques, most notably bagging and Stochastic Parameters
Averaging (SPA) to obtain more robust estimates. The framework has been successfully tested on
the large-scale network of Munich, showing that it can be deployed in practice.

2 Methodology

The methodology is divided into two parts. First, we introduce the framework for DTA calibration
and its main features. Then, we introduce the algorithms for SPA and bagging.

End-to-end calibration framework

Figure 1: Experimental setup (Mahajan et al., 2023)

We developed a Python-based platform for the calibration of both demand and supply parameters
of DTA models using the SUMO traffic simulator (Lopez et al., 2018). A schematic representation
of the platform is shown in Figure 1. Given the simulation inputs (simulation network, traffic
analysis zones, parameters), the platform estimates the parameters according to the proposed
methodology. An initial Origin-Destination (OD) matrix generates trips between edges in different
Traffic Analysis Zones (TAZs). The routing algorithm in SUMO assigns routes to these trips. Au-
tomatic or online routing is used for the traffic assignment. The parameters influencing the routing
of vehicles are re-routing probability, re-routing period, and re-routing adaptation steps. Travel time
of different edges can be scaled using the parameter edge priority factor. The parameters which
affect the delays are junctions flow penalty at junctions and unsignalized junction penalty. We use
Bayesian optimization for calibrating these selected supply parameters.

Concerning the demand parameters, we implemented a state-of-the-art optimizer (W-SPSA An-
toniou et al. (2015)) by extending the Python SPSA implementation by Mayer (2017). Further,
considerable time and manual effort is usually spent in fine-tuning the hyperparameters of the
SPSA to enhance calibration performance. Therefore, we included in the framework an automatic
tuning function to automatically optimize the SPSA hyper-parameters. The auto-tuning function
uses the assignment matrix to create an analytical approximation of SUMO. Bayesian optimization
is used to find the optimal parameters that reduce the error of the analytical model.
Finally, two additional extensions have been included, namely bagging and SPA. These methods,
shortly described in the next sub-section, have been tested using W-SPSA. However, similarly to
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most of the features described in this section, they can be combined with other optimizers once
they are implemented in the framework. The complete platform is implemented using Python
and is available on GitHub (https://github.com/vishalmhjn/actrys). In short, the model currently
implements the following features:

• Three optimizers (Bayesian Optimization, SPSA, W-SPSA)

• A heuristic model to pre-process historical demand and remove bias

• The framework sequentially optimizes supply and demand parameters

• It includes an auto-tune function for the hyper-parameters of the optimizer

• It includes parameter ensembling to enhance robustness

Parameter ensembling to reduce estimators’ variance

This sub-section introduces the methodological contribution of this research. The methodology
focuses only on improving the estimates for the demand parameters, therefore we refer to this
sub-task as the OD estimation problem. Without loss of generality, the OD estimation problem
can be operationalized as follows:

minimize
X

T∑
t=1

[w1z1 (M
o
t ,M

s
t ) + w2z2 (Xt,X

a
t )] (1)

In Equation 1, Mo
t and Ms

t refer to the observed and simulated traffic data. Similarly Xt and Xa
t

refer to the estimated and a-priori values of the demand (OD) parameters. Finally z1, and z2 are
functions that measure the discrepancy between simulated and observed data (Goodness-of-Fit,
GoF), while w1 and w2 are weights for these functions. The dependence between simulated traffic
data and the OD matrices is directly obtained from the DTA traffic simulator (SUMO, in this
study). Other constraints that are often applied in practice are ignored here for ease of reading.
The OD estimation problem is highly under-determined, meaning that many solutions exist that
are theoretically feasible for a given optimization formulation. This also implies that even state-
of-the-art models such as W-SPSA will unavoidably find a local solution for Equation 1, resulting
in parameters with considerable variance. In this study, we hypothesize that, due to variance in
the spatiotemporal demand patterns, variance in sampling distribution or measurement errors can
be considered as a manifestation of the desired (or “true”) solution. Parameter averaging, such
as in the bagging and averaging techniques, can help to cancel out some of the variances in the
individual solution so that the averaged solution is closer to the desired one.

Therefore, we introduce two algorithms that can be used to combine bagging and SPA within the
OD estimation problem.

W-SPSA with Bagging: when using bagging (B-W-SPSA) (Breiman, 1996), we run multiple
estimators, such as W-SPSA, (in parallel or in serial order), and record the final estimates of each
of the runs or cycles (since SPSA is stochastic in nature). To promote exploration, at each run we
perturb the initial seed matrix - i.e., X̂a ← Xa + ϵ, where ϵ is a normally distributed error term.
Each run leads to different local optima. The final result is obtained as an average of these results

W-SPSA with Stochastic Parameter Averaging: The Stochastic Parameter Averaging (SPA)
is a new algorithm applied in this research and inspired by the Stochastic Weight Averaging (SWA)
(Izmailov et al., 2018), used in the field of computer science to find the weights of Deep Neural
Networks (DNNs) while avoiding local minima. In SPA, the optimization is divided into two parts.
In the first phase, the optimizer (W-SPSA, in this case) reduces the error in Equation 1. In this
case, there is no difference between normal W-SPSA and W-SPSA with SPA. Phase two begins
once the model achieves a local solution. In this step, the gain coefficients (i.e, the SPSA hyper-
parameters) are reset. The next optimization cycle uses the iterate from the previous cycle as the
initial parameters, and hence it is referred to as “warm restart”. Resetting of SPSA gain coefficients
resembles the cyclic learning rate, and allows the algorithms to explore new solutions.

3 Results and discussion

We present the results of our optimization model for two case studies. We compare the results of
three models, namely W-SPSA, B-W-SPSA, and SPA. Two scenarios are analyzed:
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1. Scenario 1: Analytical simulator with synthetic sensor counts. A randomly generated
assignment matrix is used for mapping OD flows (randomly sampled using a distribution
function).

2. Scenario 2: SUMO and Munich regional network with synthetic sensor counts data. Given
OD flows (Moeckel et al., 2020) are simulated and corresponding sensor counts are recorded
as desired counts. The Munich regional network is divided into 73 zones resulting in 5256
OD pairs. The network consists of a total of 8761 links.

Scenario one serves to visually explain how bagging and SPA build on and improve the performances
of W-SPSA. Scenario 2 tests how parameter ensembling performs when using SUMO on a large,
real network. In both cases, the Weighted Average Percentage Error (WAPE) and the Root Mean
Squared Error (RMSE) are used as evaluation criteria for OD fitness and count fitness.
In Scenario 1, we use a random perturbation Rx to introduce bias in the OD matrix. Then, we
use the proposed algorithms to estimate the optimal parameters. The objective function minimizes
the error with respect to historical OD flows and traffic counts. In Figure 2, we show the contours
of the OD fitness errors for single W-SPSA estimates, SPA estimates, and bagged estimates - for
selected ODs. Due to high dimensional optimization, fitness error is influenced by thousands of
the demand parameters, so the plot shows the conditional error (because it depends on multiple
parameters) region with the values of the pair of zones on X and Y-axes. The two columns in
this figure correspond to levels of random perturbation Rx 30%, and 90%. It is evident, that
in both cases, the single estimates are scattered in the region, but the averaged estimates from
SPA and bagging are lying with the region of lower errors as compared to the single W-SPSA
estimates. Intuitively, this illustrates how bagging/SPA help to reduce the variance in the estimates
from single W-SPSA estimates. While the two models overall achieve the objective of reducing
variance in the estimates, our results show that - for the same number of objective functions
evaluation - bagging systematically outperforms SPA. Therefore, in Scenario 2 we will mostly
focus on comparing bagging and traditional W-SPSA.

Figure 2: Contour plots showing the parameter values of the objective function for selected
pair of the zones at different values of the Rx.

Scenario 2: We show the results of the calibration for the Munich scenario using the SUMO
platform in Table 1. In all experiments, we assume a systematic bias Bx = 0.60 and a relatively
smaller factor for randomness (Rx = 20%). By default, we use only sensor counts in the objective
function. However, we also simulate the case where we introduce artificial randomness in the sensor
counts to mirror data errors. In this case, we also introduce speeds in the objective function to
test the open-source framework when multiple data sources are available.
We use the W-SPSA with manual optimization of the hyper-parameters as the baseline. The
corresponding improvement in speed fitness and OD fitness are 36.65% and -59.71%, respectively.
A negative value of improvement tells that the estimated OD is worse than the initial OD values,
which points to the ineffectiveness of the optimization. When using W-SPSA combined with
bagging (B-W-SPSA), all error metrics substantially improve. The counts and speeds error improve
by about 80% and 44%, respectively. More notably, the error in the OD flows is also reduced of
about 20%. To further test our hypothesis that bagging can reduce variance by filtering noise,
we can look at the experiments where some sensor noise was introduced. When the noise is low
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Table 1: Results of the Munich scenario with synthetic data

Sensor noise % Improvement WAPE (RMSE)
Model Bx Count Speed OD
W-SPSA 0.6 0 68.11 (69.01) 36.65 (50.27) -59.71 (-82.84)
B-W-SPSA 0.6 0 82.34 (84.31) 44.36 (55.72) 20.08 (12.88)
B-W-SPSA* 0.6 15% 61.54 (59.53) 48.85 (65.22) 9.06 (-7.06)
B-W-SPSA* 0.6 30% 41.29 (39.06) 32.47 (33.56) 0.33 (-19.02)
B-W-SPSA* 0.6 45% 25.07 (23.79) 28.43 (14.43) -0.38 (-38.48)
*: both counts and speeds are used in the objective function

(15%), the model still performs better than W-SPSA (except for the counts). When sensor noise
increases, performances deteriorate. However, this is expected. More importantly, B-W-SPSA has
a low error on the OD flows even for high sensor noise, which highlights the robustness of the
framework when SPSA is combined with bagging.

4 Conclusions

Robust and efficient algorithms for DTA calibration are required for virtually any application
where DTA models are deployed. However, obtaining robust estimates is still an open challenge
in the research community. This research contributes to this direction in two ways. First, we
provide an open-source framework for DTA calibration. The framework already includes several
features, and can easily be extended to new DTA models and/or optimization algorithms. We
hope that this can be useful to other researchers when developing new and better algorithms.
Second, we propose two parameter ensembling techniques, the SPA and the bagging, and test
them with the W-SPSA algorithm. Both techniques show that ensembling can lead to more robust
estimates compared to W-SPSA. Conceptually, SPA and bagging are similar, as they both achieve
better estimates by averaging results. However, SPA does this sequentially, while bagging runs
independent optimizations. In practice, bagging can be more convenient when it is possible to
run several simulations in parallel, while SPA can be more suited to explore different regions
sequentially. We tested our framework on the large-scale network of Munich, Germany, showing
how ensembling techniques allow filtering noise and estimating robust solutions. In the future, we
hope to collaborate with other researchers, to include other algorithms, and interface the platform
with other DTA models.
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Short summary

The dynamics of urban transportation can be understood with activity-based models, which rely
on synthetic travel demand data to get a comprehensive understanding of urban mobility. These
data are usually derived from small population samples and surveys, which may be expensive
and do not adequately cover the spatial trajectories of the users. In this paper, we explore the
use of a time-dependent origin-destination (OD) matrix derived from mobile phone data for the
attribution of locations in a synthetic population for the city of Lyon, France. OD matrix data
can also mitigate uncertainties or outdated information in travel surveys regarding flows by time
of day and between zones. The resulting population enrichment is measured in terms of fit to the
input mobility data.
Keywords: activity-based modeling, data fusion, multi-modal transportation, origin-destination
matrix, synthetic demand

1 Introduction

One way of acquiring insight into a city’s transportation system is to simulate an adequately
generated synthetic population of agents. Assuming the synthetic population is representative of
the real one and the simulator accurately describes how travelers make decisions, the result of the
simulation should be a comprehensive description of the city’s mobility dynamics. The synthetic
population should match the known marginal distributions of the real population while staying as
close as possible to the joint distribution of variables observed from an input population sample.
In activity-based models, each agent must also have an agenda, stating a chain of activities (e.g.
home, work, study, shopping, other), corresponding times and transport modes, and a chain of
locations for each activity. The agendas should be likely at the individual level and ultimately
match flows observed from other data sources.
Hörl & Balac (2021) propose a general pipeline to create a synthetic population with socioeconomic
variables and activity chains from multiple data sources. In a first step, a population sample is
used as input to set the socioeconomic variables of the agents. When the input sample is small,
the approaches proposed by Sun & Erath (2015); Sun et al. (2018) allow modeling the underlying
probability law and sampling the desired number of agents from it. In a second step, these agents
can be extended with attributes that are not in the population sample, ensuring that the available
marginal statistics are matched. Activity chains, without locations, are then assigned to the
agents. These activity chains can either be available from a separate mobility survey or generated
by approaches such as the ones proposed by Joubert & de Waal (2020); Anda et al. (2020). Activity
locations are usually separated into primary locations, such as home or workplace, and secondary
locations for other types of activity. While primary locations can be drawn in the first steps of the
generation, secondary locations are usually sampled through a process aiming at mimicking the
decision rules of an individual choosing where to go for a particular task (Ma & Klein (2017); Hörl
& Axhausen (2021)).
In this work, we propose to expand the state-of-the-art pipeline with a novel data-driven approach
for the location of activities, leveraging mobile data from the telecommunications provider Orange.
Mobile data have recently become an interesting alternative to mobility surveys, as they are much
cheaper and faster to generate. They can also be more representative regarding spatial features,
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Figure 1: Map of the partitioning of the study area of the city of Lyon (France), Back-
ground: OpenStreetMap

as around 30% of people in France are customers of Orange, compared with 1% of persons reached
by mobility surveys. Once re-scaled, the data gives us a reliable estimation of the trips of the total
population. However, they lack the level of detail offered by surveys, which makes it interesting to
use the data sources together in order to obtain a dataset that would be both detailed and easily
adaptable to new observations.
Mobile data can take the form of full trajectories of users, on which rely approaches proposed
by Zilske & Nagel (2015); M. Yin et al. (2017). However, full trajectories are computationally
heavy and feature a significant privacy risk. We thus derive a time-dependent Origin-Destination
(OD) matrix from mobile phone reconstructed trajectories (Bonnetain et al. (2021)), giving only
a map of flows between the zones of our study area for each time step of the day. OD matrices
are lighter and more manageable than whole trajectory datasets and can be fully anonymized as
shown in L. Yin et al. (2015); Matet et al. (2021). This makes them more readily available and
safer regarding the privacy of transportation users. As our first contribution, we interpret this
OD matrix as a transition probability between two locations, which we use to sample the location
chain. Second, we use the total number of trips in the OD matrix for each time of the day as a
target that the agendas of the population should match.
In the case of France, valuable data sources for the complete generation process are available to
researchers upon request. The census performed by the French statistics institute INSEE features
socioeconomic variables of a population sample large enough to be representative of the whole pop-
ulation. The activity chains are taken from the Enquête Ménage Déplacements (EMD) performed
by the French agency for urban planning Cerema (2015), which details the complete agendas of
25,203 persons in the Lyon region.

2 Methodology

The first steps of the synthetic travel demand generation are inspired from Hörl & Balac (2021),
which focuses on Île-de-France and Paris, now with the target area being Lyon and its surroundings.
Our study area takes the form of a square 25,600 meters wide centered around Lyon, divided into
515 distinct zones which either represent municipalities or spatial units (IRIS) common to many
statistical analyses in France. Figure 1 shows the partitioning of the study area.
In the case of France, the census performed by the French statistics institute INSEE constitutes a
population sample extensive enough so that no additional synthesis is required. Each of the 487,628
rows for our study zone features socioeconomic variables and a non-integer scaling coefficient for
a total of 1,366,072 persons. To interpret the data as an integer number of agents, we apply
the TRS approach (Truncate, Replicate, Sample) introduced by Lovelace & Ballas (2013). Each
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coefficient is stochastically rounded up with probability equal to its decimal part, and rounded
down otherwise. The result is a population of 1,372,566 agents described by the variables detailed
in Table 1. Note that we choose not to retain the household structures of the population. In a
generative approach, this information would be necessary in the downstream modeling steps. In
our approach, activity chains are assigned by sociodemographic attributes, hence only individuals
are relevant.

Table 1: Socioeconomic variables for the synthetic population

Variable Modalities
Home zone 515 zones in the study area
Age 0-17; 18-29; 30-59; 60+
Gender male or female
Occupation jobless; farmer; independant; executive; employee;

intermediate professions; worker; student; retired
Has car yes or no
Home status Owner; Tenant; Social housing

The assignment of activity chains from the EMD travel survey to agents from the census follows a
process inspired from statistical matching (D’Orazio et al. (2006)). As in Hörl & Axhausen (2021),
this process is close to a regular join between relational databases with a join key of multiple
variables, except that each census row is required to match at least 20 EMD rows. For census
rows for which this is not the case, we successively remove the last variable from the join key until
more than 20 EMD rows match. Then, one of these EMD rows is randomly drawn, and its activity
chain is assigned to the person described by the census row. This process guarantees diversity in
the assignment of chains to population agents while joining as many variables as possible so that
the agents have activity chains relevant to their characteristics. The variables used in the join key
are described in Table 2.

Table 2: Variables used in the statistical matching to assign activity chains from EMD to
agents from census

Variable Number of modalities % of agents with
more than 20 matches

Age 4 100%
Gender 2 100%
Occupation 9 95%
Has car 2 94%
Home status 3 90%
Canton 8 75%

Note that although the census is the same, the EMD differs between Paris and Lyon. We cannot
use the income in the join key as is done by Hörl & Balac (2021) because the EMD for Lyon does
not feature it. We replace it with what is arguably a proxy for one’s wealth, i.e., whether the person
is the owner, tenant of their home, or lives in social housing. Similarly, instead of the department
used in Île-de-France, we use the canton, an intermediary administrative zoning system between
our zoning and the department. The resulting population comprises agents, each equipped with a
chain of trips specifying the purposes, time of day, and transport modes, as is detailed in Table 3.
Note that the day is divided into time steps of one or more hours to be consistent with the division
used for anonymization in the mobile data. The activity chains contained in the EMD feature up
to 12 trips during the day.

Table 3: Variables describing trips

Variable Modalities
Trip purpose home; work; study; shopping; personal
Time step 0h-2h; 2h-5h; 5h-7h; 7h; 8h; 9h; 10h-12h; 12h-14h;

14h-16h; 16h; 17h; 18h; 19h; 20h-22h; 22h-0h;
Transport mode foot; bicycle; car or motorcycle; public transport
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Rescaling

While the previous steps correspond to existing approaches for travel demand synthesis, we propose
the following steps that make direct use of a large-scale time-dependent Origin-Destination matrix
that is featured in this research. Due to data discrepancies, the number of trips performed in each
time step of the day by our agent population does not match the number of trips observed from
mobile data. This is illustrated in Figure 2, where each point represents the marginal value of a
joint socioeconomic attribute (in blue) or the total number of trips taken for a given time step (in
yellow). The x-coordinate of the point is the truth value from the available data, i.e., the marginals
from the census in the case of blue points and the number of trips from mobile data for yellow
points. The y-coordinate is the total measured in our synthetic population. We perform rescaling
via Iterative Proportional Updating (IPU) as introduced by Ye et al. (2009), with the adaptation
that instead of a population composed of households divided into persons, we have a population
of persons divided into trips. The resulting population is consistent both with the socioeconomic
composition of the real population and the number of trips they take at each time step of the day.
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Figure 2: Marginals of the synthetic population versus what is expected from the data
sources. Each blue dot is the volume for a socioeconomic modality. Each yellow dot is
volume of trips for a given time step.

Spatialization

To be complete, the synthetic population requires locations for each activity in their agenda. We
interpret the OD matrix as a probability table of destinations D given the origin O and time T :
P (D|O, T ). For each agent, we model the chain of locations during the day as a Markov chain
with transition probability P (D|O, T ).
The activity purpose may specify that the agent is going home, in which case the home area defined
in the first step of the generation from the census is deterministically assigned as a location. In
contrast with state-of-the-art methods, we do not rely on pre-defined work or study places, as
we do for home. This is justified by the fact that, as 45% of trips in the activity chains of our
population are commute trips, pre-defining the work and study places would not only half the use
of the data we aim at exploiting but also invalidate it as our mobile data would still contain the
distribution of the sum of commute and non-commute trips but be used only for non-commute
trips.
However, even without pre-defining them, we still want to ensure that work and study activities
have the same location when they appear more than once in the activity chain. The resulting
probability law for the chain of locations is described by a Markov chain with fixed states for home
and linked states for work and study. Because of these dependencies between states, we cannot
sample from it as we would a regular Markov chain. We resort to Gibbs sampling to generate
a chain of locations. This drawing process can only manage a fixed activity chain with a fixed
pre-defined home zone, meaning that two agents with either a different activity chain or a different
home require each a distinct Gibbs sampling. We obtain 478,963 distinct processes to run, which is
computationally expensive because of the required warm-up phase: Gibbs sampling is considered
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to yield the true joint distribution only after having discarded the first thousand samples. We
reduce the computing time by observing that most activity chains have a low autonomy, i.e. they
feature a limited number of unknown locations between two fixed home activities. Segments of
the activity chain that are separated by a fixed state are independent of each other and follow
a distribution of much lesser dimension. In fact, segments of only one unknown activity do not
require Gibbs sampling, and segments of two activities only require a limited warm-up.
As a refinement, we consider the transport modes M from trips in the activity chains to obtain a
transition probability P (D|O, T,M). The transport mode is not specified in the mobile OD data,
but can be integrated into the sampling process using Bayes rule: P (D|O, T,M) ∝ P (M |O,D, T )×
P (D|O, T ). As an estimation of P (M |O,D, T ), we consider that the mode M depends only on
the distance L between origin O and destination D. Using all trips from the EMD, we obtain an
empirical probability distribution P (M |L(O,D)) discretized to individual 1 km bins.

3 Results

As the synthetic population is expected to behave like the real population, we evaluate it on all
the available indicators about the composition or mobility of the real population. Note that our
various input sources can be inconsistent between themselves, e.g. on the number of trips for each
time step or even the socioeconomic composition of the population between the census and the
EMD. As such, it is already a satisfying result for the synthetic population to match indicators
derived from our own input data.

Socioeconomic composition of the population

In Figure 3, we illustrate how the socioeconomic composition of our population matches the official
census better than the transport survey EMD. As the EMD represents only a small number of
people, it is normal that the totals have a higher variance. Our synthetic population can then be
seen as a version of the EMD that agrees with the census on the socioeconomic distribution of the
population.
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Figure 3: Matching of the socioeconomic marginals of our rescaled synthetic population
(in red) compared to the transport survey EMD (in green).

Number of trips by hour

In Figure 4, we illustrate the distribution of trips during a typical day as measured from mobile
data (in orange), our synthetic data (in magenta), and the survey EMD (in green). In this case,
we consider the observed volumes from the mobile data to be the ground truth. We see that our
population can also fit the ground truth source better than the official survey EMD. In particular,
the EMD seems to overestimate the volumes of the morning, midday, and evening peaks while
underestimating the volumes during the rest of the day.
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Figure 4: Distribution of trips taken during the day.

Conditional probability of destinations

In Figure 5, we illustrate how the probability of destinations given origin and hour fits the proba-
bility table derived from the OD matrix. Each point corresponds to a combination of destination,
origin, and time of the day. Its x-coordinate is the probability P (D|O, T ) observed in the OD
matrix, while its y-coordinate is the same probability as observed in the trips of our synthetic
population. Interestingly, we observe a bi-modality in the ground truth: it seems that each origin
has a restricted list of favorite destinations forming the upper-right cloud and a list of secondary
destinations in the lower-left cloud. We see that this bi-modality is retrieved in our synthetic
population and that, overall, our synthetic demand is highly correlated to the actual observations.
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Figure 5: P (D|O, T ), from our synthetic data w.r.t. ground truth value from the OD
matrix. The black line represents y = x.

Limitations

While it can be expected that our synthetic demand data matches well the distribution P (D|O, T ),
we observe that the distribution of trips P (O,D|T ) is not the same as in the input OD matrix.
This is because although we sample the destinations using P (D|O, T ) as a transition probability,
we have no mechanism to make sure that the right number of agents leave each individual origin
O at each time step T . This problem can be addressed by decomposing each time slice of the
transition matrix into a sum of transition matrices depending on O, T , and on the time step of
the next trip of the agent. This new decomposition of the OD matrix in our future work amounts
to adding explanatory variables to the mobile data in the same fashion as we added the transport
mode. By carefully choosing such a decomposition, we can make sure the agents taking a trip
before time step T are assigned to destinations such that the map of agents leaving for a trip at
time step T corresponds to the map of origins of trips in the OD matrix.
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4 Conclusions and perspectives

This paper illustrates how a time-dependent OD matrix from mobile data can improve the gener-
ation process for synthetic travel demand. As we consider mobile data to be closer to the ground
truth than surveys regarding the number of trips by the time of day and between zones, they are
a valuable asset to take into account in addition to already available sources. Our approach makes
use of the highly valuable activity chain structures that are already featured in the surveys and
successfully improves on them with mobile data, using an OD matrix both as a rescaling target
and a basis for spatialization.
As OD matrices can be anonymized, our approach is also relevant to leverage the richness of mobile
data without the computational cost nor the privacy hazard of full trajectory data. However, a
huge challenge lies in the fact that OD matrices derived from mobile phones are not dependent
on anything other than time. As such, correlations between the spatial characteristics of the trips
(such as average commute distance) and other variables are hard to capture. A more detailed OD
matrix could be derived from the initial trajectories without additional data: for example, recurrent
daily trips could be identified as commute patterns, resulting in two separated OD matrices for
commute and non-commute.
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Short summary

Luxembourg’s high car ownership per household, combined with a strong population growth and
high share of cross-border commuters, led to systematic traffic congestion issues all over the country.
To address this problem, the government made public transport (PT) free in 2020 by eliminating
second-class fares, a policy that attracted great interest but also led to controversial opinions on its
real impact on car use. Notably, since free PT requires no ticketing, there is a problematic lack of
passenger data that would allow assessing the policy impacts. Therefore, in this study a MATSim
scenario was developed and used to evaluate the impact of this policy under realistic settings. The
population was generated using data from a national travel survey collected in 2017 and the free
PT scenario was compared against a benchmarking scenario where public transport was still not
free, allowing to collect and analyse different KPIs. The simulation showed that the policy brought
significant benefits in terms of Passenger Kilometer (PKT) and Hours (PHT) Travelled for PT,
and a decrease in car usage in favor of PT especially for cross-border commuters for the parts of
their journey that take place inside of Luxembourg. Nonetheless, this study found that the overall
impact of Free PT was not significant enough to strongly impact the congestion levels, with the
high car ownership rates being one possible reason for this resistance.
Keywords: Agent-based modeling; Free public transport; MATSim.

1 Introduction

The development of new on-demand services, the increasing popularity of car and bike sharing,
and the growing trend towards multi-modal travel pose a series of challenges for research groups
around the world. These trends, combined with new transport policies, have the potential to
significantly impact travel behavior, making the forecast of the impact of such changes essential
for policymakers to avoid investing substantial amounts of resources in ineffective measures.
This is particularly relevant for Luxembourg, where in March 2020 all second-class fares were
canceled, becoming the first country in the world to provide nationwide free public transportation
(PT). The goal of this policy was to reduce the high percentage of trips made by car, which was
around 79% in 2017, with 33% being performed by cross-border workers who reside in France,
Germany, and Belgium. This convergence of travelers onto specific segments of the network leads
to severe congestion and significant increases in travel time during peak hours.
Understanding the impact of transport policies such as free-PT is a non-trivial task, since it requires
estimating the mode choice elasticity for all trips performed by an individual in a context where
many other factors may have caused an equal or even stronger effect (e.g. the COVID19 pandemic).
Moreover, such policies are expected to have an impact on the whole trip chain, hence requiring
more sophisticated approaches than the traditional trip-based approach. Conversely, agent-based
demand modeling designed to further test new transport models allows a better forecast of traffic
demand on the network, and a more accurate policy evaluation. The main goal of this study is
to investigate the impact of the policy put into action in 2020, using the MATSim agent-based
simulation (Horni et al. (2016)) scenario developed for Luxembourg.
The developed scenario simulates the main modes of transportation including cars, PT, biking,
and walking. It provides detailed schedules for public transport services such as buses, trams,
and trains. The transportation network generation was set up using two open data sources: net-
work information from OpenStreetMap (OSM) and public transport schedules generated from the
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General Transit Feed Specification (GTFS). The population generation and trip chains, as well
as the origin-destination matrices, were obtained from the LuxMobil travel survey conducted in
2017. After the population was generated and the MATSim scenario was calibrated using the data
from the travel survey, as well as traffic counts, the impact of the Free Public Transport policy
in Luxembourg was analyzed. The aim of this study is therefore to evaluate the Free Fare Public
Transport (FFPT) policy in Luxembourg. The study will tackle the evaluation of this policy from
various perspectives, such as travel time reduction, travel distance decrease, modal split shift, and
cost-benefit analysis.

Literature Review

Free public transport has been a topic of interest for many cities and countries worldwide, seen as
a means to reduce traffic congestion, improve air quality, and provide affordable transportation to
citizens. Many studies have been conducted on this topic. Kȩbłowski (2017) presents an analysis
of the various models of Free Public Transport implemented globally. It categorizes these models
into two categories, the FFPT and Partial FFPT. FFPT is defined as PT systems in which the free
service is widely available and accessible to the majority of users throughout the majority of the
time. On the other hand, Partial FFPT is a ticket-free system that is limited in some way, such as
being restricted by space, time, or in terms of user groups. Guelton & Poinsot (2020) focuses on
fare-free public transportation in France and its increasing availability, as well as working financial
models for this policy in the context of limited public funds. According to Duhamel (2004), the
FFPT can be considered as a viable option only for cities with low ticketing revenue and passenger
volumes prior to implementation.
Given the complexity of impacts that this policy can have in different contexts, the academic com-
munity is divided in their opinion. Studies by Studenmund & Connor (1982) and Brown et al.
(2003) support the notion that ticket-free systems can attract car users to public transportation,
even after fares are reinstated, settling the obtained shift in the modal split towards Public Trans-
port in favor of cars. Bull et al. (2021) proves with their study the effectiveness of this policy in
increasing the modal share of PT in Santiago, Chile. Conversely, Volinski (2012) highlights FFPT’s
limited achievements in generating a modal shift from private vehicles to PT in terms of cost and
resources to be sustained by the companies. The study of Cats et al. (2017) highlights the limited
impact of FFPT on sustainable development and suggests that it may cause financial instability
in public transportation systems, resulting in irrational travel patterns and unproductive mobility.
In the case of Luxembourg, this could result in PT becoming a competitor with walking as a mode
of transportation for short trips of less than 500 meters.
Nonetheless, several cities have implemented free public transport policies, with varying degrees of
success. Many European municipalities justify FFPT as a strategy working towards reducing car
usage (e.g. Avesta, Sweden) and car-related pollution and noise (e.g. Livigno, Italy) and thereby
increasing the liveability of the city itself. A study from the city of Tallinn provides an empirical
evaluation of the impact of FFPT on service performance, passenger demand, and accessibility,
showing that this policy led to an increase of 1.2% in passenger demand for PT, while highlighting
that the relatively small impact could be attributed to the previous price level and public transport
share, as well as the short-term impact, Cats et al. (2017). The important difference with the case
of Luxembourg is that a ticketing system is still applied, where the residents don’t pay for the
PT whereas tourists and visitors have to pay standard fares. In a similar context, the french city
of Dunkerque implemented a Partial FFPT policy in 2018, Briche & Huré (2018): they showed
that this policy is sustainable and synergizes with urban development while also being mindful of
the needs of low-income populations. In this study, free transportation is proven technically and
financially feasible for an urban area of 200,000 residents, debunking the hypothesis that it is only
applicable to medium-sized cities.

2 Methodology

Survey Data

In this work, the data used to generate the agents’ population is extracted from the LuxMobil travel
survey, which was conducted in 2017, whose aim was to draw a picture of mobility throughout
the country of Luxembourg, and contained information of both residents as well as cross-border
workers. In the survey, a total of 33,207 individuals were asked to provide their socio-demographic
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information and a travel diary for a typical day, with detailed trip chain information such as main
modes of transport for each trip, travel time, origin, and destination. The respondents were 66%
from Luxembourg, 15% from France, 10% from Germany, and 9% from Belgium. This study
included 218 zones, with 71 of those being from Belgium, France, and Germany.

Data cleaning

After excluding all individuals who declared not to perform any activities, the population sample
size was reduced to 22,199 respondents (67% of all interviewees) without altering substantially
the distribution of the population in terms of resident/crossborders. Considering the total pop-
ulation moving in the area of the sample (around 197.000 cross borders, together with 645000
in Luxembourg Residents)1, the MATSim synthetic population represents approximately 2% of
the population, with agents carrying out activities of various types such as home, work, school,
shopping, leisure, and others.
From the travel survey, we extracted 85506 trips, each with an associated main mode of transport,
and estimated the modal split for a weekday, which is divided as follows: 79% Car, 16% PT, 1%
bicycle legs, and 4% walk legs. Demand generation and activity location assignment were based
on 24-hour activity OD (Origin-Destination) matrices generated from the travel survey data. The
source data for the MATSim Luxembourg road and PT network was obtained from OSM and
GTFS files using the pt2matsim tool Poletti (2016). To simplify the analysis, the 216 areas were
merged into 146 zones, with 3 of these zones representing the three neighboring countries. This
was due to the limited population density data available for some of the foreign areas in the travel
survey and the focus on the Luxembourgish road and PT network. To try to maintain as much
accuracy as possible on the data regarding cross-border commuters, a "bee-line" moving approach
was utilized, which involved relocating their house location to the nearest centroid and adjusting
their first and last activity times based on their declared mode of transport and average speed.
This was calculated using the beeline distance between the declared position of the house and the
closest centroid. Moreover, regarding the cross-border commuters, since there were no interviews
performed on people under the age of 18 in the survey, we assumed that they would all hold valid
driving licenses. Car availability was then determined based on the area and household aggregation.
While this approach could alter travel behavior if coupled with a strong mode replanning strategy,
it ultimately proved to be an effective solution as the data remained consistent.

Calibration of the MATSim simulation

In order to calibrate the scenario prior to the free PT policy (Pay-PT), we run different MATSim
simulations with 10% of the overall population (around 64000 agents) to reach a steady state.
This was achieved by performing multiple simulations, each with 250 iterations, starting from the
parameters used for the Berlin scenario, Ziemke et al. (2019). The scoring parameters were adjusted
after each simulation until convergence was achieved with the traffic count data, as well as with the
modal split, average travel time, and average distance per mode per leg from the Luxmobil travel
survey. The volume on the main congested roads that are leading to the foreign centroids was then
compared to the real traffic counts, showing adherence with the initial data. In order to reproduce
the FFTP system, the monetary constant was set to 0. Nonetheless, the calibration process for
the FFTP Scenario turned out to be a challenging task. The biggest obstacle encountered was the
absence of a ticketing system for every PT, making it difficult especially for busses to determine
the actual number of passengers, paired with the presence of multiple PT providers. However,
for trains and trams, data is available regarding the passenger-km performed2, which was then
matched with the corresponding data from the simulation.

1https://luxembourg.public.lu/en/society-and-culture/population/demographics.html
2https://gouvernement.lu/fr/publications/rapport-activite/minist-mobilite-travaux

-publics/departement-mobilite-transports/2021-rapport-activite-dmt.html
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3 Results and discussion

Table 1 and Table 2 present the results of the effect of the Free PT policy, segmented between
Luxembourg Residents and Crossborders, and the overall comparison between the Pay-PT scenario
and the Free-PT scenario. The asterisk in the Tables (*) indicates that the sample size for these
modes of transport was too small, leading to unrealistic results in the simulation.

Comparison - Paid PT vs Free PT
AVG Leg TT AVG Leg Distance PKT PHT Modal Split

Resident
Car -5% -4% -12% -13% *
Walk 3% -2% * * *
PT -11% -9% 8% 5% *
Bike 18% 18% * * *

Crossborders
Car -1% -2% 2% 3% *
Walk 17% 6% * * *
PT -13% -12% 61% 60% *
Bike 7% 7% * * *

Overall
Car -2% -1% -8% -8% -10%
Walk 9% 2% * * 0%
PT -12% -9% 19% 16% 10%
Bike 12% 12% * * 0%

Table 1: Analysed KPIs - Pay vs Free PT

Table 1 compares the difference between the Pay-PT and Free-PT scenarios in terms of average Leg
travel time and distance, person-kilometers traveled (PKT), and person-hours traveled (PHT). The
policy appears to impact all transportation modes: for Residents, the use of public transportation
increased, as seen as an increase in the PKT and PHT, with a corresponding decrease in leg travel
time and distance. The policy had a greater impact on the Crossborders, resulting in a 60% rise
in PKT and PHT, demonstrating that public transportation became a more appealing option for
their daily journeys. It has to be noted that these numbers are likely overestimated, as the FFPT
policy is available only for PT trips performed within Luxembourg, not for trips originating from
the Greater Region. Nevertheless, these results show that extending the FFPT policy to cover
cross-border trips from external countries to Luxembourg could have a substantial impact, given
that a large proportion of commuters travel long distances. Overall, the Free PT affected the
agent’s travel behavior, as seen in an increase in PKT and PHT for PKT, together with a Modal
Split change that presents a 10% of car users switching to public transportation.
Table 2 presents information on the changes in the trips’ mode of transportation. For trips per-
formed by Residents, PT was favored over cars for all the considered segments, which led to a
decrease in car usage. On the other hand, the free-PT policy had a noteworthy impact on cross-
border in terms of a reduction of trips performed by cars in all the considered segments. Nonethe-
less, considering cross-border commuters were the target group for the policy as they travel on
average more than 25 km to their main activity (an average of 35.3 km as per our travel survey),
the impact is very limited. The reluctance of these commuters to switch modes of transportation is
shown by a slight increase in the PT choice for all the segments, and especially the limited impact
is highlighted by the slight PT trips increase in the > 25 km trip segment, which accounts for the
largest portion of trips. This is also linked to the high PKT and PHT for PT for Crossborders
presented in Table 1, suggesting that cross-border travelers could find PT to be convenient, and
willing to travel further to reach their destination. This could be due to several reasons, including
the lack of effective connections to foreign countries and the high car dependency of the country
with 676 passenger cars for every 1000 inhabitants and being the country with one of the highest
mobility expenditures in Europe.
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% of trip difference for specific distance segments - Paid PT vs Free PT
Resident

trip <5 km 5 km <trip <10km
trips (Paid PT) Paid PT vs Free PT trips (Paid PT) Paid PT vs Free PT

Car 30449 -4% 16361 -2%
Walk 10835 1% 90 0%
PT 520 1% 335 1%
Bike 448 2% 56 1%

10 km <trip <25 km trip >25 km
Car 21670 -2% 27761 -3%
Walk 60 0% 15 0%
PT 904 1% 3019 1%
Bike 68 1% 120 2%

Crossborders
trip <5 km 5 km <trip <10km

trips (Paid PT) Paid PT vs Free PT trips (Paid PT) Paid PT vs Free PT
Car 678 -4% 988 -10%
Walk 934 2% 68 3%
PT 30 2% 113 7%
Bike 19 0% 45 1%

10 km <trip <25 km trip >25 km
Car 3787 -5% 22694 -5%
Walk 79 0% 41 0%
PT 60 1% 734 2%
Bike 64 4% 248 3%

Overall
trip <5 km 5 km <trip <10km

trips (Paid PT) Paid PT vs Free PT trips (Paid PT) Paid PT vs Free PT
Car 31127 -4% 17348 -3%
Walk 11768 1% 158 0%
PT 550 1% 448 2%
Bike 467 2% 102 1%

10 km <trip <25 km trip >25 km
Car 25457 -3% 50455 -4%
Walk 139 0% 56 0%
PT 964 1% 3753 2%
Bike 132 1% 369 2%

Table 2: % of trip difference within specific trip segments - Paid PT vs Free PT

4 Conclusions

This paper analyses the impact of Free Public Transport in the context of Luxembourg, based on
a MATSim scenario calibrated through survey data. The results demonstrate the effects of this
policy on the country, where benefits can be seen in the increase of the overall choice for PT as
a main mode of transport, seen as an increase in the PKT and PHT, together with a shift in
the modal split. However, the policy slightly impacted cross-border travelers, with a significant
increase in their travel time if using public transport, and indeed resistance has been observed in
the expected modal shift.
Future research includes the investigation of the impact of the 1 PT-stop trips and how these affect
the whole system, given that before 2020 Luxembourg already included an integrated ticketing
system so without a real time-gain on the ticket validation to be done in-vehicle, especially for
busses; a deeper study on the cross-border behavior and which policies could be put in place
to reduce the still very high car mode share in the country; the implementation of the different
on-demand services which are already present in the country (such as bike and car-sharing, taxi,
car-pooling etc,..) and a comparison with the obtained data for the PT scenario with the real data

5



that will be made available in 2023 by the national statistic agency STATEC.
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Short summary

Public transport (PT) is essential to fulfill travel needs in urban areas. Predictors of PT ridership
and satisfaction provide a good understanding of how new users can be attracted and existing users
can be retained. Among these predictors, perceived safety and built environment (BE) attributes
of stations and their surroundings still require further research. Using data from a tailor-made
survey on train trips in East Denmark (1,004 respondents), we investigate the relationship between
perceived safety, satisfaction and PT ridership and highlight the influence of BE attributes. Based
on a structural equation model, we find a significant relationship between (i) perceived safety
and satisfaction with trip-ends, and (ii) satisfaction with trip-ends and overall trip satisfaction.
Lighting, maintenance and wayfinding are some of the essential attributes of stations, and their
surroundings should not have isolated areas. No significant effect was found for trip satisfaction
on PT ridership, but further research will consider this relationship.
Keywords: Public transport; Perceived safety; Satisfaction; Station design; Structural equation
modelling

1 Introduction

Public transport (PT) is an important travel mode in urban areas, serving a heterogeneous set of
users and contributing to more sustainable transport and social equity in cities. While attracting
new PT users requires a good understanding of predictors of PT ridership, ensuring existing users’
satisfaction is crucial to retain their ridership (van Lierop et al., 2018). Both PT ridership and
satisfaction are linked to the built environment (BE) attributes, including those of station envi-
ronments and their surroundings (Iseki et al., 2007; Susilo & Cats, 2014; Taylor & Fink, 2013).
In addition, perceived safety is a crucial factor in predicting both ridership and satisfaction with
the overall trip and can be enhanced by improving the stations and their surroundings as well
(Ingvardson & Nielsen, 2021; Iseki et al., 2007; Susilo & Cats, 2014). However, further research is
necessary to investigate which of these BE attributes have the highest importance for satisfaction
and ridership.
Satisfaction with PT is influenced by a high number of factors, among which on-board cleanliness,
comfort and staff behaviour are the most common ones according to a recent review (van Lierop
et al., 2018). While these are trip attributes, station attributes such as wayfinding (Nielsen et al.,
2021), real-time information (Chowdhury & Ceder, 2013), maintenance and cleanliness (Eboli et
al., 2018) also improve users’ experience. There are, however, few studies on PT satisfaction which
incorporate urban characteristics.
Perceived safety is one of the most crucial needs which has to be fulfilled for a PT trip to take place,
as otherwise, one might have to alter the time or mode of the trip, or cancel the trip completely
(Loukaitou-Sideris et al., 2009; Lubitow et al., 2017). Focusing on lighting, maintenance, real-time
information and staff presence can help achieve safe station environments which can encourage PT
users (Cozens et al., 2003; Rahaman et al., 2016). That said, urban design around stations is at
least as important as at the station. Providing trees (Basu et al., 2022), good lighting and human
activity (Iseki et al., 2007) enhance perceived safety around stations while the presence of isolated
areas or unused parking lots negatively affect it (Iseki et al., 2007).
This study analyzes the influence of station characteristics, urban surroundings and perceived
safety on satisfaction as well as PT ridership, focusing on train travel in East Denmark. Using a
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tailor-made online survey incorporating a detailed list of built environment attributes, we estimate
a comprehensive structural equation model (SEM). First, we examine which attributes of train
stations and their surroundings improve perceived safety and satisfaction. We do this separately at
the home and activity ends of the trip to consider explicitly potential differences in user perceptions.
Second, we investigate whether overall trip satisfaction increases with higher levels of satisfaction
with individual attributes at both trip ends. Lastly, we explore the relationship between trip
satisfaction and PT ridership. The SEM framework allows for analysing these relationships in
detail through both the direct and indirect effects. Our final data set comprises 1,004 train trips
made by a large sample of PT users in East Denmark in June-July 2022.

2 Methodology

Survey design and data collection

We designed an online survey in Danish, with 35-40 questions in three parts: (i) travel patterns and
preferences towards the attributes of stations and their surroundings, (ii) details of respondents’
latest train trip, and (iii) background questions.
In the first part, we included station facilities (e.g. escalators, information screens, wayfinding),
station surroundings (e.g. human activity, large parking lots), environment at/around stations
(noise, air quality, lighting, maintenance, cleanliness), and access paths to stations (e.g. tunnels,
pedestrian streets). We measured the importance of the selected attributes on a 5-point Likert
scale (1: Very unimportant, 5: Very important). In the second part, we collected which of these
attributes were present on the specific trip, and measured respondents’ perceived safety level. To
provide a concrete scenario, we asked the respondents to rank how safe they would feel after dark
at/around their stations on a 5-point Likert scale. We also measured satisfaction with: (a) station,
(b) station surroundings, (c) access to/from the station, and (d) the entire trip, all measured on a
5-point Likert scale. Items (a) to (c) were repeated for start and end stations. In the third part,
we asked about gender, age, education, and access to transport resources.
We distributed the online survey through a panel of PT users from the Danish consumer watchdog
for public transport (Passenger Pulse). We targeted PT users over 18-years old who reside in East
Denmark, an area which includes the city of Copenhagen and has more than 2 million residents.
Collecting data in June-July 2022, we reached 1,314 complete responses in the final data set.

Analysis method

Figure 1 shows our framework which covers the relationship between perceived safety, satisfaction
variables and frequency of PT use, while also exploring the effects of station characteristics and
urban surroundings. Socio-demographic variables are included to account for different user groups’
needs and experiences. We followed a structural equation modelling approach, as it allows for
simultaneous consideration of the dependent variables in a consistent manner. As we expected
a difference in individuals’ preferences at home and activity ends of the trip, we created latent
variables and estimated models for both trip ends in the same SEM model.
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Figure 1: Structural equation modelling framework where circles represent latent variables.

In the SEM model, we introduced variables in 5-point scales as continuous variables in the model,
and employed dummy variables for the yes/no questions or categorical variables (e.g. age, educa-
tion).
In the measurement part of the SEM model, we applied confirmatory factor analysis (CFA) to
create latent variables from items which were measured both at and around the stations. The
five environment variables and perceived safety underwent this procedure separately at home and
activity ends. We also loaded the three satisfaction items (i.e. satisfaction with access conditions,
satisfaction with station surroundings, satisfaction with the station) into a single latent variable
at each trip end.
In the structural part, we estimated models explaining these latent variables at both trip ends
as well as satisfaction with the trip and frequency of PT use to test several hypotheses. First,
we expected that maintenance and lighting, along with BE attributes and gender, significantly
affected perceived safety at both trip ends. Second, we expected a positive significant relationship
between perceived safety and satisfaction with trip ends, in addition to the significant effect of
attributes such as wayfinding and crowdedness. Third, we hypothesised that satisfaction with trip
ends would significantly contribute to the satisfaction with the overall trip and that there would be
significant differences based on socio-demographics. Lastly, we expected a significant positive effect
of satisfaction with the overall trip on frequency of PT use, in addition to socio-demographics.

3 Sample statistics

To test whether respondents have different preferences at home and activity ends of their trips,
we converted start & end stations into home-end & activity-end stations depending on whether
the trip started or ended at home. After removing trips with missing values, our modelling data
set includes 1,004 trips. These 1,004 trips cover 180 stations out of the 297 in the region, and
the largest transport hubs are represented. The remainder of the stations are mostly smaller local
train stations with few daily users.
Table 1 describes the full sample (N= 1,314), and the sample used in the SEM model (N=1,004).
In addition, we show the sample of PT users in the Danish National Travel Survey (Transportva-
neundersøgelsen) between 2018-2022 for comparison, as this survey is representative for Denmark
(Christiansen & Skougaard, 2015). In all three samples, women are slightly overrepresented. Given
their low percentage, we merged "nonbinary" and "other" categories with women in the rest of
the analysis. Both of our samples stand out with their age distribution from the TU sample, with
a higher share of individuals over 50-years-old. This is a result of the age bias in the Passenger
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Pulse panel, which has an average age of 61. Furthermore, our sample is more educated and has
higher income levels than the TU sample. In terms of access to transport resources, the samples
resemble each other.

Table 1: Sample description, compared to the description of PT users in the Danish NTS

Variable Full sample SEM sample Danish NTS
PT users

Gender
Female 55.1% 54.7% 53.5%
Male 43.8% 45.0% 46.5%
Nonbinary 0.1% 0.1% -
Prefer not to say 1.1% - -
Other 0.2% 0.2% -
Age
18-29 2.4% 2.6% 39.7%
30-39 5.0% 4.8% 19.9%
40-49 9.8% 10.0% 12.5%
50-59 21.9% 21.6% 12.2%
60-69 29.3% 29.6% 7.9%
70-79 26.7% 26.7% 5.9%
>80 4.9% 4.8% 1.9%
Education
Primary school 2.7% 3.2% 14.7%
High school 4.6% 4.8% 17.6%
Vocational 13.4% 13.8% 9.8%
Short-term higher education (1.5-2 years) 7.2% 6.8% 4.6%
Medium-tem higher education (2-5 years) 36.2% 36.6% 27.1%
Long-term higher education (5+ years) 35.8% 34.9% 26.2%
Income
0-99.999 DKK 1.9% 1.8% 9.2%
100.000-199.999 DKK 7.3% 7.5% 9.8%
200.000-299.999 DKK 16.8% 17.6% 9.3%
300.000-399.999 DKK 18.3% 18.9% 12.9%
400.000-499.999 DKK 15.4% 15.4% 8.9%
More than 500.000 DKK 25.0% 25.4% 11.7%
NA 15.2% 13.3% 38.2%
Car availability
Yes 55.7% 56.0% 47.7%
No 44.3% 44.0% 52.3%
Bicycle availability
Yes 73.8% 84.8% 76.4%
No 26.2% 15.2% 23.6%
Driving licence
Yes 84.3% 74.6% 70.8%
No 15.7% 25.4% 29.2%
No. of obs 1314 1004 1850

We describe the frequency of using different transport modes in table 2. 55.6% of the SEM sample
travels at least 3-4 times a week with PT. Similarly, more than half of the respondents walk or
cycle frequently, while the share of car drivers and passengers are quite low. E-scooters, shared
bicycles and shared cars are almost never used.
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Table 2: Frequency of travelling with different modes in the SEM sample (N=1004)

Transport mode Never
Less than

once
a month

1-3 times a
month

1-2 times a
week

3-4 times a
week

5 times or
more a
week

Public transport 0.5% 4.6% 18.3% 21.0% 24.6% 31.0%
Car driver 45.6% 9.7% 10.0% 16.0% 10.6% 8.2%
Car passenger 17.2% 33.0% 26.1% 18.2% 3.8% 1.7%
Walking 2.3% 2.4% 4.6% 9.7% 14.6% 66.4%
Own bicycle 22.3% 9.5% 7.7% 9.1% 15.4% 36.1%
E-scooter 98.0% 1.6% 0.3% - - 0.1%
Shared bicycle 98.3% 1.4% 0.2% 0.1% - -
Shared car 93.8% 3.9% 1.2% 0.8% 0.2% 0.1%

Table 3 describes the environment at and around stations at both trip ends. Noise levels are
perceived higher at the activity end, which is expected given that stations with high activity levels
are mostly located in the centre of Copenhagen while quieter suburbs are represented more in the
home stations. Air quality shows a similar pattern with a higher share of respondents reporting
bad conditions at activity ends. At least 40 % of respondents state good lighting conditions in
all cases. Maintenance and cleanliness distributions are similar in all four cases, achieving high
rankings from approximately 30 % of the sample.

Table 3: Description of environment variables in the SEM sample (N=1,004) (a The noise
variable is reverse coded where 1: very quiet, 5: very loud. For all other variables, 1: very
bad, 5: very good.)

Environment 1 2 3 4 5 Average Std.Dev
At home station
Noisea 8.6% 33.8% 45.4% 11.2% 1.1% 2.62 0.83
Air quality 1.6% 7.5% 43.8% 34.3% 12.9% 3.49 0.87
Lighting 1.5% 10.2% 38.8% 42.4% 7.1% 3.43 0.82
Maintenance 5.5% 23.4% 37.3% 30.0% 3.9% 3.03 0.95
Cleanliness 4.2% 24.4% 39.8% 27.3% 4.3% 3.03 0.92
Around home station
Noisea 6.3% 32.5% 40.6% 18.6% 2.0% 2.78 0.89
Air quality 1.6% 10.6% 44.5% 32.6% 10.8% 3.40 0.87
Lighting 1.2% 11.6% 41.3% 41.6% 4.3% 3.36 0.79
Maintenance 3.3% 19.5% 44.7% 29.7% 2.8% 3.09 0.85
Cleanliness 3.5% 22.2% 45.7% 25.6% 3.0% 3.02 0.86
At activity station
Noisea 5.1% 17.3% 44.5% 27.2% 5.9% 3.11 0.93
Air quality 3.6% 19.8% 46.2% 25.2% 5.2% 3.09 0.89
Lighting 1.3% 10.8% 42.8% 40.4% 4.7% 3.36 0.79
Maintenance 4.9% 15.4% 44.5% 30.5% 4.7% 3.15 0.91
Cleanliness 5.7% 19.2% 42.7% 28.8% 3.6% 3.05 0.92
Around activity station
Noisea 3.8% 14.4% 38.8% 35.9% 7.2% 3.28 0.93
Air quality 3.5% 22.9% 48.2% 21.1% 4.3% 3.00 0.87
Lighting 0.9% 9.7% 46.8% 38.8% 3.8% 3.35 0.74
Maintenance 3.3% 15.5% 50.0% 27.3% 3.9% 3.13 0.84
Cleanliness 5.2% 21.9% 46.1% 24.2% 2.6% 2.97 0.88

The overall perceived safety levels at and around stations are high, as almost 50 % of the sample
rank perceived safety 4 or higher (Figure 4). The distribution of scores at and around each trip
end are quite similar.
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Table 4: Description of perceived safety in the SEM sample (N=1004)

Perceived safety 1 - Very
unsafe 2 3 4 5 - Very

safe Average Std. dev.

Around home station 4.6% 13.7% 24.9% 43.2% 13.7% 3.48 1.04
At home station 5.0% 13.8% 26.0% 42.4% 12.9% 3.44 1.04
Around activity station 2.7% 12.1% 35.9% 39.7% 9.7% 3.42 0.92
At activity station 2.9% 12.8% 33.9% 41.5% 9.0% 3.41 0.92

As table 5 shows, the sample has quite high satisfaction levels, the highest being trip satisfaction
with 74.4% respondents stating that they are satisfied or very satisfied, leading to an average score
of 3.85/5.

Table 5: Description of satisfaction variables in the SEM sample (N=1004)
Satisfaction with: 1 - Very

unsatisfied 2 3 4 5 -Very
satisfied Average Std. dev.

Access to/from the home station 2.8% 7.6% 18.7% 49.1% 21.8% 3.80 0.96
Surroundings of home station 3.8% 12.3% 27.0% 42.3% 14.6% 3.52 1.01
Home station 3.4% 8.3% 35.0% 41.7% 11.7% 3.63 0.96
Access to/from the activity station 2.7% 11.3% 21.4% 49.5% 15.1% 3.76 0.91
Surroundings of activity station 2.1% 7.1% 22.2% 50.2% 18.4% 3.50 0.92
Activity station 2.5% 8.8% 25.7% 51.5% 11.6% 3.61 0.89
Trip 3.3% 3.7% 18.6% 53.8% 20.6% 3.85 0.90

Lastly, tables 6 and 7 describe the facilities at/around stations from the SEM model. As the
activity stations are at more central locations, they have a lower share of large parking lots,
closed facades and isolated areas, while the share of urban life is also higher. In most cases
(86%), respondents did not experience problems seeing information screens at stations. A similar
percentage of respondents report good wayfinding at stations while crowdedness appears to be a
bigger problem at the activity-end.

Table 6: Description of attributes at and around home/activity stations in the SEM sample
(N=1004)

Home-end Activity-end
Attribute No Yes No Yes

Shops around 55.8% 44.2% 50.8% 49.2%
Urban life around 58.6% 41.4% 44.0% 56.0%
Large parking lots around 67.3% 32.7% 81.7% 18.3%
Closed facades around 81.2% 18.8% 84.2% 15.8%
Isolated areas around 76.7% 23.3% 85.4% 14.6%
Trees around 55.5% 44.5% 70.7% 29.3%
Problem seeing information screens 86.5% 13.6% 86.8% 13.3%
Respondent used elevator 83.6% 16.4% 84.9% 15.1%
Respondent used escalator 89.2% 10.8% 78.1% 21.9%
Respondent used stairs 31.7% 68.3% 35.0% 65.0%
Access via pedestrian street 64.2% 35.8% 57.4% 42.6%
Access via tunnel 72.2% 27.8% 74.2% 25.8%
Access via bridge 86.5% 13.6% 87.3% 12.8%
Access via bike path 70.5% 29.5% 78.9% 21.1%
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Table 7: Description of attributes at home/activity stations (N=1004) (b: The crowdedness
variable is reverse coded where 1: very crowded, 5: not crowded at all)

Attribute 1 2 3 4 5
Home station
Wayfinding 1.0% 3.4% 6.3% 27.0% 62.4%
Crowdednessb 4.8% 26.6% 24.4% 32.6% 11.7%
Activity station
Wayfinding 0.9% 5.6% 7.2% 31.0% 55.4%
Crowdednessb 12.5% 29.4% 24.6% 24.0% 9.6%

4 Results and discussion

To test our hypotheses, we estimated a SEM model. When designing the model, we looked at
the correlation between the variables described so far, and found that most of the attributes
measured both at and around the station were highly correlated. For example, two variables
measuring perceived safety at/around the home stations had a statistically significant correlation
coefficient of 0.86. This was also the case for the three satisfaction variables (at, around, access)
and environment variables. This informed the decision to create latent variables. Maintenance and
cleanliness variables were also highly correlated in all cases (>0.70). Therefore, we defined residual
covariances between these variables in the SEM model. The fit indices show acceptable model fit
with RMSEA and SRMR both below 0.08. However, CFI is slightly below the required level of
0.90 (Table 8).

Table 8: Goodness-of-fit measures of the SEM model

Num of. obs χ2 DoF P-value Comparative
Fit Index RMSEA SRMR

1004 4901.87 1712 0.00 0.862 0.043 0.064

We present the measurement part of our SEM model in table 9, and the structural part in tables 10
to 12. All indicators in the CFA have loaded into their corresponding latent variables with accept-
able loading, and the Cronbach’s alpha values were all above 0.70 thus suggesting good internal
consistency (Miller, 1995). We introduced these variables as explanatory, and in some cases, also
dependent variables in the structural part.
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Table 9: Measurement model (N=1,004)
Latent variable

(Cronbach’s alpha) Indicator Std.
Coef. Std.Err P-value Sig.

Satisfaction_home (0.84) Satisfaction with the home station 1 0.83
Satisfaction with access to/from the home station 0.72 0.04 0.00 ***
Satisfaction with surroundings of home station 0.75 0.04 0.00 ***

Noise_home (0.80) Noise at home 1.00 0.64
Noise around home 0.87 0.06 0.00 ***

Air_home (0.85) Air quality at home 1.00 0.74
Air quality around home 0.88 0.04 0.00 ***

Lighthing_home (0.82) Lighting at home 1.00 0.69
Lighting around home 0.81 0.04 0.00 ***

Maintenance_home (0.80) Maintenance at home 1.00 0.79
Maintenance around home 0.79 0.03 0.00 ***

Cleanliness_home (0.83) Cleanliness at home 1.00 0.82
Cleanliness around home 0.81 0.03 0.00 ***

Safety_home (0.93) Perceived safety at home station 1.00 0.99
Perceived safety around home station 0.89 0.03 0.00 ***

Satisfaction_activity (0.83) Satisfaction with the activity station 1.00 0.75
Satisfaction with access to/from the activity station 0.67 0.04 0.00 ***
Satisfaction with surroundings of activity station 0.67 0.04 0.00 ***

Noise_activity (0.84) Noise at activity 1.00 0.76
Noise around activity 0.88 0.04 0.00 ***

Air_activity (0.86) Air quality at activity 1.00 0.77
Air quality around activity 0.87 0.03 0.00 ***

Lighthing_activity (0.78) Lighting at activity 1.00 0.65
Lighting around activity 0.77 0.04 0.00 ***

Maintenance_activity (0.83) Maintenance at activity 1.00 0.76
Maintenance around activity 0.83 0.03 0.00 ***

Cleanliness_activity (0.84) Cleanliness at activity 1.00 0.78
Cleanliness around activity 0.86 0.03 0.00 ***

Safety_activity (0.92) Perceived safety at activity station 1.00 0.85
Perceived safety around activity station 0.91 0.04 0.00 ***

***: p <=0.001, **: 0.001<p <=0.01, *: 0.01<p <=0.05 , . : 0.05 <p <= 0.1

The models explaining the latent perceived safety variables at home and activity ends identify
isolated areas around stations, lighting conditions and gender as common significant predictors in
both cases (Table 10). While increasing levels of isolation reduce perceived safety, good lighting
conditions improve the experience. Men feel significantly safer than non-male respondents. At
home-end, urban life and trees also have positive and significant parameter estimates.

Table 10: Structural model - perceived safety (N=1,004)

Dependent variable Explanatory variable Std.
Coef. Std.Err P-value Sig.

Safety_home Shops around home station 0.03 0.06 0.38
Urban life around home station 0.07 0.06 0.04 *
Large parking lots around home station -0.03 0.06 0.29
Closed facades around home station -0.03 0.07 0.37
Isolated areas around home station -0.11 0.07 0.00 ***
Trees around home station 0.06 0.06 0.05 .
Lighting_home 0.46 0.07 0.00 ***
Maintenance_home 0.05 0.06 0.31
Male (Ref: Female and other) 0.14 0.06 0.00 ***

Safety_activity Shops around activity station 0.04 0.05 0.20
Urban life around activity station 0.03 0.06 0.32
Large parking lots around activity station -0.04 0.07 0.26
Closed facades around activity station -0.01 0.07 0.76
Isolated areas around activity station -0.13 0.08 0.00 ***
Trees around activity station 0.02 0.06 0.49
Lighting_activity 0.30 0.09 0.00 ***
Maintenance_activity 0.11 0.08 0.13
Male (Ref: Female and other) 0.13 0.05 0.00 ***

***: p <=0.001, **: 0.001<p <=0.01, *: 0.01<p <=0.05 , . : 0.05 <p <= 0.1

For satisfaction with trip ends, maintenance, perceived safety, wayfinding and problems with seeing
screens are significant at both ends (Table 11). Except for problems with seeing information screens,
these common predictors significantly increase satisfaction with trip ends. Satisfaction with the
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home station significantly reduces if the respondent has used escalators or stairs. This could imply
a dispreference towards level changes or an unpleasant experience due to dirty elevators or long
stairs.

Table 11: Structural model cont’d - satisfaction with stations (N=1,004)

Dependent variable Explanatory variable Std.
Coef. Std.Err P-value Sig.

Satisfaction_home Noise_home 0.00 0.07 0.94
Air_home 0.01 0.06 0.93
Lighthing_home 0.02 0.07 0.71
Maintenance_home 0.53 0.09 0.00 ***
Cleanliness_home 0.04 0.07 0.53
Safety_home 0.24 0.03 0.00 ***
Access via pedestrian street 0.08 0.05 0.01 **
Access via tunnel 0.02 0.05 0.54
Access via bridge 0.00 0.07 0.95
Access via bike path 0.11 0.05 0.00 ***
Wayfinding_home 0.15 0.03 0.00 ***
Problems seeing information screens -0.11 0.06 0.00 ***
Used escalator -0.06 0.07 0.04 *
Used stairs -0.08 0.06 0.01 *
Used elevator 0.02 0.07 0.52
Crowedness -0.02 0.02 0.43

Satisfaction_activity Noise_activity -0.07 0.07 0.34
Air_activity 0.03 0.08 0.67
Lighthing_activity 0.06 0.09 0.40
Maintenance_activity 0.54 0.11 0.00 ***
Cleanliness_activity 0.03 0.09 0.73
Safety_activity 0.14 0.03 0.00 ***
Access via pedestrian street 0.13 0.05 0.00 ***
Access via tunnel 0.02 0.05 0.52
Access via bridge 0.03 0.06 0.30
Access via bike path 0.05 0.06 0.13
Wayfinding_home 0.14 0.02 0.00 ***
Problems seeing information screens -0.09 0.06 0.00 ***
Used escalator 0.06 0.06 0.08 .
Used stairs -0.01 0.06 0.82
Used elevator 0.03 0.07 0.43
Crowedness 0.04 0.02 0.16

***: p <=0.001, **: 0.001<p <=0.01, *: 0.01<p <=0.05 , . : 0.05 <p <= 0.1

As table 12 shows, satisfaction with the station conditions in both trip ends has a significant
positive relationship with trip satisfaction. There is also a slight gender effect where men are less
satisfied than non-male respondents. Respondents without a car are also slightly more likely to be
satisfied with their trip. Education, which was added as a proxy for income, does not show a strong
effect. Lastly, all age categories are less satisfied than respondents over 70-years-old, however only
one of these categories is significant.
Unlike our expectation, satisfaction with the trip does not significantly influence frequency of PT
use. However, age and not owning a car have strong effects.
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Table 12: Structural model cont’d - trip satisfaction and frequency of PT use (N=1,004)
Dependent variable Explanatory variable Std.

Coef. Std.Err P-value Sig.

Satisfaction with
the trip

Satisfaction_home 0.28 0.05 0.00 ***
Satisfaction_activity 0.32 0.05 0.00 ***
Male (Ref: Female and other) -0.05 0.05 0.06 .
No cars (Ref: Car owner) 0.05 0.05 0.07 .
Education - Primary school (Ref: 2+ year higher ed.) -0.03 0.14 0.34
Education - Highschool (Ref: 2+ year higher ed.) 0.05 0.12 0.11
Education - Vocational (Ref: 2+ year higher ed.) 0.07 0.07 0.01 *
Education - Shrt higher education (Ref: 2+ year higher ed.) -0.02 0.10 0.58
Age - 18-29 (Ref: 70+) -0.06 0.16 0.04 *
Age - 30-39 (Ref: 70+) -0.06 0.12 0.06 .
Age - 40-49 (Ref: 70+) -0.05 0.09 0.12
Age - 50-59 (Ref: 70+) -0.06 0.07 0.08 .
Age - 60-69 (Ref: 70+) -0.08 0.06 0.02 *

Frequency of
PT use

Satisfaction with the trip -0.02 0.04 0.52
Male (Ref: Female and other) 0.00 0.08 0.95
No cars (Ref: Car owner) 0.20 0.08 0.00 ***
Education - Primary school (Ref: 2+ year higher ed.) -0.04 0.22 0.17
Education - Highschool (Ref: 2+ year higher ed.) 0.08 0.19 0.02 *
Education - Vocational (Ref: 2+ year higher ed.) 0.03 0.11 0.28
Education - Shrt higher education (Ref: 2+ year higher ed.) 0.02 0.15 0.49
Age - 18-29 (Ref: 70+) 0.01 0.25 0.77
Age - 30-39 (Ref: 70+) 0.09 0.19 0.00 **
Age - 40-49 (Ref: 70+) 0.11 0.14 0.00 ***
Age - 50-59 (Ref: 70+) 0.21 0.11 0.00 ***
Age - 60-69 (Ref: 70+) 0.12 0.10 0.00 ***

***: p <=0.001, **: 0.001<p <=0.01, *: 0.01<p <=0.05 , . : 0.05 <p <= 0.1

Discussion

This study found a high correlation between attributes measured at and around the stations. The
experience on the way to a station might have a lasting influence on the experience at the station
and vice versa, resulting in similar measurements. This should encourage planners to have a more
holistic approach when designing stations and urban environments. Respondents might also have
had difficulty differentiating between stations and their surroundings. However, as we explicitly
mentioned the difference in each question, we believe this to be less likely.
The perceived safety analyses confirm gender effects in line with the literature. Among the hy-
pothesised attributes, the presence of isolated areas and lighting were significant as expected while
it is interesting that maintenance, for example, does not influence perceived safety.
It is initially unexpected that trip satisfaction does not significantly affect the frequency of PT
use as, for example, Ingvardson & Nielsen (2019) found a positive significant relationship. One
key difference between the two studies is that our sample consists heavily of captive PT users who
never drive. Therefore, they might have to use PT even though they are dissatisfied as van Lierop,
Badami & El-Geneidy also highlight in their review (2018). Susilo & Cats (2014) also state that
choice users are often more satisfied than captive users.
As our structural model shows, home and activity ends have many significant parameters in com-
mon, although more factors are significant at the former. That said, many of the attributes at
both ends, such as perceived safety, were correlated and this might have influenced model findings.
One reason for this correlation can be the representation of the same stations with high passenger
volumes in both ends. Another reason can be respondents’ strong personal preferences. This will
be considered explicitly in future work.
While the SEM results provide interesting insights, the model can and will be further developed.
First, the SEM model lacks some important predictors of PT use such as service headway and
trip duration in comparison to other alternatives. We will include such variables to get a clearer
outcome and potentially improve model fit.
Second, the results are based on a relatively large sample of PT users, acting as a valuable source
to understand actual users’ needs and preferences. However, the age bias in the sample might
have had an effect on the findings as younger individuals’ preferences were under-represented. In
March 2023, we will send the survey to a subset of respondents from the Danish NTS between
2018-2022 to achieve a larger and more representative sample. This way, we can also include more
attributes such as bicycle parking which were left out due to having too many missing values. By
including less frequent PT users in the data set, we can also test whether the relationship between
satisfaction and ridership holds among different, and more representative, user groups.
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5 Conclusions

This study analyzed the influence of station characteristics, urban surroundings and perceived
safety on satisfaction as well as PT ridership, in East Denmark. Using 1,004 observations from our
tailor-made survey, we employed a SEM model and first, we created latent variables from environ-
ment attributes which are highly correlated at and around stations as well as perceived safety and
satisfaction variables. Second, we showed a significant relationship between (i) perceived safety
and satisfaction with trip-ends, and (ii) satisfaction with trip-ends and overall trip satisfaction.
While doing so, we identified which BE attributes should be present at stations and surroundings.
Lastly, we could not demonstrate a significant effect of trip satisfaction on frequency of PT use.
However, we expect that to be due to our sample’s high share of captive PT users. As part of our
future work, we will collect more data to achieve a more representative sample and incorporate
more trip-related attributes to our SEM model to further investigate the relationship between the
satisfaction constructs and PT ridership.
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SHORT SUMMARY 

This paper proposes a public transport-based crowdshipping concept as a complementary solu-

tion to the traditional parcel delivery system, where public transport users utilize their existing 

trips to carry out crowdsourced deliveries. To analyze the impact of public transport-based 
crowdshipping, we conduct a case study in Nørrebro district in Copenhagen using real-world 

data. Three scenarios with varying percentages of crowdshipped parcels are developed to be 

compared with the traditional distribution mode. For each scenario, the distribution of non-
crowdshipped parcels is formulated as a capacitated vehicle routing problem and solved by the 

adaptive large neighborhood search metaheuristic. Results show that applying public transport-

based crowdshipping could reduce the total vehicle kilometers traveled, the total working time 
of drivers, and the number of used vans (drivers) to perform last-mile deliveries. Moreover, 

public transport-based crowdshipping has great potential to reduce the total costs including driv-

ing costs, external costs, labor costs, and compensation. 

 
Keywords: City logistics; Last-mile delivery; Crowdshipping; Impact assessment. 

1. INTRODUCTION 

Facing the exponential growth of E-commerce, both logistics service providers (e.g., DHL) and 

E-retailers (e.g., Amazon) have experimented with crowdshipping as a complementary solution 

to provide efficient last-mile delivery. In such a system, ordinary people utilize their free capaci-
ty regarding time and/or space to perform parcel delivery with monetary compensation. 

 

Crowdshipping can be implemented in different ways. The main body of prior research and 

practical applications related to crowdshipping has focused on private personal vehicle use, 
where dedicated trips or detours are more or less unavoidable (Allahviranloo and Baghestani, 

2019; Punel and Stathopoulos, 2017). Such personal vehicle-based concepts often entail re-

bound effects resulting in emission increases instead of decreases (Buldeo Rai et al., 2018). 
Meanwhile, sharing economic concepts has often been criticized for undermining workers’ 

rights and creating a ‘gig-economy’ precariat (Paus, 2018). 

 
To balance these considerations, this paper proposes a public transport (PT)-based crowdship-

ping concept (see Figure 1). In PT-based crowdshipping, automated parcel lockers (APLs) are 
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installed in some PT stations to store small parcels. A proportion of parcels are transported from 

the depot to PT stations by trucks and then delivered by crowdshippers. The crowdshippers are 
PT users, who pick up the parcels from APLs installed in the PT stations at PT users’ origins 

before starting their PT trip and deliver the parcels to APLs installed in the PT stations at PT 

users’ destinations. The final recipients take the parcels from the APLs in the stations near the 

parcels’ destinations. The crowdshippers are compensated with credit for the transit system. 
This could ensure that only trips that would be taken anyway are utilized and that the task of 

crowdshipping cannot evolve into creating a new precarious job market lacking workers’ rights. 

 
 

 

Figure 1 Comparison of traditional distribution mode and public transport-based crowdshipping 

 

Three studies have examined the potential impacts of such a novel last-mile delivery system. All 
of them found that PT-based crowdshipping has positive impacts on reducing greenhouse gas 

emissions, vehicle kilometers traveled, etc. The PT-based crowdshipping concept in Gatta et al. 

(2018) and Karakikes and Nathanail (2022) is the same as our idea presented in Figure 1. Zhang 
et al. (2022) proposed another type of PT-based crowdshipping where PT users pick up parcels 

from APLs located in metro stations and deliver the parcels to the parcel’s end destination in-

stead of an APL in the PT user’s destination stop. 
 

Different from Gatta et al. (2018) and Karakikes and Nathanail (2022) which consider only 

installing APLs at metro stations, our study investigates a PT-based crowdshipping system with 

a denser network of APLs by extending the APLs network to some major bus stops so that more 
parcels could be delivered by crowdshippers. We determined the bus stops to install APLs and 

the vehicle routes to deliver the packages unserved by crowdshippers by solving a set covering 

problem and capacitated vehicle routing problem, respectively. The impacts of the PT-based 
crowdshipping were evaluated using real-world data in Copenhagen. 

2. METHODOLOGY 

To assess the impact of PT-based crowdshipping, three crowdshipping scenarios with varying 
percentages of crowdshipped parcels are simulated to be compared with the base scenario. The 

study area in this research is Nørrebro district in Copenhagen, the capital of Denmark. Nørrebro 

is located northwest of the city center, with an area of 3.82 km2 and a population of 71891. It 
has a high population density and good public transport coverage. 

Demand 

The parcel delivery data is provided by PostNord – the largest logistics service provider in 

Denmark. The study period is from October 11th to October 17th, 2021, representing a normal 
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operation week. On average, 864 parcels with 492 delivery points are delivered per weekday 

and 480 parcels with 146 delivery points are delivered on the weekend.  
 

The demand for crowdshipped parcels is influenced by many factors, e.g., goods’ attributes 

(category, weight, size), recipients’ social demographics (age, job), etc. Unfortunately, we do 

not have this information from the parcel data. Thus, we randomly select a certain number of 
parcels as crowdshipped parcels to reflect the ultimate effects of various influencing factors on 

demand for crowdshipping. When a sender places an order, he/she should specify whether the 

item to be delivered is a home parcel, collect parcel, or crowdshipped parcel.   

Supply 

Parcels distributed to Nørrebro are sorted in Brøndby distribution center, from where vans with 

small capacity depart, visit customers in Nørrebro, and finally return to the distribution center. 
The geographic distribution of the Brøndby distribution center and the study area is illustrated 

in Figure 2. 

 

 

Figure 2 Study area 

 

• Location of APLs 
 

The main public transport means in Denmark include bus, metro, S-train, and train. S-train 

serves the Copenhagen metropolitan area. It has 86 stations that connect the suburban and urban 

areas. The S-train system carries more than 357000 passengers a day. Two S-train stations near 
Brøndby distribution center, i.e., Glostrup station and Brøndbyøster station, are selected to in-

stall APLs for crowdshippers to pick up the parcels. Crowdshipped parcels are placed in the 

APLs installed in the two stations before 7:30 am and will be completed on the same day. 
 

We assume recipients only accept crowdshipped parcels delivered at PT stations within 500 

meters of their original delivery addresses (i.e., home address of home delivery parcels and col-
lect points of collect parcels). APLs are available at eight railway stations (i.e., S-train and met-

ro stations) within or near Nørrebro district. Since the eight railway stations cannot serve all 

recipients, seven bus stops are selected, by solving a set covering problem proposed by Toregas 

et al. (1971), to serve recipients that railway stations cannot serve.  
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The capacity of APLs at each selected PT station is unlimited by installing sufficient APLs. 
This assumption makes sense considering the following reasons. First, APLs are easy to install 

– one person can complete them in several minutes. Second, APLs are inexpensive. The long-

life battery inside the APL could work for ten years.  

 
• Crowdshippers  

 

The supply of crowdshipping is influenced by many factors, e.g., goods’ attributes (category, 
weight, size), crowdshippers’ social demographics (age, job), compensation, and extra time 

needed to perform delivery. Based on data from the Danish Rejsekort and the national Danish 

traffic model, around 400 daily trips are made from Brøndbyøster station and Glostrup station to 

Nørrebro. Although an additional effort is required to determine the number of trips to the se-
lected PT stations where APLs are installed, this provides an estimation of the overall volume of 

passenger traffic. According to Fessler et al. (2022), when the compensation is 10 DKK per 

parcel, a passenger’s probability of bringing a parcel is more than 30%. Increasing the compen-
sation would attract more passengers working as crowdshippers and encourage crowdshippers 

to bring more parcels on their trips. To estimate the maximum potential benefits of PT-based 

crowdshipping, we assume that all crowdsourced parcels could be performed by crowdshippers 
by allowing crowdshippers to bring multiple parcels on their trips and increasing the compensa-

tion.   

Scenario description 

In the base scenario (S0), all parcels are distributed by the logistics companies using their vans. 

In the crowdshipping scenarios S1, S2, and S3, 10%, 20%, and 30% of the parcels are randomly 

selected and assigned to crowdshippers, while the rest are distributed by the delivery vans. The 
routes of the vans are determined by solving a standard capacitated vehicle routing problem 

using the adaptive large neighborhood search (ALNS) metaheuristic (Ropke and Pisinger, 

2006). We generate 15 samples for each scenario of the daily parcel data to eliminate the sto-

chastic effects of randomly selecting crowdshipped parcels. S1 is easy to achieve when most 
crowdshippers bring one parcel and the compensation is 10 DKK per parcel, while the realiza-

tion of S2 and S3 requires more passengers to bring multiple parcels or more compensation paid 

to crowdshippers.   

3. RESULTS AND DISCUSSION 

Using the methodology introduced in section 2, we simulate the delivery operation of PostNord 
under different scenarios. Three indicators, vehicles kilometers traveled per day (including the 

travel distance of trucks that deliver crowdsourced parcels from the depot to selected PT sta-

tions), total working time of drivers (time spent by the driver from departure to return to the 

distribution center), and the number of used vans to serve Nørrebro, are used to describe the 
performance of each scenario. It is worth noting that the simulation result of the base scenario is 

validated by PostNord, which means the aforementioned three indicators obtained from our 

simulation are close to their actual operation on those days. The value of each indicator for each 
scenario is equal to the average value of the 15 samples of the scenario.  

 

 Impacts on vehicle kilometers traveled 
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Figure 3 presents the percentage change of vehicle kilometers traveled during the study period 

under different crowdshipping scenarios. All the signs are negative, indicating that using PT-
based crowdshipping as a complementary solution to last-mile delivery could reduce the vehicle 

kilometers traveled to deliver the parcels, even if some distances are needed to transport the 

crowdsourced parcels from the depot to PT stations. Moreover, the more parcels delivered by 

crowdshippers, the more percentage reduction of vehicle kilometers traveled occurred. First, it 
is shown that the average percentage reduction of vehicle kilometers traveled is 6%, 11%, and 

20% under scenarios S1, S2, and S3, respectively. Second, the percentage reduction of vehicle 

kilometers traveled on the weekdays (8%, 14%, and 25% for scenarios S1, S2, and S3, respec-
tively) is more significant than that on the weekend (2%, 4%, and 6% for scenarios S1, S2, and 

S3, respectively). 

 

 
 

Figure 3: Percentage change of vehicle kilometers traveled under different scenar-

ios 
 

• Impacts on total working time of drivers 
 

Figure 4 demonstrates the percentage change in drivers’ total working time under different sce-

narios. On average, drivers’ total working time could be reduced by 11%, 20%, 30% on week-

days and 7%, 15%, 21% on the weekend under scenarios S1, S2, and S3, respectively. This 
could reduce the increasing labor intensity of drivers. 

 

 
Figure 4: Percentage change of total working time under different scenarios 

 

• Impacts on the number of used vans 
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Figure 5 shows the change of the number of used vans to serve Nørrebro. The simulation results 

are in line with our intuition that when some parcels are transferred from vans to crowdshippers, 
the number of used vans should be less than or equal to that in the base scenario. The reduction 

of used vans on weekend is zero, because only one van is used in the base scenario. The parcels 

cannot be completely delivered by crowdshippers. Therefore, one van is still used in crowdship-

ping scenarios. The number of used vans keeps unchanged in S1 on October 11th and October 
13th. This indicates that the number of required vans (drivers) could be saved only when enough 

parcels are removed from vans to crowdshippers. Generally, if 20% of the parcels could be de-

livered by crowdshippers, one van (driver) is released. If the percentage of crowdsourced par-
cels reaches 30%, two vans (drivers) are released.  

 

 
 

Figure 5: Change of the number of used vans under different scenarios 

 
• Cost analysis  

 
Four types of costs are related to the PT-based crowdshipping, i.e., driving costs of vans and 

trucks, external costs of traffic (e.g., marginal costs of air pollution, traffic congestion), drivers’ 
salary, and compensation paid to crowdshippers. This section presents the potential befits of PT-

based crowdshipping based on the transport economic unit prices (TEUP) of 2022 prepared by 

Transport DTU and COWI for the Ministry of Transport (Denmark) 
(https://www.man.dtu.dk/forskningsbaseret-raadgivning/teresa-og-transportoekonomiske-

enhedspriser). 

 

The driving costs of vans and trucks include costs for fuel, tires, repair and maintenance, and 
depreciation. These costs are split into fixed and variable costs per hour and per kilometer, re-

spectively, in TEUP. The fixed costs for vans and trucks are 529 DKK/hour and 542 DKK/hour, 

respectively. The variable costs for vans and trucks are 1.82 DKK/km and 4.19 DKK/km, re-
spectively.      

 

The negative externalities of transport include air pollution, climate change, noise, accidents, 

congestion, and wear on the infrastructure. The marginal external costs are used to estimate the 
cost per kilometer for the external effects. The marginal external costs for vans and trucks are 

1.46 DKK/km and 6.01 DKK/km, respectively.  

 
The average salary for a postal delivery worker is 24274 DKK per month 

(https://www.paylab.com/dk/salaries-in-country?lang=en), and the compensation for 

crowdshipper is 10 DKK per parcel as Fessler et al. (2023) did in the field test.  
 

https://www.man.dtu.dk/forskningsbaseret-raadgivning/teresa-og-transportoekonomiske-enhedspriser
https://www.man.dtu.dk/forskningsbaseret-raadgivning/teresa-og-transportoekonomiske-enhedspriser
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Table 2 presents the four types of costs under different crowdshipping scenarios. The distribu-

tion of each type of cost under different scenarios is similar. The driving and external costs ac-
count for 25% and 1% of the total costs, respectively. Labor costs account for about 70% of the 

total costs, and the compensation for crowdshippers accounts for 0%-5% of the total costs. 

Compared with the base scenario, on average, the total costs of S1, S2, and S3 are reduced by 

8%, 13%, 24% on weekdays and 1%, 3%, 4% on the weekend, respectively. Based on Table 2, 
we conclude that by providing small compensation, PT-based crowdshipping has great potential 

to reduce last-mile delivery’s driving costs. Meanwhile, it could benefit logistics companies by 

reducing labor costs, but it might negatively impact laborers in terms of salary.   
 

Table 2: Cost analysis of public transport-based crowdshipping under different 

scenarios  

 

  11-Oct   12-Oct   13-Oct   14-Oct   15-Oct   16-Oct   17-Oct   

Driving costs 

(DKK) 

S0 16123 17275 17010 16239 15230 2717 7747 

S1 14117 15431 14882 14502 13558 2487 6965 

S2 12569 13648 13228 12887 12034 2256 6228 

S3 11239 12192 11806 11529 10780 2082 5618 

External costs 

(DKK) 

S0 288 314 292 282 279 58 140 

S1 281 289 283 255 252 57 138 

S2 253 286 255 253 251 56 137 

S3 225 259 228 225 223 56 137 

Labor costs 

(DKK) 

S0 42480 48548 42480 42480 42480 6069 18206 

S1 42480 42480 42480 36411 36411 6069 18206 

S2 36411 42480 36411 36411 36411 6069 18206 

S3 30343 36411 30343 30343 30343 6069 18206 

Compensation 

(DKK) 

S0 0 0 0 0 0 0 0 

S1 870 970 870 830 800 120 360 

S2 1730 1930 1740 1650 1600 240 720 

S3 2600 2900 2610 2480 2390 360 1080 

Total costs 

(DKK) 

S0 58890 66137 59782 59000 57989 8843 26092 

S1 57747 59169 58514 51998 51021 8732 25668 

S2 50962 58344 51634 51201 50297 8621 25291 

S3 44407 51761 44987 44576 43735 8566 25041 

Percentage 

change of total 
costs 

S1 -2% -11% -2% -12% -12% -1% -2% 

S2 -13% -12% -14% -13% -13% -3% -3% 

S3 -25% -22% -25% -24% -25% -3% -4% 

4. CONCLUSIONS 

This study investigated the impact of applying PT-based crowdshipping as a complementary 

solution to traditional last-mile delivery. We select the study area of the Nørrebro district in 

Copenhagen because of its high population density and good public transport coverage. Post-
Nord provides the parcel data. Three crowdshipping scenarios with different percentages of 

crowdsourced parcels are created to compare with the base scenario and identify the effects of 
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PT-based crowdshipping under different development stages. We use three indicators, i.e., vehi-

cle kilometers traveled, total working time of drivers, and the number of used vans, to evaluate 
the performance of different scenarios. All values of the indicators are reduced with the increas-

ing percentage of crowdshipped parcels. In the most optimistic scenario where 30% of the par-

cels are delivered by crowdshippers, the reduction percentage of the first two indicators reaches 

20% and 27% on average, and two vans (drivers) are released. The cost analysis shows that 
significant potential savings on driving and labor costs could be achieved by transferring some 

parcels to crowdshippers and providing them with small compensation. 
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Short summary

The current study presents a novel framework that aims to solve dynamic population evacuation
(DPE) problems, divided into two phases: planning and online evacuation management, utilizing
vehicular communication. During the planning phase, an initial evacuation plan is created by
dynamically solving the shelter allocation problem (SAP) to determine destination choices and
dynamic traffic assignment (DTA) to choose the best path to the selected destinations. Once
the evacuation process begins, the vehicular ad hoc network (VANET) enables communication
between evacuees, providing an opportunity to update initial decisions in real-time using VANET
under the vehicular cloud computing (VCC) architecture, which considers the dynamic evolution
of the hazard and traffic congestion levels. We apply the proposed online DPE framework to a test
case in Luxembourg City to benchmark with existing planning methods. The results demonstrate
that the proposed framework surpasses existing solution methods by more than 10% in network
clearance time. Furthermore, the proposed framework’s performance is evaluated by changing
the penetration rate of connected vehicles in VANET, which provides additional insight into the
framework’s effectiveness.
Keywords: Network evacuation, online disaster management, Telecommunication network, VANET,
shelter allocation, dynamic traffic assignment.

1 Introduction

According to Supian & Mamat (2022), the population residing in areas prone to natural disasters
and catastrophes faces danger as the frequency of such incidents is on the rise due to climate
change, leading to an increase in human casualties and environmental destruction. Effective evac-
uation orders are necessary to reduce the impact of these disasters, which can adapt to changing
hazards and the needs of evacuees in real-time. This can be achieved through telecommunication
technology, particularly dynamic population evacuation (DPE), using vehicle-to-everything (V2X)
communication Pan et al. (2016); J. Wang et al. (2019).
Determining the best evacuation plans requires considering the disaster’s characteristics, as the
evacuation orders’ objectives may vary depending on the type of disaster. The most common goals
of evacuation orders are to minimize the mean evacuation time or the total time Supian & Mamat
(2022).
To determine the best and most effective evacuation plans, it is crucial to consider the char-
acteristics of the disaster at hand. The type of disaster plays a significant role in determining
the objectives of evacuation orders given to evacuees. Typical objectives of such orders include
minimizing the mean evacuation or the total time Hajjem et al. (2017); Bayram & Yaman (2018);
Bayram et al. (2015), minimizing the network clearance time Hsu & Peeta (2014); Lim et al. (2015);
Zhao et al. (2016), and minimizing the total traveled distance Sheu & Pan (2014); Alçada-Almeida
et al. (2009).
Since the 1970s, DTA models have been used to analyze long-term, and short-term planning
problems Han et al. (2015). The reactive nature of both SAP and DTA limits their effectiveness
during the evacuation process, i.e., they are more contributing to the planning phase compared
to online management Pan et al. (2013). In this context, adding telecommunication technologies
moves one step forward by providing effective methods for proactive rerouting when an emergency
is predicted based on real-time traffic information. Since traffic conditions are very time-varying
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during an evacuation process, updating evacuation guidance messages frequently and quickly is
critical.
With the emergence of intelligent and connected vehicles, vehicular networks, particularly vehicular
ad hoc networks (VANET), were introduced in 2001 as a part of ad hoc mobile networks Olariu et
al. (2011); Zeadally et al. (2012). VANET have received much attention from research communities
in the last few years since it opened new doors of research (e.g., on vehicle and road safety, traffic
efficiency, etc.) in intelligent transportation systems (ITS) Al-Sultan et al. (2014); Hartenstein &
Laberteaux (2008).
With the growing demands of drivers, vehicles require empowering themselves in processing power,
computing resources, and storage space. Despite all the efforts made to satisfy all these require-
ments, VANET shows some disadvantages, such as the high costs generated by communication
between vehicles due to the high mobility of vehicles Qin et al. (2012). To support and serve all
drivers’ needs and ensure their comfort and safety, we have to increase the resources of VANET. As
a result, the concept of vehicular cloud computing (VCC) has emerged Gerla (2012); Mekki et al.
(2017) to enable vehicles to harness the benefits of cloud computing to satisfy certain requirements.
VCC concept refers to the use of cloud computing in VANET Gerla (2012); Mekki et al. (2017).
VCC allows vehicles to use the cloud resources required for a particular period, representing the
time they need to achieve their goals.
In this study, we realize that there is no study in the literature about considering vehicle rerouting
in the DPE context. However, the replanning decision is a critical part of the evacuation process
and can impact the success of the evacuation. This study proposes an online evacuation framework
to solve the DPE problem. The proposed methodology can dynamically assign evacuees to the best
shelter considering the current traffic conditions. Our model uses an initial plan for evacuation
that represents the output of solving SAP and DTA based on Idoudi et al. (2022). In our model,
we consider two phases of the evacuation process:

• Planning phase, considering the initial evacuation plan solving both SAP and DTA problems,
and

• Online evacuation management phase, which employs vehicular cloud computing technology
to modify the initial evacuation plan by shelter reallocation and rerouting evacuees according
to the dynamics of the network and evolution of the risk due to the disaster status.

Our methodology includes rerouting evacuees based on their distance from the risky zone and the
density of vehicles on the way toward the shelters, considering their communication capacity. We
implement the designed framework for a city-scale real test case to validate the model and compare
the evacuation results in the presence and absence of telecommunication technology. In addition,
we perform a sensitivity analysis on the penetration rate of equipped vehicles that can use the
VANET.
The rest of the paper is organized as follows. In the next section, we present the framework to solve
the evacuation problem. 3 is dedicated to presenting the case study and optimization scenarios.
We discuss the results in 4 and present the concluding remarks in 5.

2 Methodology

The resolution of the DPE problem through our model involves two primary steps: constructing
an evacuation plan by addressing the issues of SAP and DTA and providing real-time guidance to
reroute vehicles as necessary in congested areas. In this section, we will provide a detailed account
of the sequential process for executing each step of our formulation.
To provide an initial plan for planning purposes and in the dynamic setting, we adopt the method-
ology used in Idoudi et al. (2022). However, we aim to modify the planning model to adopt a
stochastic user equilibrium (SUE) instead of a pure user equilibrium (UE) solution. We introduce
a network layer for vehicular communication to capture network congestion for the online evacua-
tion management phase. Using this communication network, we can re-plan evacuation routes and
shelter locations during the evacuation process and provide real-time instructions to evacuees. We
employ a cloud computing scheme to implement this methodology, which is advantageous due to
its low implementation cost compared to fog or edge architectures, as noted in Gaouar & Lehsaini
(2021).
Figure 1 depicts the proposed methodology of our study in the Plan-Do-Check-Act (PDCA) dia-
gram format. The steps of the framework are detailed as follows:
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Table 1: The steps of the methodological process described in Figure 1
Start:
Step 1. Initial evacuation plan:

This step corresponds to solving the multi-level DTA and SAP to generate
an evacuation plan. The SAP is going for system optimal (SO), and the
DTA is formulated under SUE Idoudi et al. (2022).

Plan:
Step 2. Simulation for the current time step and set t=t+1: This step

corresponds to simulating the evacuation process that could be the same
as proposed by the plan, or new events could occur due to several decisions
made by evacuees in the previous time step. We have also to increment
the simulation time index.

Step 3. Data collection: This is the first part of our cloud computing architec-
ture wherein each vehicle (node) broadcasts data messages, using their
OBU, to RSUs that send it to the cloud server.

Step 4. Aggregation: In this step, we aggregate messages from different RSUs.
An evacuee could be connected to more than one RSU and broadcast his
message to all RSUs in his range of communication

Do:
Step 5. Risk update: In this step, we update the risk based on data from step

3. The considered risk consists of two main components: the vehicle’s
distance from a hazardous area and the congestion levels of the vehicle’s
location.

Step 6. Prediction of new travel times: In this step, the travel time of edges
might change according to the risk and congestion evolving by Step 4. In
this step, we use a prediction model to predict new travel times.

Check:
Step 7. Check for replanning: This step is for deciding whether a user i is

concerned by the rerouting process or not. For user i we estimate edge
density, including the road speed and traffic density based on the Green-
shield model Pan et al. (2016).

Step 8. Evacuees selection for replanning: This step corresponds to selecting
vehicles that to go to another safe destination or have to be rerouted
before getting inside a congested edge (road). For shelter reallocation, we
select vehicles if there is congestion in front of their original destinations,
and the server asks them to go to a less congested destination.

Act:
Step 9. Shelter reallocation and rerouting: In this step, we prepare a message

to the targeted users to ask them to reroute to the path with the current
shortest travel time having their planned shelter as a safe destination.

Step 10. Sending notification to evacuees: The step represents the second es-
sential part of our cloud computing scheme where the cloud server sends
its decisions to RSUs that forward the results to vehicles to react accord-
ingly.

End:
Step 11. Check stopping condition: This step checks if all the demand is evac-

uated, go to 12 otherwise go to 2.
Step 12. End of the simulation: In this step, we end the simulation of the

evacuation process,
Step 13. Result calculation : In this step and after ending the simulation, all

results are then calculated in terms of packet delay ratio, end-to-end delay,
and other measures.
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Figure 1: flowchart of the solving the DPE problem

3 Numerical experiments

In the preceding section, we introduced our framework for addressing the online DPE problem.
This section will apply the methodology to an actual network to validate the proposed solution.
We will begin by describing the selected test case, followed by discussing the experimental design.

Case study

We implement our proposed solution on a realistic network of Luxembourg city. The LuST scenario
provides the network. We have used a laptop with 1.7 GHz. and 16 GB of RAM to generate all the
results. We employed a solution method using the simulation-based DTA. For this, we performed all
simulations by SUMO simulator, and we calculated the C-logit model and the travel time prediction
by SUMO Lopez et al. (2018). In addition, we used ILOG CPLEX version 12.9 to implement the
SAP model and solve it. To simulate the scenario considering vehicular communication, we used the
Veins/Omnet++ simulator and a cloud computing architecture based on works done in Z. Wang
et al. (2020).
We applied our methodology to the realistic network of Luxembourg city Codeca et al. (2015).
Please refer to Idoudi et al. (2022) for the network and evacuation scenario characteristics.
Figure 2(a) presents the evacuation network map of Luxembourg. Figure 2(b) presents the real
network of Luxembourg with the size of 155.95 km2 and the traffic network graph considered by
Veins for dynamic simulation. We examine a hypothetical threat in the center zone affecting people
of that region colored in red in Figure 2(b). We do not assume any super source nodes (risky nodes)
in this study. Four origin nodes are considered evacuation sources in the risk zone (see Figure 2c in
Idoudi et al. (2022)). Vehicles carrying people should be evacuated to safe destinations (shelters),
colored in green in Figure 2(b), and placed at the border of the network. We set the duration
of each planning departure time interval (η) to 20 minutes for the simulation, considering the
network’s size. The demand at each node is 200 vehicles at each period. We have selected four
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(a) Luxembourg mapping data ©Google 2022 (b) SUMO city network

(c) OMNET++ communication network (d) Communication between nodes in VANET

Figure 2: Vehicular communication map of Luxembourg city

origin nodes and four shelters, each with a capacity to hold 1500 evacuees. Therefore, the total
demand is 600 vehicles per origin for the planning horizon (H). Figure 2(c) shows the vehicular
communication network in the OMNET++ simulator. Figure 2(d) illustrates the message exchange
process between vehicles and the network infrastructure.

Study optimization scenarios

In this study, we design four scenarios to investigate the impact of planning and online orders on
the DPE problem. The scenarios are detailed below:

• Scenario P+C: Scenario with both planning and vehicular communication: This
scenario follows the proposed framework (demonstrated in Figure 1).

• Scenario P: Scenario with the initial plan only: This scenario illustrates the case
of just planning for evacuation without any communication between vehicles or vehicles to
RSUs. It means that we do not reroute evacuees during the evacuation process; they just
follow the initial plan.

• Scenario C: Scenario with vehicular communication only: This scenario is the same
as Figure 1) except in step 1 where evacuees consider the nearest shelter and choose their
routes following the SUE.

• Scenario N: Naive scenario without any optimal plan and vehicular communica-
tion: This scenario represents the case where the system operators do not provide guidelines
for evacuees. It means the evacuees choose the nearest shelter and their routes following the
SUE.

5



4 Results

In this section, the results for the four mentioned scenarios were executed on the synthetic demand
profile. Table 2 presents the results for the four scenarios. The results show a significant improve-
ment in the quality of the final solution obtained by scenario P+C wherein we used both planning
and online guidance models. For instance, the reduction of more than 18 minutes (39%) in the net-
work clearance time compared to the naive scenario. Also, there is an improvement of more than
3 minutes (10%) between scenario P+C and scenario P. Results show that scenario P represents
the second-best solution. The comparison between scenarios P+C and P proves that new orders
handling new events not expected in planning create a more successful evacuation operation.
Besides, scenario C provides a better solution than scenario N, meaning that using the telecom-
munication network can improve the evacuation solution, even without any planning phase. This
observation could prove the effectiveness of online communication and highlights the importance of
giving new orders to evacuees to revise their route choice during the evacuation process. Inspect-
ing the result for scenario P and scenario C, we can observe that planning contributes more than
telecommunication during the evacuation operation. One of the reasons behind this observation
is that in scenario C the shelter allocation was done without considering the congestion level. We
have monitored scenario C to have a better view and understand more of the effect of online evac-
uation guidance. We observe that allocating all users to the same nearest shelters in all evacuation
operation generate congestion that cannot be escaped even by using online vehicle rerouting. That
is why different shelters, like in scenario P in each state, will ensure that we assign evacuees to the
closest destinations in terms of time-dependent shortest path and not distance measure.

Table 2: Performance metrics
Metrics / Scenario P+C P C N
Network clearance time(s) 1775.00 1980.00 2765.00 2835.0
Mean evacuation time(s) 1071.54 1093.70 1407.92 1447.61
Average travel delay (ATD) 205.47 220.62 341.63 349.78
Average evacuation delay
(AED)

241.32 366.65 366.65 392.12

The decrease in mean evacuation time in 2 shows that the online DPE improves the evacuation
solution. Compared to the second best, the proposed model used in scenario P+C generates better
ATD for evacuees with more than 6% of reduction. The improvement is remarkable for AED
(34%). We mention that including telecommunication network gives us some errors and delays in
sending and receiving messages. In both cases, P+C and C, we have around 205.30 ms for the
end-to-end delay and PDR around 74%.

Sensitivity analysis on penetration rate

The sensitivity analysis on the penetration rate is performed on the Luxembourg city map. As-
suming that 100% of the evacuees are using connected vehicles is not currently realistic, and it can
be reachable in the future. That is why we should consider multiple penetration rate values. In
the case of x% of penetration rate, we select connected vehicles with a random distribution. Only
this x% is sending positioning information and receiving online orders. Thus, the cloud server sees
and guides only this x% of the vehicles.
Figure 3(a) illustrates the change in the number of vehicles evacuating in the network for five
scenarios. The curves shown in this figure represent different penetration rate values.
Figure 3(b) follows the results of the distribution of accumulation of users in the network. In
addition, Figure 3(b) depicts the evolution of the mean speed in the evacuation operation. The
maximum network speed limit is the free-flow speed (21 m/s) attained when the network does
not have any vehicles. The network speed illustrated by Figure 3(b) shows that having a 100%
penetration rate is the fastest curve by arriving at the free-flow speed in the shortest time. Also,
the figure presents the result of the mean speed variation of other penetration rates showing that
there is not a huge difference between 70% and 30% penetration rate on network clearance time
(the arrival to the free-flow speed). Figure 3(b) shows that adding the communication layer, even
with different penetration rates, positively affects the evacuation process. It means that the online
solving of DPE uses the network’s capacity better than just planning. We conclude that using 30%
of the penetration rate is more realistic, and its results are comparable to having 100%.
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(a) Number of active users in the network variation

(b) Network mean speed variation

Figure 3: Performance measures variation over different penetration rates

5 Conclusions

The timely evacuation of affected populations during a disaster is critical in reducing the overall
impact of the event. In this paper, we focus on the dynamic population evacuation (DPE) problem
and propose a framework for effectively modeling and optimizing the evacuation process to save
as many lives as possible in a faster and more efficient manner. We divide the evacuation problem
into two parts: the first part involves creating an optimal evacuation plan that considers dynamic
shelter allocation and traffic assignment, while the second part involves considering new orders for
the online guiding system.
Our framework captures the dynamics of the evacuation process by using a traffic simulator to
build an evacuation planning process to determine shelters and routes. We then perform an online
management procedure during the evacuation, allowing vehicles to send and receive data to update
their routes. To achieve this, we use a cloud computing architecture comprising vehicles, roadside
units (RSUs), and a distant cloud server.
We apply our methodology to the real-world networks of Luxembourg and show that our proposed
model outperforms the model with only evacuation planning by reducing the network clearance time
by more than 10% in the medium-scale network of Luxembourg. Our framework also effectively
improves network capacity in terms of speed even at a low penetration rate of connected vehicles.
We consider only rerouting and shelter reallocation to manage the online evacuation process in
this study, and currently, we are working on a real large-scale test case of evacuation in California
state in USA. We also plan to perform a sensitivity analysis on the shelter allocation objective
to search for the best objective that minimizes more the clearance time measure. As future work
could consider departure times before and during the evacuation, as well as the behavioral reactions
of users to evacuation orders. We also aim to extend our framework to include other modes of
transport, such as buses. Additionally, we aim to improve our framework by implementing a more
accurate travel time predictor.
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SHORT SUMMARY 

Activity changes during the COVID-19 lockdown brought an unprecedented opportunity to 
understand the likely effectiveness of prospective air quality management policies on reducing 
air pollution. Using a regression discontinuity design for causal analysis, we show that the first 
UK national lockdown led to unprecedented decreases in road traffic yet incommensurate and 
heterogeneous responses in air pollution in London. At different locations, changes in air pollution 
attributable to the lockdown ranged from -50% to 0% for NO2, 0% to +4% for O3, -5% to +0% 
for PM10 and there was no response for PM2.5. Using explainable machine learning, we show that 
the degree to which NO2 pollution was reduced in an area was correlated with spatial features 
(including road freight traffic and proximity to a major airport and the city centre), and that 
existing inequalities in air pollution exposure were exacerbated: pollution reductions were greater 
in places with more affluent residents and better access to public transport services. 
 
Keywords: Air pollution; Causal analysis; COVID-19; Explainable machine learning. 

1. INTRODUCTION 

Various interventions have been implemented in cities to improve air quality. However, the 
impact pathways from an intervention to air quality can incorporate various factors and 
complicated interactions among factors, which presents challenges to both isolating the 
intervention effect and quantifying the contribution of different factors to the net effect. Recently, 
the rapid development of interpretation methods for machine learning (ML) models to achieve 
explainable ML has provided an opportunity to gain insights into complicated relationships 
among high-dimensional variables (Molnar et al., 2022). Unlike black-box ML models, 
explainable ML seeks to make the outputs and processes of ML models more interpretable and 
understandable to humans and has been applied in various fields to support decision-making 
(Guidotti et al., 2018; Molnar et al., 2022). 
 
Activity changes during the COVID-19 lockdown brought an unprecedented opportunity to 
understand the likely effectiveness of prospective emission control policies in improving air 
quality. Different methods have been applied to quantify the air quality impacts of lockdowns, 
including comparing air quality levels before and after the lockdown, using bottom-up 
simulations, predicting business-as-usual concentrations with ML models, and applying causal 
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inference methods (Dang & Trinh, 2021; Jephcote et al., 2021; Menut et al., 2020; Venter et al., 
2020). Compared with other methods applied, causal inference methods generally have 
advantages in data requirement, model building, and the interpretation of effect estimates. 
However, due to the complexity of atmospheric processes, previous studies of this type had a 
typical limitation by using a parametric confounding control for weather conditions. Meanwhile, 
several studies found heterogeneous air quality effects of lockdowns (Fassò et al., 2021; Vadrevu 
et al., 2020). However, most of them focused on depicting the variation in effects across 
subsamples of cities or countries; few compared effects within a city or further evaluated the 
contribution of factors to the heterogeneity of effects. 
 
In this paper, we provide an analysis of the changes in London’s air quality attributable to the first 
UK COVID-19 lockdown with a causal inference approach. To overcome the typical limitation 
in confounding control, the meteorological normalisation technique is applied to non-
parametrically control for weather conditions and seasonality effects. To further understand the 
spatial heterogeneity in the lockdown impacts, we additionally evaluate the contribution of 
different factors to the level of lockdown impacts by interpreting a predictive ML model with 
SHapley Additive exPlanations (SHAP) values. Various factors are considered, such as economy, 
demographics, transport demand, public transport supply, and geographical location. The 
identification of key factors affecting pollution reduction within a city can provide further 
guidance in improving air quality and help to shape our city with better and more equitable design, 
planning, and management.  

2. METHODS 

The research framework of this paper is shown in Figure 1. The method for quantifying the causal 
air quality impacts mainly follows Ma et al. (2021b). The evaluation is applied at individual air 
quality monitoring sites within London for regulated air pollutants including NO2, O3, PM2.5, and 
PM10, and a non-regulated pollutant NOx. Specifically, meteorological normalisation is first 
applied to control important confounders. A Gradient Boosting Decision Trees (GBDT) is used 
to consider complex relationships among model variables. A normalised concentration time series 
is derived by removing the variation in the observed concentrations that can be explained by input 
confounders. Change point detection (CPD) is then conducted to detect structural changes in the 
normalised concentration time series; the results are used to support the research period 
specification and test a key model assumption for the next step. A sharp regression discontinuity 
design (RDD) is then specified on the normalised concentrations where a site had at least one 
change point around the start of the lockdown 𝑇!, i.e. showed a response. As a causal inference 
method, sharp RDD goes beyond comparing air quality before and after 𝑇!. The inference is based 
on a trend function approximation and quantification of effect at the discontinuity of a trendline 
either side of 𝑇!, which makes it less vulnerable to random noise and unrelated events (Ma et al., 
2021b). With the estimated RDD coefficients, the lockdown effect 𝜏 is derived by stacking the 
impact from the current daily period and those from lagged periods. The interval estimates of 𝜏 is 
provided with a Monte Carlo simulation in Ma et al. (2021a). The 𝜏 estimates at different sites 
are aggregated with a bootstrapping in Ma et al. (2021a) for a city-wide mean.  
 
To further interpret the spatial heterogeneity of impacts, 124 spatial features are evaluated based 
on their contribution in predicting the pollution reduction due to lockdown, using explainable ML 
(details in Figure 1). The evaluation is conducted at the Middle Layer Super Output Area (MSOA) 
level and focuses on the changes in annual mean concentrations of NO2 in 2020 caused by the 
lockdown. Particularly, the annual mean concentration is estimated in two scenarios at individual 
sites: with and without lockdown. Mapping methods are then applied to estimate the pollution 
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reductions attributable to the lockdown at MSOAs; the mapping model mainly follows Horálek 
et al. (2019), which combines a linear regression and ordinary kriging of residuals. A GBDT 
model is then built on the estimated pollution reduction with the features at MSOAs, separately 
for absolute and relative reductions. The key hyperparameters of GBDT are automatically tuned 
with Bayesian optimisation. As the widely used feature importance metrics (such as total gains) 
do not directly indicate how the level of the output variable is affected by features, we use the 
SHAP values (an approximation of Shapley values) to interpret our GBDT models. The Shapley 
value is a key solution in cooperative game theory and can also be classified as an additive feature 
attribution method for a local explanation of complex predictive models (Lundberg et al., 2020). 
An additive feature attribution method is characterised by assigning a contribution 𝜙" to each 
feature, with the sum of {𝜙"} approximating the original model predict (Lundberg et al., 2020). 
Therefore, 𝜙" 	is in the same unit as the model’s output and, consequently, can provide a better 
interpretation compared with using total gains. Moreover, Shapley values have advantages over 
the other methods of this class, as they can provide a single unique solution to assigning 
contributions with desirable properties (Lundberg et al., 2020).  
 

 
 

Figure 1. Graphical summary of the methodology for air quality effect estimation (left) and 
feature evaluation (right). The output/conclusion is coloured green. The left column (purple) goes 
through each concentration time series. The right column is either conducted on each monitoring 
site (blue) or focused on MSOAs (orange). 

3. RESULTS AND DISCUSSION 

COVID-19 lockdown effects on air quality 

Road traffic in London dropped by up to 65% during the lockdown (Transport for London, 2020). 
However, our results show that the relative change in NO2 caused by the lockdown ranged from 
-50% to 0% at different monitoring sites. Among them, 44% of the 45 sites close to roads 
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(roadside sites) and 70% of the 33 sites measuring town-wide pollution levels (background sites) 
showed a small reduction (<10%) or a null response. Aggregating the effects across London, the 
lockdown reduced NO2 concentrations by 12% at roadside sites and 7% at background sites on 
average. For other pollutants, the relative change attributable to the lockdown ranged from -62% 
to 0% for NOx, 0% to 4% for O3, -5% to +0% for PM10, and there was no response for PM2.5. 
Unlike NO2 and NOx, the regional contribution to PM and O3 is substantial (Greater London 
Authority, 2020). Our results imply that reducing transport activities and restricting exhaust 
emissions are not sufficient to tackle air pollution, particularly for those at background locations 
and for pollutants that are largely affected by regional emission sources. 
 
Our estimated air quality impacts of the lockdown are generally consistent with previous studies 
in that we find more marked reductions in NO2 concentrations yet less significant changes in other 
regulated pollutants. However, our estimates are not as large as those of Jephcote et al. (2021), 
who reported an average reduction of 38% and 17% respectively in NO2 and PM2.5 concentrations 
and an average increase in O3 concentrations of 8% across the UK during the first lockdown. 
Jephcote et al. (2021) estimated the impacts by comparing the air quality observations between 
the lockdown period and the same period in previous years. However, this approach may be biased 
by differing meteorological conditions and long-term trends in air quality. Particularly, air quality 
in the UK (both NO2 and PM) has improved year on year in most major cities, including London 
(Department for Environment Food & Rural Affairs, 2020; Ma et al., 2021b). Therefore, 
comparing air pollution levels across different years is likely to overestimate the air quality 
impacts attributable to the lockdown. 
  
Another study by Shi et al. (2021) reported abrupt but smaller than expected changes in air quality 
attributable to the lockdown in 11 cities globally. For London, they found that the lockdown 
changed background concentrations of NO2, O3, and PM2.5 respectively by -8 ± 8%, -2 ± 8%, 
and +11 ± 17%. While our results for NO2 and O3 are similar, the results for PM2.5 differ. Shi et 
al. (2021) estimated the lockdown impact by the relative change in air pollution before and after 
the lockdown in 2020 after subtracting the relative change over the same period in the average 
concentrations across the previous 4 years. Their estimated impacts for PM could be biased by 
PM episodes during their research period, between March and April in 2016-2020. PM episodes 
are a regular feature in springtime in western Europe; particularly, two episodes due to regional 
pollution transport were recorded in London in their specified post-lockdown period (Imperial 
College London, 2021). Although they applied a meteorological normalisation, this technique 
may not be effective to control for abrupt natural events or regional pollution transport (Shi et al., 
2021). Consequently, the pollution increase estimated in Shi et al. (2021) for PM2.5 may 
incorporate the influence of these recorded episodes. In contrast, our study focuses on the time 
around the start of the lockdown, using CPD for response identification and subsequently a sharp 
RDD for effect estimation, and are therefore less susceptible to the influence of pollution 
episodes. 

Factors affecting lockdown effects 

The first UK national lockdown is estimated to have caused spatially heterogeneous impacts on 
NO2 concentrations in London. By using explainable ML, we find that the degree to which NO2 
was reduced in an area was mostly correlated with the proportion of heavy goods vehicles (HGVs) 
in road traffic before the lockdown, the distance to London Heathrow Airport (LHR), and the 
distance to the Central Activities Zone (city centre); see Figure 2. This finding is generally 
consistent with Yang et al. (2021), who found the NO2 reduction in Los Angeles during the 
lockdown was primarily due to the changes in HGVs’ activities. In addition to feature ranking, 
our results also show that a lower proportion of HGVs in road traffic and closer proximity to LHR 
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are associated with greater pollution reductions in most MSOAs; however, different areas can 
have opposite effects from a short distance to the city centre.  
 

 

Figure 2. Estimated local SHAP values (left) and global feature importance (right) quantifying 
the contribution of each feature to the relative reduction in NO2 due to lockdown. a Each point is 
a SHAP value specific to a feature and an MSOA; the colour of a point indicates the feature value 
for that MSOA; points are spread out in the y-axis to avoid overlap. b The global importance is 
calculated as the mean absolute SHAP value across MSOAs; the colour indicates the Pearson 
correlation between feature values and SHAP values across MSOAs; for example, a negative 
correlation (green) indicates that a higher feature value is generally associated with a smaller 
pollution reduction. Features are sorted by global feature importance; the top 20 features are 
plotted. 
 
Furthermore, our results reveal that the existing health inequalities within the city were 
exacerbated during the lockdown: areas with lower-income residents, which have also been 
exposed to high levels of air pollution before the pandemic (Barnes et al., 2019), typically 
experienced smaller NO2 pollution reductions during the lockdown. Particularly, areas with 
median incomes below the 10th percentile experienced a mean decrease in pollution reduction of 
0.6 percentage points (pp), while those with median incomes above the 90th percentile experienced 
a mean increase in pollution reduction of 0.3 pp (Figure 3). Moreover, we find places with higher 
public transport accessibility levels were generally associated with a larger pollution reduction 
(Figure 3). Therefore, our results highlight the link between existing social inequalities and the 
effects of air pollution control policies.  
 
While close proximity to the city centre is estimated to enhance pollution reduction in several 
cases (Figure 2), the areas that are closer to metropolitan town centres were commonly less 
affected compared with the areas further away (Figure 3). As people tended to make local trips 
during the lockdown, our result implies the potential of alleviating air pollution in the city centre 
by revitalising local town centres to reduce the need for travel. Particularly, a shift towards 
remote/hybrid working may continue in the UK after the pandemic (Transport for London, 2020), 
which is likely to further enhance the role of town centres. However, policymakers should be 
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mindful of the potential deterioration of air quality around town centres following the 
development. 

 

Figure 3. Relationship between public transport accessibility level, median gross annual pay for 
residents, the distance to the nearest metropolitan town centre, and the SHAP value for a the 
relative impact (pp) and b the absolute impact (µg/m3). Each point shows the feature value (x-
axis) and corresponding SHAP value (y-axis) at a particular MSOA. The sign of the SHAP value 
indicates how the feature value contributes to the predict of the lockdown impact at that MSOA 
(positive: increasing pollution reduction; negative: decreasing pollution reduction). The Pearson 
correlation (R) between the feature value and the corresponding SHAP value across MSOAs is 
labelled on each plot.   

4. CONCLUSIONS 

Our study shows that the unprecedented decrease in transport activities following the COVID-19 
lockdown led to an incommensurate reduction in air pollution. Improving air quality in cities 
requires a multi-faceted set of policies to control emissions across sectors and full consideration 
of inequalities. Within the transport sector, a sustained effort is necessary to consistently guide 
the city for health and equality, such as by reducing emissions for freight transport and airport-
related activities, facilitating and encouraging active travel and public transport, and integrating 
transport planning with land use planning.  
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Short summary

When estimating discrete choice models, the prospect of using ever-larger datasets is limited by the
poor scalability of maximum likelihood estimation. This paper proposes a simple and fast dataset
reduction method that is specifically designed to preserve the richness of observations originally
present in a dataset, while reducing its size. Our approach leverages locality-sensitive hashing to
create clusters of similar observations, from which representative observations are then sampled
and weighted. We demonstrate the efficacy of our approach by applying it on a real-world mode
choice dataset; the obtained results confirm that a carefully selected and weighted subsample of
observations is capable of providing close-to-identical estimation results while being, by definition,
less computationally demanding.
Keywords: discrete choice models, maximum likelihood estimation, dataset reduction, sample
size, locality-sensitive hashing

1 Introduction

When estimating DCMs, the use of ever-larger datasets raises two issues: (i) the number of possible
model specifications exponentially grows with the number of potential explanatory variables, im-
plying that analysts must spend more time searching for good models; and (ii) the computational
cost of maximum likelihood estimation increases with the number of observations, quickly becom-
ing intractable even for basic model structures. While the first issue has spurred great interest (van
Cranenburgh et al., 2021), the second has received much less attention: to deal with the increased
computational cost associated with large datasets, effort has mostly been dedicated to improving
the optimization methods used to estimate DCMs (Lederrey et al., 2021; Rodrigues, 2022) or to
enhancing their implementation (Molloy et al., 2021; Arteaga et al., 2022).
This study explores an alternative approach, which consists in reducing the size of datasets by
sampling their observations. Removing observations from a dataset is usually advised against by
econometricians and choice modelers, but has nevertheless become common practice when training
machine learning models on large amounts of data: given the iterative nature of model specification,
the use of a smaller sample that provides good approximations of the model’s quality allows for
early modeling decisions to be taken significantly faster (Park et al., 2019).
To the best of our knowledge, only two studies explore this same idea in the context of discrete
choice modeling. The first one is van Cranenburgh & Bliemer (2019): their proposed method
scales down any dataset to a predefined fraction of its original size while iteratively minimizing an
estimate of the D-error, obtained by means of a simplified version of the model of interest. The
second direct precedent of this study is Schmid et al. (2022), in which the authors use the k-means
algorithm to identify clusters of similar observations and sample from those as a pre-processing
step. Both methods are computationally heavy, which severely limits their usage.
We propose a simple and extremely fast dataset reduction technique that is designed to introduce
as little bias as possible in the parameter estimates of the model of interest. Our approach lever-
ages locality-sensitive hashing (LSH) to create clusters from which representative observations are
sampled, similar to Schmid et al. (2022). The observations obtained in such way are then given
weights that are proportional to the sizes of the clusters they represent, so as to mimic the full
dataset during the model estimation process. As argued in the following sections, we believe that a
carefully selected and weighted subsample of observations is capable of providing close-to-identical
estimation results while being, by definition, less computationally demanding.
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2 Methodology

Intuition

Consider a choice dataset of N observations (xn, in), each consisting of a vector xn of explanatory
variables associated with individual n, together with the observed choice in of that same individual
among J alternatives. In its simplest form, a discrete choice model P (i |xn; θ) calculates the
probability that individual n chooses alternative i as a function of xn and θ, where θ is a vector of
model parameters to be estimated from the data.
The values of the model parameters are typically determined through maximum likelihood estima-
tion, which consists in finding the values of θ that maximize the joint probability of replicating all
observed choices in the dataset. In practice, the logarithm of the likelihood is usually maximized
instead, for numerical reasons. The log likelihood function is therefore defined as

L(θ) =
N∑

n=1

logP (in |xn; θ) . (1)

Let us now assume that the dataset contains some observations that are identical in all explanatory
variables and in the observed choice. By partitioning the observations into G < N groups of
identical observations, we may rewrite (1) as

L(θ) =
G∑

g=1

Ng · logP (ig |xg; θ) , (2)

where Ng denotes the size of group g and ig and xg are the observed choice and explanatory
variables shared by all observations in group g, respectively. (1) and (2) are equivalent and, as
such, yield the exact same parameter estimates when maximized. However, since G < N , the
computational cost of evaluating (2) is smaller, by a ratio of approximately G

N .
The idea behind our dataset reduction method is to extend this “factorization trick” to observations
that are nearly identical. The number of distinct groups is thereby further reduced and so is the
computational time associated with evaluating the log likelihood function and its gradient. This
comes at the cost of degrading the estimation results, because part of the information contained
in the dataset is lost; still, the use of an adequate clustering scheme limits said degradation while
granting our method a certain reliability. The clustering technique chosen for this purpose is
locality-sensitive hashing (LSH), which we introduce now.

Locality-sensitive hashing

LSH is an efficient method for gathering similar data points into clusters —or buckets. It achieves
this goal by combining the outcomes of several hashing functions, designed in such way that pairs
of items are more likely to be hashed to the same bucket if they are close to each other in their
original space than if they are far apart. A considerable advantage of LSH over other clustering
techniques is that its computational complexity is linear in the number of items to be hashed.
A family of LSH functions H = {h : (M,d) → Z} is a collection of functions h that map elements
of a metric space (M,d) onto the set of integers Z (Leskovec et al., 2020). Each integer represents
a different bucket, and two data points xp and xq belong to the same bucket of function h if and
only if h(xp) = h(xq). For instance, a well-known family of LSH functions is given by

ha,b(x) =

⌊
a · x+ b

w

⌋
, (3)

where ⌊ · ⌋ denotes the floor function, a is a vector whose entries are independently drawn from a
normal distribution N (0, 1), b is a real value chosen uniformly from the range [0, w) and w is the
bucket width (Arnaiz-González et al., 2016). One may see (3) as a projection of all data points
onto a line whose direction is given by vector a; an offset equal to b is added to all projected points
before the line is discretized into uniform intervals of size w. All data points that fall in the same
interval are therefore assigned to the same bucket.
The value of w is context-dependent. By changing the bucket width, one can choose an appropriate
degree of similarity within buckets: a sufficiently small w only groups points that are exactly
identical, whereas greater values result in fewer buckets that contain larger amounts of increasingly
dissimilar points.
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Another way of improving the discriminative power of LSH is to combine several hash functions.
In the case of the family defined by (3), suppose a and b are drawn R times: now, two data points
xp and xq belong to the same bucket if and only if they are hashed together by all R functions,
i.e.:

HA,B(xp) = HA,B(xq) ⇐⇒ har,br (xp) = har,br (xq) ∀r = 1, . . . , R, (4)

where A = (a1, . . . , aR) and B = (b1, . . . , bR) gather the R realizations of a and b, respectively.
Increasing R reduces the joint probability that two data points are grouped together by all pro-
jections.

LSH-based dataset reduction (LSH-DR)

Our dataset reduction algorithm has three ingredients: (i) an LSH function or a combination of LSH
functions capable of partitioning a dataset of size N into buckets that contain similar observations;
(ii) a sampling strategy, based on which some observations are selected from each bucket; and (iii) a
weighting scheme that assigns a weight Ng to each selected observation (xg, ig). The G observations
obtained in such way, together with their associated weights N1, . . . , NG, constitute the outcome
of our method. Any model of interest may then be estimated on the obtained subsample rather
than on the whole dataset by using the log likelihood function of (2), with ig and xg now referring
to the observed choice and explanatory variables associated with the g-th selected observation,
respectively.

Clustering Our method uses the family of LSH functions introduced in (3) with, as parameters,
the discretization step w and the number of projections R. It is crucial that prior to hashing, all
explanatory variables are normalized such that their values are between 0 and 1. The individuals’
choices are not taken into account during the clustering, which implies that the buckets might
be heterogeneous, i.e., observations with different chosen alternatives might end up in the same
bucket.

Sampling The current version of our method randomly selects one observation from each al-
ternative in each bucket.

Weighting Each selected observation (xg, ig) is given a weight Ng that is equal to the number
of observations that share the same bucket HA,B(xg) and the same chosen alternative ig:

Ng = |{(xn, in) | HA,B(xg) = HA,B(xn), ig = in}| . (5)

Jointly, the adopted sampling strategy and weighting scheme guarantee that the sum of all weights
is equal to the number of observations in the full dataset.

3 Results and discussion

The efficacy of our method is demonstrated by means of a series of experiments based on the
London passenger mode choice (LPMC) dataset (Hillel et al., 2018). The dataset consists of more
than 81’000 trip records collected over three years. Four modes are distinguished: walk, cycle, ride
public transport and drive. We divide the dataset into two parts: the first two years of data—
54’766 observations —are used for model estimation whilst the final year— 26’320 observations — is
set aside for out-of-sample validation.
We use the data to train two multinomial logit models that we borrow from Hillel (2019). We refer
to those as “MNL-S” and “MNL-L”. The former includes 10 continuous variables and 13 associated
parameters, whereas the latter considers 11 continuous variables, 8 categorical variables encoded
using binary indicators and 53 associated parameters. All model estimations are performed using
the Biogeme package for Python (Bierlaire, 2018, 2020) on a 2.3 GHz 32-core cluster node with
192 GB of RAM.

Experiment A

We begin by estimating the MNL-S on samples generated by our proposed method. We apply
the LSH-DR algorithm on the LPMC data 10’000 times, with R = 4 and w ranging from 0.02 to
0.2. The obtained samples range from 1’361 to 48’206 observations in size, that is, from 2% to
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88% of the full dataset. The results are shown in Figure 1. We report the following quantities:
(i) the execution time, which consists of the sampling and estimation times; (ii) the normalized
out-of-sample log likelihood (OSLL), i.e., the log likelihood yielded by the estimated model on
the validation data, normalized by the number of observations; (iii) the mean absolute percentage
error (MAPE) of the parameter estimates; and (iv) the value of time for the “drive” alternative,
computed as the ratio between the estimates of the parameters associated with travel time and
cost. For comparative purposes, we also report the results obtained on random samples.
Figure 1 demonstrates that LSH-DR is capable of producing substantially better samples than
random sampling, for a negligible increase in execution time: down to approximately 40% of the
full dataset size, the samples generated by LSH-DR yield smaller MAPEs of the parameters and
more accurate estimates of the value of time.
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Figure 1: Estimation of the MNL-S on samples generated by LSH-DR.

Experiment B

In this experiment, we compare the performance of our method with three other dataset reduction
techniques, namely: (i) random sampling; (ii) k-means clustering, similar to the approach taken in
Schmid et al. (2022); and (iii) sampling of observations (SoO), as proposed by van Cranenburgh
& Bliemer (2019). We proceed as follows: a certain percentage of the full dataset size is chosen
and we retrieve from Experiment–B the 100 samples of size closest to that percentage; the three
other dataset reduction techniques are then used to generate samples of those exact same sizes,
which are finally used to train the MNL-S model. Figure 2 reports the sampling time, normalized
OSLL, parameters MAPE and value of time for the “drive” alternative for 25%, 50% and 75%
of the full dataset. The boxplot whiskers indicate the 5th and 95th percentiles. The size of the
samples retrieved from Experiment B ranges from 13’480 to 13’984, from 27’146 to 27’615, and
from 40’879 to 41’273, respectively.
Overall, Figure 2 illustrates that the samples producing the most accurate results are obtained via
k-means. Still, despite its superiority, k-means is practically unusable because of its runtime: it
takes from 8 up to 26 minutes to obtain a sample from a relatively small dataset. That is between
4’000 and 16’000 times longer than LSH-DR and up to 400’000 times longer than random sampling.
As regards SoO, the method is shown to provide the worst results, while also displaying the largest
runtimes. This is due to the fact that SoO is designed to maximize the efficiency of the parameter
estimates rather than their precision or the model’s predictive accuracy.

Experiment C

Lastly, we estimate the MNL-L model on samples generated by LSH-DR. To this end, we apply
the LSH-DR algorithm on the LPMC data 10’000 times, with R = 4 and w ranging from 0.1 to
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Figure 2: Comparison of dataset reduction techniques.

1. Note that the MNL-L model includes several discrete explanatory variables, but those are not
treated differently by the LSH-DR method. The generated samples range from 3’584 to 51’574
observations in size, that is, from 7% to 94% of the full dataset. Figure 3 displays the achieved
results. For the sake of comparison, the results obtained on random samples are also shown.
Figure 3 demonstrates that our method may also be beneficial to larger models. Overall the
improvement in comparison to random sampling may be less remarkable than with the smaller
model, but it is worth noting that the MAPE remains within a reasonable level of accuracy even
for samples down to 50% of the full dataset size.
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Figure 3: Estimation of the MNL-L on samples generated by LSH-DR.

4 Conclusions

In this paper, we propose a simple and fast dataset reduction technique that speeds up the esti-
mation of discrete choice models. The gain in computational time naturally comes at the cost of
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deteriorating the model estimation results; however, our method is specifically designed to mitigate
this deterioration by preserving as much diversity as possible among the observations. As a result,
the quality of the parameter estimates stays within reasonable ranges even for large reduction
rates. The presented results additionally highlight the benefits of our method on the estimation of
models of small and medium size.
Intended future work includes the development and testing of more elaborate sampling strategies
for selecting observations from buckets. For instance, those could be designed to increase the
probability of choosing the most representative observations within each bucket, or to rely on the
content of each bucket to generate synthetic prototypical observations. Additional investigation
could also consist in developing LSH functions that can accommodate the analyst’s knowledge
of the dataset or the structure of the model of interest, for instance by giving more importance
to some specific variables during the hashing. Finally, another promising direction of research
consists in embedding the LSH-DR method within a stochastic gradient descent algorithm for model
estimation, such as the one proposed in Lederrey et al. (2021). The use of carefully selected and
weighted batches of data, rather than random ones, could result in significantly better approximates
of the gradient and, as a result, speed up convergence.
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SHORT SUMMARY 

We develop a novel cell-based two-stage stochastic program to address spatial, dynamic and sto-

chastic features of traffic flow for adaptive signal control. Cell transmission model (CTM) is em-

ployed to capture the dynamic feature of traffic flow, with certain CTM cells designated as detec-

tor cells to capture real-time spatial queuing effects. We formulate a two-stage stochastic program 

to address uncertain demand for signal control. In stage 1, a base timing plan (BTP) is determined 

as the long-term default plan. In stage 2, cycle-based adaptive policies, i.e., green extension/cut-

off based on the BTP, are implemented according to the detector cell states. We develop a spe-

cialised GA algorithm to search for the optimal BTP and adaptive policies. A case study of Tai 

Tam reservoir is conducted to elaborate the property of the proposed approach. The adaptive con-

trol plan can have 17% delay reduction compared to the optimal fixed-time plan. 

 

Keywords: adaptive signal control, traffic flow theory, two-stage stochastic program 

1. INTRODUCTION 

To develop a demand-responsive traffic signal control system, traffic detectors play a vital role in 

collecting traffic information for making signal control decisions. For vehicle actuated signal con-

trol, detectors are deployed near the stop lines of all or some of the junction approaches. Accord-

ing to the vehicle detection information, the green times of certain stages are extended or cut off. 

The question of how long the green time ought to be extended or cut off is not addressed explicitly. 

The extension/cut-off durations are generally determined according to traffic engineer experi-

ences in practice. Urban traffic control (UTC) signal control system generally produces fixed-

time plans for each identified traffic pattern based on detector information. Appropriate timing 

plans are selected by the time of day, day of the week, or special event situations. Once selected, 

the fixed-time plan is implemented for that period. Albeit detectors provide seconds/minutes level 

sensing data, the traffic variations within the period are neglected. For adaptive signal control 

systems, such as SCOOT (Robertson and Bretherton, 1991), detectors are deployed at the entry 

to the network links to predict the time and shape of the flow profiles at the stop line. Optimal 

signal timing variables are calculated with the incremental change algorithm. The optimality of 

the signal timing plans may be hampered by the restricted computational time budget. Because of 

platoon dispersion and lane changing effects, the estimated flow profiles are likely biased toward 

the arrival patterns at the stop line. In this paper, we utilize the vehicle detection data from first 

principles and incorporate dynamic detector status information into a mathematical model to de-

rive the optimal adaptive control policies.  

 

Our study aims to address three characteristics of traffic flow, i.e., spatial, dynamic, and stochas-

tic, for adaptive signal control. To capture spatial and dynamic features, we adopt the cell trans-

mission model (CTM) (Daganzo, 1994) as the underlying traffic flow model. Certain cells in the 

CTM network are selected as the detector cells. Cell occupancy information is collected to 
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indicate queue presence status at the detector locations. To capture the stochastic traffic demand 

feature, we adopt a two-stage stochastic program method. In stage 1, a base timing plan, including 

cycle time, base green time, and offset, is determined as the long-term default plan or ‘fallback’ 

plan. In stage 2, upon the traffic demand realization scenarios, cycle-based adaptive control poli-

cies are determined to address residual queues. At the end of each signal cycle, adaptive policies 

are selected according to the status of the detector cells. Each detector status pattern corresponds 

to a certain adaptive policy. The selected adaptive policy will be implemented in the next cycle. 

We develop a specialized GA algorithm to determine the optimal base timing plan and adaptive 

policies. A case study at Tai Tam reservoir is provided to indicate the properties of the proposed 

adaptive signal control method. 

2. METHODOLOGY 

signal control in CTM 

As shown in (1), the green start time , ,i j zS  of phase-1 (i=1) is equal to the initial offset ini

jO  at 

junction j plus the lost time L plus the zth cycle start time ( 1)z C−  . For other phases (i>1), the 

green start time , ,i j zS  is equal to the lost time L plus the green end time of the predecessor phase

1, ,i j zE − , as shown in (2). The green end time , ,i j zE  is equal to the green start time , ,i j zS  plus the 

green duration ,i jG , as shown in (3). The signal effects can be captured in CTM by adjusting the 

inflow capacity of the signal cells (M1) according to the state of signal light. In (4), when the time 

step t is between , ,i j zS  and , ,i j zE  (in green), the inflow capacity of the signal cell, i.e., 
,1( )mQ t , is 

set to be the saturation flow rate s; otherwise 
,1( )mQ t  equals zero. 

 

, , ( 1) , 1, , ,ini

i j z jS O L z C i j z= + + −  =   (1) 

, , 1, , , 1, , ,i j z i j zS L E i j z−= +    (2) 

, , , , , , , , ,i j z i j z i jE S G i j z= +   (3) 

, , , ,

,1 1

,    
( ) , , , , .

0,  

i j z i j z

m

s S t E
Q t i j z m M

otherwise

 
=  


 
(4) 

detector cell settings 

We designate certain CTM cells as detector cells to mimic real-time traffic detector deployment. 

Adaptive signal control policies are triggered based on detector states. We employ indicator func-

tions in (5) to represent whether the state of a detector is active or inactive. Denote , ( )i jd t  as the 

state of detector cell at time t for phase i, junction j. Denote set ' '

,{ ( ), , }t i jd t i I j J=    Φ  as 

the set that includes all the detector cell states in the target network. 'I  is the phase set, for which 

phase detectors are deployed. 'J is the junction set, for which junction detectors are deployed. In 

(5), if the occupancy of detector cell ijd
c  is greater than or equal to the critical occupancy f  at 

time t, , ( ) 1i jd t = ; otherwise, , ( ) 0i jd t = . (5) can be applied to represent queue presence detection. 

For instance, if the occupancy of detector cell is full or almost full, e.g., 0.9f  , vehicle queue 

is regarded as reaching to the detector location.  
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,

1,  ( )
( )

0,  ( )

ij

ij

d

t f

i j d

t f

occ c
d t

occ c





 
= 



 (5) 

two-stage signal control formulation 

With the CTM model embedded, we formulate a cell-based two-stage stochastic program to op-

timize the traffic signal control plan (Li et al., 2018; Li et al., 2021). In stage 1, the expected total 

delay [ ( , , )]b iniD CE G O  is minimized with respect to the base timing plan, i.e.,  , ,b iniC G O , 

shown in (6). It is subject to CTM dynamics constraints. (7)-(10) are constraints for signal control 

variables. 

 

In stage 2, given the base timing plan  , ,b iniC G O  from stage 1, adaptive policies, G , hence, 

the actual green time a
G , are determined to minimize the total delay kD  upon the realization of 

traffic demand ˆ
kv  in scenario k, as shown in (11). G is the set that includes all the adaptive 

policies, i.e.,
,{{ , , }, }c

i jG i I j J c =      G . 
,

c

i jG is the adaptive policy c for phase i at junc-

tion j. Denote Λ  as the set that includes all the detector state combinations, i.e.,
' '

,{{ , , }, }c

i jd i I j J c=     Λ . 
,

c

i jd is the state of detector (either 1 or 0, as shown in (5)) for 

adaptive policy c for phase i at junction j. Each adaptive policy c corresponds to a specific detector 

state combination, i.e., ( ) ( )c c →G Λ . For adaptive policy c, the summation of cG  over all 

phases for junction j should be zero to maintain the common cycle time, as shown in (12). The 

adaptive policy cG  is selected according to the state of detector cells Φ . If the detector state 

combinations for adaptive policy c, i.e., ( )cΛ , are the same as the state of detector cells, i.e., 

( )c =Λ Φ , indicator function 1 ( ( ))cΦ Λ  returns 1, as shown in (13); otherwise,1 ( ( )) 0c =Φ Λ . In 

(14), the actual green time 
,

a

i jG  for phase i junction j equals the base green time 
,

b

i jG  plus the 

selected adaptive policy 
,

c

i jG . (15) is the range of actual green time. (16) is the actual green end 

time constraint. 

(Stage 1:) 

, ,

ˆ ˆ [ ( , , )] ( ) ( , , , )
b ini

b ini b ini

k k k k
C

k

min D C P D CE



= 
G O

G O v G O v  (6) 

  

subject to CTM dynamics constraints and (1)-(4), and 

,( ) ,  ,b

i j

i

G L C j+ =   
(7) 

, , , ,  ,  ,min b max

i j i j i jG G G i j    (8) 

,min maxC C C   (9) 

,0 ,  ,ini ini max

j jO O j    (10) 

where ˆ( , , , )b ini

k kD C G O v  is the total delay value in demand scenario k in stage-2. 

(Stage 2:) 
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The optimal total delay kD  in stage 2 is accrued into the objective function to obtain the expected 

total delay [ ( , , )]b iniD CE G O . As shown in (6), the expected total delay [ ( , , )]b iniD CE G O  

equals the summation of the total delay over each demand scenario k ( k ).  is the space of 

the realizations of demand scenario. ˆ( )k kP v  is the probability of scenario k for which the realized 

demand is ˆ
kv . We assume a finite number of demand scenarios sampled in space   and the sum-

mation of probability kP  equals 1, i.e., 1k

k

P


= . The whole optimization problem is to determine 

the optimal solutions for the base timing plan in stage 1 and the set of adaptive policies in stage 

2, which will minimize the expected total delay under stochastic demand condition. 

solution algorithm 

In this study, we develop a specialised solution approach based on genetic algorithm (GA) to 

solve the proposed adaptive signal control problem. We have introduced GA into solving signal 

control optimisation problem and elaborated the effectiveness of GA in generating quasi-optimal 

signal control solutions (Lo et al., 2001; Lo and Chow, 2004). In GA, signal control variables are 

transformed into 0-1 binary representations. The duration of each variable is coded as a series of 

chromosomes. An example of the gene structure of the cycle-based two-stage signal control is 

shown in Figure 1. The head part is the common cycle time for the junctions in the network, 

following with the control variables of each junction. Junction control variables consists of the 

base timing plan (including initial offset ini

jO , base green time 
,

b

i jG ) and adaptive policies 
,

a

i jG . 

The actual green time a
G  is coded as the adaptive decision variables in the gene since the range 

of G  includes negative domain which is not operable in GA. The population of genes are ma-

nipulated with three operators, i.e., reproduction, crossover, mutation, to search for optimal signal 

control solutions. The gene (signal plans) with the best delay performance will be selected as the 

optimal solution. 
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Figure 1. Gene structure of the cycle-based two-stage signal control 

3. RESULTS AND DISCUSSION  

We select Tai Tam reservoir as the test site to illustrate the performance of the proposed adaptive 

signal control method. Tai Tam reservoir road is a section of Tai Tam road located at eastern 
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Hong Kong Island, which is a bi-directional two-lane road connecting Stanley and Chai Wan, as 

shown in Figure 2. Since the construction of the reservoir was completed in 1918, the width of 

the road is too narrow to accommodate bi-directional traffic passing through the reservoir simul-

taneously. A two-phase signal is deployed on the reservoir. Only one direction of traffic is allowed 

going through per phase. The vehicle clearance time (all red time) of 45 seconds is set for every 

phase switch. Due to the long all red time, frequent phase switches may incur severe delay dete-

rioration. The key question is how to effectively assign green time of the two phases so that the 

total delay is minimised under uneven traffic arrivals of the two directions. We apply the data set 

collected in three days (June, 2019) for signal optimisation. The data set of each day includes 

three-hour PM peak bi-direction traffic arrivals to the Tai Tam reservoir. We code the CTM net-

work for Tai Tam reservoir as shown in Figure 2. The parameters of the CTM network are cali-

brated with the real data.  

 

We assign northbound traffic (to Chai Wan) to phase 1 and southbound traffic (to Stanley) to 

phase 2. The minimum phase duration is 60 seconds. We first optimise an optimal fixed-time plan 

for the reservoir via the conventional GA (the gene structure without the adaptive policy chromo-

somes). The optimisation is performed on Intel i7-3370 computer with 32GB RAM. The param-

eters of the GA include 10 generations, 100 population size. The expected total delay over three 

demand scenarios is minimised with respect to signal control variables. The optimal fixed-time 

signal plan is listed in Table 1. 

 

Figure 2. Tai Tam reservoir 

Table 1. fixed-time signal plan 

 Cycle time (s) Offset (s) Phase 1 (s) Phase 2 (s) 

duration 180 130 97 83 

 

For the queue-based adaptive signal control. We deploy three detector cells on each side of the 

reservoir approaches as shown in Figure 2, (The detector cell ID are marked). The locations of 

the detector cells are 0 m, 100 m, 200 m, respectively, from the stop lines for both sides. If vehicle 

queue end is detected at the detector cells (cell occupancy > 90%), the detector state turns 1; 0 

otherwise. We adopt the proposed specialised GA algorithm to optimise both the base timing plan 

in stage 1 and the adaptive control policies in stage 2. Since we deploy six detectors for Tai Tam 

case, there are 62 64=  detector state combinations, hence, 64 adaptive policies for adaptive sig-

nal control. Table 2 lists all the adaptive polices and the corresponding detector patterns. Detector 
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patterns are counted during the GA simulations. Detector pattern ‘100100’ (policy 37) is the most 

frequently activated pattern which is counted 50435 times in the simulations. ‘100100’ means that 

at the end of signal cycle, i.e., end of phase 2, vehicle queues are detected at detector 1 and detec-

tor 4 (close to the stop lines), but not at the other detectors. It is noted that only 12 detector patterns 

are activated and the rest of the detector patterns are never activated. Those non-critical adaptive 

policies can be eliminated from the gene structure. We further optimise the top 9 frequently acti-

vated adaptive policies and the base timing plan via GA. Whenever the detector states not in-

cluded in the top 9 adaptive policies appear, the base plan will be implemented in the next cycle. 

The top 9 adaptive policies and the base plan are listed in Table 3. 

 

The base green times are 89 seconds for phase 1 and 91 seconds for phase 2. For pattern ‘100100’ 

(policy 37), it indicates that there is overflow at the SB approach at the end of phase 2 and vehicle 

queue at the NB approach. The adaptive plan is to extend 4 sec green time for phase 1 and cut off 

4 sec for phase 2 in the next cycle. For pattern ‘111000’ (policy 57), long queue is detected at the 

NB approach but no queue at the SB approach. The adaptive plan is to extend 27 sec green time 

for phase 1 to clear the long queue. For pattern ‘100110’ (policy 39), a long residual queue is 

detected at the end of phase 2. The adaptive plan is to cut off 10 sec green time from phase 1 and 

extend 10 sec green time for phase 2. The average delay results are listed in Table 4. The average 

delay of the optimal fixed-time plan is 105 sec/veh. The adaptive plan (86.5 sce/veh) can have a 

further 17.6% delay reduction compared to the optimal fixed-time plan. Even though some of the 

adaptive policies are eliminated from the GA optimisation and only top 9 adaptive policies are 

optimised, the adaptive plans can still have 17.0% delay improvement, which does not deteriorate 

too much compared to the full policy adaptive plans. 

Table 2. adaptive policies and the corresponding detector patterns 

adaptive policy 

c 

detector patterns 

‘123456’ 

activated patterns 

counts 

adaptive policy 

c 

detector patterns 

‘123456’ 

activated patterns 

counts 

1 '000000' 1493 33 '100000' 34308 

2 '000001' 0 34 '100001' 0 

3 '000010' 0 35 '100010' 0 

4 '000011' 0 36 '100011' 0 

5 '000100' 1089 37 '100100' 50435 

6 '000101' 0 38 '100101' 0 

7 '000110' 59 39 '100110' 1786 

8 '000111' 0 40 '100111' 0 

9 '001000' 0 41 '101000' 0 

10 '001001' 0 42 '101001' 0 

11 '001010' 0 43 '101010' 0 

12 '001011' 0 44 '101011' 0 

13 '001100' 0 45 '101100' 0 

14 '001101' 0 46 '101101' 0 

15 '001110' 0 47 '101110' 0 

16 '001111' 0 48 '101111' 0 

17 '010000' 0 49 '110000' 15172 

18 '010001' 0 50 '110001' 0 

19 '010010' 0 51 '110010' 0 

20 '010011' 0 52 '110011' 0 

21 '010100' 0 53 '110100' 27584 

22 '010101' 0 54 '110101' 0 

23 '010110' 0 55 '110110' 3099 

24 '010111' 0 56 '110111' 0 
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25 '011000' 0 57 '111000' 22707 

26 '011001' 0 58 '111001' 0 

27 '011010' 0 59 '111010' 0 

28 '011011' 0 60 '111011' 0 

29 '011100' 0 61 '111100' 20344 

30 '011101' 0 62 '111101' 0 

31 '011110' 0 63 '111110' 9520 

32 '011111' 0 64 '111111' 0 

Table 3. optimal base timing plan and adaptive signal plans 

adaptive 

policy c 

detector patterns 

‘123456’ 
Phase-1 (sec) ∆G1 Phase-2 (sec) ∆G2 

37 ‘100100’ 93 4 87 -4 

33 ‘100000’ 96 7 84 -7 

53 ‘110100’ 93 4 87 -4 

57 ‘111000’ 116 27 64 -27 

61 ‘111100’ 104 15 76 -15 

49 ‘110000’ 111 22 69 -22 

63 ‘111110’ 89 0 91 0 

55 ‘110110’ 87 -2 93 2 

39 ‘100110’ 79 -10 101 10 

Base plan 

(0) 
-- 89 0 91 0 

Table 4. signal plans delay performance 

 fixed-time plan adaptive plan (full policy) adaptive plan (partial policy) 

Delay (sec/veh) 105.0 86.5 87.1 

reduction -- 17.6% 17.0% 

4. CONCLUSIONS 

In this study, we developed a novel approach to address dynamic, spatial and stochastic charac-

teristics of traffic flow for adaptive signal control. Our approach was able to map adaptive signal 

control policies to dynamic traffic detector information and address the closed-loop signal control 

strategy with a mathematical model. Cell transmission model was adopted as the underlying dy-

namic traffic flow model. Certain CTM cells were designated as detector cells to indicate the 

queue presence information. We developed a two-stage stochastic program to address uncertain 

demand for signal control. In stage 1, the base timing plan is determined as a long-term default 

plan. In stage 2, various demand scenarios are loaded to CTM to simulate detector cell state pat-

terns and the corresponding adaptive control policies. The case study at Tai Tam reservoir illus-

trated the performance of the approach. At the end of a signal cycle, we examined the detector 

states to identify the queuing status. The green extension/cut-off policies were re-adjusted in re-

sponse to the unbalanced queues for the next cycle. The preliminary simulation results showed 

that a further 17% delay reduction can be achieved by the adaptive control policies. In the future 

study, we will further investigate a stage-based adaptive control strategy, i.e., the adaptive policy 

is adjusted at the end of each signal stage according to the detector states. We anticipate that the 

stage-based control strategy will exhibit more flexible control impacts to the traffic flow pattern 

variations.  
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Short summary

Deploying charging infrastructure requires identifying the most effective placement and size of
charging facilities. This is particularly challenging when electric vehicles (EVs) are gradually
introduced, as it creates a dynamic target that must be met to ensure successful adoption of EVs.
This paper introduces an agent-based simulation model that tracks movements of EVs in space
and time. Our model is based on a choice model of charging behaviour, which is integrated with
non-parametric queues and information-sharing of waiting time. Our simulation captures demand
resulting from choice of charging and the unserved demand represented as charging intentions that
were not met. It is demonstrated that unserved demand varies over time and across locations,
and that it can be greatly reduced by our information-sharing strategy. The model is applied to
Copenhagen where we examine changes in charging infrastructure requirements between 2021-2030
when going from EV shares of 2% to 30%.
Keywords: agent-based simulation, censored demand, electric vehicles, information-sharing

1 Introduction

The recent worldwide uptake of EVs has led to an increasing interest for the EV charging situation
and the design of the corresponding charging infrastructure.
Many papers have considered the placement and sizing problem of chargers from an operational
research perspective (Hengsong Wang et al., 2010; Kuby & Lim, 125). Included in these types of
models are the maximum set covering models as considered in Wang & Lin (2009) and Wang &
Wang (2010). A common challenge, however, when applying such models, is that it requires sim-
plifications when stating the demand-side. As demonstrated in Luo & Qiu (2020) and Kavianipour
et al. (2021), it often involves use of simple queuing systems, limited heterogeneity, and few or no
interactions between users.
An alternative and increasingly popular approach, however, is the use of agent-based simulation
models to explore heterogeneous inputs and the consequences it has for different types of users.
Specifically, the impact of flexible arrivals, vehicle heterogeneity (e.g. battery range and charging
speed) and different driving patterns. This is the approach taken here, as will be discussed in more
detail below.

The challenge

When planning a charging infrastructure for future years, several non-trivial challenges exist. Be-
fore considering the solution approach, it is timely to dive into some of these challenges.
A general problem is the prediction problem of charging demand in future years. This is compli-
cated because it depends on many heterogenous inputs, which in itself are difficult to project. Some
inputs, such as battery range and charging speed, are dependent on technological innovations and
buying preferences of users. Other input’s, such as car ownership and population growth, depend
on the income development as well as the urban development. Because of the accumulated uncer-
tainty from all of these inputs, the idea that a single unified solution exists renders itself useless.
Rather, the solution to the problem should be seen as a distribution of solutions over a parameter
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Figure 1: Unserved and served charging demand at different locations.

space, where some solutions are more likely than others. This observation, in our view, suggests
that the agent-based simulation approach is the more suitable solution approach.
Another challenge, which exists for all capacity-constrained demand problems, is that supply defi-
ciencies will cause users to suppress demand. This is particularly relevant in the context of charging
because unserved charging demand will fluctuate in space and in time. An attempt is made to
illustrate this in Figure 1 below.
The figure illustrates several things. Firstly, that the share of unserved demand varies in space
and time. This suggests that from a charger location perspective, it is not only relevant to look at
charging locations from the sole perspective of observed demand. Unserved demand should also be
taken into account as it may influence the business case for operators and waiting time observed
on the user side. Hence, a charging infrastructure that is designed with the unserved demand in
mind, might look differently from a charging infrastructure solely based on what can be observed.
It follows from this that the share of unserved demand can be considered as an important perfor-
mance metric. Essentially, if measurable, the gap represents important information regarding the
spatial and temporal match between demand and supply. The relevance of this is particularly use-
ful when considering the gradual integration of EVs into the vehicle fleet over an extended period.
This is because the balance between demand and supply presents itself as a moving target (in space
and time) where insufficient supply may hinder EV adaptation in certain areas. As a result, it is
highly important to monitor this balance over time and make sure that the inconvenience resulting
from charging is minimal.

Sketch of a solution

Following the challenges as described in Section 1, it is relevant to delve into possible methodologies
that allow consistent monitoring of unserved demand.
A requirement is that the modelling framework is agent-based, where utility functions and choice
probabilities are monitored in space and time as a function of the different event triggers, allowing
the systematic monitoring of unserved demand. Figure 2 attempts to illustrate the trajectories of a
hypothetical agent’s diary over time, driven distance and SoC level. The solid black line represents
the unperturbed diary path, i.e. no charging, whereas the coloured lines indicate some options to
charge during the morning and afternoon activities. The colour coding indicates the ordering of
the probabilities for each option, from yellow being the most likely to dark purple the least. The
details regarding the evaluation of the utility of each option and decision process are addressed in
§2, while the agent generation of the process is discussed in §2.
Realistic monitoring of the state-of-charge in the space-time domain as well as the waiting time,
requires, on the one hand realistic arrival patterns among users, but also flexibility resulting from
queuing spill-back at the level of chargers. Specifically, for users to realistically react to queuing
dynamics and trade different charging options to circumvent waiting time, it must be assumed that
users possess certain forward-looking properties. This, in turn, necessitates an information-sharing
system where waiting time is shared and where people react to this information. Our approach is
based on the most recent state-of-art as presented in Vandet & Rich (2021).
Moreover, the tracking of behaviour over a range of heterogeneous inputs requires these to be
properly modelled and forecasted. One example is that we use flexible battery state-of-charge
distributions, which is based on recent research in Hipolito et al. (2022). Another example is that
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(a) Time vs. distance (b) Time vs. SoC (c) Distance vs. SoC

Figure 2: Phase space trajectories over time, driven distance and SoC level, for a hypo-
thetical agent with 4 charging options. Black lines trace non-charging path.

we use probabilistic range projections as applied in Rich et al. (2022).

Literature and contribution

Recent progress on analysis of censored demand Gammelli et al. (2020); Huttel et al. (2022) has
highlighted the importance of a proper quantification of the real demand for efficient use of re-
sources in transportation systems. Given the potential large impact of censored data, several
authors elect to discard results when censoring is observed Rudloff & Lackner (2014); O’Mahony
& Shmoys (2015), or alternatively calibrate their models based on historical data when no censor-
ing was observed Albiński et al. (2018); Jian et al. (2016); Freund et al. (2019). However, previous
approaches have been agnostic to queueing dynamics and to the potentially long duration of charg-
ing sessions in slow charging infrastructure. Given the large duration of charging events, and the
expected queueing at fast charging clusters, it becomes crucial to quantify and track the impact
of censored demand. Moreover, by monitoring not only the queueing and charging processes, but
also each agent’s decision path, we can track and record all instances in which demand is not
served, and thus quantify what would otherwise be censored demand, whilst decoupling it from
choice substitution. Hence, quantifying unserved demand is a better indicator of the limitations
of the charging infrastructure, as performance can suffer significantly from high demand occurring
in short periods of time, which are less likely to be identified when analysing performance solely
on utilization.
Methodologically, this paper is based on an even-based micro simulation framework and thereby
goes in the direction of Pruckner et al. (2017); Q. Yang et al. (2019), who use discrete event-
simulators to represent demand and to analyse capacity utilization in charging systems. Moreover,
inspired by Rich et al. (2022) and Vandet & Rich (2021) we use up-sampled trip diaries as input
to the simulator. The benefits of doing so, in terms of attaining realistic trip and arrival time
patterns, clearly outweigh the potential shortcomings, as discussed in more detail in Rich et al.
(2022).
The contribution of the paper lies in the focus on unserved demand when dealing with the charging
infrastructure problem. Add to this that, by monitoring this KPI over many different heteroge-
neous inputs, we are able to generate corresponding heterogeneous outputs and identify emergent
behaviour in the system. The relaxation of simple Markovian queuing dynamics (van der Kam et
al., 2019; Viswanathan et al., 2016; J. Yang et al., 2017) for non-parametric queues of the G/G/s
type creates patterns that are closer to reality. Hence, we refrain from the single-solution approach
and present a distribution of solutions which is a function of several probabilistic inputs.
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Figure 3: Diagrammatic representation of the iterative simulation process. Light blue
background and rounded corners indicate the steps that include a waiting period.

2 Methodology

We present an agent-based simulation framework to predict the demand for EV charging over many
heterogeneous inputs and for agents that interact through an information-sharing system (Vandet
& Rich, 2021). The framework is designed with the intent of determining potential configurations of
future charging infrastructure that satisfy the growing adoption of EVs, while minimizing disruption
to present day travelling patterns and infrastructure deployment costs. To achieve such goal, we
develop a synthetic population of EV users by combining trip dairies, and additional household
information, based on the Danish National travel survey Baescu & Christiansen (2020). The origin-
destination of all agents and their timing of trips (e.g. arrivals and departures) are calibrated to
origin-destination (OD) traffic flow data and assigned to the OpenStreetMap road network using
the shortest path algorithm. Similar applications of synthesized trip diary data have been presented
in Rich et al. (2022); Kavianipour et al. (2021).
Clearly, the fact that we estimate demand for EV charging in the future based on calibrated
trip diaries of today can be criticised. The underlying premise, then, is that the trip demand
patterns are invariant with respect to the replacement of conventional cars with EVs. As argued
in Rich et al. (2022), if this were not true, it would imply that people would have to change
their otherwise optimal behaviour (where battery restrictions are absent) to a different behaviour,
which is currently not known. In our view, designing a system where people can maintain a
similar behaviour as today, reduces the burden associated with transitioning and thus facilitates
adoption of EVs. Therefore, it represents a reasonable compromise when designing a societal
optimal infrastructure for the future.
The simulation algorithm is represented diagrammatically in Figs. 3a and 3b, with the latter
depicting exclusively the charging process. The intricacies of the simulation algorithm, as well as
the agent synthesis process, will be discussed in a forthcoming manuscript, where we explore all
branching options that lead to unserved demand. By monitoring the entire system over a period
greater than 24 h, it is possible to estimate a range of probabilistic system KPIs, e.g. such as
charging station utilization and waiting time at chargers. As we are monitoring, not only charging
choices but also intentions to charge in cases where this is not possible, we can also track unserved
charging demand in the system. This, in turn, is an extremely powerful performance indicator for
the system as it quantifies an otherwise censored part of the demand, thus providing an important
metric to plan the development of an efficient of public charging infrastructure.
At the programming level, this model is framed as a discrete event-based simulator, based on the
SimPy package for Python Scherfke et al. (2022), allow us to track and coordinate the agent’s
movement in space and time.
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Table 1: The price of electricity ve for charging EV in DKK/kWh per charger type.

normal fast private
Pch < 50 ≥ 50 11
ve 3.50 4.90 1.12

Decision model

The decision framework adopted here makes use of two models deployed in sequence. The first
assesses the decision to charge Hipolito et al. (2022), while the second selects the desired opportu-
nity. Both models are stochastic in nature, offering the agents the opportunity to make suboptimal
choices at each step, introducing variance to the overall decision process, thus allowing the sim-
ulation path to branch away from the local minima. To select the an option, the utilities Ui are
assessed, and the respective probabilities are determined by a classical multinomial logit model

pi =
e−βUi∑
i e

−βUi
, (1)

where β = 1 is the global scaling factor. The choice set i, as well as the full form of all terms
contributing to the utilities, will be described in detail in a forthcoming paper, below follows a brief
summary. The selection process relies on a weighted random draw, where the weights are defined
by pi. The utilities are defined in generalized time form, where monetary costs are expressed as
Ui = ci/ντ , considering the general value-of-time (VoT) ντ = 91 DKK/h DTU (2022); Rich &
Vandet (2019). The utilities include several contributions

Ui =
[
ciϵ + νi

(
∆ti + wi

)
+ cip + cih + cia

]
/ντ . (2)

including the cost of electricity cϵ, the value of time for waiting wi, detours and charging, costs of
parking cip and idle charger time cih, and finally the cost associated with interrupting an activity.

3 Results

Here, we analyse a baseline scenario that offers a reference to validate the simulator against real-
world data. We then proceed with an assessment of the viability of meeting growing demand in a
dense urban municipality by expanding fast charging infrastructure.

Baseline scenario

To compare the simulator results against real-world utilization data, we make use of data for a
charge station in the municipality of Frederiksberg covering a period of 390 days since the fall of
2021, reporting a mean charged energy of δϵ = 17.2 kWh at a mean power of P = 7.42 kW. The
charging duration and total parking time are ∆tch = 3.0 and ∆t = 6.2 h, with utilization rate of
u = 0.52 events per outlet per day.
To compare, we performed simulations covering a period of one week in the fall of 2022, considering
a population of Nr = 800 resident and Nv = 1200 visitor EVs Danmarks Statistik (2023); Baescu
& Christiansen (2020). In addition, the VoT is set as in DTU (2022), the costs of electricity are
Tab. 1, and we follow municipality’s parking constraints, whereby parking is free, but limited to 3h
between 9h00 and 20h00. Finally, the estimate for the mean charge duration is set at τc = 0.5, 6 h.
Our simulations indicate that EVs would charge 16.9 and 23.9 kWh on the normal and fast in-
frastructures, with a utilization of 0.45 and 5.36, respectively. Charging and total duration at the
stations are 2.3 and 7.6 h in normal charging infrastructure, while at fast the durations are 42 and
58 min. Agents with home charging (∼ 40 %) mostly charge at home, with fewer than 1 % opting
for public infrastructure.
The results for the normal charging infrastructure are in line with observed utilization of real
infrastructure, but we lack data to validate the results found in the fast charging infrastructure.
Discrepancies such as the reduced charge duration in the simulation, 2.3 h, can be traced to two
main factors. The first is a higher prevalence of EV that only support charging in single- phase at
3.6kW and load sharing at the charge station.
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(a) (b) (c)

Figure 4: Dropout rate and installed capacity per EV. Lighter colours indicate growing
number of fast outlets. Large circles indicate configurations with a dropout rate in [2, 5] %.

The baseline scenario indicates that our simulations are consistent with reality, but indicate a 3%
dropout rate from the charging queue. There is little data on quality of service, but anecdotal
reports of occasional long waiting, as well as sporadic cases of full charger utilization in the real-
world data, indicate that waiting times could easily exceed the lower bounds of the agent’s patience,
which manifest in our simulations as dropouts.

Fast charging scenarios

Baseline results indicate that the fast infrastructure can serve up to 10 times more EV than normal
charging, indicating that developing this type of infrastructure could reduce the urban impact of
EV charging. To explore this hypothesis, we simulate the impact of introducing 3 new fast charging
clusters within the municipality towards the West, South and East, in addition to the current cluster
at its centre, adding equal number of outlets at each cluster. In Fig. 4a, we show the change in
dropout rate for each infrastructure configuration. Results indicate that the baseline dropout rate
∼ 3 % can be maintained at least up to Nr ∼ 4000 with total of 32 fast charging outlets. Moreover,
as shown in Fig. 4b and 4c, the efficiency of the infrastructure increases as we observe that more EV
can be served while maintaining the baseline performance. This is corroborated by utilization data
which increases to 1.99 an 7.66 events per normal and fast outlet per day. Several insights can be
drawn from this analysis. First, in all scenarios, the required installed power per EV is larger than
the European guideline of 1 kW per EV {Secrétariat général du Conseil} (2022). This discrepancy
can be understood in light of population density and the relatively low share of residents with
access to private parking in this municipality. Second, upon combined analysis of Fig. 4a and 4b,
it is possible to verify that for configurations with similar dropout rate, the required power per EV
decreases with the increase in the number of EV, indicating that the infrastructure becomes more
efficient as in grows in size.
The daily demand is shown in Fig. 5. While Fig. 5a indicate that some degree of geographical varia-
tion is observed, the unserved/censored demand Figs. 5b and 5c is mostly location-independent. At
first glance, one would expect variation as depicted in Fig. 1, yet note that information-sharing and
the short distances between fast charging infrastructure, facilitate the redistribution of demand,
which in turn further increases the efficiency of the infrastructure. Moreover, the discrepancies
found in south charger can be understood in light of the lower density of that part of the munici-
pality, as well as the proximity to to municipality boarder leads to increase slip-over demand being
transferred to other stations in the neighbour municipalities. Accounting for an effectively reduced
number of EV using this charger, we can verify that the demand is in line with results in the other
3 fast chargers.

6



(a) (b) (c)

Figure 5: Daily observed (a) and censored (b) demand at four fast chargers with 4 outlets
each. Ratio of censored against observed demand (c).

4 Concluding remarks

We present an agent-based approach to simulate the EV demand, tracking it over space and
time. By virtue of introducing branching options in the simulation algorithm, we can decouple
the demand into the observed and censored parts. The censored part offers a quantification of the
unserved demand, that can be used to improve rollout strategies of charging infrastructure, that
satisfy demand, while minimizing impact on society.
Moreover, the results strongly suggest that the charging demand, both observed and censored, can
be evenly distributed, thanks to the introduction of an information-sharing strategy, that leads
agents to avoid overcrowded stations.

Future research perspectives

In addition to an expansion of the present analysis, a forthcoming publication will extend the anal-
ysis discussed here beyond the spatial distribution of demand at the fast charging infrastructure.
It will include, among other goals, an analysis of the intraday variation of demand, to characterize
the distinct rhythms of utilization of each type of infrastructure. In addition, the simulation region
will be expanded beyond the current municipality, to include the whole city of Copenhagen, which
will offer a better platform to quantify the role of information-sharing and additional strategies to
balance demand.
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Varying critical time to collision: a perspective of driver space
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Short summary

Collision warnings play a crucial role in preventing crashes based on estimating the critical time to
potential accidents. Existing research and applications mainly focus on longitudinal vehicle inter-
action and headway keeping on highways. However, urban driving with frequent lateral interaction
may have different critical time to collision. This study considers both longitudinal and lateral
interaction through a two-dimensional spacing measure, driver space, to estimate the average crit-
ical time for drivers to respond to a potential collision. With the average spacing between vehicles
at different levels of discomfort and in different relative speeds, we estimate the critical time via
linear regression. Our experiments on two trajectory datasets find that drivers are more alert to
collision dangers on highways compared to urban intersections, and drivers respond to potential
collisions more quickly during lateral interaction than longitudinal. These findings emphasise the
need of tailored collision warning systems for further improving road safety.

Keywords: Critical time to collision, driver space, driving safety, trajectory data.
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1 Introduction

Autonomous driving and advanced driving assistance systems (ADAS) have been a rapidly evolving
research area, aiming to enhance road safety and efficiency. As part of that, forward collision
warning and collision avoidance systems play a critical role in preventing crashes. These systems
distinguish emergencies based on the critical time to collision, which refers to the amount of time
a vehicle has to respond to a potential collision.

Critical time to collision has been typically considered in car following scenarios for longitudinal
interaction between vehicles (Bella & Russo, 2011; Tawfeek & El-Basyouny, 2018). As an example,
Time to Collision (TTC) is one of the most effective and broadly used indicators for warning rear-
end collisions (Lu et al., 2021). It is calculated based on the relative position and relative velocity
between two approaching vehicles, assuming that their movement continue without change. Then
a critical threshold (denoted as TTC*) is set to distinguish un(safe) situations. ADAS usually set
a fixed threshold, but some studies found that TTC* can vary among drivers (Kusano et al., 2015)
and in different traffic environments (Arun et al., 2021) due to different human perception.

As the number of ADAS-equipped vehicles increases in urban areas, there is a growing need to
consider critical time to collision in a wider range of driving scenarios. In urban traffic, the
interaction between vehicles involves more angled movement such as lane changing and turning
(Zhao et al., 2020). This entails potential collisions beyond rear-end crashes, such as head-on and
side-swipe accidents (Theofilatos et al., 2012).

Does human perception of collision danger differ on highways and in urban traffic, with or without
lateral interaction? This study addresses the question from the perspective of driver space. Driver
space measures two-dimensional spacing between vehicles. Our previous study (Jiao et al., 2022)
presented a method to quantify the 2d spacing in a probabilistic manner, which is based on the
accumulative presence of vehicles. The method can locate a set of boundaries of spacing in various
driving scenarios, with which we can estimate the average critical time to collision given the relative
speed between vehicles.

In the following sections, we will firstly introduce our methods in Section 2. Then we apply the
methods to two trajectory datasets collected by drones in the U.S. One is over an expressway and
the other is over an intersection. The results and discussion will be presented in Section 3. Section
4 will conclude the study. Our findings are expected to aid the development of collision warning
systems.

2 Methodology

This section will at first briefly explain driver space and its quantification. Then we will introduce
how to obtain comfortable and uncomfortable spacing from the quantification. Finally, we will
present how this study estimates critical time to collision.

Driver space and its quantification

The driver space of a vehicle refers to a set of boundaries where the driver experiences different
levels of discomfort. When the driver space is intruded (i.e., when two vehicles are close enough),
discomfort is raised. This discomfort motivates the drivers to maintain a proper distance from
each other.

We use formula (1) to quantify the varying levels of discomfort caused by driver space intrusion
into a value between 0 and 1. The higher the p(x, y), the more discomfort is caused. For two
vehicles i and j, x and y are transformed coordinates of j in a system where i is at the origin and
the y-axis points to the direction of their relative velocity.

p(x, y|θ) = exp

(
−
∣∣∣∣ xrx
∣∣∣∣βx

−
∣∣∣∣ yry
∣∣∣∣βy
)
, (1)
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where each of θ = (rx, ry, βx, βy)
⊤ has two components:

θ =
1 + sgn(x)

2
θ+ +

1− sgn(x)
2

θ− for θ = rx, βx,

θ =
1 + sgn(y)

2
θ+ +

1− sgn(y)
2

θ− for θ = ry, βy.

(2)

Formula (1) is adapted from the density function of the generalised Gaussian distribution. We use
it to parameterise the comfort-discomfort transition during approaching. Among the parameters in
formulae (2), r = {r+x , r−x , r+y , r−y } determine driver space boundaries in different directions, where
p = e−1; and β = {β+

x , β−
x , β+

y , β−
y } determine how fast comfort changes to discomfort across the

boundaries in different directions.

Driver space, i.e., two-dimensional vehicle spacing, can vary in different scenarios. Correspondingly,
given samples of vehicles in various scenarios, θ can also be different. The inference of θ is achieved
by estimating the density of the accumulative presence of vehicle pairs. In each pair, one of them is
considered as an ego vehicle and the other is a surrounding vehicle. By aggregating all pairs in the
same scenario, an average ego vehicle is abstracted, and driver space is shaped by the surrounding
vehicles. In our previous research, we developed a method that makes consistent inference of driver
space. The readers are referred to Jiao et al. (2022) for technical details.

Spacing between approaching vehicles

Driver space reflects the average preference of drivers’ spacing behaviour. This includes spacing
when vehicles are approaching each other and leaving away. As collision is mainly a result of
getting overly close, we only take approaching spacing into account.

As stated above, our quantification of driver space transforms vehicle coordinates. The transfor-
mation aligns the y-axis in the target coordinate system to the direction of the relative velocity
between two interacting vehicles. This ensures the independence of x and y. For two vehicles
approaching each other, the transformed y will be larger than 0. In formula (2), r and β define
where the intrusion discomfort increases most quickly and how quickly the increase is. Therefore,
among the parameters, r+y and β+

y characterise the spacing between vehicles that are approaching
each other.

With the inferred r+y and β+
y in various scenarios, we can correspondingly estimate the spacing

between approaching vehicles under different extent of discomfort. Given a certain extent of
discomfort indicated by p, the approaching spacing s(p) can be computed by solving the inverse
of equation (1). As x and y are independent from each other, s(p) is solved as

s(p) = r̂+y (− ln(p))1/β̂
+
y . (3)

For vehicle samples in different situations and at different relative speeds, approaching spacing can
be computed correspondingly, and then we can estimate the critical time to collision.

Critical time to collision

Our quantification of driver space is based on the assumed negative correlation between the presence
of vehicles and the extent of discomfort. During the approaching between vehicles, drivers can feel
increasing discomfort, and this increase is assumed to be fastest when p = e−1. When p is close to
0, drivers are comfortable with other vehicles’ presence. When p is close to 1, the vehicles are so
close that a collision is imminent.

In this study, we consider two kinds of critical time. One is the time from comfort to collision, the
other is the time from discomfort to collision. The former represents the time from when a driver
starts to feel discomfort due to approaching to a potential collision, and the latter represents the
time from when a driver experiences clear discomfort and seeks for change to a potential collision.

We firstly consider spacing from comfort to collision as sc = s(p = 0.1) and spacing from discomfort
to collision as sd = s(p = e−1). Generally denote a series of spacing under different relative speeds
v as s. For each relative speed condition v, there is a corresponding s. Given the linear physical
relationship between speed and distance, we assume that s and v are linearly correlated as equation
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(4) and the coefficient t∗ is the critical time.

s = s0 + vt∗ + ϵ, (4)

where s0 is the spacing when vehicles are relative static, and ϵ is the random error that satisfies
E(ϵ) = 0.

We then use least squares fitting to estimate ŝ0 and t̂∗. The unbiased estimation of them are solved
as equations (5).  t̂∗ =

∑n
i=1(vi − v)(si − s)∑n

i=1(vi − v)2
,

ŝ0 = s− vt̂∗.

(5)

In addition, the variance of t̂∗ can also be estimated as shown in equation (6)

V (t̂∗) =
V (ϵ)∑n

i=1(vi − v)2
=

V (s)∑n
i=1(vi − v)2

. (6)

In this way, based on sc and sd, respectively, we can estimate the critical time from comfort to
collision, denoted as t̂∗c , and the critical time from discomfort to collision, denoted as t̂∗d.

3 Results and discussion

Datasets

We apply the proposed approach to two trajectory datasets. Both of them are collected in the
U.S., of which the videos of vehicle movement were recorded by drones, and then computer vision
algorithms were used to process the videos into numerical coordinates. As shown in Figure 1, one
of them is a weaving segment of an expressway marked with A (Zheng et al., 2022), where 9,956
vehicles in 1.44 hours were recorded; and the other is an intersection denoted as GL (Zhan et
al., 2019), where 10,510 vehicles in 4.34 hours were recorded. This study considers vehicle-vehicle
interaction only, so pedestrians and cyclists in the intersection GL are excluded.

Figure 1. Two road segments that are analysed. (a) and (b) are respectively reused from Figure
8 in Zheng et al. (2022) and Fig.2 in Zhan et al. (2019).

We consider lateral interaction at the intersection GL. If the angle between the moving directions of
the two vehicles in a pair is smaller than 15 degrees or larger than 165 degrees, they are considered
to interact only in the longitudinal direction (i.e., car following); otherwise, their interaction is
considered to also involve the lateral direction (e.g., lane-changing and turning). In this way, our
analysis considers three situations: interaction in the expressway, longitudinal interaction at the
intersection, and lateral interaction at the intersection. They are referred to as Expressway A,
Non-lateral GL, and With-lateral GL in the following.

Inferred driver space

We first sample vehicle pairs present at the same frame, and then infer the driver spaces that they
accumulatively shape in different scenarios. Figure 2 shows several inference results. Driver spaces
in different situations and under 2, 4, 6, 8, 10 m/s of the relative speed are drawn. In each subplot,
the yellow dots indicate surrounding vehicle positions, and the driver spaces that they shape are
plotted as contours at different levels of intrusion discomfort.
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Figure 2. Inferred driver space in different scenarios. E: Expressway A; N: Non-lateral GL; L:
With-lateral GL.

Figure 2 provides an intuitive impression of how drivers maintain distance in various scenarios.
Driver space expands as the relative speed between the vehicles increases. While at the same
relative speed, the average driver space is largest on the expressway, followed by that formed
by vehicles at the intersection during non-lateral interaction, and the driver space formed during
lateral interaction is the smallest.

The difference in driver space in different scenarios imply that drivers perceive and react differently
during interaction. For instance, when two vehicles are moving in the same direction on the
expressway at a similar relative speed, they maintain a larger spacing compared to when they are
driving at the intersection with non-lateral interaction. In the former case, drivers tend to be more
cautious and distant from each other. Similarly, if the two vehicles were to encounter each other
during a lateral interaction (i.e., they are in angled directions but the relative speed value is still
similar), their spacing would be even smaller. Such differences reflect drivers’ different perception
about the approaching between each other, which results in different reaction.

Estimated critical time to collision

In the three situations of Expressway A, Non-Lateral GL, and With-lateral GL, we compute the
spacing at various relative speeds and then estimate the corresponding critical time to collision.
The results are presented in Figure 3. Each column in this figure represents a specific situation.
The upper plot in each column displays the computed spacing, and the bottom plot displays the
estimated time and its variance.

Figure 3. Average spacing and estimated critical time to collision in different situations.

The red lines indicate the estimated critical time from discomfort to collision t̂∗d. Our results show
that this value is 3.98s on the expressway A, but reduces to 2.40s at the intersection GL during
non-lateral interaction and to 2.84s during lateral interaction. This estimated time represents the
duration that a driver realises the danger before a potential collision. A higher value means that
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the driver perceive the potential danger earlier. Therefore, the results suggest that drivers tend to
perceive potential collisions more quickly when they drive on the expressway than when they drive
at the intersection. This makes sense as the traffic environment on highways is generally simpler
than in urban areas, so that a potential collision is more predictable.

The difference between the blue lines and the red lines (i.e., t̂∗c − t̂∗d) indicates the estimated
time from when a driver begins to feel discomfort to when the driver feels clear discomfort that
motivates behaviour change. This time difference reflects how quickly the driver responds to a
potential collision. Our results show that drivers respond most quickly when they drive at the
intersection during lateral interaction, with a time difference of 0.73s. However, during non-lateral
interaction, the time difference is 1.19s at the intersection and 1.59s on the expressway. This could
be due to that lateral interaction typically takes place in a closer distance, which requires faster
response of drivers. Corroborating support can be seen from the spacing plots, where the spacing
from comfort to discomfort is larger for longitudinal interaction than for lateral interaction.

4 Conclusions

This study offers a driver space perspective to analyse the critical time to collision and the issuing
of collision warning. Firstly the averaged two-dimensional spacing of drivers in different situations
is quantified based on the accumulative presence of vehicles. Then we use least squares to estimate
the critical time to collision by fitting the linear relationship between the approaching spacing and
the corresponding relative speeds. We analysed three situations in this study, including highway
interaction, longitudinal interaction at an intersection, and lateral interaction at the same inter-
section. Our results show that drivers may take different amount of time to perceive and react to
a potential collision in different situations. Specifically, drivers perceive the danger of a potential
collision sooner on highways than at urban intersections, which implies that they are more sen-
sitive to potential collision when driving on highways. Meanwhile, drivers take quicker reaction
during lateral interaction than longitudinal interaction. These results suggest that collision warn-
ing systems need to be tailored to specific driving situations, with a greater warning sensitivity on
highways and a proper time design to avoid distracting drivers’ proactive reaction. By accounting
for the variation of driving situations and interactions, drivers can get more reliable reminders and
the road safety can be improved for all road users.

In the next step, we will apply the approach to more intersection situations. Figure 3 shows two
thresholds for the situation of With-Lateral GL. The lower threshold is seen when the relative
speed is smaller than around 10 m/s, and the higher one appears when the relative speed is larger.
This implies that, during lateral interaction, drivers may have even slower awareness of potential
collisions if their speed difference is smaller. Such implication poses a concern as the delayed
awareness may result in inadequate reaction time to avoid potential collisions. Therefore, we still
need to examine whether this phenomenon is common across different intersections and to explore
the underlying causes.

This study contributes to the growing research field on ADAS and autonomous driving by extending
the scope of critical time to collision to a wider range of driving scenarios, beyond car-following
that is typically focused. However, it is important to note that the critical time to collision is just
one aspect of safe driving. Other factors, such as vehicle-to-vehicle communication, pedestrian and
bicycle safety, and the ability to detect and respond to unexpected situations on the road, also
need to be considered in developing more advanced collision avoidance systems.
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Short summary

Cycle Superhighways (CS) are the cycle routes that run between central London and outer London.
They were introduced in 2008 as a way to encourage cycling and improve safety. This paper
investigates the causal cycling demand and safety impacts arising from the introduction of CS.
The analysis uses road traffic and accident data from the Department for Transport in the UK.
Propensity score matching and panel outcome regression models are employed and compared to
estimate the effects of CS for two different infrastructure types - segregated and non-segregated.
Our results suggest that, on average, the intervention had a positive effect on cycle flow volume
and cycle accidents, but no statistically significant effect on the cycle accident rate. Nevertheless,
we find that segregated CS show a statistically significant decrease in cycle accident rate.
Keywords: cycleway investments, demand, safety, causal analysis, heterogeneous impact.

1 Introduction

Cycling has long been regarded as a healthy, economic, and environmental-friendly way of fulfilling
one’s day-to-day travel needs. With the aim to increase cycling in London, Cycle Superhighways
(CS) were introduced across London in 2008. Figure 1 presents an initial route map of the CS. CS
are cycle pathways extending from the outer parts of London to its centre1, that were developed
to enable safer, quicker, and more direct travel within the city. Several variants of CS have been
also introduced across North America, Australia and Europe to serve the longer distance cycle
commutes in metropolitan centres (Pucher & Buehler, 2017). The overarching aim of this paper
is to contribute to the growing empirical evidence on the impact of such cycling infrastructure
investments on cycle traffic and cyclist safety.

Figure 1: Route plan map of the Cycle Superhighways in London.

CS incorporated a variety of measures to improve cyclist safety including (Transport for London,
2011): (1) realigned traffic and bus lanes to create more space for cyclists on busy stretches of the

1https://tfl.gov.uk/modes/cycling/routes-and-maps/cycleways
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routes, (2) re-designed junctions to make them safer for cyclists (say, by removing left-turn slip
roads), (3) blind-spot visibility mirrors at signalised junctions in order to improve the visibility
of cyclists to heavy goods vehicle drivers, (4) new advanced stop lines and extensions to existing
ones (to a minimum of 5 meters) in order to help cyclists move away from traffic signals before
other traffic, and, (5) segregated cycle lanes at particularly busy sections of the routes, including
Stockwell Gyratory and Wandsworth Bridge roundabout. However, given the associated infras-
tructure costs, the initial implementation of CS drew widespread criticism. Opponents claimed
that the safety impacts of CS were overstated and referred to CS as nothing but blue paint2. It is,
therefore, imperative to understand the traffic impacts of CS, particularly those related to cyclist
safety. In this paper, we investigate the causal effect of CS on cycle flow volume, number of cycle
accidents, and cycle accident rate.
Several ex-post evaluations have been carried out in the past to understand the traffic impacts
of cycle lanes, especially in regards to collisions (see DiGioia et al., 2017, for a detailed review).
These studies mostly compare crashes before and after the deployment of cycle lanes to quantify
the effects of the intervention. We argue the impact estimated in these studies may suffer from
confounding biases which occur primarily from the non-random nature of such infrastructure in-
vestments. In other words, there may exist confounding factors that determine both the likelihood
of the intervention and the resulting demand and safety impacts. For instance, CS are more likely
to be chosen for roads with large cycle flow volumes, however, there is an inherent scale effect:
more cycling usually implies higher cycle-related accidents. Additional biases may emerge from
temporal trends in the data. Thus, the estimates derived from a simple before-after comparison of
demand and safety indicators may not reflect the true intervention effect.
In this study, we adopt causal inference approaches; (i) propensity score matching and (ii) panel
outcome regression with fixed effects; that allow an unbiased estimation of the causal effect by
effectively adjusting for such confounding factors. Our analysis uses road traffic and accident data
from the UK Department for Transport. The closest precedent to our analysis is the study by Li et
al. (2017) that quantified the causal impact of CS in London on cycling volume and collision rate
at the network (that is, aggregate) level. However, we exploit the granularity of the data in hand
to estimate the impact of CS for different infrastructure types - segregated versus non-segregated
CS. We thus contribute with novel insights on how segregated CS segments perform with respect
to the non-segregated ones.

2 Methodology

This section has two main subsections. The first subsection introduces the causal inference frame-
work, which is followed by a description of the methods used in this paper: propensity score
matching and panel outcome regression. Both of the methods are applied to compare the reliabil-
ity of estimation. In the second subsection, we summarise the relevant details of the data that we
use to estimate the impact of CS.

Causal Inference Framework

We use Rubin’s Causal Model Rubin (1974) to develop a causal inference framework as follows: Let
Zi = (Yi,Ti,Xi) represents the observed data, where i = 1, 2, · · · ,N . N is the total population.
Here, Yi is the outcome of interest for an individual unit i. Ti denotes the binary treatment
indicator. If Ti = 1, the unit i receives the treatment, otherwise, Ti = 0. Xi is the covariates,
describing the characteristics of unit i. The potential outcome is defined as Yi(T ) for each unit i.
Yi(1) and Yi(0) represent the potential outcomes for unit i under treatment and control respectively.
Then, the treatment effect for each unit i can be defined as:

τi = Yi(1)− Yi(0) (1)

However, we can only observe one of potential outcome of Yi(1) or Yi(0). As a result, we can not
directly estimate each unit treatment effect τi. Instead, we can estimate the average treatment
effect (ATE).

τATE = E[Yi(1)− Yi(0)] (2)

We can estimate the ATE if the following three assumptions hold.

2https://ecf.com/news-and-events/news/evolution-cycle-superhighways-london
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• Conditional Independence Assumption: This assumption means that given the observed
covariates X, the potential outcomes are independent of the treatment, i.e. Y (0),Y (1) ⊥⊥
T |X.

• Common Support - This condition requires that each unit i has a positive probability of
both receiving the treatment or not. There is no probability that one unit is always treated
or untreated: 0 < P (T = 1|X) < 1.

• Stable Unit Treatment Value Assumption(SUTVA) - The SUTVA requires that the observed
outcomes under a given treatment allocation must be equivalent to potential outcomes under
that allocation. i.e. Yi = I1(Ti)Yi(1)+(1− I1(Ti))Yi(0),∀i = 1, 2, · · · ,n, where I1(Ti) in the
indicator function for receiving the treatment.

All the three assumptions above are known as strong ignorability. Under this condition, the ATE
(2) can be estimated from the observational data. This can be demonstrated as follows:

τATE = E[Yi(1)− Yi(0)]

= EX [E(Yi(1)|Xi = x)− E(Yi(0)|Xi = x)]

= EX [E(Yi(1)|Xi = x,Ti = 1)− E(Yi(0)|Xi = x,Ti = 0)]

= EX [E(Yi|Xi = x,Ti = 1)− E(Yi|Xi = x,Ti = 0)]

(3)

Propensity Score Matching

Propensity Score Matching (PSM) is a statistical method to estimate an intervention or treatment.
The concept of PSM was first introduced by Rosenbaum and Rubin (1983) Rosenbaum & Rubin
(1983) and further developed by Heckman et al. (1997) Heckman et al. (1997). Suppose that we
want to compare the treatment effect between a control group and a treatment group. For example,
in this study, the treatment is the construction of Cycle Superhighways(CS) or not. The treatment
group contains those road segments with the installation of CS, while the control group includes
other road segments. A naive method to estimate the treatment effect is to directly compare
the difference between the two original groups. However, usually, the treatment is not assigned
randomly on each individual. There exist confounding variables which affect both the treatment
and the outcome.
To avoid this selection bias, we can do a matching between the control and treatment groups. PSM
is one of the matching methods. It first uses models like logit or probit models to estimate the
probability that each individual receives the treatment, which is called the propensity score (PS).
Here we use logit model, which is defined as:

P (T = 1|X) =
1

1 + exp(−(α+Xβ))
(4)

where α is the intercept and β is the coefficient vector. Then, each individual in the treatment group
is matched to the individual in the control group with similar propensity score. There are four main
matching algorithms: nearest neighbour matching, caliper and radius matching, stratification and
Interval matching, kernel and local linear matching. Finally, the treatment effect is estimated by
the difference between the two matched groups. If the strong ignorability assumption is satisfied
and the matching algorithm is the nearest neighbour matching, then the ATE can be estimated
by the following equation:

τ̂ATE =
1

NT

NT∑
i=1

(
Yi(1)− Ŷi(0)

)
(5)

where NT represents the total units of treatment group, Yi(1) is the outcome of ith unit in the
treatment group, Ŷi(0) is the closest unit in the control group in terms of propensity score distance
that is matched to the ith treatment unit. It should be noted that different matching algorithm
has different estimation equation. The main advantage of PSM is that it reduces the multiple
dimension of matching to a single dimension, i.e. propensity score. More details of PSM can be
found in Caliendo and Kopeinig (2008) Caliendo & Kopeinig (2008)

Panel outcome regression with fixed effects

One drawback of the propensity score matching method is that its performance highly relies on
the choice of confounding factors. If there exist significant confounding factors but unobserved,
the result may be unreliable. Thus, in order to control for these unobserved confounding factors,
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we also implement panel outcome regression to compare with PSM. There are four main kinds of
panel outcome regression models: pooled model, first differences, random effects and fixed effects.
Here we introduce panel outcome regression with fixed effects. For more details of other models,
see Wooldridge(2010) Wooldridge (2010).
Suppose that the data generating process is

yit = XT
itβ +WT

i γ + ϵit (6)

where XT
it is a K × 1 vector of observed time-variant covariates and WT

i is an J × 1 vector of
unobserved time-invariant covariates. ϵit is the error term. E[ϵit|Xit,Wi] = 0, i = 1, 2, · · · ,N ,
t = 1, 2, · · · ,T . The fixed effects model assumes that each individual has a unique attribute that
is constant through time. The panel model is

yit = αi +XT
itβ + ϵit (7)

One possible way to estimate is to use the within estimator. The formula is as follows:

yit − ȳi = (Xit − X̄i)
Tβ + (ϵit − ϵ̄i)

where ȳi, X̄i, ϵ̄i are the respective mean over time. The advantage of the fixed effect model is that
it can effectively deal with the unobserved time-invariant confounding factors. However, it fails to
control for the time-varying confounding factors.

Data

In this section, we describe the relevant datasets and variables we used in this study. There are
four main datasets which are highly related to this study: accident data, road data, cycleway data,
socioeconomic data.

• Accident data
The accident data is from STATS19, published by Department for Transport 3. This dataset
gives a detailed description of road accidents in Great Britain, including the date and location
of accident, vehicle type, casualty details and severity. In this study, we only focus on the
cycle-related accident data from 2000 to 2020 in Greater London.

• Road data
The road data is from road traffic statistics, published by Department for Transport4. This
dataset gives number of vehicles that travel past the count point on an average day of the
year. Here, we use the annual average daily traffic volume (AADT) and annual average daily
bicycle volume (AADB) from 2000 to 2020 in Greater London.

• Cycleway data
The cycleway data is from public TfL data5. The dataset records the position and type of
cycleway in London. In this paper, we mainly focus on the Cycle Superhighway.

• Socioeconomic data
The socioeconomic data is from Office for National Statistics (ONS)6 provides the data re-
lated to economy, population and society at national, regional and local levels in United
Kingdom. Here, we use the population density, employee numbers, index of multiple depri-
vation (IMD) at the level of Lower Layer Super Output Areas (LSOA).

In this study, the observation unit is LSOA. We use the count points in road data as basis and
link other dataset to the road data. To be more specific, for each record of the accident data, we
calculate its nearest count point in road data. If the nearest distance is less than a pre-defined
threshold (here we use 0.4 kilometer), then we can allocate the record to its nearest count point.
Similarly, for each record of the cycleway data and socioeconomic data, we can allocate it to its
nearest count point. And if the nearest distance of one record of cycleway data is greater than

3https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data.
4https://roadtraffic.dft.gov.uk/regions/6.
5https://cycling.data.tfl.gov.uk/.
6https://www.ons.gov.uk/.
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a pre-defined threshold (e.g 1.5 kilometer), we can assume that there is no construction of Cycle
Superhighway.
Although 12 CS routes had been planned, only part of them were put into use. In this paper, we
studied 6 CS routes. The detailed description of these 6 CS routes is in Table 1.

CS No. Open time Length Route Type
CS1 2016 April 9.5km The city to Tottenham Partly segregated two-way cycle tracks. Most shared with bus

CS2 2011 July 6.8km Stratford to Aldgate Segregated cycle tracks are rarely seen.
(Note: An upgradtion was added in 2016)

CS3 2010 July 12.3km Barking to Tower Hill Mostly segregated two-way cycle tracks.
CS5 2015 Autumn 1.4km Oval to Pimlico Completely segregated two-way cycle tracks.
CS7 2010 July 13.7km Merton to the City Segregated cycle tracks are rarely seen. Mostly shared with buses.
CS8 2011 July 8.2km Wandworth to Wesminster Segregated cycle tracks are rarely seen.

Table 1: The characteristics of each Cycle Superhighways

The distribution of these 6 CS routes can be seen in Figure 2.

Figure 2: The distribution of 6 CS routes

Here, we choose 80 road segments with construction of CS as the treatment group, and select 434
road segments as the control group. Their distribution can be found in Figure 3. The red points in
Figure 3 represent the CS segments (treatment group) while the blue points represent the control
segments.
It should be noted that the installation of Cycle Superhighways is not randomly assigned. There
exist some confounding variables which could not only affect the construction of Cycle Superhigh-
ways, but also influence the cycle accident rate. Here, we consider the following covariates: the
traffic flow volume, the bicycle flow volume, the number of previous accidents, population den-
sity, employees, IMD, bus density. The choice of covariates is based on empirical findings. The
description of the covariates is in Table 2.
In this study, the treatment variable is binary, representing presence of a Cycle Superhighway or
not. If there is no CS around a road segment in a pre-defined distance (e.g 1.5 kilometers), we
assume that there is no construction of CS in this road segment and the treatment variable is 0,
otherwise, it is 1. We define the pre-intervention period as the three years before the CS is open,
the post-intervention period as the three years after the open time. The outcome variables we are
interested, include average cycle accident rate, cycle flow volume, the number of cycle accidents
over the post-intervention period. The average cycle accident rate is defined as the mean of yearly
cycle accidents divided by AADB during the post-intervention period. The cycle flow volume is
reflected by the average AADB during the post-intervention period. The number of cycle accidents
is the total number of cycle related accidents that happened during the post-intervention period.
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Figure 3: The distribution of treatment and control samples

variable description mean std min max

AADB_pre Annual average daily bicycle volume
in the pre-intervention period 387.66 728.87 0.00 7167.33

AADT Annual average daily traffic volume
in the pre-intervention period 29666.31 24101.18 1825.66 202912.33

accident_pre Total accident nums
in the pre-intervention period 2.59 4.27 0.00 28.00

Population Density population density in LSOA 75.77 51.06 1.16 437.04
Employees Number of employees in LSOA 1468.48 5565.53 0.00 52000.00
IMD The index of multiple deprivation 25.37 13.44 2.68 62.57
bus density Number of bus stop within 0.5 km 13.38 6.47 0.00 35.00

Table 2: Descriptive statistics of the covariates

3 Results and discussion

In this section, we will estimate the effect of Cycle Superhighway (CS) on cycle accident rate,
cycle volume and the number of cycle accidents. We will implement both PSM and panel outcome
regression with fixed effects and compare the relative results. "MatchIt" package (?) in R is
applied to perform the PSM. There are various kinds of matching methods in this package. Here,
we use full matching because it performs quite well for the balance and overlap test. Next we will
check the covariate balancing. The summary is in Table 3. Table 3 shows that all the variables are

Std. Mean difference M.Threshold Variance Ratio
distance 0.0123 Balanced, <0.1 0.9936
AADB_pre -0.0389 Balanced, <0.1 1.1077
AADT 0.0481 Balanced, <0.1 0.4973
accident_pre 0.0454 Balanced, <0.1 1.2428
Population.Density -0.2404 Not Balanced, >0.1 1.3790
Employees 0.0606 Balanced, <0.1 0.3864
IMD 0.0386 Balanced, <0.1 1.1947
bus.density -0.0576 Balanced, <0.1 0.7224

Table 3: Summary of balance for matched data

well-balanced except population density. The standardized mean difference of population density
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is -0.2404. The absolute value is still not too big and population density may be considered as less
important compared to other road characteristic variables. As a result, we can assume that the
covariates achieve balance after matching.
Then, we check the overlap test by comparing the distribution plot of propensity score. The plot
is in Figure 4. Figure 4 shows that before matching, the distributions of propensity score between

Unadjusted Sample Adjusted Sample
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Figure 4: Overlap test

treatment and control groups are quite different. However, after matching they are similar to each
other. Thus, there is support for the overlap assumption being verified.

Effect of CS on cycle accident rate

We can estimate the treatment effect ATE using the standard linear regression with matching
weights. The coefficients and standard errors can be estimated by the lmtest (?) and sandwich
packages (?) in R. First, we consider the effects of CS on cycle accident rate. The result is in
Table 4.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 62.0057 32.2701 1.9215 0.0561
CS_or_not 11.0589 23.6364 0.4679 0.6404
AADB_pre -0.0401 0.0130 -3.0847 0.0023
AADT 0.0009 0.0003 2.7053 0.0074
accident_pre 1.8630 1.0624 1.7536 0.0811
Population.Density 0.0455 0.1462 0.3113 0.7559
Employees -0.0037 0.0015 -2.5259 0.0123
IMD -1.5655 0.7903 -1.9808 0.0490
bus.density 0.5267 0.4907 1.0733 0.2845

Table 4: t test of coefficients (CS on cycle accident rate)

From Table 4, we can see that the p−value of CS_or_not is 0.6404, which indicates that the CS
has no significant effect on the cycle accident rate. Then, we will use panel outcome regression
with fixed effect to estimate the effect of CS on cycle accident rate. This can be achieved by using
the "plm" package (?) in R. The result is in Table 5.
We can see that in Table 5, the p−value for CS_or_not is 0.51 and the R2 is 0.00119. This means
that the effect of CS on cycle accident rate is also not significant and the model does not fit well.
The result of panel outcome regression is similar to the one of PSM. Both of them suggest that
there is no significant effect of CS on cycle accident rate.
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Estimate Std. Error t-value Pr(> |t|)
CS_or_not 1.50e+02 2.25e+02 0.67 0.51
AADT 9.74e-03 1.48e-02 0.66 0.51
R2 0.00119

Table 5: Summary of panel OR(CS on accident rate)

Effect of CS on the cycle volume

In this section, we will examine the effect of CS on the cycle volume. The result for PSM is in
Table 6. From Table 6, the p−value for CS_or_not is 0.0029 and the estimated coefficient is 273.

Estimate Std. Error t value Pr(> |t|)
(Intercept) -1.82e+02 1.78e+02 -1.02 0.3069
CS_or_not 2.73e+02 9.02e+01 3.02 0.0029
AADB_pre 1.11e+00 8.12e-02 13.68 <2e-16
AADT -5.89e-04 7.69e-04 -0.77 0.4446
accident_pre -1.74e+01 2.35e+01 -0.74 0.4593
Population.Density 3.22e-01 6.53e-01 0.49 0.6229
Employees 5.02e-03 2.72e-03 1.85 0.0666 .
IMD 4.00e+00 3.53e+00 1.13 0.2584
bus.density -2.77e+00 6.43e+00 -0.43 0.6668

Table 6: t test of coefficients (CS on the cycle volume)

This indicates that the introduction of CS significantly increased the number of cycle volume. In
average, it could increase 273 in the number of AADB.
The result of panel outcome regression with fixed effects is in Table 7. From Table 7, the p−value

Estimate Std. Error t-value Pr(> |t|)
CS_or_not 3.32e+02 9.38e+01 3.54 0.00065
AADT 6.52e-04 1.22e-02 0.05 0.95741
accident_num -2.56e+01 1.89e+01 -1.36 0.17835
R2 0.137

Table 7: Summary of panel OR(CS on the cycle volume)

of CS_or_not is 0.00065 and the estimated coefficient is 332. This also indicates that the CS has
a significant effect on the cycle volume. The result is consistent with the previous PSM result and
the coefficient 332 is close to 273, which is the coefficient using PSM. As a result, we can conclude
that CS significantly increased the cycle flow volume.

Effect of CS on the number of cycle accidents

We will next estimate the effect of CS on the number of cycle accidents. The result of using PSM
is in Table 8. In Table 8, the p−value of CS_or_not is 0.0113 and the estimated coefficient is 1.64.
This suggests that the CS significantly increased the number of cycle accidents.
The result of panel outcome regression is in Table 9. The p−value of CS_or_not is nearly 0 and
estimated coefficient is 2.46. The result is also similar to the previous PSM result. As a result,
both PSM and panel OR method suggest that the CS significantly increased the number of cycle
accidents.
So far, we have found that overall, the CS significantly increase the cycle flow volume and the
number of cycle accidents with no significant effect on the cycle accident rate. However, as shown in
Table 2, each CS has different segregated condition. Among them, CS5 is the only fully segregated,
while CS2, CS7, CS8 rarely have any segregation installation. Considering the heterogeneity in
different CS routes, we will perform the causal analysis on each CS route and study the effect of
segregation.
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Estimate Std. Error t value Pr(> |t|)
(Intercept) -4.69e-01 1.49e+00 -0.31 0.7533
CS_or_not 1.64e+00 6.42e-01 2.56 0.0113
AADB_pre 1.42e-03 5.46e-04 2.60 0.0101
AADT -1.91e-05 8.51e-06 -2.25 0.0256
accident_pre 7.98e-01 8.29e-02 9.62 <2e-16
Population.Density 2.20e-03 4.72e-03 0.47 0.6417
Employees 9.16e-05 3.19e-05 2.87 0.0046
IMD 1.26e-02 2.22e-02 0.57 0.5690
bus.density 8.38e-02 4.52e-02 1.85 0.0654

Table 8: t test of coefficients (CS on cycle accidents)

Estimate Std. Error t-value Pr(> |t|)
CS_or_not 2.46e+00 2.22e-01 11.06 <2e-16
AADB -7.15e-04 2.60e-04 -2.75 0.0062
AADT -2.82e-05 1.39e-05 -2.03 0.0427
R2 0.181

Table 9: Summary of panel OR(CS on the cycle accidents)

The safety effect of different CS routes

In this subsection, we evaluate the impact of each CS route. The result using PSM is in Table 10.
The result using panel outcome regression with fixed effects is in Table 11.

Estimate Std. Error t-value Pr(> |t|)
CS1 1.5860 3.4992 0.4532 0.6541
CS2 3.9906 2.8908 1.3804 0.1843
CS3 3.5691 4.7206 0.7561 0.4539
CS5 -5.6549 1.9912 -2.8400 0.0078
CS7 7.7870 5.2608 1.4802 0.1492
CS8 -2.1071 2.5961 -0.8116 0.4188

Table 10: Summary of the effect of each CS using PSM

Estimate Std. Error t-value Pr(> |t|)
CS1 -53.9521 335.71 -0.1607 0.8725
CS2 257.69 252.90 1.0190 0.3098
CS3 101.13 115.12 0.8785 0.3806
CS5 -16.7454 181.34 -0.0923 0.9265
CS7 353.40 274.82 1.2859 0.2003
CS8 141.57 227.91 0.6212 0.5353

Table 11: Summary of the effect of each CS using panel OR

In Table 11, the result using panel outcome regression still does not show any significance. From
Table 10, we can see that although other CS routes still do not show any significant effect, the
p−value of CS5 is less than 0.05 and the estimated coefficient is −5.6549. This implies that CS5
significantly decreases the cycle accident rate. In Table 1, we can see that CS5 is the only CS route
that is fully segregated. This indicates that the existence of segregation may be a crucial factor
that influences the cycle accident rate.
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The effect of Segregation on CS road

In this subsection, we will examine the effect of segregation on the CS road. Segregated cycle
lane spared a space of the road for cycle use only. It is reported that there are lots of benefits of
segregation. For example, the shift to segregated cycle lane can increase the carrying capacity of
congested streets Aldred et al. (2017). Also, studies from Denmark have shown that segregated
cycle lane reduces cyclists deaths by 35%7. Segregated cycle lanes are far more likely than those
non-segregated ones to encourage people to cycle, especially women.
The characteristic of each road segment can be found at Google map. It not only provides the
recent street view, but also provides the past few years’ photos. With the help of Google map, we
can denote each road segment as segregated or not. We also perform the PSM to inspect the effect
of segregation on cycle accident rate. The result is in Table 12. From Table 12, we can see that

Estimate Std. Error t value Pr(> |t|)
(Intercept) -28.6089 131.5069 -0.2175 0.8284
CS_Seg -58.8391 19.3721 -3.0373 0.0033
accident_rate_pre 0.6367 0.1043 6.1033 4.934e-08
AADT 0.0024 0.0021 1.1437 0.2565
Road.type 96.5759 76.8731 1.2563 0.2131
Population.Density -0.2186 0.4600 -0.4752 0.6360
Employees 0.0116 0.0025 4.5338 2.294e-05
IMD 3.9610 0.8972 4.4145 3.543e-05
bus.density -7.6020 1.9579 -3.8826 0.00022

Table 12: t test of coefficients(CS_seg vs CS_non_seg)

the p−value of "CS_Seg" is nearly 0 and the estimated coefficient is −58.839. This suggests that
the segregated Cycle Superhighways are significantly safer that those without segregation.

4 Conclusions

London Cycle Superhighways are a significant part of the "cycling revolution". In this paper, we
studied the safety effect of Cycle Superhighways. 80 CS segments and 434 control segments were
chosen to analyze. The covariates included annual average daily traffic (AADT), annual average
daily bicycle volume (AADB), previous cycle accidents, population density, employees, index of
multiple deprivation (IMD), and bus density. We implemented the propensity score matching and
panel outcome regression with fixed effects to estimate the safety effect. Both of the methods
showed that the installation of Cycle Superhighways has no significant effect on the cycle accident
rate. However, they both indicated that the Cycle Superhighways significantly increased the cycle
flow volume and the number of cycle accidents.
Then, we studied the heterogeneity of different Cycle Superhighways and found that CS5 performs
best among these CS routes. CS5 is reported to be the only fully segregated CS. Thus, we next
examined the effect of segregation among CSs. Using propensity score matching, it turned out that
the segregated CS significantly decreased the cycle accident rate compared to those non-segregated
CSs. As a result, in order to improve the safety of Cycle Superhighways, more segregation imple-
mentation should be encouraged.
For further study, one can consider more choices of the covariates. Limited by the data availability,
we only considered AADT, AADB, previous cycle accidents, population density, employees, IMD,
and bus density. One can also include some other plausible variables, e.g. traffic speed, intersection
density.
Also, in this study, we constructed the model based on each "count point". This was because the
dataset we got only had the latitude and longitude information. Thus, we just simply allocated
each accident to its nearest count point. This might lead to some bias. A better choice is to do the
reverse geocoding. That is, to map each coordinate to the corresponding road and construct the
causal model base on each road. Then, each accident takes place exactly on its respective road.
Another possible improvement is to quantify the percentile of segregation for each road segment.
In this paper, we only classified each road segment as segregated or not. To better inspect the

7https://www.trafficchoices.co.uk/traffic-schemes/segregated-cycle-lanes.shtml.
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effect of segregation, one can quantify the percentile of segregation. In this case, the treatment
variable is not binary any more. Instead, it becomes continuous. We would need to construct the
propensity score matching with continuous treatment variable.
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Short summary

Cycling as a clean, green, and environmentally friendly mode of transportation plays a crucial role
in society by fostering physical activity and a healthy lifestyle, reducing traffic congestion, and
improving mobility. To create more efficient strategies for promoting cycling, there is a need to
gain a better understanding of the influential factors on cyclists’ route choice behaviour. Electric
bikes (e-bikes) are an emerging technology that appeared to assist cycling by using battery-powered
motors. Researchers consider e-bikes as an emerging technology with its most certain effect being
easing up cycling. Hence, investigating individual route choice behaviour with respect to their
bike type can unveil new insights for cycling promotion. To this end, we used data collected via
a stated preference (SP) survey in Finland not only to investigate the factors affecting cyclists’
route choice behaviour but also to compare the behaviour of e-bikers with regular bike users (r-
bikers) in order to identify the changes that may happen by easing the pedalling fatigue due to
the pedal-assist feature of e-bikes. Our results indicate that low interaction with traffic, fewer
intersections, and separated bike facilities are the main factors unchanged to promote cycling
among r-bikers and e-bikers. Furthermore, we compare the outputs of simple Logit models (SLMs)
and random parameter Logit models (RPLMs) for r-bikers’ and e-bikers’ route choices to address
the impact of error correlation among observations in SP data. Our findings imply that the SP
data is well-designed to capture the preferences of the individuals accurately, so the observations
are not severely correlated, i.e., the IID assumption is held. This suggests that using SLMs can
lead to similar outputs with RPLMs, without increasing the complexity of the estimation process.
Keywords: Cycling, E-bike, Route choice, Discrete choice modelling.

1 Introduction

Motivation

Promoting active modes of travel provides many advantages, from decreasing air pollution to
declining obesity cases and related diseases (Sałabun et al., 2019; Anderson et al., 2022). One
popular active mode is cycling, which can be used for almost all purposes, including with kids and
for the elderly. With advancements in technology, there are solutions available that are believed to
decrease the physical strain of cycling. Pedal-assisted electric bikes (in short e-bikes) can help the
cyclist while pedalling, especially on routes with hills. It is proven to be effective on obese people
evidencing that the physical and mental status of overweight people in Australia has improved
after 12 weeks of e-bike cycling (Anderson et al., 2022).
It is worth noting that easing up the cycling pedalling is not enough to promote an active mode
to the rest of the currently passive transport users unless planned properly. Although bicycle
usage is promoted in many European countries, different patterns regarding cycling have been
observed. For instance, France, Italy, and Germany have witnessed a more than 10% increase in
cycling demand, in 2020, compared to 2019, while Finland and Ireland lost more than 10% of their
weekday cyclist in the same period (Counter, 2021). One method to promote cycling in cities is
believed to be planning the infrastructures for absorbing cyclists. Therefore, planners must know
what measures affect cycling more (Broach et al., 2012; Huber et al., 2021).
A key cycling decision associated with transportation infrastructure is route choice. Researchers
usually employ route-choice modelling for active modes (e.g., bicycles) to assess the infrastructure
characteristics’ impacts on the mode users (Segadilha & Sanches, 2014; Bernardi et al., 2018).
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Studies using these models conclude that length, maximum steepness, and the type of road signif-
icantly affect cyclists’ route choice. It can be concluded that safety and pedalling fatigue are the
main concerns reducing the cycling demand when the infrastructure, traffic laws, and affordability
of bikes are in place (Hull & O’Holleran, 2014).

Background

The literature on bicycle route choice is pretty rich and comprehensive reviews of influential factors
on the cyclists’ route choice behaviour can be found in previous studies (e.g., see Hull & O’Holleran
(2014), Tarkkala (2022), Huber et al. (2021), and Tarkkala et al. (2023)). Studies dedicated to
route choice of e-bikers or the change in the attitude of cyclists using e-bikes are limited but provide
interesting insights. Chavis & Martinez (2021) found that e-bikes increase the length that cyclists
ride, while they also reported shorter travel times for e-bikers than regular bike users (in short
r-bikers), which means a significant increase in speed is observed. Moreover, with the increase in
e-bike numbers, major roads were more frequently selected by cyclists than minor roads.
Rérat (2021) surveyed more than 2000 e-bikers and almost 11000 r-bikers, revealing an increased
usage of e-bikes by females (50% of e-bikers vs 40% of r-bikers), as well as an increase in average
age in the e-bikers. Regarding the season of cycling, it was observed that the e-bikers were almost
abandoning their bikes in winter, switching to public transport or other motorised modes, probably
due to the fact that e-bikes are used more frequently for longer trips than r-bikes.
Dane et al. (2020) provided mixed Logit models for r-bikers and e-bikers that show different factors
affecting their route choices. However, their study results in favour of longer trips for both e-biker
and r-bikers which is not in line with previous literature on the bike route choice models. They
have used the interaction of different variables with length to account for differences in length
for different groups of people which may have caused the positive sign of the length variable,
however, no clear effect was found. They stated that the positive sign may be caused by the
alternative generation algorithm they employed to generate the shortest paths. However, their
findings regarding differences in route choice of r-bikers and e-bikers refer to variables that cannot
be affected by specific policies (e.g., they found that daylight and weekday play major roles in
r-bikes and e-bikes usage.

Research Contributions

According to the background section, little attention has been paid to the e-bike’s effect on the
route choice of cyclists. Although general studies are available, they have not assessed the change
due to electrification and did not compare their results with route choice models with r-bikes.
Simply put, studies regarding changes due to e-bike usage have not comprehensively resulted in
the main variables responsible for r-bike and e-bike promotion. Hence, this research addresses this
gap in the body of literature that, to the best of the authors’ knowledge, has not been explored
before.
Accordingly, in this research, the effects of e-bikes on the route choice decision of cyclists are
investigated. We evaluate e-bikes’ effects on different aspects of cycling and route choice using
separate discrete choice models developed for cyclists with r-bikes and e-bikes. We evaluate the
effects of various factors on cyclists’ route choice while the pedalling is eased up by e-bikes. This
may cause some factors to have a decreased importance in the route choice. In fact, a contribution
of this research is to test the hypothesis that e-bikes change the important factors affecting cyclists’
route choice decisions that may be used in infrastructure planning.
The above-mentioned contribution is obtained by comparing bikers’ and e-bikers’ route choice
models, estimated using one source of data. The data used for this research is obtained through a
stated preference (SP) survey that provides us with the chance to analyze the findings regarding
route choice model specifications. The model specification may interfere with factors’ effects on
route choice. Two different types of models, i.e., simple Logit model (SLM) and random parameter
Logit model (RPLM), are estimated for each type of bike. Comparing the models including different
variables’ significance depicts the impacts of model specification on our main findings. Using an
SLM requires the errors to be independently and identically distributed (IID). On the other hand,
the error term in the RPLM is not bounded to these assumptions. As in this research, each choice
situation presented to respondents is considered an observation, the error terms of discrete choice
models may not be IID (Axhausen et al., 2006). Moreover, similar types of models are used in
(Meister et al., 2022) and for many other studies that are looking for the model specification effects
in their results (Brownstone et al., 2000).
Thus, the contribution of this research to the literature is threefold:
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1. investigating factors affecting route choice of e-bikers;

2. comparing r-bikers and e-bikers to identify the main affecting factors of cycling promotion
with less pedalling fatigue; and

3. analyzing the impacts of model specification on research findings.

The remainder of this paper presents the data and method we employ to investigate the route
choice behaviour of cyclists in Section 2; the outputs of the estimated models and the results’
interpretations in Section 3; Finally, conclusions are drawn in Section 4.

2 Methodology

Data Collection

To analyze the route choice of bikers concerning the technology of their bikes, and bicycle route
choice data, this study uses the SP data collected in Greater Helsinki, Finland. The study area
is a collaborative region of 14 municipalities and the Siuntio Municipality which has around 1.53
million population with 1.20 million living in the capital area. More details about the data can
be found in Tarkkala (2022). The data is gathered using a survey assessing the following general
factors: the presence or type of a bike facility, the road type, the vehicle traffic, the presence of
controlled intersections along the route, the route gradients, and its length. The survey was offered
online for one month during September 2021 and 1029 respondents filled out the questionnaire.
Figure 1 depicts one of the hypothetical choice situations used in the survey.

Figure 1: An example of a choice situation used in the survey

The characteristics of the sample population including trip purposes, age groups, their experience
in riding a bike, and the time of year they bike, are depicted in charts of Figure 2. The e-bikers
share of the respondents is almost 9.6% which is similar to the reported share from the market,
i.e., 9% (Kuva, 2020). Moreover, the share of female respondents from the filled questionnaire is
49.3% which is a fair share regarding the target society composition.

Method and Models

One of the common approaches to identify factors affecting route choice decisions is implementing
the discrete choice models. In this research, as said before, two different types of discrete choice
models are implemented: SLM and RPLM, which enables to investigate the model specification
impacts by comparing the models’ results.
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Figure 2: Understudy population characteristics; (a) Trip purpose, (b) Age, (c) Cycling
experience, and (d) Time of the year cycling

SLM estimates the probability of choosing each route based on a linear combination of factors
forming a utility value, as shown in Eq. (1). Since it is impossible to capture completely the
utility value; a utility function composed of two parts is employed: the deterministic part, Vin,
and the random/error part, ϵin, where i and n refer to alternative and individual, respectively.
The deterministic part of the utility is a linear combination of effective factors in which βik is
the coefficient related to kth variable representing individual or alternative characteristics, Xink.
Then, the probability of each alternative selection is derived using Eq. (2).

Uin = Vin + ϵin = βi + βi1Xin1 + βi2Xin2 + ...+ ϵin (1)

Pin =
exp(Vin)∑
j

exp(Vjn)
(2)

The RPLM relaxes the IID assumption by introducing a random term, which eventually changes the
error term to δi1Xin1 + ϵin, as shown in Eq. (3). Different assumptions regarding the distribution
of δi1 is possible, with the most common to be a normal distribution.

Uin = Vin + ϵin = βi + βi1Xin1 + δi1Xin1 + βi2Xin2 + ...+ ϵin (3)

This change in error term distribution would be addressed through simulation and the expected
probability of each alternative selection is derived by approximately estimating the result of
Eq. (4) (Train, 2009).

Pin =

∫ ∞

−∞

exp(Vin)∑
j

exp(Vjn)
f(δi1)dδi1 (4)

We estimate both models for r-bikers and e-bikers separately. The maximum likelihood method,
which is used for model calibration, estimates the covariance matrix of coefficients as well. The
results obtained through all four models are then compared to show the differences between r-bikers
and e-bikers as well as the significance of the impact of error correlation among observations.

3 Results and Discussion

Two sets of models (SLM and RPLM) are calibrated using Stata 17 (StataCorp, 2021) for r-bike
and e-bike route choices, and their results are presented in Table 1. For each type of model, two
models are presented for e-bikes’ route choice. The first one includes the same variables as the
r-bike model while the second one is without the variables found to be insignificant in the first
model. In RPLMs, the random parameter is the coefficient of the route’s length variable with the
normal distribution.
Then, Logit models of r-bikers and e-bikers are compared to identify the prominent factors affect-
ing the route choice of individuals, while the pedalling fatigue of cycling is removed due to the
electrification of bikes. Another comparison is made between SLMs and RPLMs for regular bikes
and e-bikes to evaluate the effect of error correlation on the effective route choice factors.
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Table 1: SLMs and RPLMs for e-bikers’ and r-bikers’ route choice
Row Variables SLM RPLM

R-Bikers E-bikers (1) E-bikers (2) R-Bike E-bike (1) E-bike (2)

1 Route consists of main streets 0.102** -0.01 - 0.411*** 0.103 -(2.22) (-0.07) (6.80) (0.60)

2 Route consists of arterial streets 0.253*** 0.024 - 0.366*** -0.084 -(4.04) (0.14) (6.16) (-0.48)

3 Route is mixed with vehicular traffic -0.846*** -0.731*** -0.873*** -1.089*** -0.848*** -1.010***
(-12.36) (-3.78) (-6.35) (-12.31) (-3.30) (-4.21)

4 Route is on a bike lane -0.221*** 0.234 0.293** -0.161* 0.447* 0.481***
(-3.15) (1.18) (2.15) (-1.80) (1.64) (1.80)

5 Route is on a separated adjacent path -0.203*** 0.024 - - - -(-3.75) (0.15)

6 Moderate traffic near bike facility - - - -0.501*** -0.500** -0.485**
(-7.52) (-2.37) (-2.28)

7 Heavy traffic near bike facility -0.749*** -0.663*** -0.791*** -1.678*** -1.542*** -1.639***
(-10.85) (-3.38) (-5.27) (-17.55) (-5.46) (-7.15)

8 Substantial traffic near bike facility -0.699*** -0.703*** -0.787*** -1.195*** -1.161*** -1.139***
(-8.98) (-3.18) (-4.79) (-15.40) (-5.21) (-5.33)

9 Route has controlled intersections -0.322*** -0.332*** -0.316*** -0.308*** -0.415*** -0.434***
(-15.14) (-5.44) (-5.56) (-11.09) (-5.25) (-5.42)

10 Route has hills -0.661*** -0.439*** -0.433*** -1.103*** -0.802*** -0.832***
(-17.45) (-3.85) (-3.81) (-15.17) (-4.14) (-5.38)

11 2nd variable and being female -0.246*** -0.479* -0.587*** -0.561*** -0.520* -0.485**
(-2.91) (-1.80) (-2.94) (-6.00) (-1.65) (-2.16)

12 3rd variable and being female -0.430*** -0.217 - - - -(-5.08) (-0.77)

13 4th variable and being female 0.153* 0.110 - - - -(1.77) (0.38)

14 7th variable and being female -0.236** -0.458 - -0.477*** -0.500 -(-2.53) (-1.46) (-4.26) (-1.30)

15 8th variable and being female -0.200** -0.230 - - - -(-2.04) (-0.77)

16 9th variable and being female 0.120*** 0.199** 0.148** 0.132*** 0.241** 0.236**
(4.76) (2.45) (2.34) (3.53) (2.05) (2.06)

17 10th variable and being female - - - -0.140 -0.164 -(-1.47) (-0.56)

18 3rd variable and being older than 65 -0.611*** -0.451 - - - -(-2.96) (-0.97)

19 4th variable and being older than 65 -0.490** 0.497 - - - -(-2.37) (1.17)

20 7th variable and being older than 65 - - - -0.717** 0.250 -(-2.33) (0.45)

21 9th variable and being older than 65 0.129** 0.017 - - - -(2.16) (0.14)

22 10th variable and being older than 65 - - - -0.356 0.226 -(-1.40) (0.52)

23 Route length -0.311*** -0.269*** -0.267*** -1.000*** -0.929*** -0.942***
(-22.48) (-6.28) (-6.39) (-25.65) (-7.48) (-7.56)

24 Standard deviation of the route length - - - 0.599*** 0.700*** 0.701***

25 Constant 2.850*** 2.359*** 2.379*** -0.101** 0.119 -0.270**
(31.33) (8.63) (9.03) (-2.48) (0.02) (-2.29)

*: 90%, **: 95%, ***: 99%
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R-bikers vs. E-bikers

Both sets of models verify the previous findings in the literature regarding the route choice be-
haviour of r-bikers. These findings consist of the negative influence of length and steepness on
the selection probability of a route. Moreover, less interaction with traffic through low adjacent
traffic and the provision of completely separated bike facilities are the main factors that remained
effective in r-bikers’ and e-bikers’ route choices. Some new insights are also observed for r-bikers.
Female cyclists are avoiding vehicular traffic and prefer controlled intersections in their routes more
than men. A similar attitude is observed for r-bikers older than 65 years.
On the other hand, e-bikes provide ease and a sense of confidence for cyclists that changes vehi-
cle avoidance preferences. The changes are clearly observable in previously cautious and maybe
vulnerable cyclists like females and old people. Since the e-bike route choice models can make
no distinction based on gender and age among e-bikers. For instance, we observed that r-bikers
older than 65 years find the traffic disturbing more than other r-bikers while e-bikers older than 65
years do not get bothered by heavy traffic. A similar attitude towards traffic situations is observed
in female cyclists. Some other differences e-bikes make in cyclist route choice behaviour can be
concluded as:

• The male cyclists’ preference towards main streets mitigates due to e-bikes while the corre-
sponding coefficient for females stays the same (negative) as r-bikers.

• The 65 years old and older cyclists riding e-bikes are not affected by the presence of hills
anymore.

• Although the length of the trip and hills are significant factors for both r-bikers and e-bikers,
yet, as expected, the impacts of these variables are much milder for e-bikers.

• E-bikers prefer bike lanes, which is not the case for r-bikers.

• Female r-bikers have significant preferences for traffic avoidance, compared to men, while all
e-bikers do not like heavy and mixed traffic almost similarly.

Furthermore, the results of the random parameter of the RPLMs indicate that the taste variation
is significantly present in both r-bikers and e-bikers’ route choices, due to the large value of the
standard deviation coefficient. However, the confidence interval for e-bikers ([-2.31, 0.43]) shows
more dispersion than the r-bikers ([-2.17,0.17]), implying that the e-bike increases the variation of
people’s opinions toward the length of cycling.

SLM vs. RPLM

In general, the outputs of the two types of models are quite aligned, especially for e-bikers, and
RPLMs results verify the findings from SLMs. In comparison to the RPLMs, more variables are
found significant in the SLM for the r-bikers’ route choice model (e.g., variables in rows 5, 12, 13,
15, 18, 19, and 21). Besides, there are a few significant variables in the RPLMs that are not found
significant in the SLM for r-bikers (e.g., variables in rows 6 and 20). These differences lead to the
following conclusions:

• The effect of substantial traffic on route choice is significant for female r-bikers with SLM,
whereas it is not significant using the RPLM.

• Controlled intersections are favourable for r-bikers older than 65 based on SLM which is not
significant using RPLM.

• Female and elderly r-bikers, based on SLM, are reluctant to cycle in routes with mixed
traffic, while RPLM does not confirm the significance of these interactive variables.

• Interestingly, no significant difference is observed between the two types of models for e-
bikers.

It should be noted that no significant difference is found between the coefficients’ signs of the two
types of models. These findings demonstrate that the SP survey is designed properly to capture
the preferences of the individuals so that the errors in the responses are not severely correlated.
This is why there are no substantial differences between the two models’ outputs.
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4 Conclusions

The differences in route choice behaviour between r-bikers and e-bikers are investigated in this
research. Two sets of models, SLM and RPLM, are estimated based on data gathered through a
stated preference survey. Both sets of models verify the previous findings in the literature regarding
the negative influence of length and steepness on the selection probability of a route by r-bikers.
Riding an e-bike, on the other hand, reduces the importance of the length of the trip and steepness,
and e-bikers care less about the type of facility, i.e., major or minor streets, that they are cycling
along.
From the transportation planners’ point of view, providing dedicated routes with no interruptions
from vehicular traffic can be introduced as the main effective factor in bike promotion. We observed
that women like to cycle in a completely dedicated path with signalized intersections that minimizes
the probability of colliding with other vehicles. Therefore, there is a trade-off between vehicles and
bike volumes.
Regarding the model specification, we realized that there is no substantial difference between
SLMs and RPLMs for e-bikers, in our case. This implies that the errors in the responses are not
severely correlated and can be assumed to possess the IID character. If the IID assumption holds,
it is considered to be a desirable property of the SP data, meaning that despite the hypothetical
situations and panel effect, respondents’ preferences do not affect the error terms. Hence, the
SLMs without increasing the complexity in the estimation process can lead to similar outputs with
RPLMs.
A major limitation of this research (shared with previous literature as well) is that respondents
are already cyclists; hence, the results cannot be simply used for addressing non-bikers about their
preferences and obstacles towards biking. However, focusing on cyclists is needed in this research
due to the fact that we were looking for the differences created by e-bike implementation.
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Short summary

Industry 5.0 targets a resilient, sustainable and human-centric European industry. A key initiative
to reach this target is adopting a human-centric approach to digital technologies, which places the
well-being of the worker at the center. As workload peaks/lows contribute to lower employee well-
being, predictive employee workload analytics can empower management to undertake proactive
prevention. For this purpose, we develop a real-time machine learning framework to predict and ex-
plain future workload. Our feature importance analysis demonstrates the value of human-machine
interactions and partner workload exposure. The proposed 2-stage framework, inspired by deep
Tobit models, is developed and implemented in an environment with a variable and imbalanced
workload: the digital control rooms for railway traffic management of Infrabel, Belgium’s railway
infrastructure company. The related application is tailored towards the managers, for whom it
provides real-time and explainable insights.

Keywords: Analytics, explainable, operators, railways, real-time, workload

1 Introduction

The European Commission (EC) launched Industry 5.0 to complement Industry 4.0 by focusing
on research and innovation that serves the transition to a resilient, sustainable and human-centric
European industry (European Commission, 2022). A key initiative proposed by the EC is to adopt
a human-centric approach toward digital technologies. We aim to contribute to this initiative by
focusing on human workload in a highly digitized environment: the railway control rooms of In-
frabel, Belgium’s railway infrastructure company. In this setting, millions of actions are taken on
a monthly basis by traffic operators to control railway traffic in real-time.

Operations literature acknowledges monitoring of adequate employee workload as one of the ob-
jectives of the control room management (see e.g. Valls et al. (2009)). Adequate workload has
to be considered in comparison to both overload and underload. High levels of workload (i) are
connected to lower daily well-being (Ilies et al., 2010), (ii) lead to task preference for easier tasks
hurting performance (Kc et al., 2020), (iii) are a causal factor for human fatigue (Li et al., 2020),
(iv) induce quality degradation due to cognitive multitasking (Xu et al., 2022) and (v) are likely
to trigger the health-impairing mental/physical conditions of individuals, which are often related
to safety performance (Derdowski & Mathisen, 2023). Low levels of workload (i) result in extra
performance-seeking risks (Xu et al., 2022) and (ii) lead to boredom and lack of attention (Young,
2021). Therefore, creating an environment with a balanced workload amongst and within employ-
ees contributes to their well-being and satisfaction (Inegbedion et al., 2020). Moreover, workload is
a multi-attribute concept (Comstock Jr & Arnegard, 1992) which entails communication, resource
management, automation, scheduling, monitoring and tracking. Hence, analytics for workload
management should incorporate different attributes to provide granular and explainable insights.

Our contribution is fourfold. First, we contribute to the operations research literature, by showing
the applicability of machine learning to provide real-time employee-centric predictive analytics. We
answer the calls from literature to connect operations research with human resource management
(Roels & Staats, 2021) and to bridge the gap between practice and research by constructing a
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model that is embedded in a problem observed in practice (Ranyard et al., 2015)). Related lit-
erature on employee-centric predictions for French air traffic controllers (TC) postulates a neural
network for workload prediction combined with a tree-based search model for optimal airspace
partitions Gianazza (2010). We distinguish ourselves from the literature by our focus on granular
explainability and our multi-attribute consideration of workload. Second, we contribute to the
explainable artificial intelligence literature (Coussement & Benoit, 2021) by illustrating the useful-
ness for adequate explainability of sample selection as based on the unobserved predicted values,
via our advocated two-stage methodology, inspired by Heckman (1979) and Zhang et al. (2021).
Third, we contribute to the management science (MS) literature on human-machine interaction
(see e.g., Brynjolfsson & McAfee (2014)) and team exposure (see e.g., Akşin et al. (2021)). Our
Shapley analysis pinpoints the importance of including automation and team interplay in work-
load predictions. Last, we contribute to the literature on applications of smart data analytics (see
e.g. Baesens et al. (2016)) through our real-time implementation. Not many systems that utilize
machine and/or deep learning have been adopted in a real-world setting (Kraus et al., 2020). One
of the exceptions utilizes regression trees to build real-time analytics on passenger flows in the
control room of Heathrow (Guo et al., 2020).

The paper is structured as follows. In section 2, we elaborate on the 2-stage methodology. In
section 3, we dive into the results of the accuracy and explainability of the proposed model, and
show its implementation for real-time management in traffic control centers (TCCs). The last
section formulates the main takeaways.

2 Methodology

Our methodological framework is developed to provide explainable and accurate predictive ana-
lytics on employee workload aggregated in 15-minute intervals. The idea is to dissect workload
into different operational categories (see section 3). Methodologically, we are confronted with a
classical sample selection issue (see Heckman (1979)). This is because we have no a priori reason
to believe that the mechanisms affecting the presence of workload are the same as the mechanisms
that affect the workload magnitude, when present. Recently, Zhang et al. (2021) have introduced
the sample selection issue into the literature on deep learning via a two-stage ’deep Tobit model ’.
Our proposed two-stage approach comprises an LSTM encoder-decoder model in stage 1 to select
the workload categories and an XGBoost model in stage 2 to predict the amount of workload
within the selected categories.

Stage 1: LSTM encoder-decoder for binary classification

We utilize a Long Short-Term Memory (LSTM) encoder-decoder model (Hochreiter & Schmid-
huber, 1997; Cho et al., 2014) to predict the presence of workload. This approach leverages an
input-to-output sequence data structure that incorporates information from previous intervals to
predict the occurrence of different workload categories for future intervals. Moreover, the predic-
tion model has a memory cell to store the past. This aligns with the call from Corman & Quaglietta
(2015) to close the loop in real-time railway traffic control. The training set contains N (input
sequence, workload sequence) pairs with K features per input sequence. Each pair combines T
input feature sequences x = (x1, ..., xt, ..., xT ), with xt∈T ∈ RK , together with M workload se-
quences y = (y1..., ym, ..., yM ), with ym∈M a binary variable, representing the presence of workload
in a category. Via the LSTM-based encoder-decoder model, we learn the conditional expectation
E(ym|ym−1, ..., y1, xT−1, ..., x1). by estimating ŷ via minimizing squared error over the N training
pairs:

min
θ

1

MN

M∑
m=1

N∑
n=1

(ym,n − ŷm,n(θ))
2
, (1)

with θ the model parameters. Operationalization implies the use of an encoder to model (xT , ..., x1)
into c. The latter serves as an input for the decoder model to learn the conditional expecta-
tion E(ym|ym−1, ..., y1, c). By uncovering this conditional expectation, the encoder-decoder model
learns to predict ym+1, based on y≤m and c.
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Stage 2: XGBoost for quantifying selected workload categories

The extreme gradient boosting utilizes the gradient boosting algorithm which grows trees sequen-
tially by minimizing a regularized objective function (Chen et al., 2015):∑

i

l(̂i, yi) +
∑
j

Ω(fj), where Ω(f) = γT +
1

2
λ||w||2, (2)

with l a differentiable convex loss function related to the difference between the prediction ŷ and
the actual output y, Ω a regularization function, i=1,...N representing the input-output pair,
j = 1, ..., J representing the tree, T the number of leaves in a tree, w the leaf weight, γ a user-
defined pruning parameter, and λ a shrinkage parameter.
We leverage Shapley values to provide explainable insights for the proposed XGBoost model. Shap-
ley values (Shapley, 1953) incorporate potential synergies between the features, by averaging the
marginal contributions over all possible subsets and by taking the order of the marginal contribu-
tion into account (Lundberg & Lee, 2017).

3 Results and discussion

Empirical setting

All railway traffic in Belgium is managed in the digital control rooms of Infrabel, with every zone
being monitored by one traffic and safety controller at any given time. The basis for the predictive
model is a real-time data structure containing all actions taken in the control rooms, including over
5,000,000 tasks executed per month. In this paper, we focus on traffic controllers for the month of
February 2022, aggregated per control room, workstation and 15-minute time interval.

We build on previous research (Topcu et al., 2019) that divides workload into 6 operational cate-
gories as presented in Table 1. Further, Table 1 contains the occurrence of zeros for each category.
We notice that there is no workload in more than 40% of the considered 15-minute intervals, except
for MOVE and AUT. This strengthens our empirical choice to propose a 2-stage methodology to
first filter for which categories the operator will have workload and, thereafter, predict the work-
load magnitude in an explainable way. MOVE is excluded in the first stage as the occurrence of
zero workload for this category is below 1%, making a binary filter redundant.

Table 1: Operational workload categories
Operational workload categories Zero occurrence

MOVE Monitoring of railway traffic by opening signals 0.7%
ADAPT Reducing train delays by changing tracks and

station platforms
40.7%

AUT Changing the automation - Automatic Route
Setting

16.3%

SAFETY Safety interventions 78.2%
PHONE Phone calls between the control room operator

and train drivers
60.6%

JUSTIF Justification of train delays 48.7%

Similarly to the operational categories, the considered features for our predictive model are grouped
by the control room, workstation and 15-minute interval. The features for near-future workload
prediction for the different categories consist of (i) the experience and training level of the operator,
(ii) automation usage, (iii) trains monitored, (iv) delays, (v) current workload for each category,
(vi) partner controller features, and (vii) control room and temporal fixed effects. The features are
tested for potential multicollinearity to ensure meaningful explainability.
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Accuracy of LSTM encoder-decoder for binary classification

The binary LSTM encoder-decoder uses 4 input sequences to predict 4 output sequences. We
reach the lowest classification error for dropout=0.2, optimizer=Adam, learning_rate=0.0001,
batch_size=25, and number_of_nodes=50. The Area Under the Receiver Operator Curve (AUC)
values, provided in Table 2, shows the classification capability for the different workload categories.

Table 2: AUC values

SEQ1 SEQ2 SEQ3 SEQ4
ADAPT 0.73 0.74 0.74 0.74
AUT 0.84 0.86 0.86 0.86

SAFETY 0.82 0.82 0.82 0.82
PHONE 0.78 0.78 0.78 0.77
JUSTIF 0.71 0.72 0.72 0.71

The AUC is above 0.7 for all categories, with over 0.84 for AUT and 0.82 for SAFETY. The
stability of the AUC over the four output sequences demonstrates the classification power of stage
1. Figure 1 presents the confusion matrices for the different categories with the tuned thresholds.

(a) ADAPT, threshold = 0.7 (b) AUT, threshold=0.9 (c) PHONE, threshold=0.4

(d) JUSTIF, threshold=0.6 (e) SAFETY, threshold=0.1

Figure 1: Confusion matrices

Explainability of extreme gradient boosting

The explainability analysis focuses on the first 15-minute interval in the future, as this is the most
relevant horizon for real-time management. The XGBoost model reaches the lowest error for over-
all workload prediction with learning_rate=0.1, max_depth=3, number_of_estimators=100, per-
centage_sampled_columns_per_tree=0.4, and subsample_percentage_training_data=1. Table
3 presents the root mean square error (RMSE) and Spearman correlation.

Table 3: RMSE and Spearman correlation
RMSE (in seconds) Spearman correlation

MOVE 17.54 0.73
ADAPT 43.54 0.42
AUT 19.09 0.56

SAFETY 9.08 0.41
PHONE 66.00 0.42
JUSTIF 55.55 0.28
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Figure 2 presents the most important features for predicting the overall workload. Automation
usage is the top feature demonstrating the value of including human-machine interaction in ex-
plainable employee-centric analytics. In particular, TCs automate route setting in non-complex,
low-workload situations to further reduce their workload (Balfe et al., 2015). Further, features on
current workload have predictive power, next to experience and workstation fixed effects.

Figure 2: Global Shapley plot

Figure 3 demonstrates the importance of including the partner features for predicting the workload
in the operational categories. This finding is in line with the previous MS research (Tan & Netessine,
2019) on the importance of the relationship between observed workload and partner characteristics.

(a) MOVE (b) ADAPT

(c) AUT (d) SAFETY

(e) PHONE (f) JUSTIF

Figure 3: Global Shapley plots per workload category
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Implementation

We implement the proposed prediction framework for control room managers in R Shiny. Figure 4
contains two panels with visualizations. Panel 4(a) presents the control room layout to more easily
depict the over-/underloaded operators. Panel 4(b) provides explainable real-time insights into
the expected near-future workload by breaking down the contribution of each feature. The real-
time implementation showcases the usefulness of human-centric decision support in safety-critical
settings.

(a) Control room layout (b) Workstation

Figure 4: R Shiny implementation

4 Conclusions

The impact of workload and its imbalance between and within employees should not be underes-
timated, as the repercussions on well-being and satisfaction are noticeable. Highly digitized envi-
ronments, such as railway control rooms, provide an opportunity to introduce data-driven decision
support. We leverage this opportunity and propose explainable predictive analytics, customized
for employee workload prediction. This is facilitated by our real-time data structure, covering all
actions taken in the control rooms. Empirically, we show the binary classification capability of
our proposed LSTM encoder-decoder model for the different workload categories. Next, we deploy
Shapley values on the output of the XGBoost model, which demonstrates the importance of au-
tomation usage for near-future workload prediction. In addition, we unravel the impact of partner
workload on the different workload categories, highlighting the value of including team dynamics
in predictive analytics. Furthermore, an R Shiny application for the traffic supervisor deploys the
proposed framework to provide near-future workload predictions in real time.
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SHORT SUMMARY 

Universities are major trip attractors and generators in large cities, and they have a significant 

influence in the transport network particularly in high-density areas. The trips to and from uni-

versity campus are made by staff, students and visitors, with an important daily rotation of people 

(e.g., students that leave early, arrive later, etc.). In this study, we aim to improve our understand-

ing of the trips made to the University of Sydney campuses, one of the largest universities in 

Australia, how individuals (namely, staff and students) choose to study/work from home and their 

modes of transport used since the start of COVID-19. We have collected two sets of data in 2022 

from a survey which was answered by both staff and students at the University of Sydney. A 

mixed logit model is estimated to understand the motivations and main drivers to work/study from 

home or to choose different modes of transport when attending campus. 

 

Keywords: University travel choices; sustainable modes of transport; work/study from home; 

staff and student behaviour; choice modelling 
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1. INTRODUCTION 

Since the start of COVID-19 in early 2020, the world has seen major changes in daily life. Dif-

ferent strategies from relevant authorities have led to different outcomes and impacts across nu-

merous activities. Businesses, schools and universities have had to quickly adapt to this new nor-

mality by offering their employees and students the possibility to work and study from home. 

This quick adaptation has proven to have some benefits from the point of view of employers and 

employees who have stated they prefer to work from home (WFH) more often in the future (Beck 

& Hensher, 2021). The pandemic and the varied government strategies have had major impacts 

on commuting behaviour; at the start of the pandemic we saw a significant reduction in congestion 

around the city; however, since the start of 2022 we have seen levels of congestion that are close 

to pre-pandemic levels and, in some areas, even worse. Transport studies carried out in different 

cities around the world have shown that the use of public transport has decreased significantly, 

and, in their majority, these trips seem to have moved to car use (Balbontin et al., 2021; Hensher 

et al., 2022). This is a big setback for public transport where confidence has been slow to build 

back (Beck et al., 2022) and, more generally, for sustainable transport, which represents an im-

portant concern for transport authorities and government. 

 

Universities are major trip attractors and generators in large cities, and they have a significant 

influence in the transport network particularly in high-density areas. The trips to and from uni-

versity campus are made by staff, students and visitors, with an important daily rotation (e.g., 

students that leave early, arrive later, etc.). Despite the significant influence that universities have 

in the transport network, there is limited information on how trips to and from university campus 

are made, which modes of transport are preferred and why, and the effects that COVID-19 has 

had and will likely have in the medium to long-term in travel behaviour to campus. For the last 

three years, the University of Sydney, which is one of the largest universities in Australia with 

approximately 83,000 staff and students1, has been offering a hybrid teaching model for a larger 

number of its courses, where students have face-to-face and online classes. However, it is moving 

to face-to-face classes exclusively towards mid-2023. The hybrid model is also being imple-

mented for staff members, who are allowed to work from home for the whole or part of the week, 

when their role allows for it. However, there is still limited knowledge about the preferences 

towards working from home and towards studying from home (SFH), and how these have affected 

staff and students travel behaviour, principally in tertiary education.  

 

In this study, we aim to improve our understanding of the trips made to the University of Sydney 

campuses, how often individuals (namely, staff and students) choose to study/work from home, 

and their modes of transport used since the start of COVID-19. We have collected two sets of 

data in 2022 from a survey which was completed by both staff and students. A mixed logit model 

is estimated to understand the motivations and main drivers to work/study from home or to choose 

different modes of transport when attending campus. The next section presents the data, followed 

by the methodology and model results and discussion. This short paper is finalised with the main 

conclusions. 

 
1 To put this in perspective, this figure would make the University of Sydney the 23rd largest city in Australia 

(behind Mackay whose population is 85,000 and above Rockhampton with a population of 80,200). It 

would be the 5th largest city in New South Wales behind Sydney, Newcastle, Wollongong, and Albury-

Wodonga. It is larger than Wagga Wagga (57,000) and almost double the size of Orange (42,000). 
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2. DATA 

The data used in this study was collected using an online survey in two waves. The first one was 

collected in May-June 2022 and the second one October-November 2022; a period where there 

existed no restrictions on movement but the University still offered education within the hybrid-

format. The results discussed here only include students and staff members of the University of 

Sydney who lived in Sydney at the time of completing the survey. Table 1 represents some general 

descriptive statistics of the sample for both waves, separated by staff and students. As expected, 

the income and age of staff is significantly higher than students. Results show that students tend 

to live in households with more members – but slightly less children, and more cars/drivers li-

cences available. Results in Table 1 show that in Wave 1, the total number of days/week studied 

from home last week (2.58) are higher than pre-COVID levels (1.86); and for staff members the 

increase is even higher, with an average of 2.3 days worked from home last week relative to 0.62 

pre COVID-19. In Wave 2, the proportion of days worked / studied home is virtually unchanged 

from Wave 1 for students (previously 2.58, now 2.60) and has decreased slightly for staff (previ-

ously 2.31, now 2.15). 

Table 1: General descriptive statistics students and staff - mean (standard devia-

tion) - Waves 1 and 2 
 

Student Staff 
 

Wave 1 Wave 2 Wave 1 Wave 2 

Age (years) 24.23 (7.31) 23.51 (6.10) 43.29 (11.43) 43.28 (11.49) 

Gender female (1,0) 75% 65% 70% 70% 

Personal annual income (000AUD$) 22.08 (25.77) 24.00 (33.74) 125.17 (61.84) 125.29 (58.97) 

Number of cars available in household 1.57 (1.23) 1.38 (1.68) 1.35 (0.84) 1.36 (0.90) 

Number of people living in same household 3.48 (2.40) 3.82 (11.63) 2.75 (1.28) 2.85 (1.32) 

Number of children in household 0.52 (0.80) 0.44 (1.16) 0.57 (0.86) 0.65 (0.93) 

Number of drivers' license in household 2.33 (1.34) 2.34 (8.84) 1.90 (0.85) 1.93 (0.88) 

Total number of weekly days worked/studied last 

week 

5.48 (1.41) 5.59 (1.40) 4.97 (0.94) 4.97 (0.91) 

Total number of weekly days worked/studied from 

home last week 

2.58 (1.90) 2.60 (1.82) 2.31 (1.61) 2.15 (1.59) 

Total number of weekly days worked/studied from 

campus last week 

2.06 (1.69) 2.13 (1.61) 2.44 (1.63) 2.66 (1.56) 

Total number of weekly days worked/studied partly 

from home and campus last week 

0.84 (1.31) 0.86 (1.38) 0.21 (0.65) 0.16 (0.58) 

Total number of weekly days worked/studied be-

fore COVID-19 

5.82 (1.29) 6.03 (1.31) 5.11 (0.88) 5.14 (0.94) 

Total number of weekly days worked/studied from 

home before COVID-19 

1.86 (1.65) 2.46 (1.91) 0.63 (1.16) 0.68 (1.26) 

Total number of weekly days worked/studied from 

campus before COVID-19 

3.20 (1.77) 2.70 (1.77) 4.30 (1.29) 4.35 (1.36) 

Total number of weekly days worked/studied partly 

from home and campus before COVID-19 

0.76 (1.42) 0.87 (1.45) 0.17 (0.67) 0.12 (0.52) 

Considered moving residence on the basis of a 

change in your activity travel pattern as a result of 

COVID-19 (1,0) 

29% 26% 27% 23% 

Total number of respondents 133 1,171 496 364 

 

Figure 1 shows work/study behaviour for each day of the week, and Figure 2 shows the mode 

chosen to go to the campus. Results show that students are more likely to study partly from cam-

pus and from home than staff members (with Wave 2 mirroring Wave 1), and they are also more 

likely to do some study during the weekends than staff members. Regarding the modes used, staff 
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members are currently much more likely to use their car to go to campus, and students are more 

likely to use public transport and active modes. Staff appear to have increased their car use com-

pared to pre-COVID. Compared to students, car use amongst staff is picking up quite rapidly 

compared to pre-COVID, while use of active modes remains static. These results reveal the be-

havioural differences between staff members and students.  

 

 
Figure 1: Work/study daily behaviour 

 
Figure 2: Mode used to go to University 
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In terms of activities which influence the decision to come into the university, Figure 3 shows 

that in both Waves 1 and 2, students are motivated to come to campus to participate in face-to-

face classes or attend a class or feel that they learn more effectively when on campus relative to 

the start of the pandemic. They are also interested in building networks and meeting new people. 

Staff come to campus to participate in face-to-face discussion and also for a change from WFH 

with a very similar pattern reported in both waves (Figure 3). 

 

 
Figure 3: Which activities influence your decision to come into the university? 

3. METHODOLOGY 

A mixed logit model was estimated to identify the main drivers for students and staff members to 

decide where to work/study each day of the week. The modelling framework is presented in Fig-

ure 4. The decisions were represented by twelve alternatives, which are given in Table 2. 

 

Figure 4: Modelling framework 

 Commuting for work travel activity for each day of week 

… 

Attend campus 

Monday   

Not 
work/ 
study 

Mode of transport 

Home 

only 
Attend campus 

Saturday   

Not 
work/ 
study 

Mode of transport 

Home 

only 

… 
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Table 2: Alternative numbers per day of week 

Monday - Sunday 

Alternative Description 

1 Not work/study 

2 Work/study from home only 

3 Attending campus - car driver 

4 Attending campus - car passenger 

5 Attending campus - taxi/rideshare 

6 Attending campus - train 

7 Attending campus - bus 

8 Attending campus - light rail 

9 Attending campus - ferry 

10 Attending campus - walk 

11 Attending campus - bicycle 

12 Attending campus - motorcycle 

 

The utility function of the WFH/SFH alternative, is expressed as follows: 

/ / /WFH SFH WFH SFH j qj i qi WFH SFH

j i

U Z H   = +  +  +       (1) 

where qjZ represents characteristic j of respondent q (e.g., age, gender, income); niH represents 

attribute i of the home or work of respondent q (e.g., distance to campus, activities that influence 

decision to attend campus);  represents the error term; and   are the estimated parameters as-

sociated with each attribute. The survey included different activities that could influence a partic-

ipant’s decision to attend campus. They were grouped into different categories, as shown in Table 

3. The utility function for the alternatives to attend campus commuting by mode m is given by: 

 

m m mCampus Campus j qj i qi k mk Campus

j i k

U Z H X    = +  +  +  +       (2) 

 

where 
mkX represent attribute k that describes mode m (e.g., travel time, fare/cost). The utility 

function of the no work alternative is expressed in equation (3): 

NoWork NoWork j qj NoWork

j

U Z  = +  +        (3) 

It is important to note that respondents provided responses on the choice made each day of the 7-

day week, and hence there are 7 choice sets per respondent. To recognise this, the error terms 

account for the panel structure of the data, i.e., varying across individuals but the same within 

individuals. The model results include those parameter estimates that were statistically significant 

with a 95% confidence level.  

 

  



7 

 

Table 3: Categories for activities that influence participants decision to attend 

campus 

Description Staff/Stu-

dent 

Category 

I would like to participate in face-to-face classes  Student Attend university because of classes/work 

Attend a class   Student Attend university because of classes/work 

Elements of my program require in-person participa-

tion  

Student Attend university because of classes/work 

It is a more effective way for me to learn  Student Attend university because of classes/work 

It is more enjoyable   Student Attend university for social activities 

I want to enjoy the facilities on-campus in full  
Student Attend university because of facilities or fits 

within my daily schedule 

I want to meet or work with new people  Student Attend university for social activities 

I want to make friends and build my networks  Student Attend university for social activities 

It broadens my horizons  Student Attend university for social activities 

I want to participate in clubs and societies  Student Attend university for social activities 

It fits well with my daily schedule (e.g., childcare in 

or close to campus; my gym is close to campus)   

Student Attend university because of facilities or fits 

within my daily schedule 

There are no delays/cancellations on public transport   
Student Attend university when there are no delays/can-

cellations on PT 

I would like to participate in face-to-face discussions  Staff Attend university because of classes/work 

Teach a class   Staff Attend university because of classes/work 

My work requires me to be on campus   Staff Attend university because of classes/work 

It is a more effective way for me to work  Staff Attend university because of classes/work 

It is more enjoyable   Staff Attend university for social activities 

I want to enjoy the facilities on-campus in full  
Staff Attend university because of facilities or fits 

within my daily schedule 

I want to meet or work with new people and build my 

networks  

Staff Attend university for social activities 

I want to enjoy the social environment at work  Staff Attend university for social activities 

It is a nice change from working from home all the 

time  

Staff Attend university because it is a nice change 

from home all the time 

It fits well with my daily schedule (e.g., childcare in 

or close to campus; my gym is close to campus)  

Staff Attend university because of facilities or fits 

within my daily schedule 

There are no delays/cancellations on public transport   
Staff Attend university when there are no delays/can-

cellations on PT 

4. RESULTS AND DISCUSSION 

Preliminary model results are presented in Table 4, which combine Waves 1 and 2. All the pa-

rameter estimates are statistically significant at the 95% confidence level. Travel times and costs 

(including fuel costs) have a negative parameter estimate, as expected, and the value of travel 

time savings will be discussed below. Interestingly, the distance from home to campus has a very 

significant influence on the probability to use the train, suggesting that staff and students who live 

further away from campus are likely to use the train to go to campus.  
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Table 4: MML Model Results 

 
Results show that students that attend campus mainly for social activities are more likely to use 

active modes and less likely to use motorised private modes, relative to the other alternatives. 

Students that attend campus mainly because of classes, are more likely to use active modes; and 

those that go for the facilities/fits within their daily schedules are more likely to use private mo-

torised vehicles, followed by active modes. Staff members that attend campus mainly due to work 

are more likely to use car, followed by active modes; and those that attend due to social activities 

are more likely to use active modes and less likely to use the car. When there are no cancella-

tions/delays with public transport, both staff and students are less likely to use private motorised 

modes. 

Description Alternative Mean (t-value) 

Alternative specific constant no work (base) No work - 

Alternative specific constant WFH WFH/SFH 0.27 (6.32) 

Alternative specific constant commute by car driver Car driver 0.61 (4.28) 

Alternative specific constant commute by car pax Car pax -1.15 (5.08) 

Alternative specific constant commute by taxi/rideshare Taxi/Rideshare -1.06 (1.70) 

Alternative specific constant commute by train Train -0.50 (3.83) 

Alternative specific constant commute by bus Bus -0.14 (1.15) 

Alternative specific constant commute by light rail Light rail 0.09 (0.38) 

Alternative specific constant commute by ferry Ferry 0.38 (1.24) 

Alternative specific constant commute walking Walking -0.86 (3.70) 

Alternative specific constant commute by bicycle Bicycle -1.52 (6.23) 

Alternative specific constant commute by motorcycle Motorcycle 0.66 (3.03) 

Travel time (mins) Car driver, pax and motorcycle -0.02 (2.73) 

Travel time (mins) Public transport modes -0.01 (3.47) 

Travel time active modes (mins) Active modes -0.001 (1.95) 

Fuel cost (AUD$) Car driver -0.06 (2.05) 

Fare (AUD$) Taxi/Rideshare -0.05 (2.11) 

Fare (AUD$) Public transport modes -0.19 (5.88) 

Distance from home to work (kms) Train 0.05 (10.98) 

Female (1,0) WFH/SFH -0.19 (3.45) 

Personal income staff ('000$AUD) WFH/SFH 0.00 (3.43) 

Personal income students ('000$AUD) WFH/SFH 0.00 (3.96) 

Monday (1,0) WFH/SFH 0.58 (10.61) 

Wednesday (1,0) WFH/SFH 0.13 (2.32) 

Thursday (1,0) WFH/SFH 0.23 (4.02) 

Friday (1,0) WFH/SFH 0.75 (13.73) 

Attend university for social activities - students (1,0) Car driver, pax and motorcycle -0.38 (2.83) 

Attend university because of facilities or fits within my daily 

schedule - students (1,0) 

Car driver, pax and motorcycle 0.50 (3.84) 

Attend university when there are no delays/cancellations on PT - 

students (1,0) 

Car driver, pax and motorcycle -0.77 (4.44) 

Attend university because of work - staff (1,0) Car driver, pax and motorcycle 0.63 (5.23) 

Attend university for social activities - staff (1,0) Car driver, pax and motorcycle -0.33 (3.37) 

Attend university when there are no delays/cancellations on PT - 

staff (1,0) 

Car driver, pax and motorcycle -1.11 (4.64) 

Attend university because it is a nice change from home all the 

time - staff (1,0) 

Car driver, pax and motorcycle -0.38 (3.94) 

Attend university because of classes - students (1,0) Active modes 1.41 (5.95) 

Attend university for social activities - students (1,0) Active modes 0.27 (2.50) 

Attend university because of facilities or fits within my daily 

schedule - students (1,0) 

Active modes 0.32 (3.48) 

Attend university because of work - staff (1,0) Active modes 0.53 (2.28) 

Attend university for social activities - staff (1,0) Active modes 0.78 (4.91) 

Attend university because of facilities or fits within my daily 

schedule - staff (1,0) 

Active modes 0.37 (2.69) 

Standard error Public transport modes 1.37 (27.82) 

Standard error No work 0.62 (16.35) 

Number of parameters 
 

40 

Log-likelihood equal shares L(0) 
 

-20,097.11 

Log-likelihood at convergence 
 

-18,028.33 

AIC/n 
 

2.778 

 



9 

 

The value of travel time savings (VTTS in $/person hour) estimates for car, public transport and 

taxi/rideshare are presented in Table 5. The value for car driver aligns with what is obtained from 

the broader population of commuters but is lower than expected for public transport (which is 

expected to be around $5/person hour). This might be due to the fact that we are combining stu-

dents and staff members and incorporating activities to attend campus which might have a signif-

icant influence on the VTTS, which is being analysed in more detail at the moment. The results 

presented in this short paper are preliminary, and we are currently working on understanding all 

the explanatory variables that might be explaining daily decisions to WFH/SFH or attend campus, 

providing separation of parameters between staff and students.  

Table 5: Value of travel time savings results 

Value of travel time savings (AUD$/person hour) Mean Std Error 

Car driver 16.74 22.13 

Public transport 1.99 1.16 

Taxi/Rideshare 20.18 15.66 

 

With this model, we are also able to estimate elasticities, which represent the percentage change 

in the probability to choose an alternative given percentage changes in the explanatory variables, 

ceteris paribus. The elasticity estimates for this preliminary model are presented in Figure 5. The 

results show that the distance from home to campus has the greatest influence on the probability 

to choose train: if a student or staff member lives 10% closer to campus, they are 9.4% less likely 

to choose the train. A student that goes to campus because of classes is 80% more likely to use 

the bicycle and 72% more likely to walk than a student that is not motivated to go to campus 

because of class. As mentioned above, the model presented in this report is an initial model and 

more needs to be done to obtain a final model. 

 

Figure 5: Elasticity results 

5. CONCLUSIONS 

This study aims to understand staff and students’ preferences to work/study from home or to 

attend university campus using different modes of transport. The data is collected in two waves 

of data for staff and students that work/study at the University of Sydney, Australia. A mixed 
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logit is estimated to understand preferences for each day of the week. Results are preliminary, and 

initial findings suggest the importance of the distance from home to campus, fare, activities such 

as classes or work-related or social. Results suggest that those that live further away are more 

likely to use the train, while students that attend campus for social activities are more likely to 

use active modes and less likely to use car driver as their main mode of transport. These initial 

fundings are encouraging as they are suggesting important drivers that should be considered when 

creating University travel demand management programmes to incentivise return to campus by 

sustainable modes of transport.  

6. ACKNOWLEDGEMENTS 

This research is part of iMOVE Cooperative Research Centre (CRC) Project 3-022 with Transport 

for News South Wales (TfNSW) on Promoting Sustainable University Travel Choices project 

(PSUTS). The findings reported are those of the authors and are not the position of TfNSW; but 

approval to present these findings is appreciated.  The authors gratefully acknowledge financial 

support from ANID PIA/PUENTE AFB220003.   

7. REFERENCES 

Balbontin, C., Hensher, D. A., Beck, M. J., Giesen, R., Basnak, P., Vallejo-Borda, J. A., & Venter, 

C. (2021). Impact of COVID-19 on the number of days working from home and commuting 

travel: A cross-cultural comparison between Australia, South America and South Africa. 

Journal of Transport Geography, 103188. https://doi.org/10.1016/j.jtrangeo.2021.103188 

Beck, M. J., & Hensher, D. A. (2021). Australia 6 months after COVID-19 restrictions part 2: 

The impact of working from home. Transport Policy, June. 

https://doi.org/10.1016/j.tranpol.2021.06.005 

Beck, M. J., Nelson, J. D., & Hensher, D. A. (2022). Attitudes toward public transport post Delta 

COVID-19 lockdowns: Identifying user segments and policies to restore confidence. 

International Journal of Sustainable Transportation, 1–18. 

https://doi.org/10.1080/15568318.2022.2109083 

Hensher, D. A., Beck, M. J., Nelson, J. D., & Balbontin, C. (2022). Reducing Congestion and 

Crowding with Working from Home. In C. Mulley & M. Attard (Eds.), Transport and 

Pandemic Experiences (pp. 235–255). Emerald Press. https://doi.org/10.1108/S2044-

994120220000017013 

 

 



Assessing expected ride-pooling performance with non-deterministic,
heterogeneous travellers’ behaviour.

Michal Bujak*1, 2 and Rafal Kucharski1

1Department of Mathematics and Computer Science, Jagiellonian University, ul. Prof.
Lojasiewicza 6, Krakow, 30-348, Poland

2Doctoral School of Exact and Natural Sciences, Jagiellonian University, Golebia 24, Krakow,
31-007, Poland

Short summary

Ride-pooling remains a promising emerging mode with a potential to contribute towards urban
sustainability and emission reductions. However, recent studies revealed complexity and diversity
among travellers’ ride-pooling aptitudes. So far, ride-poling analyses assumed homogeneity and/or
determinism of ride-pooling travellers. This, as we demonstrate, leads to a false assessment of
ride-pooling system performance. We experiment with an actual NYC demand from 2016 and
classify travellers into four groups of various ride-pooling behaviour (value of time and penalty
for sharing), as reported in the recent SP study. We replicate their random behaviour to obtain
meaningful distributions. Heterogeneity assumption proves to have a significant impact on the
system. The performance indicators are shifted compared to the deterministic scenario. Albeit
the high variability of travellers’ preferences, system-wide results remain within reasonably narrow
confidence intervals.
Keywords: ride-pooling, behavioural heterogeneity, shareability graph.

1 Introduction

Ride-pooling is a ride-hailing service which enables travellers to share a ride. Two or more trip re-
quests are submitted to the platform and pooled into a single vehicle. Shared ride is typically longer
(due to pick-up delay and detour) and yields a sharing discomfort, which has to be compensated
by a lower ride fare.
Most ride-pooling algorithms (Alonso-Mora et al. (2017), Ke et al. (2021), Shah et al. (2020), Bilali
et al. (2020), Wang et al. (2021)) operate on based on fixed time windows constraints. In reality,
travellers are rational utility maximisers, who opt for the most attractive alternative. In this spirit,
we proposed our previous ExMAS algorithm (Kucharski & Cats (2020)), which puts the traveller
in the centre. Recent studies (Lavieri & Bhat (2019), Chavis & Gayah (2017), Alonso-González
et al. (2020)) show that preferences towards pooling vary across population. Here, we introduce
the behavioural heterogeneity (varying value of time, perceived discomfort of sharing) into the
algorithm. While we are not aware of the individual traveller’s preferences, we assume to know
the distribution in the population. Applying results from Alonso-González et al. (2020) study on
the actual taxi requests from NYC, we replicate the ride-pooling experiment 1000 times to obtain
a meaningful estimation of the results.
We find that introduction of the heterogeneous preferences shifts performance indicators compared
to the homogeneous scenario. While expected mileage reduction and profitability are worse than
in the deterministic benchmark, traveller satisfaction with the service improves.
Our method allows the provider for more meaningful estimation of the system performance and
its distribution. Results, apart from the expected values, reveal confidence intervals and tails.
Estimates of performance (e.g. vehicle kilometres travelled, fares collected) and perceived attrac-
tiveness for travellers are now more meaningful and robust.

2 Methodology

To reach the objectives of this study, we extend the previously proposed off-line utility-based
ride-pooling algorithm ExMAS. We introduce non-deterministic utility formulas to integrate them
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with the previous deterministic approach and solve the ride-pooling problem for the heterogeneous
population.
The original, traveller-oriented ExMAS is a utility-based algorithm. Traveller is assumed to share
a ride only if it is more attractive than the alternatives (in our case, private ride). We measure
attractiveness via utility, which has always a negative sign as it represents the perceived cost of a
trip. The utility of a shared ride (for passenger i participating in ride rk denoted as Us

i,rk
) and of

the non-shared ride (denoted Uns
i ) are as follows:

Uns
i = −ρli − βtti

Us
i,rk

= −(1− λ)ρli − βtβs(t̂i + βd(t̂
p
i )) + ϵ,

(1)

where ρ stands for per-kilometre fare, while λ denotes discount for sharing a ride. Both are
controlled by the operator. βt, βs βd are the behavioural parameters: value of time, penalty
for sharing and delay sensitivity, respectively. ti and t̂i stand for travel time of non-shared and
shared ride, respectively, t̂pi is updated for each evaluated shared-ride candidate and is typically
greater than ti due to both pooling detour (to pick-up and drop of other travellers) and delay
(to wait for others). ϵ is a random term. By conducting the hierarchical search, while preserving
exhaustiveness, the algorithm prevents the search space explosion and yields an optimal solution.
Details are described in Kucharski & Cats (2020).
In this study, we extend the above approach to account for the heterogeneous behavioural char-
acteristics of individuals. Namely, any of behavioural parameters (β’s in eq. 1) instead of being
constants, can be now a random variable. We assume that preferences of an individual are unknown,
while we know the distributions within the population. Moreover, to account for additional un-
certainty, we introduce a panel noise ϵi (traveller-specific) and idiosyncratic noise ϵi,r (ride-specific
for specific traveller), leading to the following formulas:

Uns
i = ρli + β̊tti (2)

Us
i,rk

= (1− λ)ρli + β̊tβ̊s(t̂i + β̊d(t̂
p
i )) + ϵi + ϵi,r, (3)

where all notions introduced in eq. 1 still apply, yet β̊s are now random variables. Consistently
with a discrete choice theory, we assume that the probability that a traveller i finds a shared ride
rk attractive is expressed with:

P s
i,rk

= Pr(Us
i,rk

> Uns
i ), (4)

which, depending on the random variables distributions, may become e.g. a logit or a probit model.
While in general any distribution of random variable can be applied in the method, in the exper-
iment we use multiple classes C and assume the random variables to follow a multimodal normal
distribution (unimodal within the class):

β̊j =
∑
C∈C

pCX(β̄j,C , σj,C) for j ∈ {c, t, s, d}, (5)

where pC is the probability of belonging to the class C, X(β̄t,C , σj,C) is a random variable following
normal distribution with mean of β̄t,C and a standard deviation of σj,C (coefficient- and class-
specific).
We measure the performance of ride-pooling solution with the four following indicators. For the
environment and city perspective we look at the vehicle-kilometres saved due to pooling D. For
travellers, we observe on one hand the pooling costs (relative detours T ) and on the other benefits
(relative improvement in utility U). For the platform, we look at the profitability of ride-pooling
service P. All values are calculated as relative to the value of the private ride scenario. Furthermore,
indicators are calculated not only system-wide, but on the levels of a single traveller (utility, travel
time extension), ride (mileage reduction, profitability).

3 Results and discussion

Experiment settings

We illustrate how the proposed method enhances assessment of ride-pooling services with the
case-study of New York City. We reproduce the likely case when the service provider can predict
the demand and its behavioural structure, yet the actual traits of individual travellers remain
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Figure 1: Demand dataset for experiments: ca. 150 trip requests from Jan 2016 in Manhattan.
Green dots are origins, orange destinations.

latent. To obtain reliable estimates, we fix the demand (requests) and replicate the experiment
(assuming various ride-pooling behaviour of individual travellers) 1000 times. Results are available
to reproduce on the public repository1

We experiment with the trips actually requested in the New York City on January 2016. We use
the set 147 trips requested in the 30 minute batch (which is beyond the critical mass needed to
induce pooling). Each trip request links origin with destination at a given time (as illustrated
in Figure 1). We used the fare λp of 1.5 €/km (converted from $, consistent with NYC Taxi &
Limousine Commission (2022)), sharing discount λ is 30% (within the range suggested by Shaheen
& Cohen (2019)). We assume βd = 1 while β̊t and β̊s are derived from study by Alonso-González
et al. (2020).
Value of time (VoT) found by Alonso-González et al. (2020) was explicitly applicable to our study.
However, penalty for sharing (PfS) needed to be adjusted. ExMAS assumes a penalty for sharing
irrespective of the number of co-travellers. Moreover, the penalty is scaled with trip length, not
fixed. Hence, we took value for 3 additional passengers, which was found for one class. We scaled
the results to obtain values for the remaining three classes (based on proportions in the fixed
penalty for sharing with one additional passenger). According to formulas by Seltman (2012), we
retrieved the variance of the variables (which was missing in the original study).
Eventually, we successfully obtained: class membership probabilities (pC), mean values of value-
of-time and penalty for sharing for four different classes (βs,C , βt,C) and class-respective variances
(σs,C , σt,C) as reported presented in Table 1.

Table 1: Ride-pooling behavioural parameterization from Alonso-González et al. (2020). Mean
values and standard deviations of value of time (VoT) and penalty for sharing (PfS) for four classes.
∗for class 4 we arbitrarily clipped the otherwise too wide st. dev. of VoT

class C1 C2 C3 C4
name “It’s my “Sharing is “Time is “Cheap and

parameter ride” “saving” gold" half empty"

VoT βt,C
mean 16.98 14.02 26.25 7.78
st.dev. 0.318 0.201 5.777 1∗

PfS βs,C
mean 1.22 1.135 1.049 1.18
st.dev. 0.082 0.071 0.06 0.076

Share pC 29% 28% 24% 19%

Expected ride-pooling performance with non-deterministic travelers

We dive into details how the behavioural heteroscedasticity impacts the ride-pooling performance.
We assess the ride-pooling system’s performance with the four selected indicators. Calculated first
for consecutive replications (realisations of random variables) and then accumulated over all 1000
replications (one value corresponds to one realisation). Results are presented in Figure 2. Baseline
for comparison is the deterministic ExMAS (with VoT and PfS being weighted average of means
introduced in Table 1) which yields mileage reduced by 30%, 9.8% detour, utility increased by
4.5% and profitability of 1.097.

1Script to reproduce results is on the branch probabilistic_topological of original ExMAS (di-
rect link: https://github.com/RafalKucharskiPK/ExMAS/blob/probabilistic_topological/Utils/
Probabilistic_ExMAS_wrapper.py).
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Figure 2: Distribution of ride-pooling performance resulting from 1000 replications. Dotted lines
show the deterministic benchmark.

Regardless of behavioural variability, pooling always reduces the travel distance (D). 90% of the
observations range between 24.3% and 29.7% with the average of 27.1%, which is significantly worse
than 30% reductions obtained in the deterministic setting (Figure 2a). While this is a significant
reduction, which should be hugely appreciated from the city’s and environmental’s perspective, it
also varies significantly, with observations ranging from 20% to 32.5%. The right tail seems to be
fatter, with occasional outliers greater than 30% vehicle kilometres reductions.
The mean of average utility gain (which is user-subjective and depends on behavioural profile) is
approximately 6.1%, which, in turn, is now significantly greater than in the deterministic bench-
mark. The 90% two-sided confidence interval spans between 5.1% and 7.2% utility gains.
A more physical measure of pooling performance, from the user’s perspective, is the trip detour,
which does not depend on traveller behaviour. Notably, the acceptable detour (and delay), unlike
the fixed time windows used in other studies, depends on VoT and PfS and can vary significantly
with the behaviour. The mean travel time of pooled ride is approximately 11% longer than for the
solo-rides only system (Figure 2c) and 90% of the observations fit between 8.6% and 13.6%, which,
again, is worse than in the deterministic benchmark (9.8%).

Class dependent ride-pooling performance

Considering the importance of the behavioural preferences of individuals on pooling performance,
we analyse further the data with respect to individuals and their classes. First, we show the
cumulative distributions of individual indicators observed in 1000 replications. Along with overall
distributions, we present the profiles associated with four distinct classes. While the CDF profiles
serve for illustrative purposes mainly, we enhance them with tables showing differences between
classes in the four consecutive indicators as they reveal intriguing patterns among the introduced
behavioural classes.
Here, we aggregate all the rides, irrespective of in which replication they appear. In the Fig. 3,
we present the cumulative distribution functions of the utility gains and detours. For classes C1
and C3, the utility gains are below average and detours are above average. For the class C4 the
opposite is true, while class C2 in on average with the mean performance.
In the Table 2 we report the resulting trip detour for the passengers in the four respective be-
havioural classes. Apart from mean and standard deviation, we report values of 75th, 90th per-
centile and 95th percentile. First, we present the values obtained for all the rides and then, for
illustrative purposes, only for shared rides (excluding the travellers who were not matched with
anyone and travelled alone). While on average, pooled rides are 8% longer than private rides,
it varies from 5% for class C1 to 15% for class C4. Notably, 5% of travellers in C4 decided to
pool while having at least 61% longer travel times. Those trends are further pronounced when we
restrict the analysis to the rides which were successfully pooled (right columns).
Similarly to travel time analysis in Table 2, we present data of relative utility gain in ride-hailing
system with ride-pooling (relative to system without pooling). Surprisingly, the class which has the
longest detours (C4) has also the greatest utility gains (11% on average). For the class unwilling
to pool the benefits are only 4% (C1). For 10% of all the travellers ride-pooling led to at least 25%
increase in perceived utility.

Ride-pooling performance vs ride-pooling behaviour

In this section, we provide an insight into the relation between sampled behavioural parameters
(VoT, PfS) and performance of the individual travellers (Ur, Tr). In Figure 4, we scatter the values
of VoT and PfS (first and second row respectively) on x-axis against the performance indicators,
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(a) Utility gain (Ur) (b) Detour (Tr)

Figure 3: Cumulative distribution functions of utility gains and detours for the trips observed in
1000 replications, stratified into four classes of behaviour.

Table 2: Statistical properties of trip detour (relative) Tr for travellers of four respective be-
havioural classes. Mean, variance and significant percentiles are shown first for all the travellers
(left) and then (right) only for those who were pooled.

All rides Shared rides
Means St.dev. 75 90 95 Means St.dev. 75 90 95

All 0.08 0.16 0.11 0.27 0.39 0.16 0.19 0.22 0.39 0.52
C1 “It’s my ride” 0.05 0.11 0.07 0.19 0.27 0.12 0.13 0.18 0.28 0.38

C2 “Sharing is saving” 0.09 0.15 0.14 0.28 0.41 0.16 0.17 0.23 0.39 0.50
C3 “Time is gold” 0.05 0.11 0.07 0.19 0.27 0.11 0.13 0.18 0.27 0.35

C4 “Cheap and half empty" 0.15 0.23 0.23 0.45 0.61 0.23 0.25 0.33 0.56 0.69

Table 3: Statistical properties of travellers gains (in relative increase of utility) U for travellers of
four respective behavioural classes. Mean, variance and significant percentiles are shown first for
all the travellers (left) and then (right) only for those who were pooling.

All rides Shared rides
Means St.dev. 75 90 95 Means St.dev. 75 90 95

All 0.06 0.10 0.09 0.18 0.25 0.11 0.12 0.15 0.25 0.33
C1 “It’s my ride” 0.04 0.08 0.05 0.12 0.18 0.09 0.10 0.12 0.19 0.26

C2 “Sharing is saving” 0.06 0.10 0.09 0.18 0.25 0.11 0.12 0.15 0.24 0.32
C3 “Time is gold” 0.04 0.08 0.06 0.14 0.19 0.09 0.10 0.12 0.20 0.26

C4 “Cheap and half empty" 0.11 0.14 0.16 0.28 0.37 0.16 0.15 0.22 0.33 0.42

i.e. Tr and Ur (first and second column) on y-axis. Each dot represents an individual traveller,
coloured accordingly to her behavioural class.
We can observe a clear trend of ride-pooling detours decreasing with an increasing value of time
(Fig. 4a), despite the longer detours for travellers with low value of time, their benefits of pooling
(relative increase in utility) remains high (Fig. 4b), whereas for travellers with high value of
time utility gains are significantly lower. The three classes (C1, C2 and C4) have relatively low
variance and do not overlap, while for class C3 the variance of VoT is very big. Mind that in
our experiment each traveller was assigned to different classes across replications, nonetheless the
class membership strongly correlate with the resulting ride-pooling performance, despite the fixed
spatiotemporal trip characteristics.
Those clear trends become blurred when we plot against penalty-for-sharing (PfS in Fig. 4c and 4d)
where the Gaussian shape is observed and class memberships are indistinguishable. Both highest
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(a) Tr as a function of VoT (b) Ur as a function of VoT

(c) Tr as a function of PfS (d) Ur as a function of PfS

Figure 4: Scatter plot of travellers’ behavioural parameters (x-axis) against the resulting ride-
pooling performance. Each dot denotes a single traveller, coloured accordingly to the class assigned
to her in the respective replication. y-axis are scaled to represent relative change, e.g. 1 corresponds
to increase of 100%.

detours and utility gains are obtained for intermediate values of PfS, while extreme cases have the
lowest benefits. The travellers with a low penalty for sharing (even below 1 for a some of class
C3 travellers) seem to be often exploited by the system and their utilities are sacrificed to match
preferences for travellers with lower preferences for sharing. Yet for those with high penalty the
benefits are also limited, since they can hardly be pooled with others. The pooling seems to be
best performing in the penalties ranging from 1.1 to 1.2 where it can reach the greatest expected
benefits (Fig. 4d).

Scaling with the demand levels

The notion of critical mass is crucial to the ride-pooling and number of studies reported how the
ride-pooling grows non-linearly with the demand size. Yet, up to now, those findings were reported
in the deterministic setting only. Here, apart from reporting how system performance improves
with growing demand, we provide insights on how the performance variability changes.
Demand set on which we run the experimental was selected to be slightly beyond the critical mass
needed to induce the effective pooling, we extend it here from two sides: sub-critical (99 requests)
and super-critical (198 requests). We report the previously introduced performance measures for
three levels of demand in Figure 5. Unsurprisingly, we observe the critical mass effect as the
performance significantly increases when the demand grows from 100 to 150 requests and then
somehow stabilises when it reaches 200 requests (Fig. 3). Yet more importantly, we observe the
trends with variabilities, which are alternative: either narrowing with growing demand (utility in
Fig. 5b), widening (profitability in Fig. 5b), or remaining roughly constant (travel times and
mileage savings in Fig. 5a and Fig. 5c).
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(a) Mileage save (D) (b) Utility gain (U) (c) Trip detour (T ) (d) Profitability (P)

Figure 5: Distributions of four performance indicators with the three levels of demand: subcritical,
critical and supercritical.

4 Conclusions

Most ride-pooling algorithms rely on the fixed constraints (usually time windows). To more ob-
jectively assess the attractiveness of a shared ride from the traveller’s perspective, we previously
proposed the utility-based ExMAS algorithm. In this study, we take the matter further. We
no longer consider travellers homogeneous and deterministic. Using recent empirical findings, we
assume that while we still do now know preferences of the individuals, we know the general distri-
butions.
To properly include this in our calculations, we introduced random variables representing the value
of time and perceived sharing discomfort. Such reformulation allowed to reproduce the four distinct
classes of travellers’ behaviour towards ride-pooling, as revealed in Alonso-González et al. (2020).
Conducting sufficient number of replications, we obtain reliable estimations of the ride-pooling
problem solution, which is no longer deterministic. Apart from mean values, we can now estimate
the lower and upper bounds of the performance indicators, which substantially differ from the
deterministic benchmark.
The additional probabilistic layer introduces a variability at the level of individuals and at the
system performance. We find that despite the high variability of individuals, pooling performance
remains stable and within reasonably narrow confidence intervals. Notably, probabilistic results
are shifted compared to the deterministic benchmark. While the primary objective of minimising
mileage is better met in the deterministic scenario, we observe a much higher satisfaction with the
service in the heterogeneous setting.
Our study also provides an insight into how ride-pooling performs for travellers of certain prefer-
ences. We analyse the impact of the value of time and perceived sharing discomfort on trip detour
and satisfaction with the service. We find that people with low value of time can be considered
both the most flexible and the most beneficial travellers in the pooling system. However, those
with intermediate penalty for sharing not only benefit more than those with high penalties (who
does not want to share in general), yet also more than those with low penalties (willing to share
with anyone and often exploited by the system).
Similarly to the deterministic case, we observe the critical mass effect and pooling becomes effective
only when the demand levels reach the so-called critical mass. Now we enrich this notion with
findings on variability, which may either decrease (in terms of utility gains) or increase (in terms
of profitability for the provider) with growing demand levels.
The proposed method is general and can be easily applied to new cases, both for general demand
patterns and different behavioural models. Also, the specific experimental setting used in this
study may be reformulated, e.g. when we know individuals’ class membership, the demand is
not predicted properly or when the behaviour is assumed fixed, but demand is varying (like in
Kucharski et al. (2021)). In the future studies, those additional dimensions of variability may
be included for even richer assessments. Finally, the proposed method may be valuable in the
pandemic-analyses, when virus-averse behaviour drives the pooling behaviour of individuals.
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Short summary

Introducing social networks to travel demand models could better capture socially induced travel
behavior. This paper presents an agent-based approach to forming social networks that match
important global characteristics and egocentric homophilies in distance, age, and gender for a
population on the order of 106. Based on data from an egocentric snowball sample, this method-
ology successfully reproduces homophilies in age and gender, as well as an expected power-law
distribution of geographic distance between connections. An initial clique formation heuristic is
implemented on top of the homophily calculations. The generated network exhibits preferential
attachment between agents of higher degree, in line with more general literature on network for-
mation.

Keywords: agent-based modeling, synthetic social networks, synthetic populations, transporta-
tion network modeling, travel demand modeling

1 Introduction

As Frei and Axhausen put it in their seminal 2007 paper on the geography of social networks, “travel
is the price we pay to be with others” (Frei & Axhausen, 2007). Recently, researchers in trans-
portation modeling have further investigated the marked interactions between social connections
and travel activity participation (Carrasco et al., 2008; Kim et al., 2018). Social contacts affect
multiple aspects of travel behavior, from activity generation to destination and mode choice (Kim
et al., 2018). The literature has identified socio-demographic homophilies, geographic distance,
and structural network properties, such as clique and degree distributions, as key characteristics of
travel-focused social networks (Arentze et al., 2012; Illenberger et al., 2013; Dubernet, 2017). The
synthesis of a static social network for a study area is a key next input for generating joint travel
demand.

Social network structures are studied across fields. The development of a synthetic social network
suitable for travel behavior modeling, however, has been challenging. Illenberger et al. (2013)
approach this problem with an exponential random graph model, which accounts for homophily
but has limited transitivity. Arentze et al. (2012) explicitly account for transitivity via a link
probability model using binary logit estimations for forming friendships. Work by Dubernet (2017)
generates a social network with a heuristic that accounts for socio-demographic and geographic
homophily in addition to clique distribution, but does not account for agent-specific preferences.
All three of the above utilize the snowball data sampled by Kowald & Axhausen (2012).

Building on this research, we attempt a scalable method to generate a synthetic social network that
matches known socio-demographic homophily, connection distance, reciprocity, and transitivity
properties. As the network is eventually intended to couple with a travel demand generation
model, it is synthesized explicitly for the Munich metropolitan region.

2 Methodology

The fundamental methodology relies on a union of agent-based objects and network data structures.
Agent objects are constructed from a synthetic population for the city of Munich generated by the
open-source land-use model SILO (Moreno & Moeckel, 2018). Network and agent attributes -
namely degree distribution, edge length preferences, and egocentric homophilies - are derived from
ETH-Zurich’s snowball dataset (Kowald & Axhausen, 2012). This section describes these input
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data and the social network formation algorithm.

Input data

Our study area is the Munich metropolitan region, including the City of Munich and the surround-
ing cities of Augsburg, Ingolstadt, Landshut, and Rosenheim, as seen in Figure 1. This area has
a population of 4.5 million in roughly 2.1 million households. We use the output of the SILO
land use model, which generates a synthetic population for the region based on census data and
Iterative Proportional Updating (Moreno & Moeckel, 2018). Though a level of social connection
can be inferred from shared households, workplaces and education places, there are no additional
social or friendship connections. Therefore, we set out to generate a friendship network for a 5%
sample of this synthetic population.

Figure 1: Munich metropolitan region.

Snowball Data

Despite the proliferation of data regarding large social networks, only a few datasets include the
type of geographically-embedded demographic connection data that may impact joint leisure travel.
Kowald & Axhausen’s (2012) snowball survey provides a key source for this topic. After data
cleaning, this survey yields a total of 793 egos and 14, 326 unique ‘names.’

While this data is extensive, it maps a sparse network, which tends to branch out to isolated
alters. Therefore, any analysis of this data must focus on egocentric metrics, not global network
characteristics. Previous work has established that age, gender, and distance homophilies are the
most significant demographic attributes in leisure travel networks (Dubernet, 2017; Arentze et
al., 2012; Illenberger et al., 2013). These characteristics, along with ego degree, form the main
egocentric attributes for our formation model.

While previous work has used population-aggregated homophilies (Kowald & Axhausen, 2012;
Dubernet, 2017), further examination suggests that demographic attributes affect an agent’s will-
ingness to accept variation across these homophilies. After dividing the data into segments based
on eight 10-year age brackets and two genders, Figure 2 illustrates the distribution in accepted
average gender homophily, age difference, and degree by segment. Such segmenting shows, for ex-
ample, that egos aged over 70 (70M , 70F , 80M or 80F ) tend to accept ties across greater ranges of
age differences and have smaller degrees. These insights motivate a formation model that accounts
for the interaction between an agent’s demographic characteristics and homophily profile.

This segmenting leads to distributions for agent degrees by segment and a table of distributions
for age and gender homophilies by segment pair. Figure 3 compiles the age and gender homophily
distribution table. Rows represent network-level distributions of connections from egos in one
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Figure 2: Segmented distribution in age difference, gender homophily, and degree for
snowball egos by segment. A gender homophily of 1 indicates similar genders.

segment to alters in all other segments. This matrix is notably asymmetric; we can attribute this
to sampling bias in the snowball data - e.g., 28% of egos are in their 50s while only 0.6% are
younger than 20 - and fundamental asymmetries in the way that connections and popularity are
distributed among agents in all social networks (Barabási & Albert, 1999).

Figure 3: Segment to segment homophily distributions. Rows egocentrically represent the
desired distribution by percentage. Only rows sum to 100%.

Distance data, however, is addressed at the network-level through a power-law probability distri-
bution function for all edges, as initially demonstrated in Illenberger et al. (2013). The probability
of forming an edge of distance d between any two agents is described by the following distribution
function:

P (Edge Formation|d) = (α− 1)x
(α−1)
0

dα
(1)

We specify the exponential and scale factor parameters, α and x0, by a least squares estimation
on the distribution of snowball distance edges that would fit inside the Munich study area. An
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additional normalizing factor is introduced in the code to ensure that the cumulative distribution
function converges to one within the study area.

Social network formation

The social network generation algorithm uses the segmented snowball data distributions and the
SILO synthetic population as inputs. The formation method broadly follows the iterative three-
step process displayed in Figure 4. In short, a friend-goal dictionary is generated for each agent
based on the agent’s segment-based age and gender homophilies. Then, the algorithm matches two
mutually compatible agents based on these dictionaries. A connection is only formed if the agents
pass a stochastic draw based on the geographic distance between them. If a connection forms,
each agent updates their friend-goal dictionary before searching for further connections. After all
agents have entered the matching stage or no new connections can be formed, unsatisfied agents
redraw their friend-goal dictionaries, restarting the cycle.

Figure 4: Social network generation steps for each iteration. Friend goal dictionary peri-
odically re-drawn to avoid mismatches.

More specifically, in Step 1, each agent calculates how many degrees, or friends, k, they need to
reach their total degree goal, which is assigned during population synthesis. Each agent then draws
k times from their homophily distribution to form their ‘friend-goal’ dictionary. This provides the
segments from which each agent is willing to search for connections during Step 2. Figure 5
illustrates two example agents after an initial draw.

Figure 5: Sample agents after initial draw.

In Step 2, the algorithm matches mutually eligible agents. For example, in Figure 5, Agent A is
in the 40F segment and is looking for one connection in the 20F segment; Agent B is in the 20F
segment and is looking for a connection in the 40F segment. They are mutually compatible and
could be matched.

During Step 2, agents search for matches from the general population or from their 2nd-degree
connections - i.e., friends of their friends. The latter acts as a heuristic for triadic closure. Any con-
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nection formed by triadic closure automatically creates a clique of at least three while maintaining
the proper homophilies for all clique members; this provides an agent-based implementation of a
concept explored in Asikainen et al. (2020).

The algorithm currently forms an initial proportion of agents’ degree goals by matching from the
general population. It then switches to triadic closure, which reduces the search space but enables
clique formation. When formation progress stagnates, the algorithm switches back to the general
population search to complete the remaining connections.

After any potential match is found, this connection enters Step 3 where it is accepted or rejected
based on the distance between the two agents. Equation (1) generates a connection probability
for this distance, which is then compared to the result of a uniform draw from (0, 1). If the
edge is formed, each agent removes one from the appropriate segment of their friend-goal. If this
completely satisfies either agent’s degree goal, that agent exits the algorithm. Otherwise, each
agent returns to Step 2 to search for new connections.

After an iteration exhausts its possible matches, all remaining agents stochiastically redraw their
friend-goal dictionaries via Step 1 and the process repeats. Because of asymmetries in the ho-
mophily matrix and the demographic variation between the snowball and synthetic populations,
these stochastic iterations are necessary for everyone to achieve their desired degree. By repeatedly
drawing from the segment homophilies, the algorithm induces an equilibrium that balances these
asymmetries.

3 Results and discussion

The current algorithm is built in Python and makes use of the Networkx package (Hagberg et al.,
2008). The algorithm scales roughly as O(n2) and runs in 30 minutes, generating 1, 786, 885 edges
for 202, 401 nodes.

Segment Based Homophilies

The aggregate segment-level connections are demonstrated in Figure 6. In general, the core adult
population homophily distributions are well obeyed; this makes sense as they are well represented
in the snowball data and have sufficient connection possibilities within their desired segments.
The significantly older and significantly younger segments, which were underrepresented in the
input data, perform worse. For example, segment 10F has too many internal connections and not
enough connections to older segments; simultaneously, the other segments largely meet their goals
regarding segment 10F . This ties back to the asymmetries in the homophily matrix (Figure 3)
where, for example, M10F,30F = 12% but M30F,10F = 1%. In these cases, one segment meets its
goal easily and has no need to surpass it, while the other tends to form more internal connections.

Figure 6: Input and realized homophily distributions by segment.
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Figure 7 summarizes the egocentric distribution of gender similarity and age difference. While the
synthetic network does exhibit slightly higher degrees of homophily - i.e., higher gender similarity
and lower average age difference - it still captures activity at the tails of each distribution.

Figure 7: Average egocentric gender and age homophilies.

Distance Distribution Matching

Overall, the approach to distance formation reliably replicates the expected geographic edge length
distribution. Figure 8 demonstrates the realized distribution of edge lengths for the entire network
compared to the snowball data. There is a slight under-representation of edges less than 3 km as
the basic power law formulation cannot be sensitive to distances smaller than its scale parameter,
x0 - which was set as ∼ 1.5 km based on the snowball data - without causing its probability integral
to diverge. Additionally, the synthetic distribution approaches 100% earlier than the snowball data,
though this is likely an edge effect, given that only agents near the border of the study area can
form the longest connections.

Figure 8: Edge length distribution for synthetic population.

Initial Clique Formation

The initial triadic closure methodology provides a basic mechanism for clique formation. Roughly
82% of agents have at least one clique in the full network, though the method significantly overforms
small cliques compared to the input data. While 2nd-degree connections who have multiple mutual
friends with the searching agent are duplicated in the triadic closure search space, providing a
slight incentive to form larger cliques, these alters are given no prioritization in the search nor do
they gain any additional homophily or distance flexibility. Future implementations will focus on
strategies to align the clique distributions shown in Figure 9.
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Figure 9: Clique size distribution.

Preferential Attachment Mechanism

Thanks to seminal work by Barabási & Albert (1999), many methodologies for social network
formation rely on the concept of preferential attachment. Preferential attachment refers to the
tendency of new nodes to connect to high-degree nodes during network formation or evolution.
This gives many network degree distributions long right tails. While the snowball data, which
limits respondents to 40 names, does not reflect this type of ‘scale-free’ distribution, the formation
model still exhibits degree correlation. Figure 10 demonstrates a positive correlation between an
agent’s degree and the average degree of its neighbors. This likely emerges from the algorithm’s
iterative nature. Higher-degree agents generally remain in the algorithm for more iterations; the
further into the simulation they get, the more often they encounter other agents with a similarly
large degree goal.

Figure 10: Agent degree versus average neighbor degree.

4 Conclusions

This paper presents a scalable method for generating a synthetic social network with relevant
socio-demographic and geospatial characteristics based on a small, egocentric data sample. The
generated network demonstrates homophily matching, has clique structure and shows preferential
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attachment. A point of improvement would be better clique formation, as the current approach
does not result in a clique distribution similar to the input data. Obeying egocentric homophilies
while forming very large cliques is statistically unlikely in the current, agent-based framework;
perhaps this approach can be blended with the clique-centric formation strategies of Dubernet
(2017). Literature in network formation also suggests options related to clustering and community
detection (Girvan & Newman, 2002). Additionally, the generated network is static, representing
one point in time. Future research could focus on dynamic updating of the social network over
time. Lastly, further work on travel behavior analysis should be conducted to assess how social
networks influence joint travel decisions, as 45% of trips in Germany were performed with at least
one companion (Infas et al., 2018). Further research in synthetic social network generation is a
necessary step toward modeling the influence of social networks on travel behavior.
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Short summary

This paper describes the analysis and development of a prototype (and first of its kind) simulator
which models mixtures of legacy and autonomous mainline rail operations. This is achieved by
using linked blocks to virtually superimpose occupancy information on two identical length tracks,
one operating purely legacy trains and the other purely autonomous trains. These combine to form
a single track running mixed operations. There are some surprising findings: the introduction of
autonomous trains is not beneficial to system operations at all parameter settings, and moreover,
there is a question of fairness to legacy train operations that may be adversely affected.

Keywords: Autonomous, Legacy, Modelling & Simulation, Railway.

1 Introduction & Background

This paper explores how to simulate the introduction of Connected and/or Autonomous Trains
(CATs) with existing Driver Operated and/or Guided trains (DOGs). Within the rail industry,
there are a variety of software packages which simulate rail operations, such as OpenTrack (Huer-
limann & Nash, 2017). However, although OpenTrack and others are able to model various levels
of European Train Control Systems (ETCS) and moving blocks, they cannot model mixtures of
different levels of ETCS on the same section of track. Hence, we have built a new train simulator
from the ground up, to address this gap in extant capability.

In current rail operations, track is divided into sections known as blocks. To ensure safe separation,
only one train is allowed in any one block at any given time. Therefore, block occupancy infor-
mation needs to be conveyed to train drivers. This is achieved through trackside signalling or cab
signalling, which provide movement authorisations (Pachl, 2020). Trackside signalling uses aspects
to convey occupancy information at discrete points along the track, and depending on the number
of aspects, governs the number of blocks the driver can (in effect) see ahead (Theeg & Vlasenko,
2020). Cab signalling delivers occupancy information directly to the driver, continuously in time.
In effect, whether a train is a DOG or a CAT determines how much occupancy information is
conveyed and the frequency at which it is delivered. This point is further explained in Section 2,
which gives further detail on how we model CATs.

To ensure safe separation, any block-based simulator has to consider how a train reserves blocks
on its braking path. In our simulator, this is achieved through a watch-point (see Fig. 1). When
the watch-point progresses into a new block, it receives the new block’s occupancy information,
hence mimicking trackside signals (receiving information at discrete points). If the block is free, it
is reserved and the train proceeds, whereas it must begin braking if the block is already occupied
or reserved by another train. The key trick in this paper is to generalise this principle to model
mixed DOG and CAT operations.

The paper is organised as follows. Firstly, Section 2 explains how virtual and linked blocks are
employed to develop our mixed legacy-autonomous rail simulator. Section 3 then describes a
highly simplified track simulation setup which we use for an initial inspection of mixed running
performance. Section 4 presents and analyses the simulation results. Lastly, Section 5 provides
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Figure 1: Simulation concepts. The train’s watch-point (eye symbol), stop-point (black
circle), stopping distance (horizontal black line), and the block states differentiated by
colour. Blocks on the braking path are reserved so that other trains may not enter them.
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Figure 2: DOGs and CATs simulation setup. Both use fixed blocks, but CATs operate on
shorter blocks than DOGs. Here six CAT blocks fit into a single DOG block. CATs can
thus operate at reduced headway.

a wider discussion of linked-block principles and the simulation findings, and Section 6 describes
conclusions and future work plans.

2 Simulation Principles For Mixed Operations

This section explains the method we use to model mixed legacy-autonomous operations. As ex-
plained above, DOGs operate using fixed blocks, where occupancy information is conveyed at
discrete points along the track via trackside signals.

In contrast, it is assumed that CATs can directly and continuously relay their speeds and positions
to each other and this data is used to establish a buffer zone ahead of each CAT (the moving
block) whose length equals the stopping distance plus a safety margin. The buffer zone moves
along the track with the CAT and if it comes up against an obstacle, the CAT brakes to ensure
safe separation (Pachl, 2020).

In our simulator, we model the CAT’s buffer zone as a union of virtual fixed blocks, of shorter
lengths than used for the DOGs’ blocks. Due to the shorter block lengths, the CAT receives new
occupancy information at a high temporal frequency and high spatial precision which approximates
an update which is continuous in space and time. See Fig. 2. CATs can thus operate at reduced
headway when following other CATs.

To model mixed running, we use two tracks of identical lengths, where one track operates purely
DOGs and the other operates purely CATs with shorter virtual blocks. These tracks are linked
through a lookup process, where one track’s occupancy information is virtually superimposed onto
the other and vice versa. See Figs. 3& 4.

Fig. 3 shows a CAT following a DOG. Each virtual block on the CAT’s track performs a lookup on
the corresponding block of the DOG’s track. The DOG occupies / reserves three blocks (Fig. 3(a)).
Each of these DOG blocks is inspected by six virtual blocks on the CAT track (Fig. 3(b)), which
are thus effectively considered reserved (Fig. 3(c)). The CAT will commence braking when its
watch-point reaches the first of these reserved virtual blocks. See Fig. 3(d). Here the CAT may
continue for another seven virtual blocks before it commences braking. Note that the minimum
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Figure 3: CAT follows DOG. Through the use of linked blocks and a lookup process
(eye symbol, yellow blocks, and arrows) the occupancy of the corresponding blocks on the
DOG’s track are virtually superimposed onto the CAT’s track.

headway is greater than if a CAT were following a CAT, because of the way that DOG blocks
coarsely reserve corresponding virtual blocks irrespective of the continuous position of the DOG
(which is not communicated and is thus unknown).

Fig. 4 shows a DOG following a CAT. Each DOG block performs a lookup on the six corresponding
virtual blocks of the CAT track, and is marked occupied or reserved if any of those virtual blocks
are occupied or reserved. As for CAT following DOG, the minimum headway is greater than for
CAT following CAT, now because the following DOG is not able to receive the fine-scale position
information communicated by the CAT.

3 Simulator Setup

Using the virtual and linked block principles introduced above and the architectural framework
described by Morey et al. (2023), a simple time-stepping simulation has been developed to examine
the dynamics of mixed legacy-autonomous operations at a converging track section.

The simulation follows many of the classical theoretical studies in car-following modelling (e.g.,
Bando et al. (1995)) where a set of identical trains repeatedly circulates around a ring track, which
consists of identical blocks. Here the track setup consists of two ring track sections of equal length,
which have an overlapping joint section, see Fig. 5. Each ring operates purely DOGs (section S1) or
purely CATs (section S2), and their joint section (section S3) operates mixed running through the
addition of linked virtual blocks (section S4). This simple layout induces the mixing, reordering,
and self-organising of different train types, and therefore enables a first examination of some of the
possible complex dynamics that might result from mixed operations.

In each simulation, the number of trains is prescribed and conserved over time — so (in effect)
we prescribe the train density as an input parameter, and we examine the traffic patterns and
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Figure 4: DOG follows CAT. Compare Fig. 3, where CAT follows DOG. The lookup
process is now used to superimpose the occupancy of the blocks on the CAT’s track onto
the DOG’s track.
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Figure 5: Simulator track layout. Two ring tracks overlap to form a joint section (S3
& S4, black) which operates mixed running. Sections S1 (blue) and S3 have pure DOG
operations, whereas S2 (red) and S4 have pure CAT operations. Schematic only — lengths
of sections not to proportion shown here, and we employ virtual blocks that are ten times
shorter than DOG blocks.
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Figure 6: Fundamental Diagrams (FDs) for mixed mainline rail traffic. The black and blue
lines show theoretical predictions for pure DOG and CAT operations respectively. Dots
show mixed running simulation results: green (mixed population average), blue (DOG
population average), and red (CAT population average). (a & b) flow-density graphs and
(c & d) speed-flow graphs.

performance metrics (e.g., the time-average speed and the flow) that result. Our simulations begin
with all trains at rest randomly spaced around their respective rings. For the simulations shown
here, for simplicity, we prescribe an equal number of CATs and DOGs, however, of course, the
penetration rate of CATs may also be varied as an input parameter.

The parameters used in the simulations are, see Morey et al. (2022a): trains’ acceleration 0.4ms−2;
braking rate 0.65ms−2; maximum speed 60ms−1; train length 400m; number of blocks in sections,
S1 & S3 20; S2 & S4 200; DOG block length 1600m; virtual (CAT) block length 160m. Thus each
ring track is 64km long and the joint section is 32km long. We varied the number of trains from 4
to 27 of each type, yielding densities from 1.60× 10−5 trains/m to 5.32× 10−4 trains/m.

4 Simulation Results

From simulator output, we derived fundamental diagrams (FDs) that relate density, flow, and
speed averaged over the entire network. See Fig. 6. Results are compared with theoretical bounds
derived by Morey et al. (2022a) and Morey et al. (2022b), which suggest that pure CAT operations
might potentially have double the capacity (maximum flow) of pure DOG operations.

Note in our network that capacity is constrained by the mixed running section which is in essence
a bottleneck and generally, flow falls short of even the pure-DOG bound, because there is inter-
rupted flow induced by the point where sections S1 and S2 merge, which becomes quite acute at
intermediate density ranges.

However, Figs. 6(b&d) show that the DOG and CAT populations have quite different experiences.
Whereas the CAT population develops flow rates that exceed the pure-DOG bound, and even
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Figure 7: Trajectory plots showing mixed running of 10 DOGs and 10 CATs. Colour
represents each train’s state: green (at goal speed), magenta (braking), red (halted), and
blue (accelerating). Sections (a) S1, (b) S3 & S4, (c) S2.

approach the pure-CAT bound at lower density ranges, the DOG population suffers a dramatic
reduction in speed and flow, which may be explained by the exemplar trajectory plots shown in
Fig. 7).

Over time, the CATs tend to self-organise into platoons, see Fig. 7(c) which are never subsequently
broken up by the DOGs. This is because the gaps between consecutive CATs are so short that a
DOG approaching the end of section S1 must wait for the CAT platoon pass before it can join the
mixed running section. In consequence, DOGs tend to form queues at the end of section S1, see
Fig. 7(a), which can only be discharged in the gaps between the CAT platoons. Therefore DOGs
also tend to form platoons over time, which fit into the gaps between the CAT platoons on the
mixed running section.

The overall effect is unfair. Without additional control policies, the CATs achieve their enhanced
throughput entirely at the expense of the DOGs.

5 Discussion

The use of virtual and linked blocks that we have demonstrated here seems to be quite an elegant
solution to extend existing fixed-block simulators to deal with mixed running scenarios. In fact, the
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trick can also be used as a simple device to help simulate other network features, e.g.: 1. Two-way
single-track sections (by a union of two parallel one-way sections where each block in one direc-
tion watches all of the blocks in the opposing direction — thus a train is prevented from entering
the section if any block on it is occupied or reserved by a train travelling in the opposite direc-
tion); 2. More complicated mixtures of future train types, perhaps with different communication
rates/latencies and/or braking capabilities, and thus different types of moving zones; 3. Complex
routing patterns where an individual train might choose different paths at a diverge depending on
previous history (without that history needing to be stored as a property of the train in question).

Clearly, the results shown here are only an initial analysis of the simplest possible network which al-
lows mixed running with the potential for the ordering of CATs and DOGs to change over time. Of
course, in the traffic flow theory community, there has been much interest in macroscopic/network
fundamental diagrams that describe urban road network dynamics, and some recent papers have
begun to explore these concepts in rail networks, e.g., Corman et al. (2019), Farhi et al. (2017),
and Cuniasse et al. (2015). We have designed a sequence of test networks of increasing complexity
and the immediate goal is to determine whether they display similar results to those we found here:
i.e., that potential capacity gains might be quite unfairly distributed between CATs and DOGs.

A further question concerns the pathway to autonomy and the network performance as the pen-
etration rate (i.e., proportion) p of CATs is increased slowly from zero. The anticipated benefits
result from CAT-CAT leader-follower pairs operating at reduced headway. Without platooning or
self organisation, the proportion of such pairs scales like p2 — so the benefits might initially be
very modest, to say the least. However, how this plays out in more complex networks with many
merges and diverges remains to be seen.

6 Conclusions and future work

In this paper, we have described an elegant approach to simulate mixed legacy-autonomous rail
operations. We have achieved this through the use of virtual blocks and a lookup process to link
occupancy information. This technique provides the basic mechanism to simulate a wide variety of
future rail scenarios. We have demonstrated exemplar results from a simple stylised network. The
findings are surprising: it seems that the introduction of Connected and/or Autonomous Trains
(CATs) does not necessarily increase capacity, and potentially, the system self organises so that
high flow rates for CATs are achieved at the expense of lower flow rates for legacy trains.

Future work should of course involve experimenting with a wider range of track setups, incorpo-
rating more realism (e.g., station stops, complex routing) and more advanced control rules (e.g.,
prioritisation at track merges), and investigating varying penetration rates of CATs.
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Short summary

This paper investigates the impact of walking and e-hailing on the scale economies of on-demand
mobility services. A microeconomic model is developed to explicitly characterize the physical
interactions between passengers and vehicles in the matching, pickup, and walking processes under
different market conditions and matching mechanisms. We show that passenger competition plays
a critical role in scale economies. When unmatched passengers do not compete for idle vehicles,
both street-hailing and e-hailing exhibit increasing returns to scale, although such property in e-
hailing is less significant. In contrast, when there exists passenger competition, e-hailing service
shows decreasing returns to scale. Street-hailing, however, is free of this detrimental effect thanks
to its limited matching radius. While walking does not change the scale economies, it does benefit
the system by reducing the total vehicle supply required to serve the same level of demand and
improving the overall vehicle utilization rate.

Keywords: passenger-vehicle matching, on-demand mobility service, scale economies, walking.

1 Introduction

The emergence of ride-hailing companies, such as Uber and Didi, has revolutionized the industry
of on-demand mobility services, which has long been dominated by taxis. With advanced mobile
communication technologies, passengers and vehicles can now be connected online. Such an e-
hailing matching mechanism is believed to be far more efficient than the traditional street-hailing
that relies on visual contact on streets (Cramer & Krueger, 2016).
However, evidence from Shenzhen (China) suggests that, in a highly dense market, street-hailing
can perform comparably well or even better than e-hailing (Nie, 2017). The unlimited connectivity
in e-hailing has also shown negative impacts during demand peaks (Castillo et al., 2017). These
observations motivate Zhang et al. (2019) to model the physical matching process in ride-hailing
and analyze its scale effect. It concludes that street-hailing has better scale economies than e-
hailing because i) its matching efficiency does not suffer from passenger competition as e-hailing,
and ii) the nature of linear search is more prone to scale effect compared to spatial search in e-
hailing. However, the analysis in Zhang et al. (2019) does not distinguish the matching and pickup
processes and does not consider the network topology. Another missing factor is walking. In street-
hailing, passengers often walk towards major streets to find taxis. On the other hand, e-hailing
mostly serves door-to-door trips. Accordingly, sometimes drivers have to make long detours and
enter local streets to pick up and drop off passengers. In fact, leaving the door-to-door scheme has
shown great potential to increase the efficiency of shared on-demand systems by several previous
studies (e.g. Fielbaum et al. (2021); Gurumurthy & Kockelman (2022)). These findings suggest
walking might also play a role in the scale economies of ride-hailing.
This study thus sets out to analyze the scale economies in street-hailing and e-hailing at the system
level and investigate the impact of walking. To this end, we model the ride-hailing market on a
grid network with detailed specifications of each component in passenger and vehicle time. The
scale economies are then evaluated according to how the system cost under optimal fleet size varies
with the demand rate.
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2 Methodology

Settings

Consider a grid network with two types of streets shown in Fig. 1. The major streets form the
skeleton of the network. Between every two major streets, there are K local streets with equal
spacing s. Accordingly, three types of intersections are identified: (i) Type-1: between major
streets; (ii) Type-2: between local streets; and (iii) Type-3: between local and major streets.

𝑂! = (𝑥", 𝑦")

𝐷! = (𝑥#, 𝑦#)

𝑂)! = (𝑥", 𝑦" + 𝑠)

walking

Type-1

Type-2

Type-3

𝑠

(𝐾 + 1)𝑠

walking𝐷,! = (𝑥#, 𝑦# − 𝑠)

Figure 1: Illustration of a grid network.

Assume the travel speed on major streets is v and it takes δ = s/v to traverse a block. Two
factors αl, αa > 1 are introduced to denote the vehicle speed on local streets and walking speed,
respectively. In other words, it takes αlδ for a vehicle to pass a block on local streets and αaδ for
a passenger to walk through a block.
Assume passenger demand and vehicle supply are both uniformly distributed in space and the
market has reached a steady state. Then, the market conditions can be described by the idle
vehicle density V , the unmatched passenger density W , and the demand rate q (i.e., the passenger
arrival rate per unit area). As per the steady state condition, q also equals the matching and
pickup rates.

Scenarios

In this study, we consider four scenarios: (i) street-hailing without walking (DS), (ii) street-
hailing with walking (WS), (iii) e-hailing without walking (DE), and (iv) e-hailing with walking
(DS). In all scenarios, trips are generated at Type-2 intersections (i.e., passengers travel between
local blocks). When walking is considered, passengers are picked up and dropped off on major
streets and thus pickups and dropoffs happen at Type-3 intersections. For simplicity, we assume
passengers would randomly walk to one of the closest major streets, not necessarily the closest to
their destinations.
On the supply side, we assume vehicles randomly cruise in the network. In DS, vehicles cruise on
local streets to maximize the probability to find a passenger, while in other cases, they cruise on
major streets.

Matching model

Here we present a general matching model and use k ∈ {DS,WS,DE,WE} to denote the scenario.
For both street-hailing and e-hailing, we first define the matching interval δk that denotes how

2



frequently matching is performed. We then define Rk and Ak as the matching radius and area,
respectively, both in units of road links (arc). Specifically, street-hailing passengers can only see
vehicles moving in four directions, and thus Ak = 4Rk, k ∈ {DS,WS}. For e-hail, the matching
area can be derived as Ak = 2(R2

k +Rk), k ∈ {DE,WE}.
To capture the possible competition among waiting passengers, we further introduce the notion
of dominant area Yang et al. (2020), denoted by Ã, to represent the area within which any idle
vehicle is for sure matched to the passenger. In this study, we specify the dominant area as follows:

Ãk =
Ak

γk
, γk = max(AkW, 1), (1)

which implies the matching area is evenly distributed to unmatched passengers within Ak.
With the assumptions introduced above, we can easily show the number of “matchable” vehicles
at each matching instance follows a spatial Poisson process. Then, the expected matching time is
derived as

wk
m =

(
γk

AkθkV
+

1

2

)
δk. (2)

where the first term in the parentheses gives the expected number of matching intervals and the
second accounts for the average elapsed time before the first matching instance. The density
correction factor θk is introduced to reflect the accumulation of vehicles on a certain type of street.
It only affects street-hailing whereas in e-hailing θk ≡ 1.
The pickup time in street-hailing is simple thanks to the linear matching mechanism. In contrast,
that in e-hailing is rather complicated because matching is performed in space and the potential
passenger competition affects the effective matching radius R. With some algebra, we derived the
expected pickup distance (in units of arcs) as follows:

Dp =

R−1∑
i=1

(
1− i2 + i

R2 +R

)V (R2+R)

. (3)

To make the model tractable, we introduce the following approximation and replace R with Rk/
√
γk

to capture the impact of passenger competition:

dkp =
c1
V

−
c2
√
γk

V Rk
. (4)

As shown in Fig. (2), where the approximation parameters are set to be c1 = c2 = 1/6, the
approximation error diminishes rapidly with the idle vehicle density.
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Figure 2: Comparison of exact and approximated pickup distance.

Finally, the expected pickup time is derived as follows

wk
p = αk

p

(
dkp + dka +

1

2

)
δ, (5)
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where

αk
p =

{
αl, k = DS

1, k ∈ {WS,DE,WE}
, (6)

dkp =

{
Rk − 1, k ∈ {DS,WS}
c1
V − c2

√
γk

V Rk
, k ∈ {DE,WE}

, (7)

dka =

{
0, k ∈ {DS,WS,WE}
(αl − 1)Da, k = DE

, (8)

where Da is the average walking distance derived as Da = (K+1)(K+2)
6K .

Finally, the total passenger waiting time is written as

wk = wk
a + wk

m + wk
p , (9)

where the walking time is wa = αaDaδ in scenarios WS and WE, otherwise zero.
Another adjustment to make in the scenarios of walking is the in-vehicle time. Let τ̄ be the average
door-to-door trip duration. Then, the in-vehicle time is given by

τk =

{
τ̄ , k ∈ {DS,DE}
τ̄ − 2αlDaδ, k ∈ {WS,WE}

. (10)

Analysis of scale economies

Consider demand rate q as the only system input. Then, the scale economies can be expressed
by how the system cost varies with q under the optimal fleet size N∗, which is solved from the
following optimization problem:

min
N

c(N, q), (11a)

s.t. N = V + q(wp + τ), (11b)
W = qwm, (11c)
wp = fwp

(V,W ), (11d)
wm = fwm

(V,W ), (11e)

The objective of (11) is the sum of vehicle operating cost and passenger travel cost:

c(N, q) = c0N + q(βmwm + βpwp + βawa + βττ), (12)

where c0 is the operation cost of each vehicle and βj , j ∈ {m, p, a, τ} is the value of time specified
for different legs of a trip.
To get N∗, we need to solve the following two implicit functions

W = qfwm
(V,W ) ⇒ W = fW (V, q), (13)

N = V + q(fwp
(V, fW (V, q)) + τ) ⇒ V = fV (N, q). (14)

Accordingly, N∗ can be derived from the first-order condition, which reads

0 =
∂c

∂N
= c0 + q

[
βm (∂V fwm

+ ∂W fwm
∂V fW ) + βp

(
∂V fwp

+ ∂W fwp
∂V fW

)]
∂NfV . (15)

Let c∗(q) denote the system cost with the optimal fleet, then a market exhibits increasing (con-
stant/decreasing) returns to scale if its marginal cost decreases (does not change/increases) with
input.

3 Results and discussion

Scale economies in different scenarios

Note that the walking distance da is exogenously determined by the network property (K) rather
than the demand-supply relationship. Neither does it affect other endogenous variables in the
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market (see Eqs. (11b)-(11e)). Hence, walking does not fundamentally change the property of re-
turns to scale. On the other hand, the passenger competition does make a difference, particularly
for e-hailing. Hence, in what follows, we investigate the scale economies for street-hailing with-
out passenger competition, e-hailing without passenger competition, and e-hailing with passenger
competition. The case of street-hailing with passenger competition is neglected because it rarely
happens in practice, which will be further discussed in the next section.

Street-hailing without passenger competition
In this case, the matching time is independent of W while the pickup time is independent of V .
Hence, we can easily derived the optimal fleet size is solved as

N∗ =

√
βmδkq

c0Akθk
+

[
αk
p

(
Rk − 1

2

)
δ + τk

]
q, (16)

which yields the system cost

c∗ = 2c0

√(
βmδk
c0Akθk

)
q +

[
βmδk
2

+ (c0 + βp)α
k
p

(
Rk − 1

2

)
δ + βaw

k
a + (c0 + βτ )τk

]
q (17)

E-hailing without passenger competition
In this case, the matching time is still independent of W whereas the pickup time becomes a
function of V . Thus, we first solve the implicit function Eq. (14). With some algebra, we derive
the following equations:

V =
N − τ̂kq

2
+

√(
N − τ̂kq

2

)2

−
(
c1 −

c2
Rk

)
δq, (18)

∂NfV =
V 2

V 2 −
(
c1 − c2

Rk

)
qδ

, (19)

where τ̂k =
(
dka − 1

2

)
δ + τk can be interpreted as the exogenous trip duration.

Plugging Eqs. (18) and (19) into Eq. (15) yields

V ∗ =

√[
βmδk
c0Ak

+

(
1 +

βp

c0

)(
c1 −

c2
Rk

)
δ

]
q. (20)

Accordingly, the optimal system cost is given by

c∗ = 2c0V
∗ +

[
βmδk
2

+ (c0 + βp)

(
dka +

1

2

)
δ + βaw

k
a + (c0 + βτ )τk

]
q (21)

= 2c0

√[
βmδk
c0Ak

+

(
1 +

βp

c0

)(
c1 −

c2
Rk

)
δ

]
q

+

[
βmδk
2

+ (c0 + βp)

(
dka +

1

2

)
δ + βaw

k
a + (c0 + βτ )τk

]
q

E-hailing with passenger competition
In this case, we need to solve both implicit functions:

W =
δkqV

2(V − δkq)
(22)

V =
N − τ̂kq

2
+

√(
N − τ̂kq

2

)2

−
(
c1 −

c2
√
AkW

Rk

)
q. (23)

Note that Eq. (23) still involves W and thus ∂NfV cannot be directly solved as in the previous
cases. Instead, we consider the right-hand-side of Eq. (23) as a function hV (N,W ) and conduct
implicit differentiation. Accordingly,

∂NfV =
∂NhV

1− (∂WhV )(∂V fW )
(24)

=
V 2

V 2 −
[
c1 − c2

Rk

(
1 + W

V

)√
AkW

]
qδ
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Plugging into Eq. (15) yields

V ∗ =

√{
βmδkW ∗

c0

(
1 +

2W ∗

V ∗

)
+

(
1 +

βp

c0

)[
c1 −

c2
Rk

(
1 +

W ∗

V ∗

)√
AkW ∗

]
δ

}
q, (25)

where W ∗ is the unmatched passenger density under V ∗ as per Eq. (22). Thus, solving Eq. (25)
gives us V ∗ as a function of q. However, the exact form of such an equation is challenging to
derive. Instead, we numerically solve V ∗ with various q and explore their relationship. The default
parameters used in these numerical experiments are reported in Tab. 1.
Fig. 3 illustrates both sides of Eq. (25) as a function of V under different demand rates q. V ∗

is then given by the intersection of two curves, which increases with q as expected. We then
numerically solve V ∗ at each q by bisection search and plot the results in Fig. 4, along with those
in e-hailing without competition. It can be observed that V ∗ with passenger competition first
increases sublinearly below the case without passenger competition (Eq. (20)). This is expected
as fewer vehicles are required when holding some passengers waiting. As q continues to increase,
however, the relationship becomes linear and V ∗ with competition exceeds the other case. As
will be shown later, this seemingly counter-intuitive result is due to the violation of assumption
AkW < 1 in the case of no competition.
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A simple linear approximation is also plotted in Fig. (4) and fits well when q is relatively large
(> 0.004 pax/s/arc) with an intercept close to zero (0.0098). Also, in theory, V ∗ should reduce
to zero when q = 0 (when there is no demand, the optimal fleet size is also zero). Therefore, we
propose to approximate V ∗ by a simple linear function

V ∗(q) = ηq, (26)

and thus the unmatched passenger density is also a linear function of q, which reads

W ∗(q) =
ηδk

2(η − δk)
q. (27)

Finally, the optimal system cost is derived as

c∗ = c0

{[
η +

βmδk
c0

δk
2(η − δk)

]
q +

δ

η

(
1 +

βp

c0

)[
c1 −

c2
Rk

√
ηδkAkq

2(η − δk)

]}
(28)

+

[
βmδk
2

+ (c0 + βp)

(
dka +

1

2

)
δ + βaw

k
a + (c0 + βτ )τk

]
q

Comparing Eqs. (17), (21) and (28), one can easily observe the optimal system cost consists of
two parts: (i) cost related to matching that can be represented as the extra supply cost to sustain
a certain demand rate, and (ii) cost independent of matching that is proportional to the demand
rate.
The impact of walking reflects in the second part. On the one hand, it helps reduce pickup and in-
vehicle times and thus saves these costs on both sides of the market. On the other hand, passengers
endure an extra walking cost. As will be shown in the numerical results, when the walking distance
is reasonable and the vehicle unit cost is high, the former effect is dominant. Besides, the benefit
is more significant in street-hailing because walking also helps increase vehicle cruising efficiency.

6



The more intriguing findings regard the impact of passenger competition. The marginal costs in
the three scenarios discussed above are given by

Street-hailing w/o competition: mc∗(s,w/o) =
B(s,w/o)√

q
+ C(s,w/o), (29)

E-hailing w/o competition: mc∗(e,w/o) =
B(e,w/o)√

q
+ C(e,w/o), (30)

E-hailing w competition: mc∗(e,w/) = −
B(e,w/)√

q
+ C(e,w/), (31)

where Bk, Ck, k ∈ {(s, w/o), (e, w/o), (e, w/)} are constants determined by the exogenous variables.
It thus concludes that both street-hailing and e-hailing exhibit increasing returns to scale when
there is no passenger competition, whereas e-hailing leads to decreasing returns to scale when there
exists passenger competition. Further, we can compare B(s,w/o) and B(e,w/o) to which service has
a more considerable scale economies:

B(s,w/o) = c0

√
βmδk
c0Ak

, (32)

B(e,w/o) = c0

√
βmδk
c0Ak

+

(
1 +

βp

c0

)(
c1 −

c2
Rk

)
δ. (33)

As per Eqs. (32) and (33), the two scalars are only different in the term
(
1 +

βp

c0

)(
c1 − c2

Rk

)
δ.

Our numerical results suggest the parameters c1 = c2 = 1/6 and the matching radius in e-hailing is
often large (e.g., Rk = 14 with a threshold pickup time of 4 min). Therefore, it is safe to conclude
B(s,w/o) < B(e,w/o) and thus the street-hailing enjoys higher economies of scale. This result also
aligns with empirical evidence (e.g., Zhang et al., 2019; Frechette et al., 2019).

Numerical experiments

In this section, we compare the system performances in different scenarios under the optimal fleet
size. The values of exogenous variables and approximation parameters are reported in Tab. 1.

Existence of passenger competition
Recall that e-hailing presents the opposite scale economies with and without passenger competition.
Hence, we first examine whether passenger competition often exists in an e-hailing market. Fig. 5
plots the number of unmatched passengers within a matching area (i.e., AkW ) solved for DS and
DE under the assumption of no passenger competition. Clearly, for most tested demand levels,
the condition AkW < 1 holds for DS. In contrast, the assumption is easily violated for DE due
to its much larger matching area. In other words, the increased matching radius of e-hailing not
only reduces the matching friction between passengers and vehicles but also induces considerable
competition among passengers. This phenomenon has also been recognized in some previous work
(e.g., Zhang et al., 2019), but unfortunately not yet been widely adopted in recent studies on
e-hailing services. Due to this observation, in what follows, we only present results of the model
for e-hailing with passenger competition.
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System performance
Figs. 6 and 7 plot the composition of passenger waiting time and vehicle operation time at different
demand levels. For e-hailing, the pickup time is deducted from the original walking time. This
is because, in practice, passengers usually start walking after they are matched. Accordingly, the
total waiting time is the matching time plus the maximum between the walking time and the
pickup time. Because of the small matching radius in street-hailing, passengers spend most of
their waiting time in matching while vehicles spend most of their vacant time (idle or pickup)
in cruising. On the other hand, the pickup time takes a majority of passenger waiting time and
vehicle vacant time in e-hailing, whereas its fraction reduces rapidly with the demand rate.
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In the tested scenarios, walking does not really help passengers reduce their total waiting time
because its benefit in improving the matching and pickup times is rather minor. Specifically, it does
not help street-hailing passengers reduce their matching time as expected. A closer investigation
reveals that this is mainly due to the decreased idle vehicle density. Although walking induces a
higher concentration of vehicles on major streets, which yields a larger θk in Eq. (2), the optimal
idle vehicle density becomes further lower, and thus the matching time increases.
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Nevertheless, as shown in Fig. (7), walking does help reduce the required vehicle supply to sustain
the same level of demand, both for street-hailing and e-hailing. Besides, it can be found that most
of the vehicle time is occupied. This finding deviates from the empirical observations that the
vehicle utilization rate is often lower than 60% (Schaller, 2017). We note that this discrepancy is
largely due to the fleet sizing objective. In 11, we aim to minimize the system cost, whereas, in
practice, the fleet size is often determined to maximize the operator’s profit or a consequence of
drivers’ competition. In these cases, the fleet size is normally smaller than that at system optimum
(Douglas, 1972).
The large contribution of occupied vehicle time also leads to a quite linear system cost illustrated in
Fig. 8a. In brief, the four studied scenarios share very similar costs when the demand is relatively
low. As the demand rate increases, street-hailing presents a better efficiency. Walking benefits
both service types, while, as expected, it brings a larger cost saving to street-hailing, which is
better illustrated in Fig. 8b. Nevertheless, all these differences are rather small compared to the
total system cost.

Adaption of autonomous vehicles (AVs)
In face of the increasing labor cost, many e-hailing platforms are proposing to replace human-
driven vehicles with autonomous vehicles (AVs), which are believed to have a lower operation cost
meanwhile fully controllable. In what follows, we compare the system performance of DE and WE
by only changing the vehicle unit cost c0 to reflect the adaption of AVs. Here, the demand rate is
set to be q = 0.001 pax/s/arc.
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Figure 9: System performance with AVs.

As shown in Fig. 9a, the adaption of AVs reduces both the matching time and the pickup time
because more idle vehicle time is devoted to cruising. Consequently, passengers enjoy a shorter
waiting time in DE with an AV fleet. However, the benefit of walking diminishes, both for
passengers (Fig. 9a) and for the system as a whole (Fig. 9c). On the supply side, the impact of
AVs is rather minor. The lower cost of AVs does not induce a much larger supply size and the
benefit of walking in terms of reducing the fleet size remains similar. Moreover, although the unit
cost of AVs is one-fourth of human-driven vehicles, the system cost only cuts in half.

4 Conclusions

In this study, we model the street-hailing and e-hailing services on a grid network and analyze their
scale economies with system optimum fleet size. We show the existence of passenger competition
plays a critical role in the returns to scale. Without passenger competition, both street-hailing
and e-hailing exhibit increasing returns to scale, while the scale effect in street-hailing is more
significant. However, when subject to passenger competition, e-hailing shows decreasing returns
to scale. Through numerical experiments, we show this is very likely to happen due to the large
matching radius of e-hailing.
Although walking does not fundamentally change the scale economies, it produces two opposite
impacts on the system cost. On the one hand, it reduces the pickup and in-vehicle times and
specifically increases the matching efficiency in street-hailing. On the other hand, it imposes an
extra cost on passengers. Our numerical results show that the cost-saving effect is in general more
profound. However, when AVs are adapted with a much lower unit cost, the benefit of walking
diminishes.
As a future direction, we will continue validating our findings with simulations on general road
networks and demand profiles. It is also interesting to further analyze the scale economies with
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different objectives in the fleet sizing problem (e.g., profit-maximization as in a monopoly market).

Table 1: Notations and default values

Variable Description Unit Value
K number of local streets between every two major

streets
3

s length of each street segment m 120
v vehicle travel speed on major street km/h 25
αl speed scaling factor for local street 1.67
αa speed scaling factor for walking 5
Rs matching radius in street-hailing 1
Re matching radius in e-hailing 14
As matching area in street-hailing 4
Ae matching area in e-hailing 420
δs matching interval in street-hailing s 20
δe matching interval in e-hailing s 20
δ time to drive through one segment of major street s 17.28
τ̄ average door-to-door trip duration s 656.5
c0 operation cost per human-driven (autonomous) vehicle $/h 20 (5)
βm value of time for matching $/h 15.00
βp value of time for pickup $/h 12.51
βa value of time for walking $/h 14.51
βτ value of time for in-vehicle time $/h 10.00
θDS(θWS) vehicle density correction factor in street-hailing 1.345 (1.94)
c1 first approximation parameter for pickup distance 1/6
c2 second approximation parameter for pickup distance 1/6
η approximation parameter for the optimal idle human-

driven (autonomous) vehicle density
30.05 (41.00)
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SHORT SUMMARY 

Joint travel decisions remain poorly explained in behavioral models due to lack of empirical data. 

To address this problem, we propose a novel survey methodology to collect data on joint activities, 

from all members of a given clique. Through this method we are able to observe not only the 

outcome, but also the decision-making process itself, including the alternatives that compose the 

choice set, individual and clique characteristics that might affect the choice process, and the 

discussion behind the choice via texts. This will allow researchers to gain a deeper understanding 

of the joint decision-making process, including how alternatives are weighted, how members 

interact with each other, and how joint choices are made. Here we introduce the results of an 

implementation focusing on joint eating-out activities in Tokyo, focusing on survey components, 

execution, and insights on the data.  

 

Keywords: Activity-based modeling, group behavior, joint decision-making, leisure travel 

behavior, social networks,  survey methods 

1. INTRODUCTION 

Many of our behavioral decisions are made in coordination with members of the social networks 

we are embedded in. However, joint decision-making processes, particularly related to social ac-

tivities, remain poorly explained in traditional behavioral models. A key reason for this is the lack 

of empirical data. While some studies have indeed focused on modeling joint activities, these 

studies rely on agent-based simulations (Arentze & Timmermans, 2008) and still require empiri-

cal data for parameter estimation and validation. 

 

In recent years, egocentric network data-collection efforts have been conducted to get a better 

understanding of ego-centric social networks characteristics and social interactions such as sur-

veys in Canada (Carrasco & Miller, 2006), Switzerland (Kowald & Axhausen, 2012), The Neth-

erlands (van den Berg et al., 2012), Chile (Carrasco & Cid-Aguayo, 2012) and Japan (Parady et 

al., 2020) and the U.K. (Calastri et al., 2020). A key limitation of these efforts is that since data 

is collected using an ego-centric approach, the data that can be collected on other group members 

is limited to what ego can recall. This limitation is particularly critical for modeling travel behav-

ior as spatio-temporal constraints are key constraints defining travel behavior (Hagerstrand, 

1970) . Han et al. (2023) has shown in the context of group eating-out destination choices that 
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considering the average travel times of all participating members of a clique increases the predic-

tive ability of the model by up to 49% against a model considering only ego’s travel times, a 

considerable increase in performance. 

 

Against this background, this study proposes x-GDP (Text-aided Group Decision-making Process 

Observation Method), a novel survey method to collect data on joint activities and their underly-

ing joint decision-making process of any dimensions of travel choice. We implemented the 

method for joint leisure activities with a focus on destination choice. Through this method we are 

able to observe not only the outcome but also the decision-making process itself, including the 

alternatives that compose the choice set, individual and clique characteristics that might affect the 

choice process, as well as the discussion behind the choice via texts. Observing such a process 

will allow us to first understand the decision-making process qualitatively, including how alter-

natives are weighted, how members interact with each other, and finally how the choice is made. 

2. METHODOLOGY 

The main objective of x-GDP method is to collect data on the joint decision-making process of 

travel-related activities of a given clique, a group where all members know each other. The gen-

eral idea of x-GDP is to ask participant cliques to plan (and later actually execute) an actual ac-

tivity or set of activities in the virtual presence of the researchers, using a chat-group interface. In 

this study we use as a case study eating-out activities due to its high frequency in joint activities 

(Stauffacher et al., 2005). Since participants have to actually conduct the activity decided in the 

group discussion, there are real incentives to guarantee a real discussion that considers the pref-

erences and constraints of clique members. Fig 1 illustrates the flow of an x-GDP survey.  

 

Step 1: Recruitment and pre-registration 

x-GDP requires participation of existing cliques and registration of all members for schedule co-

ordination. This study targeted cliques composed of at least one University of Tokyo student to 

simplify the sampling process. This was also done to limit to some extent the spatial distribution 

of participants to cliques with similar daily life activity spaces. Provided this condition was met, 

no constraints were imposed on the eligibility of other members.  

 

Recruitment was done via social media (the Urban Transportation Research Unit Twitter account). 

In spite of the nonprobability sampling method, it is important to point out that the student popu-

lation of the University of Tokyo is not that large (27,233 students) and is rather homogeneous in 

terms of sociodemographics. In total, data on 816 individuals in 217 cliques was collected. Out 

of the 816 participants 76% were University of Tokyo students, 20% students from other univer-

sities and 4% non-students. 

 

Step 2: Virtual meeting schedule coordination 
Scheduling coordination was conducted via online forms. As shown in Fig 2, the Schedule Coor-

dinator matched Experiment Moderators (the person in charge of guiding the experiment over 

Zoom) with cliques. Once matched, all members were informed of the date and time and other 

details of the experiment such as conditions for payment of participation reward, etc. 

 



3 

 

 
Fig 1. Flow of an x-GDP survey 

 

 
Fig 2. Simplified diagram of the logistics of the x-GDP experiment after recruitment. 

 

Step 3: Zoom-moderated survey execution 
This step was the crux of the experiment. Guided by the Experiment Moderator, participants were 

first asked to respond to Survey 1 and Survey 2 via an online survey platform. Survey 1 collected 
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data on individual socio-demographic characteristics. Survey 2 collected data on clique charac-

teristics.  

After Survey 2 was completed, the Experiment Moderator invited all members to a LINE group 

chat (LINE is the most popular instant communication app in Japan). The Experiment Moderator 

joined via a Line Works account (a cloud-based business chat tool that can link to LINE) for 

privacy, ethical and data management reasons. In the LINE group chat, the Experiment Moderator 

asked the clique to first decide the date and time of the activity. Two constraints were imposed. 

First, for management reasons, the date of the activity must be within a maximum of two weeks 

from the day of the experiment. Second, the activity must be done from 17:00 on to reduce the 

temporal variability of activities and simplify the modeling process later on. Note that these con-

straints can be generalized depending on the interests of the researcher. 

 

Date and time defined, participants were asked to elicit potential areas and shops to execute the 

activity. There was no upper bound on how many candidates could be elicited but participants 

were asked to propose at least one location per person. Before moving on to the discussion phase 

to choose the activity location, respondents were asked to respond to Survey 3, which asked them 

to rank the elicited candidate locations in order of their personal preference. This was done anon-

ymously so that responses were not affected by the opinions of others. 

 

After completing Survey 3, participants were asked to discuss and decide the location of the eat-

ing-out activity. No guidance was given regarding how to make this decision, so each clique was 

free to choose their own method. No time constraint was imposed. The average duration for the 

LINE discussion section including time decision, preference elicitation and location decision was 

35 minutes (S.D. 16.42 mins). The moderator then asked participants to respond to Survey 4 via 

a web-survey (at the clique level), to collect data on the chosen location as well other candidate 

locations. To avoid the issue of untraceable locations, participants were asked to use store links 

from either Tabelog (a restaurant review site in Japan) or Google maps. Out of the 1,188 unique 

shops elicited in the experiment, we were able to identify 99.5% of the shops via their public links 

and collect additional data on these shops.  

  

Finally, once Survey 4 was completed, participants were asked to report their expected schedule 

for the day of the activity in the form of an activity diary (Survey 5) via a visual and interactive 

interface that greatly reduced the response burden. 

 

Step 4: Activity execution 
On the morning of the day of the planned activity, participants were sent a reminder via LINE 

and were given explanations about proof-of-execution submission such as location pin, a picture 

in front of the shop with a mobile phone showing date and time, A group picture inside the res-

taurant and the receipt. 

 

Step 5: Post-activity survey 
Using the same interface as Survey 5, data was collected on the actual schedule executed on the 

day of the activity.  

 

Step 6: Payment 
A monetary incentive of JPY 4000 (approx. USD 29.80) was provided for participants who re-

sponded to all surveys and provided proof-of-execution. For participants who did not provide 

proof-of-execution or did not complete Survey 6 after participation, the incentive was JPY 1080 

(approx. US$8). 
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3. RESULTS AND DISCUSSION 

For brevity, we will no introduce the details of the individual and clique characteristics and focus 

explicitly on the scheduled joint activity and its decision-making process. Fig 3 illustrates both 

the chosen restaurant location as well as other considered candidates. The first thing to point out 

is the agglomeration of locations around Tokyo sub-centers such as Shibuya, Shinjuku and Tokyo 

connected via the Yamanote loop line, in addition to areas around the University of Tokyo’s Ko-

maba and Hongo Campuses. Historically, the Tokyo sub-centers have exhibited high degrees of 

agglomeration of commercial and other facilities due to their high levels of access both from the 

railway-connected suburbs as well as the city center. In addition, smaller agglomerations can be 

seen around the intersection of railway lines even though they are not central. 

 

 
Fig 3. Location of chosen restaurants and alternatives considered during the experiment.  

 

When asked the main reasons for choosing the locations each clique chose, restaurant quality and 

accessibility were the most frequently mentioned factors (78.8% and 57.1%, respectively). This 

is also consistent with the attitudinal responses collected in the individual survey (Survey 1) where 

respondents were asked to rate on a 7-point Likert scale (1 being not important at all, 7 being 

extremely important), the importance they place on different factors when eating out with a group 

(Fig 4). Group evaluation of shop and group transit access were rated six or seven by 71.2% and 

76.7% of the individuals, respectively. What these answers do not capture is whose accessibility 

is being prioritized, or whose preferences. As shown in Table 1, in less than 12% of cases, all 

members’ individually top-ranked locations were actually chosen, with this percentage reducing 

as clique size increases. Furthermore, irrespective of clique size in around 17% to 20% of cases, 

no one’s top-ranked location was chosen by the clique, suggesting a considerable degree of com-

promise among members. This underscores the importance of observing the actual decision-mak-

ing process to gain a better understanding of within-group dynamics. 
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Fig 4. Factors considered important for group-level restaurant choice by individuals (n=816) 

 

 
Table 1. Degree of matching between individually top-ranked locations and clique choice 

 

  
Number of individuals whose top-ranked locations are chosen by the clique 

0 1 2 3 4 5 

Clique size 

3 18.6% 37.1% 33.0% 11.3%   

4 14.7% 29.3% 28.0% 18.7% 9.3%  

5 20.0% 37.8% 24.4% 11.1% 6.7% 0.0% 

 

Two case studies 
To further elucidate the properties of the data collected we will briefly introduce the decision-

making process in two particular cases, as summarized in Fig 6 and Fig 7 using information from 

Surveys 1 to 5 as well as the LINE group discussion text record (a). The plots of members’ sched-

ules (b) and activity places (c) were created using data from the individual preference elicitation 

survey (Survey 3) and the expected activity diary of the meeting day (Survey 5). 

The first clique (Fig 6) is composed of five same-year students. Two of the members had 

previous commitments on the suburbs of Tokyo on the day of the activity (1b and 1c). In this 

particular case several features of the decision-making process can be highlighted (1a). For in-

stance, Mr. A pushed from early in the discussion for his preference, eating French food at Ginza, 

an upscale district in central Tokyo. Other members, like Mr. C, had a personal preference but 
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showed high degree of agreeableness and willingness to compromise for the group stating: “My 

preference is for meat, but if everyone is in for French at Ginza, I don’t mind.” While other alter-

natives were raised during the discussion such as Japanese BBQ or and oyster bar in Shibuya, Mr. 

A kept insisting on his preference by posting a link to the shop’s online site and menu: “Let me 

give you an idea of what French at Ginza will be like.” It should be noted that most members’ 

individually top-ranked locations were close to their expected origin locations on the day of the 

activity. Another constraint in the process was that some students were under 20 years old, hence 

could not drink alcohol, which tilted the choices towards restaurants rather than bars or Japanese 

izakaya. In the end the group agreed on Mr. A’s preference. In this particular case, Mr. A’s strong 

opinion clearly influenced the final decision, given the other member’s agreeableness and will-

ingness to compromise. In other words, the weight of Mr. A’s opinion was larger than other mem-

bers. At the same time, we can speculate that had other members had similarly strong opinions, 

the resulting outcome might have been different. Such information cannot be observed from the 

outcome alone, but we were able to capture it with the proposed x-GDP method. 

 

 
Fig 6. Extract of collected data for a clique 1. 1a. LINE chat excerpt. 1b. Schedule of members 

on activity day. 1c. OD lines to individually top-ranked location. 

 
The second clique is composed of three futsal club friends, one of them being one year more 

senior than the other two. First, the joint activity time was set based on two time constraints. First, 

Mr. A had a part-time job at Shinjuku until 19:00 and second, all members wanted to watch the 
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FIFA World Cup (Qatar 2022) after dinner. Once the time slot was defined, several candidate 

locations were proposed, but they were all in Shinjuku. A possible reason for this is that Mr. A 

had a non-flexible activity schedule during that day. It is also worth noting that Mr. A was the 

more senior member of the group. The rest of the discussion focused on the restaurant type, such 

as hotpot, Brazilian BBQ and gibier. In this case, economic constraints were taken into consider-

ation and Brazilian BBQ was selected.  

 

 
Fig 7. Extract of collected data for clique 2. 2a. LINE chat excerpt. 2b. Schedule of members on 

activity day. 2c. OD lines to individually top-ranked location. 

4. CONCLUSIONS 

To conclude we want to point out potential avenues of research that can be pursued with this kind 

of data. First, we have illustrated with only a few examples, that clique-level decision-making is 

rather heterogeneous. As such, a first necessary step is a qualitative analysis of the group discus-

sion text records collected to formulate hypothesis regarding decision-making patterns. Such 

qualitative analysis can be complemented with quantitative methods such as natural language 

processing and cluster analysis. 

 

Another potential avenue of research is the empirical estimation of joint accessibility and respec-

tive parameters. Theoretical joint accessibility methods have been proposed by Neutens et al. 
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(2008) however, empirical data is required to estimate model parameters. Joint accessibility esti-

mates can be used to further investigate agglomeration effects in cities, as well as estimate joint 

activity destination choice models. 

 

Finally, based on the above, we expect to build a theoretical framework to quantitatively model 

the joint decision-making process considering clique-level dynamics.  
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SHORT SUMMARY 

This paper addresses the meeting-point-based electric demand-responsive-transport routing and 

charging scheduling problem under charging synchronization constraints. The problem consid-

ered exhibits the structure of the location-routing problem, which is more difficult to solve than 

conventional electric vehicle routing problems. We propose to model the problem using a mixed 

integer linear programming approach based on a layered graph structure. A two-stage simulated 

annealing-based algorithm is proposed to solve the problem efficiently. A mixture of randomness 

and greedy partial recharge scheduling strategy is proposed to find feasible charging schedules 

under the synchronization constraints. The algorithm is tested on 20 instances with up to 100 

customers and 49 bus stops. The results show that the proposed algorithm outperforms the best 

solutions found by a commercial mixed-integer linear programming solver (with a 2-hour com-

putational time limit imposed) for 12/20 test instances and with less than 1-minute computational 

time on average. 

 

Keywords: charging synchronization, demand responsive transport, electric vehicle, feeder 

service, meeting point, metaheuristics (topics: electrification and decarbonization of transport, 

operations research application) 

1. INTRODUCTION 

Electric vehicle routing problems consist of deciding vehicle routes and charging schedules to 

serve a set of customers while satisfying constraints regarding vehicle capacity, time windows 

and vehicle energy (Kucukoglu et al., 2021). For passenger transportation, the problem is related 

to the electric dial-a-ride problem (Bongiovanni et al., 2019). Most of the literature assumes that 

vehicles can be recharged anytime with unlimited capacity of charging stations (Schneider et al., 

2014). This assumption is often violated in practice as the number of rapid chargers is very limited 

due to their high installation costs. The electric vehicle routing problem with capacitated charging 

stations (EVRP-CS) is yet more difficult, as it needs to synchronize the charging operations of 

vehicles to save waiting time at charging stations. Recent research efforts have mainly focused 

on developing exact methods based on the mixed linear integer programming (MILP), by assum-

ing that the vehicles recharge to full when arriving at charging stations and considering a linear 

charging speed (Bruglieri et al., 2019). To allow multiple visits of vehicles to the chargers, each 

charger node has several dummy copies. Charging capacity is ensured by deferring the current 
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visit of a charger to at least the full charging time of the previous visit of another vehicle in as-

cending order of visits. The authors propose a path-based MILP formulation and use the cutting 

plane method to solve exactly the test instance with less than 20 customers within 1-hour compu-

tational time. Froger et al. (2021) propose a path-based MILP formulation by considering piece-

wise linear charging functions and partial recharge, and propose a matheuristic method to solve 

the EVRP-CS exactly. Their solution method first generates a pool of initial routes without con-

sidering the capacity constraints of the charging stations, and then in the second step, they try to 

recombine these routes to find a solution satisfying the capacity constraints. Their problem as-

sumes that the vehicles are homogeneous (battery size) and fully recharged before starting the 

service. They were able to solve exactly most of the test instances with 10 customers. Lam et al. 

(2022) propose a branch-and-cut-and-price algorithm to solve the EVRP problem with time win-

dows and capacitated charging station constraints (EVRPTW-CS) by considering both vehicle 

partial recharge and piecewise linear charging functions. The charging scheduling synchroniza-

tion subproblem is handled by applying the constraint programming technique. Their exact 

method can solve the problem with the larger test instances of up to 100 customers. To the best 

of our knowledge, the existing literature mainly focuses on exact methods that can be adopted to 

small-scale instances. There are still no efficient algorithms to address the related EVRP or 

electric dial-a-ride problem (e-DARP) at large scale. 

In this paper, we aim to address the above issue and focus on a variant of EVRPTW-CS, an 

electric DRT (feeder) system which provides passenger transport service to connect to transit 

stations. This type of service is mainly applied in rural areas where public transport service is 

poor (Ma et al., 2021). To enhance efficiency of the electric DRT system, the meeting point con-

cept (customers may board/alight at pre-defined stops near to their origins/destinations) is con-

sidered (Czioska et al., 2019). The problem needs to decide jointly where to pick up customers 

and how to route vehicles under various constraints. The problem is more complicated due to 

interactions between customer-to-bus-stop assignment and the subsequent vehicle routing and 

charging synchronization.  

2. METHODOLOGY 

2.1. Problem description  

We consider a DRT feeder service in a rural area provided by an operator using a heterogeneous 

(in terms of capacity, battery size, and energy consumption rate) fleet of electric buses (also called 

vehicles hereafter) to complement the public transport system. To enhance system efficiency and 

reduce operational costs, the DRT system adopts the concept of meeting points i.e. customers 

are offered a limited number of pick-up/drop-off meeting points, rather than a door-to-door ser-

vice (Czioska et al., 2019; Ma et al., 2021) and the service is punctuated (e.g. the vehicle arrives 

at a transit station every 10-20 minutes to drop off the transit passengers). The system is operated 

as follows. For a given planning period, customers submit their ride requests in advance indicating 

their origin, the transit station to be dropped off, and their desired arrival time (corresponding to 

the pre-defined arrival timetable of the DRT buses). The operator collects these ride requests and 

communicates whether customers’ ride requests are accepted, their pickup time, and suggested 

bus stop (meeting point). The operator’s objective is to optimize vehicle routes so as to arrive at 

transit stations within a fixed buffer time (e.g. ≤ 10 minutes before the announced arrival time-

table at transit stations). We assume that customers are willing to walk from their origins to the 

suggested meeting points, up to some maximum acceptable walking distance. The state of charge 

of the vehicles cannot fall below the reserve battery level throughout the route. Vehicles can be 

recharged only at operator-owned charging stations; each station has a limited number of 
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chargers. Charging operations cannot overlap at any charger, i.e., a vehicle is not allowed to wait 

at a charger/charging station.  

The meeting-point-based electric feeder service problem with charging synchronization con-

straints (MP-EFCS) problem is formulated as a mixed-integer-linear programming (MILP) prob-

lem as an extension of the electric dial-a-ride problem (e-DARP)(Bongiovanni et al., 2019), but 

adopting the concept of meeting points, allowing customers to be rejected (with a high penalty 

costs) under vehicle charging synchronization constraints. Given a set of customer requests, the 

objective is to optimize vehicle routes to meet these requests while considering the trade-off be-

tween system costs and customer inconvenience. The objective function minimizes the weighted 

sum of total vehicle travel time and total vehicle charging time, customer’s total walking time, 

total vehicle waiting time at transit stations before the acceptable fixed buffer time, and the total 

penalty of unserved requests. The computational time for solving the MP-EFCS exactly needs to 

enumerate all possible customer-bus-stop assignments and then solve each corresponding e-

DARP with charging synchronization constraints problem (e-DARP-CS) to find the global min-

imum. This is possible only for very small problem size. To solve it efficiently, we propose a 

layered (directed) graph model (Fang and Ma, 2022) according to the sorted arrival timetable at 

transit stations and prune infeasible arcs or layers to reduce the problem size (see an illustrative 

example in Figure 1). 

 

Figure 1. An illustrative example of the layered directed graph (arcs are omitted) for modeling 

the meeting-points-based electric feeder service with the charging synchronization constraints.  

2.2. Solution algorithm 

We propose an efficient two-stage solution scheme by finding a good customer-bus-stop assign-

ment in the first stage. In the second stage, a simulated annealing (SA) based metaheuristic 

(Braekers et al., 2014) with a post-optimization procedure is proposed to solve the routing prob-

lem with charging synchronization constraints. The new challenge is how to optimize vehicles’ 

charging schedules with synchronization constraints. The customer-bus-stop assignment prob-

lem on the first stage is formulated as an MILP formulated, as a variant of the capacitated facility 

location problem, to minimize the weighted sum of the total customer walking time and bus travel 

time between the activated (with positive assigned customers) bus stops. Given the solution ob-

tained from the customer-bus-stop assignment problem, we construct an e-DARP-CS instance by 

trimming off unused bus stop nodes and arcs connected to them, based on the layered graph 

model. An initial feasible solution is generated as the best feasible solution found for n random 

solutions using a greedy insertion approach. The SA-based algorithm applies a randomly selected 

local search operator on the current solution and obtains a temporary solution. If the cost of the 
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temporary solution is smaller than that of the current solution plus the threshold value T (temper-

ature), and there are no charging operation conflicts, a vehicle exchange operator is applied on 

the temporary solution to further reduce the charging time of the vehicles of the temporary solu-

tion. If the resulting vehicle exchange and rescheduled charging operations (if any) has an im-

proved cost without charging conflicts for all vehicles, then update the current solution. We track 

the number of times that the current best solution has stagnated. If this exceeds a pre-defined 

limit, the algorithm returns the current best solution. Otherwise, randomly selected local search 

operators are applied until a maximum number of iterations is achieved. This early stop criterion 

helps to reduce the computation time. As we allow customer requests to be rejected, unserved 

customers are managed in a pool, which is regarded as a virtual route, allowing customers to be 

removed from the vehicles. Note that charging schedule updating is applied at the end of each 

local search operation. Given the layered graph structure, we can efficiently screen-out infeasible 

insertion positions by checking whether the layer of a customer to be inserted is (in)compatible 

with the layer of the current inserted position of the route. This conflict check can be done in O(1) 

and reduces the computational time significantly. We propose seven local search operators, in-

cluding relocate ensemble, two-opt*, two-opt, exchange-segment, exchange-customer, four-opt, 

and create-route.  

The e-DARP-CS instance is optimized based on the first stage customer-bus-stop assign-

ment. It might be possible to accommodate unserved customers by changing their assigned bus 

stops, then re-inserting them into the current bus routes. In doing so, bus routes and charging 

schedules need to be updated accordingly. In the case that there are unserved customers, we pro-

pose an efficient post-optimization procedure to re-optimize the best solution obtained from the 

SA algorithm. Our numerical results show that this post-optimization procedure can improve the 

final solution and reduce the number of unserved customers with little additional computational 

effort. 

3. RESULTS AND DISCUSSION 

To test the algorithm, we consider two 4-hour scenarios, corresponding to peak (P) and off-peak 

(OP) demand profiles. Scenario P simulates a peak-hour situation where customers’ desired arri-

val times at transit stations are concentrated around a peak hour, while OP reflects the opposite 

situation when customers' desired arrival times are uniformly spread over a longer operating pe-

riod. In each scenario, we generate 10 instances spanning the range of 10-100 customers. These 

test instances have a single vehicle depot, two train stations, and four chargers. Meeting points 

(potential bus stops) are generated as a grid with a separation distance of 1 km and customers 

maximum walking distance is 1.5 km. Punctuated services are provided for the two train stations 

with three services per hour throughout the analysis period. In total, there are 26 layers with 25 

to 49 activated bus stops per layer (bus stops within the maximum walking distance of the cus-

tomers). A customer may have up to 7 potential bus stops within walking distance. Consequently, 

the possible customer-bus-stop assignment combinations are very large, providing non-trivial 

tests of algorithm performance. We consider two types of vehicles with different passenger ca-

pacity, battery capacity, and energy consumption rate.  

The performance of the algorithm is compared with the solution obtained by a state-of-the-

art MILP solver (Gurobi, version 9.1.2) with a 2-hour computational time limit. Our algorithm 

and the MILP model are both implemented using the Julia programming language. We run the 

experiments on a laptop with Intel(R) Core(TM) i7-11800H processor and 64 GB memory using 

a single thread.  

MILP solutions obtained by Gurobi are reported in Table 1. The instance name cxx means 

that there are xx customers in that instance. To ensure scenarios where vehicles need to recharge, 

initial battery levels of vehicles are set as low as 20%, 30%,…, and 80% of the battery capacity. 
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For each instance, the MILP results give the best feasible solution found within 2 hours, along 

with the lower bound. The third column shows the number of unserved customers. The solver can 

obtain (near) optimal solutions for small instance of 10 customers. The number of unserved cus-

tomers increases dramatically for instances with more than 50 customers. To account for the ran-

dom elements within the two-stage SA-based algorithm, results are based on the average over 5 

runs with random seeds. For each instance, we report the average objective function value and its 

gap to the best-known solution (BKS) found by the solver. The last two columns report the num-

ber of unserved customers and the average computational time (per run). The results show that 

the proposed algorithm outperforms the BKS for 12/20 test instances with less than 1-minute 

computational time on average. 

 

Table 1: Computational results obtained using Gurobi solver and the two-stage 

SA-based algorithm on the test instances. 
 

  MILP Two-stage SA based algorithm 

In-

stances 

Best 

known 

solution 

Gap to 

the 

lower 

bound 

Num. of 

un-

served 

custom-

ers 

Avg. 

obj. 

value 

Gap to 

BKS 

Num. 

of un-

served 

cus-

tom-

ers 

cpu 

time 

(sec.) 

Scenario Off-Peak (OP)           

c10 107.91 1.10% 0 107.91 0.00% 0 4 

c20 233.02 14.40% 0 234.96 0.83% 0 11 

c30 327.46 16.30% 0 340.08 3.85% 0 36 

c40 450.17 31.30% 1 424.03 -5.81% 0 39 

c50 696.13 44.70% 2 611.32 -12.18% 0.4 36 

c60 816.88 43.04% 4 659.31 -19.29% 0 120 

c70 755.46 26.35% 0 782.41 3.57% 0 84 

c80 1107.52 43.35% 7 906.83 -18.12% 0 123 

c90 1525.81 58.33% 15 969.28 -36.47% 0 155 

c100 1689.13 55.57% 20 1074.65 -36.38% 0 154 

Scenario Peak (P)             

c10 112.31 18.00% 0 112.56 0.22% 0 5 

c20 284.79 41.49% 1 311.36 9.33% 0 9 

c30 340.85 33.16% 1 365.03 7.09% 1 22 

c40 455.81 44.10% 2 472.6 3.68% 1 27 

c50 705.36 55.10% 5 698.18 -1.02% 2.2 36 

c60 996.41 60.11% 11 692.2 -30.53% 0 37 

c70 1023.21 55.22% 15 769.55 -24.79% 0 60 

c80 1514.25 66.05% 24 892.82 -41.04% 0 42 

c90 1600.89 68.04% 24 1009.5 -36.94% 0 3 

c100 1369.96 53.34% 13 1101.09 -19.63% 0 15 
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4. CONCLUSIONS 

Electric vehicle routing with charging synchronization (under capacitated charging stations) are 

more difficult to solve and efficient solution algorithms are still underdeveloped for solving me-

dium/large problem instances. In this study, we consider the problem of an electric dial-a-ride 

feeder system with charging synchronization based on the concept of meeting points and propose 

a layered graph model and a mixture of randomization and greedy strategy within a two-stage 

SA-based algorithm framework to solve this problem efficiently. We test the algorithm on 20 test 

instances with up to 100 customers and 49 bus stops. Results show that the proposed algorithm 

can find solutions efficiently with good solution quality. Several research directions are ongoing, 

including algorithmic parameter calibration, sensitivity analysis, charging infrastructure and fleet 

size planning, and integrated DRT system operational policy optimization. 
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Short summary

Road pricing policies are frequently debated but not widely adopted. Tools for designing near
practice-ready policies are still missing, especially considering the complex dynamics between the
different levels of traveller decision-making and the networks’ performance. We couple an agent-
and activity-driven mobility simulator with a Bayesian Optimization (BO) framework for designing
optimal road pricing policy in a daily mobility and transportation network system. We extend the
literature with a BO-framework application to distance-based road pricing under a departure-
time and route-choice sensitive demand model combined with a detailed mesoscopic network. We
then tested a general BO and a recently proposed contextual BO algorithm for SimMobility and
computational performance. Both identified a similar optimum distance-based pricing, with the
second being more computationally efficient. Nonetheless, iterations number, increasing search
space and dimensionality could limit their performance. Lastly, the effects of the identified policy
were analyzed by leveraging the outcome capabilities of SimMobility.

Keywords: agent-based modelling, Bayesian optimization, congestion pricing, machine-learning,
SimMobility

1 Introduction

Numerous strategies have been explored to address traffic congestion and its associated repercus-
sions, which include increased air pollution, accidents, and negative impacts on the overall city’s
quality of life. Congestion pricing control constitutes one of the main traffic management measures
that have been researched but not widely applied during the past decades (Wang et al., 2022; de
Palma & Lindsey, 2011). However, certain implementations have produced positive results, such
as the Stockholm (Börjesson et al., 2012), and the Milan case (Gibson & Carnovale, 2015). As
initially stated by Pigou (1920), congestion pricing serves as a technique for internalising the cost
of externalities caused by road users. Since then, various tolling schemes, have been researched and
implemented over the years. Regarding the classification of tolls, this occurs according to numer-
ous factors. These can be the kind of scheme (e.g., facility-based, area-based, or distance-based),
the level to which charges fluctuate across periods, additional characteristics of toll variation, and
equipment (de Palma & Lindsey, 2011).

The most typical price optimisation approaches are either with nonlinear programming or a bi-level
optimisation setup, both of which entail a high degree of complexity (NP-hard). Moreover, because
of the practical implications they face, the first-best solution is generally used as a benchmark in
many studies (Verhoef, 2005; de Palma et al., 2005). As a result, second-best prices, have been most
researched, with commonly used methods for calculating prices being heuristics, meta-heuristics,
approximations, and trial and error (Verhoef, 2005; Ekstrtopm et al., 2009; Luo et al., 2019).

Bayesian optimisation (BO) is a comparatively recent pricing optimisation approach. Since the
pricing problem is NP-hard and does not have simple analytical solutions, black-box optimisation
approaches are often used, and the BO has been demonstrated to be a promising one. First, Zhong
et al. (2021) presented a BO technique for solving a bi-level optimisation issue where the effects
of road pricing on both flow times and land usage were investigated. Particularly, an integrated
transport assignment and land usage model was employed in the study and was combined with
an active learning algorithm that featured the multivariate-multi-objective BO method. In the
same vein, Liu et al. (2021) investigated a BO approach combining a trip-based Macroscopic
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Fundamental Diagram (MFD) model with distance-based area-based pricing schemes. The toll
profile was created based on time-of-day pricing, with the dimensionality impact on the BO under
question. As a result, it was numerically discovered that as the search space expands, performance
decreases progressively.

Considering the complexity of the problem, and the lack of tools for designing near practise-ready
policies, this study aims to develop approaches for optimal design and evaluation of congestion
pricing policies. Following the available research and leveraging the current knowledge, the study
brings emerging dynamic congestion pricing control formulations closer to practice, by developing
and extending state-of-the-art simulation frameworks. Two frameworks were inspired by the work-
ing paper of Liu et al. (n.d.), where BO algorithms were tested on a MFD model for the morning
commute problem. However, this study uses a different simulation model which provokes higher
complexity and differentiation in concepts but provides the possibility for thorough evaluation and
analysis of policies. The study also extends the optimal toll query to a full-day mobility problem
with multiple trip purposes.

2 Methodology

We assume the decision maker needs to define a distance-based road pricing scheme for an entire
network, which can be time-varying. Since we aim at dining the best toll for an average day,
the network equilibrium process and the optimization process may interact with each other. In a
simpler and theoretically sound mobility model, it was recently shown that adding context data
to BO related to the equilibrium process can help in reaching optimal solutions faster (Liu et al.
(n.d.)). We test again such a hypothesis in a more complex and closer to reality simulator. In
the following paragraphs, we will describe (1) the overall simulation platform, SimMobility; (2) its
learning (equilibrium) process; (3) the general BO approach; (4) the contextual BO; and (5) our
specific combined framework for both the general and the contextual BO cases.

SimMobility 1, a detailed agent-based mobility simulator, was used in the context of this study.
Specifically, SimMobility constitutes a large-scale simulator that includes many mobility-sensitive
behavioural models in a multi-scale dimension. It was built from three distinct sub-models: long-
term (LT), mid-term (MT), and short-term (ST). The MT model is made up of three interconnected
simulators: 1) the pre-day simulator, which calculates the individual daily activity schedule (DAS),
2) the within-day simulator, which simulates departure times and route choice behaviour including
en-route behaviour, and 3) the supply mesoscopic simulator, which handles network characteristics
and the supply for different modes of transport. The reader is referred to (Adnan et al., 2016; Lu
et al., 2015) for more details on SimMobility’s models and implementation.

The MT provides two learning approaches, with the one used known as within-day learning. In
more detail, an activity schedule is initially given and the default travel time is derived for each link.
Then, and for each time a within-day simulation is conducted, the link travel times experienced
by each vehicle update the database accordingly. The second, namely day-to-day learning, occurs
when the agents’ transport mode and their relevant travel information are updated. By iterating
the pre-day, a new DAS is produced, and used as input to the within-day one, which consequently
allows a learning process (Lu et al., 2015).

As for the BO, its main components are a model of the objective function and an acquisition
function. Specifically, it develops a surrogate for the objective and quantifies the uncertainty in
that by utilising a Gaussian process (GP) regression, fitting the data, and then selecting the next
sampling point based on the acquisition function (Frazier, 2018). GP regression is described by a
prior mean function µ0(x) and a covariance function κ(x, x′), where x denotes the input variables.
For the simplification of the GP training, µ0(·) = 0 was used (Rasmussen & Williams, 2005). As for
the covariance function, the Marten Kernel, defined below, can be used, where Γ(·) is the Gamma
function and Hν is the modified Bessel function. Here ν = 5/2 is used.

W(x) ∼ GP (µ0(x), κ(x, x
′)) (1)

W(xn+1)|W(xn) ∼ N (µ(xn+1), σ
2(xn+1)) (2)

1https://github.com/smart-fm/simmobility-prod
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The acquisition function is used to determine the next point to assess, given the posterior mean
function and the variance of the GP. The upper confidence bound (UCB) is a widely used one
(Srinivas et al., 2012) where ρ is a hyperparameter that determines the ratio of exploration to
exploitation, with a bigger value indicating higher exploration. Here ρ = 2 was chosen.

n(UCB)(x; ρ) = −µ(x) + ρσ(x) (4)

xi+1 = argmax
x

n(UCB)(x) (5)

Regarding the contextual BO, Krause & Ong (2011) presented that the BO can take into con-
sideration different environments through the usage of contextual variables. Thus, a contextual
Gaussian process (CGP) was proposed. Here, the contextual variable which is used for the CGP
is the day d. In that setting, and as the product of two Merten kernels is still a Merten kernel, the
composite kernel occurs accordingly.

k(x, d), (x′, d′) = k(x, x′) ∗ k(d, d′) (6)

As for the evaluation of the system, the main key performance indicators used were the travel
time index (TTI), the Social welfare (SW) and the consumer surplus (CS). For the computation,
only the trips by car are considered. TTI is the ratio of average travel time to free flow travel
time. It is a metric of congestion that can be used to assess overall network performance and,
here, is calculated at the 5-minute level, where TTobservedni

denotes the travel time observed,
TTfreeflowni the travel time in free flow settings and TtripLengthni the total trip length, for the
traveller n in the time interval i. SW is used for assessing the overall performance of the system
and is computed based on the total of observed individual travel disutilities, where Dn denotes the
disutility, TravelCostn the travel cost and βCostn the cost coefficient for the traveller n. The CS
of the system is calculated below and represents the total travellers’ expenses.

TTIi =

∑Ni

ni=1
(TTobservedni

∗TtripLengthni
)

TTfreeflowni∑Ni

ni=1 TtripLengthni

(7)

SW =

N∑
n=1

(Dn − TravelCostn ∗ βCostn)

βCostn

(8)

CS =

N∑
n=1

Dn

βCostn

(9)

Regarding the frameworks, both extend the SimMobility simulator and interact with it by updat-
ing its database; thus, their integration happens. Their objective function is the SW, whereas the
acquisition function predicts the (distance-based) toll’s control variables. Noteworthy is that the
tolling rates are imputed to the database at 5-minute intervals based on a multi-modal Gaussian
distribution resulting from the BO algorithms, where the number of modes corresponds to the num-
ber of network traffic peaks (p). In this setting, the amplitude (Ap), represents the height/highest
price, the mean (µp) indicates the time of the highest price, and the standard deviation (σp) defines
the width of the profile.

As for framework 1 (fig. 1), the simulation starts with a sampled toll and when the system has
reached equilibrium, the BO forecasts the next test points/toll. Then the database is updated, by
initialising the link travel times at no-toll conditions and incorporating the new toll prices, and the
within-day simulator is iterated until the equilibrium is reached. The process is repeated until n
the GP has converged by reaching the optimum toll profile.
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Figure 1: Framework 1. Bayesian optimisation and SimMobility

Figure 2: Framework 2. Contextual Bayesian optimisation and SimMobility
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Framework 2 (fig. 2) follows a similar design but aims to offer greater flexibility as it can alter
the day, based on the condition that the day’s SW is less than the preceding one multiplied by a
scaling factor (a). In more detail, the framework considers as initial inputs the SW of day zero
(SW of the no-toll case), and a few input points for day 1. Then the contextual BO proposes the
next toll for the same day and SimMobility calculates its SW. The same procedure continues until
a toll which gives a better SW than the previous day’s has been identified. Then the realised SW
is calculated for the day and stored. Simultaneously, the framework updates the perceived link
travel times of the network. Then, it updates the day and the algorithm proposes the first toll for
the new day. This approach would be repeated until an overall equilibrium is attained for both
the system and the GP.

Lastly, an initial set of points is essential for the initialization of the BO algorithms. Thus, a
space-filling experiment design which uses Latin hypercube sampling (LHS) was included in both
frameworks (Mckay et al., 2000).

3 Results and discussion

SimMobility’s built-in prototypical city was used for the experiments. Its network has 254 links,
which correspond to 286 segments. The total length of the links is 279 km with an average
maximum speed of 65.27 km/h and a standard deviation of 12.77 respectively. The number of
nodes of the network is 95 with 1918 turning intersections. Lastly, the city can be separated into
24 zones. Also, a fixed demand of 19000 travellers, corresponding to 51071 trips, were employed.
Moreover, to attain a congested condition of the system, the network’s initial capacity was reduced
to 10%, despite a few bottlenecks, which remain at 30% of the original capacity. Based on the new
capacity, the average critical density of the system per link is at 6,62 passenger-car units(PCU)/km
with a standard deviation calculated at 2,03.

First, an experimental design took place to verify and evaluate the frameworks. The frameworks set
to design a distance-based toll policy with an upper payment bound (UB) at $10. The purpose of
this experiment was to prove that the developed frameworks are adequate to design and assess a toll
which optimises the system’s SW. On top of that, the comparison of the frameworks’ performance
was set under question. Moreover, it should be noted that for the experiments, the pre-day
simulation is inactive and considered that it has already provided the modal split and the respective
DAS file.

Table 1: Optimisation bounds

Bounds µ1

(5-min)
σ1

(5-min)
A1

($/m)
µ2

(5-min)
σ2

(5-min)
A2

($/m)
Upper 108 24 0.003 234 24 0.003
Lower 84 3 0.00001 210 3 0.00001

It has been found that both frameworks can indeed design a toll that raises the SW of the systems.
Also, the fact that both frameworks reached a similar toll profile is a clear sign that the global
optimum, within the respective constraints, has been discovered. Regarding their performance (see
fig. 3 and fig. 4), the number of iterations required for framework 1 was for the 12 sampled points
240 (∼70 hours), and for the algorithm, until the optimum been found after 15 repetitions, was
300 (∼88 hours). However, considering the number of needed iterations for the system to reach
stationary, 126 and 150 iterations, respectively, are determined as a "fair" number. As for CBO,
the setting immediately offers many advantages as just 5 iterations were required for initialization.
The framework then ran with varying iterations per day, reaching the ideal toll region after ∼110
iterations (∼32 hours).

As for the designed toll, the one with the biggest SW provided by framework 2 (µ1: 108.0, σ1:
14.39, A1: 0.003, µ2: 234.00, σ2: 24.00, A2: 0.00001) was selected for further analysis. The toll has
a very high peak, similar to the morning traffic peak, which has pushed some trips earlier in the
morning. In this way, the vehicle accumulation and the TTI have decreased compared to the no-toll
case, from ∼1200 to ∼900 and from 1,65 to 1,35 respectively (see fig. 5). As for the afternoon peak,
CBO has not defined a toll profile that affects the peak’s characteristics, while the amplitude was
set at the lower bound. Regarding SW, this was calculated to $92611 implying a 5,5% improvement
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(a) Framework 1

(b) Framework 2

Figure 3: Best social welfare ($) (yellow line) and social welfare ($) evolution for tested
tolls (grey line)

Table 2: Base case and optimum toll case metrics

Base case Toll case MD
Mean SD Mean SD %

Social welfare ($) -98006.82 2707.91 -92611.51 927.19 5.51
Consumer surplus ($) -98006.82 2707.91 -231406.13 963.59 -136.11
Trip avg. travel time (sec) 458.38 6.23 410.07 2.43 10.54
Trip avg. scheduled delay (sec) 332.74 5.44 515.95 1.62 -55.06
Trip avg. paid toll ($) 0.00 0.00 3.31 0.00 -

compared to the base case (see table 2). Similarly, the mean travel time improvement is around
10,5%, where the average scheduled delay has become 55% longer. Moreover, the most gains in
travel time have been identified in the southeast part of the city, while the bigger CS losses were
presented in the northern region. Furthermore, the link densities during the morning peak hour
(08:00–09:00 AM) have been decreased. Specifically, the number of links during the peak hour
that presented a density bigger than the average critical density of the system, decreased from 64
to 39 due to the implementation of the toll. Similarly, the average system density in this period
declined from 2.3 to 1.9 PCU/km/lane. Additionally, for travellers, it has been calculated that in
the equilibrium state, ∼20 % pays the maximum limit of $10 and ∼55% less than $1 (see fig. 6).
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Figure 4: Selected parameters across all iterations for both frameworks.
Note: No sampled data included. For framework 1 only the iterations until stationary are
included. The red line indicates the parameter for best social welfare. The first column
refers to framework 2 and the second to framework 1

Lastly, in another direction, a shortcoming of the toll was also identified, as travellers departing
after the peak hour (10:00-11:00 AM) faced a high toll charge and added scheduled delay due to
it. That could be mainly reasoned to the system’s demand which is comparatively low during
this period and thus the applied toll during this period does not affect significantly the SW. That
consequently may prevent the frameworks to design a better solution.
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Figure 5: Optimum toll case. Simulation and congestion graphs.
Note: The accumulation and TTI are based on the last iteration

Figure 6: Optimum toll case. Amount of toll paid ($) per user in equilibrium state
Note: The graph is based on the last iteration

In other experiments, framework 2 attempted to determine whether there was a genuine distance-
based toll. It was found that the amplitudes converged to zero since the framework could not find
a toll that enhances the SW. Nonetheless, when the framework was asked to find a very low price
that improves the SW, it was not confident of any solution after a sufficient number of iterations.
This limitation may arise from the fact that the differences in the SW system shown for such a
small toll could not be significantly different from the no-toll case. Also, considering the quite big
system variance, with a standard deviation at 3%, this might be misleading. Similarly, framework
2 was set to find a better solution for the SW, while a larger search space in terms of boundaries
and dimensions was set. Nonetheless, that was not possible in 30 days. The fact that in these 30
days, it ran only for ∼ 90 iterations in total may be one of the causes of this failure. In addition
to the number of iterations, the acquisition weight could also have an impact on the solution as
the search space was expanded.
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4 Conclusions

During this research, two frameworks combining a detailed agent-based simulator, namely Sim-
Mobility, and BO algorithms, were developed and tested. Their main goal was to determine the
optimum road pricing policy of a day by optimising the system’s SW. It was found that both frame-
works were able to pinpoint the optimum distance-based toll design with UB at $10. Nevertheless,
in terms of performance, the second framework proved that needs much fewer iterations.

The advantages of the analysis of a road pricing policy through a detailed agent-based simulation
were also showcased. First, the policy was able to improve the SW of the system as well as the
TTI during the peak period. Also, by diving into more disaggregated metrics, the identification
of improvements in link-level density, during the peak period, was possible. In the same vein, by
using a zonal level analysis, the regions with bigger travel time gains and CS losses per traveller,
which were the city’s southeast and northern parts respectively, were identified.

Moreover, framework 2 found that there is no genuine distance-based toll that improves the SW
in this environment setup. However, the framework’s inability to identify a solution, when the
amplitude’s search space significantly decreased, was identified. This may be due to the number of
iterations combined with the system’s inherent variability. Finally, framework 2 could not locate
the same solution or discover a better toll profile when faced with an expansion of the size and
dimensions of the search space. Thus, more iterations or a higher acquisition weight may be
necessary to resolve this issue.
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SHORT SUMMARY 

In this paper, we aim to study the role of the immersive Virtual Reality (VR) experience in the 

preferences elicited with standard Stated Choice (SC) experiments embedded into a VR environ-

ment. For this purpose, a SC was built and implemented both online and within a VR environment 

and respondents were asked to reply to both surveys. The SC experiment consists of a binary 

choice between a normal taxi with the driver (NT) and a fully automated taxi (AT). The context 

is a well-known street in the city centre of Newcastle upon Tyne (UK). Hybrid choice models 

were estimated and results compared. Results suggest that VR experience indeed has significant 

effects on some attributes examined (waiting time and good reviews) and on the role of the latent 

variables in the choice of AT. Trust is significant only online, while injunctive norms and per-

ceived safety only in the VR environment.  

 

Keywords: Immersive Virtual Reality, Stated Choice Experiment, Fully Automated Taxis, Social 

Conformity, Internal validity 

1. INTRODUCTION 

Stated Choice (SC) experiments are commonly used to investigate users’ acceptance of Autono-

mous Vehicles (AV), as this is a product not yet available in the market. Hypothetical bias affects 

all SC experiments, but it is more marked in the case of highly innovative products as respondents 

have no experience with them and could not have formed a preference for the product (see a 

discussion in Cherchi and Hensher, 2015). Pictures and videos have been increasingly used to 

provide more realistic information about the new products and, in particular in the case of AV to 

show respondents how the system could work (e.g., Haward and Dai, 2014; Kolarova et al., 2018). 

In this line, recent applications have also used Virtual Reality (VR) environment, mostly with the 

aim to control for the framing effect, i.e., to improve the preliminary information about the non-

markets good respondents were going to evaluate (Bateman et al., 2009; Fiore et al., 2009; Phillips 

and Marsh 2015; Patterson et al., 2017).  

 
VR experiments represent a new area of research that promises to change fundamentally the way 
in which consumers’ preferences for innovations are measured. Studies have shown that people 
can develop realistic spatial knowledge in the VR environment that is like actual physical envi-
ronments (O’Neill 1992; Ruddle et al., 1997; Tlauka and Wilson 1996). VR can generate a suffi-
ciently natural and familiar field, able to provide ‘field cues’ or ‘field hints’ that occurr in the real 
world (Fiore et al., 2009). VR allows the sensation of immersion in the activities on the screen 
and with the virtual elements (Animesh et al. 2011; Faiola et al. 2012; Nah et al., 2011), prompting 
individuals to act as if they were in the real world (Sanchez-Vives et al. 2005). Based on this 
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theory the expectation is that VR experiments should perform better in eliciting individual pref-
erences, i.e., should provide more realistic results than a standard online survey. However, very 
little is known in this area.  

 

Some authors (Farooq et al., 2018; Arellana et al., 2020; Bogacz, et al., 2021; Feng et al., 2022) 

have used VR technology with stated preference experiments applied to pedestrian or cycling 

experiments, which involves continuous movement, not a choice among discrete alternatives. In 

some studies, for modelling purposes, the continuous behaviour has been converted into a choice, 

but from a neurological point of view, motor actions (like cycling or walking) activate different 

circuitries in our brain compared to choice-based actions and show a better overlap between brain 

activities during imagined and real movements (see discussion in Cherchi, 2020). Moreover, the 

stated preference experiment in these studies is used to control the elements of the VR environ-

ment where respondents perform a continuous behaviour. This makes it more difficult to assess 

internal validity, i.e., the impact of the VR experience in the elicited consumer preferences, com-

pared to a traditional stated choice online survey. Rossetti and Hurtubia (2020) studied the eco-

logical validity of VR experiments (i.e., whether the results can be generalized to real-life set-

tings), but the focus is on the qualitative assessment of aspects of an urban environment. 

 

In this paper, we aim to study the impact of the immersive VR experience in the preferences 

elicited with standard SC experiments embedded into a VR environment. For this purpose, a SC 

was built and implemented both online and within a VR environment and respondents were asked 

to reply both surveys. The SC experiment consists of a binary choice between a normal taxi with 

the driver (NT) and a fully automated taxi without driver and without steering wheel (NT). A set 

of attitudinal questions were also included in the survey to investigate if the VR environment has 

a mediating role on the impact of Trust, Injunctive Norm and Perceived Safety in the choice of 

the taxi type. Hybrid choice models were estimated with both surveys allowing assessing the 

impact of the VR experiment in the elicited consumer preferences.  

2. METHODOLOGY 

The core of the methodology set up in this research consists of a SC experiment built to elicit 

preferences for automated versus normal (i.e., with driver) taxis. The same SC experiment is used 

to collect information online and within a VR environment. Differently from the existing literature 

in the field, respondents go through a standard stated choice experiment while moving in the VR 

environment and “living” the choice experience. In our immersive VR experiment, respondents 

found themselves into the street where there is a taxi rank with the two types of taxis picking up 

customers and a ticket board (as it is the case in reality) where to select and pay for the taxi 

respondents wish to use. The advantage of this setting is that the SC experiment in the VR envi-

ronment is perfectly comparable with the standard SC online, allowing to better disentangle the 

impact of the immersive VR experience in the elicited preferences.  

 

The SC experiment built includes six attributes. Three level of service attributes (waiting time, 

travel time and fixed journey fare, with three levels each), one attribute to measure the impact of 

fuel type (with 2 levels: electric or gasoline) and two attributes to measure the impact of social 

conformity (number of customers who have used AT or NT, with three levels and customer rating 

with two levels). A heterogeneous Bayesian efficient design was generated in Ngene 

(ChoiceMetrics 2012). Priors were taken from models estimated in several pilot tests based on 

orthogonal designs. Three SC experiments were optimised based on three travel distances of 5 

km, 10 km and 15 km (the only differences are the attribute level value of ‘travel cost’ and ‘travel 
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time’ among 3 SC designs). 16 choice scenarios were generated and randomly divided in 2 blocks. 

Each respondent was presented with 8 scenarios. 

 

The above process is not different from a standard screen-based SC. However, building compa-

rable SC experiments, when implemented in VR and online, poses some challenges. The most 

important and interesting issue is that some of the elements that are typically used in an online 

SC and are considered perfectly acceptable, look unrealistic when used in a VR-based environ-

ment. For example, we had to set the context at a taxi rank to allow respondents to make the 

choice in the virtual street. Traditional taxi services are still extensively used in Newcastle and 

there are numerous taxi ranks in the city centre. Some attributes appeared to be unrealistic when 

included in the SC in the VR environment. For example, the form of payment is a standard attrib-

ute often included in online SC experiments, but interestingly when used in the SC experiment 

within the VR environment it appeared clearly unrealistic. This is because when we choose a 

transport option in reality, we are only presented with the characteristics of the options, and only 

after we make the choice the ticket machine asks us how we would like to pay. The realism of the 

SC experiment embedded in the VR experiment made this problem evident. After several tests, 

the attribute was removed from the experimental design, and the question “how do you want to 

pay?” included after each SC scenarios (both in the online and the VR-bases survey). Finally, in 

standard SC experiments, respondents are typically presented with the destination of their most 

recent trip once at the beginning of the SC and before each scenarios are asked to assume that 

they have to do a trip always with the same destination. Interestingly, this standard procedure, 

that sounds perfectly reasonable in the screen-based SC, appeared extremely unrealistic in the VR 

environment. This is because in the VR environment respondents “live” the choice process, any 

assumption that they have to do the same trip felt awkward. Differently from the standard practice, 

we allowed respondents to choose different destinations in each scenario, and hence the 6 scenar-

ios presented to each respondent can belong to any of the 3 designs (5km, 10km or 15km).  

 

The VR-based SC experiment and its online counterpart were administrated in Newcastle in 2022. 

The final sample consists of 156 valid responses (1248 pseudo-individuals). These 156 respond-

ents answered first the online SC survey, which according to the standard practice included: gen-

eral questions about familiarity with automated vehicles, information about a last trip performed 

by normal taxi, a stated choice experiment, a set of socioeconomic information and nine state-

ments to measure three latent psychological constructs: injunctive norm, perceived safety and 

trust. Approximately one week after, respondents were invited to the lab to perform the same SC 

experiment but this time embedded into the VR environment. All respondents interviewed are 

residents in the northeast of England and satisfy the requirements to be 18 years or older and have 

used a normal taxi in Newcastle in the last year. Table 1 reported the key characteristics of the 

sample. Our sample approximates the gender distribution of the Newcastle population but un-

derrepresents young people (20% against 25% in the Newcastle population). 
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Table 1. Sample Characteristics 

Socio-demographic characteristics % 

Gender 

Female 52.6 

Male 46.8 

Rather not to say 0.6 

Age 
Younger than 30 years old 19.9 

30 years old or older 80.1 

Education level 
Bachelor degree or below 66.0 

Master or Doctorate degree 34.0 

Current work status 
Employed full-time 61.5 

Others  38.5 

Personal monthly disposable in-

come 

Less than £500 12.8 

£501-£1500 40.4 

£1501-£2500 21.8 

£2501- £3500 9.0 

£3501-£ 4500 2.6 

More than £4500 0.0 

I do not wish to disclose it 13.5 

Travel characteristics % 

Frequency of using taxis 

More than once a week 10.3 

Between Once a month & Once a week 42.3 

Between Twice a year & Once a month 39.7 

Less than twice a year 7.7 

Frequency of talking with driver 

Very infrequently 8.3 

Somewhat infrequently 8.3 

Occasionally 30.1 

Somewhat frequently 36.5 

Very frequently 16.7 

Knowledge levels of AVs and ATs % 

Heard of AVs 
Yes 69.2 

No 30.8 

Familiar with 5 levels of auto-

mation 

 

Not at all familiar 39.7 

Slightly familiar 35.3 

Moderately familiar 19.9 

Very familiar 4.5 

Extremely familiar 0.6 

 

3. MODELS ESTIMATED AND RESULTS 

Hybrid choice models (HCM) were used to elicit user preferences. The discrete choice component 

of the HCM is a mixed logit (ML) model that allows estimating the trade-off between the attrib-

utes included in the SC experiment, controlling for panel effects (intra-individual correlation). 

The latent variable component of the HCM allows for estimating the impact of three latent psy-

chological variables.  

 

Model results are reported in Table 2. We note first that in both datasets, all the level of service 

attributes (travel time, waiting time and travel cost) have the expected sign and are significant at 

more than 99%. The same for the ‘good reviews”, and to some extent for the type of fuel (‘EV’). 
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While strong differences are found in the significance of the latent variables. We also note that 

the HCM estimated with the VR data has overall much better overall fit that the model estimated 

with online data (lower BIC and AIC).  

 

Table 2. Models estimation results 

 HCM Online HCM VR 

 
Estimated 

Value 
Rob. t-

test 
Estimated 

Value 
Rob.  t-

test 

ASC(AT) -7.730 -6.42 -5.800 -7.18 
SIGMA (AT) 0.931 4.91 1.290 7.40 
Level of Services     
Travel cost -0.535 -9.88 -0.629 -12.47 
Travel time -0.083 -4.68 -0.127 -6.89 
Waiting time -0.130 -7.14 -0.189 -10.71 
AT Vehicle Type     
EV 0.331 1.90 0.554 3.22 
Social Conformity     
Good review 0.384 3.46 0.754 7.01 
Systematic heterogeneity in alternatives     
Bachelor degree or above(AT) 0.614 2.38 - - 
Frequently talking with driver (AT) -0.385 -1.57 - - 
Male (AT) 0.948 3.50 0.966 3.36 

Latent variable     
Injunctive norm (AT) 0.336 1.18 0.485 2.41 
Perceived Safety (AT) 0.397 1.50 0.805 4.05 
Trust (AT) 1.400 4.07 0.339 1.32 
Summary of Statistics     
Number of draws 500  500  
Maximum Log-likelihood -2220.789  -2212.280  
Akaike Information Criterion 4537.578  4512.569  
Bayesian Information Criterion 4783.784  4738.258  
Number of individuals 156  156  
Number of observations 1248  1248  

 

 

Before looking at the differences between the two models, we note that a joint hybrid choice 

model was estimated to control for possible scale heterogeneity between online and VR-based SC 

data. The scale between online and VR-based SC data was not significantly different from one. 

We then compare the results using the models estimated separately. While the scale is not differ-

ent, results show that the estimated preferences are significantly different between the online and 

the VR-based dataset for several attributes. The estimated marginal utility of travel cost, travel 

time, and fuel type is the same in the online and in the VR survey, while the estimated marginal 

utility of waiting time and good reviews are significantly higher in the VR than online. Willing-

ness to pay (WTP) for saving waiting time is 1.2 times higher in the VR (18.0 £/hour) than in the 

online survey (14.6 £/hour) and the WTP for good reviews is more than 1.5 times higher in the 

VR (£ 1.2) than in the online survey (£ 0.72). This result is interesting and expected. Both results 

can be related to the higher realism provided by the VR environment. In the VR respondents can 

see other customers queueing, can move in the space where they are going to wait for the taxi, 

this could prompt a more realistic evaluation of the waiting time. If this argument is correct, then 

we should conclude that online surveys do underestimate the WTP for waiting time. If the choice 

context is more realistic, customer reviews provide respondents with a stronger hint or cue to 
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evaluate and compare the quality of these two types of taxi services, because respondents might 

have the feeling that they are really going to take the taxi.  

 

Another interesting finding is that the VR environment indeed affects the role of the latent psy-

chological constructs in the choice of automated taxis. Interestingly, trust significantly affects the 

preference for ATs only in the online survey, which makes sense because participants have not 

seen these innovative taxis operating, then trust in the automation is more important than in the 

VR experiment where they can see ATs operating around them. In line with that, when respond-

ents see ATs really on the road, then the perception of safety becomes more important. Finally, 

injunctive norms are significant only in the VR environment, and this also makes sense, because 

the realism of the VR might give a feeling of being seen by others, which is related to the social 

norms.  

4. CONCLUSIONS 

This paper discussed the impact of the immersive VR experience in the preferences elicited with 

SC experiments. The same SC experiment was implemented in an online survey and within a VR 

environment and respondents were asked to reply to both surveys. Hybrid Choice models were 

estimated and preferences estimated in the two environments compared. Results suggest that the 

immersive VR environment does have an impact on the preferences elicited with SC experiments. 

Notably, it seems that the immersive experience has a strong impact on the preference for waiting 

time and customer reviews, both attributes are related to the experience that respondents can live 

in the immersive VR. Results also show that the role of the latent psychological factors tested 

(trust, injunctive norms, and perceived safety) is different (opposite) in the VR and in online. 

Before knowing or experiencing how the AT service works, trust plays a critical role. After or 

during the (virtual) experience, perceived safety becomes relevant instead of trust, and injunctive 

norms also become significant. Even if respondents replied to the two surveys at approximately 

one-week length one from the other, results could still be affected by order effect. At the same 

time, since the same respondents replied to both surveys, we are sure that the results are not af-

fected by differences in socio-economic characteristics.  
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SHORT SUMMARY 

It has been shown that people with disabilities perceive certain travel attributes differently, affect-

ing their behaviour. It is relevant to understand the behaviour of people with disabilities to support 

public policies that address their needs. The objective of this research is to identify the factors 

that affect the mobility decisions of blind or visually impaired people, taking Santiago de Chile 

as a case study. With information from a total of 1,322 trips in Santiago made by people with and 

without disabilities, hybrid models of modal choice were estimated, including two latent varia-

bles: human interactions and use of technology. People who use more technology prefer ride hail-

ing. Modes with direct contact with the driver are perceived more positively by people who assign 

importance to human interactions. Additionally, there is a significant difference in the perception 

of walking time. Walking time affects approximately 30% more blind or visually impaired people 

than people without visual impairment. Based on the results, there is proof of the relevance of 

having public policies that ensure subsidized taxi trips for people with visual disabilities or people 

with reduced mobility. 

 

Keywords: hybrid discrete choice models, blind, visually impaired, latent variables, 

mobility, use of technology, human interactions 

1. INTRODUCTION 

Transport systems are vital for the development of society. Some people, particularly people with 

disabilities, may have difficulty entering a transport system that does not take their needs into 

account (Hallgrimsdottir et al., 2016). Although there have been advances to better support the 

needs of people with disabilities, there are still barriers that restrict independent travel for this 

group of people (Park and Chowdhury, 2018). It is relevant to understand more clearly the travel 

behaviour of people with disabilities to prevent depression, poverty, and other socioeconomic 

harms (Ermagun et al., 2016). Since social exclusion is often the result of the inability to use or 

access a public transport system (Park and Chowdhury, 2018).  

 

The planning and design of integrated systems have been predominantly focused on public 

transport users without disabilities (Park and Chowdhury, 2022). Therefore, transport systems 

should aim to offer quality service for all users, by providing policies according to their needs, 

especially for those with disabilities. Certainly, not all people with disabilities have the same 

needs, specific and different needs respecting disability groups shall be also considered.   

 

Low et al. (2020) state that “common perceptions tend to focus on the provision of barrier-free 

access for wheelchair users. This group is of course important, but there are other types of disa-

bilities, including those that are visually impaired”. In the context of Chile, the second most com-

mon disability within the adult population with some kind of disability, after physical difficulties 

is a visual impairment with 11.9% having difficulties seeing even when wearing glasses (MDS, 
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2016). Loss of vision or blindness makes it difficult for people to move and affects their inde-

pendence when traveling (Low et al., 2020). 

 

Therefore, it is essential to understand better the needs of Visually Impaired People (VIP) to de-

velop more effective public policies, especially in developing countries with limited resources. 

However, disability has been treated in a general way, generating improvements that people with 

visual disabilities may not necessarily benefit from. The main objective of this research is to 

quantify aspects of the trip that affect VIP travel mode choices to support public policies that are 

aimed at the needs of VIPs, taking Santiago de Chile as a case study, using the information of 

VIPs trips captured by a revealed preferences survey. However, to the authors’ knowledge, studies 

of mode choice decisions specifically among VIPs have not been carried out nor in developing 

countries. 

 

There are various studies on the choice of mode and trip generation of elderly and disabled people 

but most of these have not considered the types of disabilities of the individuals. Also, most of 

the research has been carried out in developed countries, contemplating travel modes that are not 

necessarily available in underdeveloped countries, such as paratransit systems. In addition, the 

context of Santiago differs, in terms of social and cultural context, levels of services experimented 

on public transport, and non-rate reductions in the public system for people with disabilities, 

among others. 

 

This short paper is structured as follows. Section 2 explains how the data was obtained and an 

analysis of the collected information is performed, while Section 3 describes the modelling ap-

proach, and the results are discussed. Finally, section 4 closes with the conclusions and the pos-

sible future research. 

2. SURVEY DESIGN 

This section describes the survey and how the information was collected. It also mentions how 

the service levels were obtained. Finally, it explains how the availabilities of travel modes were 

defined. 

Accessibility aspects 

To make an accessible instrument for VIPs, various considerations were taken. Firstly, it was 

relevant to keep the respondent constantly informed of the aspects of the survey, such as: duration 

of the survey with a screen reader, number of alternatives for drop-down alternative questions, 

structure of each section and total amount of questions by section. Secondly, the survey avoids 

the type of drop-down responses, especially if there are a lot of possible alternatives (for example, 

when asking about the commune of residence). In such cases, we prioritized open answers. To 

make the information retrieval process easier, we asked for more general aspects of the trip and 

then more specific aspects. It is important to mention the survey did not require the use of images. 

Finally, we used Google Forms because according to the Google Forms Accessibility Compliance 

Report (Google, 2019) it is compatible for people with vision limitations and partially compatible 

for blind people by providing important accessibility information for most interface elements. 
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Survey description  

In the first section of the survey, we obtained information on the individual characteristics, such 

as gender, age, residence address, socioeconomic levels, visual condition, knowledge of braille, 

mobility support, and whether the person has reduced mobility.  In the second section of the sur-

vey, we gathered information on the last trips made from the home of the respondent, respondents 

could declare at most three trips and at least one trip. We gathered information about each trip, 

which consisted of motive, day, time and travel mode of the trip, and destination address. The 

third section captures indicators of the individual's attitude related to possible latent variables, 

which can be seen in Table 1. The individuals had to declare through a likert scale from 1 to 7 if 

they agreed or disagreed with each statement. 

 

Table 1- Attitude indicators 
Potential latent 

variable 
Attitude indicators 

Abbrevia-

tion 

Use of technology 
"If I go to a place I don't know, I use technological Apps" UT1 

"I use technological Apps to have information about my trip" UT2 

Human 

interactions 

“It makes me feel safe knowing that there are people around me” HI1 

"I care about being treated cordially by people I don't know" HI2 

Level of Services 

We used the Google API to obtain the level of services. To have a more accurate representation 

of the level of services experimented on a trip we used the average travel times between the re-

ported routes of the API (between 2 and 4 routes). In the case of taxis and Apps mobility services 

the same average time as the car was considered, and an extra time of 10 minutes was added for 

the case of taxis and 5 minutes for Apps mobility services. For public transport trips, in addition 

to the average time in the vehicle, we considered the average waiting times, average walking 

distance, and amount of transfer by mode (Metro/Bus). 

 

For the cost of the alternative public transport, only bus and only metro we considered the current 

costs determined by the Metropolitan Public Transport Directory. For the cost of the car trip, we 

considered a cost by kilometre with a mixed performance of 14.6 [Km/l], the cost per kilometre 

was used because a priori it cannot be assumed whether the person had to pay for parking or pay 

a toll. For the price of gasoline, we used the average price of the different service stations in 

Santiago. For taxi costs we used the actual costs considering a base rate and a charge for every 

200 [m] travelled. On the other hand, in the case of mobility apps services we considered the tariff 

system of the company Cabify. Finally, for the bicycle mode, we used a cost based on distance 

assuming a monthly subscription of a Chilean bike share company and a daily use of 8 [Km]. 

Mode availability 

All individuals had the following modes of transportation available: walking, taxi, and application 

mobility services. VIP had the mode bicycle unavailable and if the individual did not have any 

visual impairment the bicycle was considered available in case if in other trips reported the travel 

mode was bicycle was declared or if there was a shared bicycle station in a radius less than or 

equal to 500 [m] from their home and destination. Similarly, in the case of a car (whether a driver 

or a passenger car), was considered available for all the trips of people who had used the car in 

one of the three declared trips and for those who did not declare having used a car were assigned 

availability by replicating the distribution of the socioeconomic groups of the people who used a 
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car. Finally, in the case of public transport, the alternative to all trips was assigned to them. For 

the only bus and only Metro modes, availability was assigned in case there were routes available 

only with those modes. 

Data Collection 

We sampled 484 individuals with valid trips, 25 of those declared information on one trip, 80 on 

two trips, and 379 on three trips. Therefore, we obtained information on a total of 1,322 trips. We 

were able to collect trips through all sectors of Santiago, however, to replicate the distribution of 

gender, age, and socioeconomic group of the population more precisely in the sample, correction 

factors were used through Furness Method (1965). 

 

After applying the correction factors, 22.5% of the trips were made by visually impaired people, 

while 77.5% were made by people without visual impairment. 80.6% of the total trips in the sur-

vey were made on a weekday, while 19.4% were made on the weekend. A low percentage of trips 

(6.8%) were made in active modes such as walking and cycling, the rest of the trips, were made 

by through motorized modes. 60.2% of the trips were made in public transport modes: Metro and 

bus, or the use of both. 24.6% of the trips were made by car. Among the modes with a lower use 

percentage are walking, taxi, Apps mobility services, and taxi, with 5.5%, 4.5% 4.0% and 1.3%, 

respectively. Most of the trips are in the range of 4 [Km] to 6 [Km] and the average of travel 

distances is 11.82 [Km] explaining why only 6.8% of the trips are made on active modes. 

3. MODE CHOICE MODELLING 

This section details the estimated hybrid model, the hierarchical structure of the discrete choice 

model, and then the values of the estimated parameters are presented. It is important to consider 

that the time is in hours and the costs are in euros (€). 

Hybrid model 

For the estimation of hybrid models, we considered the simultaneous method that considers esti-

mating the MIMIC model and the discrete choice model simultaneously (Raveau et al., 2010). 

Two of the four potential latent variables were significant for the modelling, the other two did not 

explain the discrete decision of travel mode. The number of observations used to estimate the 51 

parameters of the hybrid model was 1,322 observations. The final log-likelihood was -7,404 as 

shown in Table 2. 

 

Table 2- Main model indicators 

Number of observations 1,322 

Number of estimated parameters 51 

Final log-likelihood -7,404 

 

The structure of the MIMIC model incorporated into the hybrid model (shown in Figure 1) con-

siders the characteristics of the individuals corresponding to the structural equations. In the case 

of the latent variable, “human interactions”, three binary variables associated with the character-

istics of the respondents were considered, indicating if the person has: higher education, reduced 

mobility, or visual impairment. With respect to the measurement equations, the latent variable is 

composed by HI1 indicator and HI2 indicator. The specification of the structural equation of this 



5 

 

latent variable can be seen in Equation (1). On the other hand, for the structural equation of the 

latent variable, “use of technology”, the following characteristics were considered: high income 

and older than 60 years. For the measurement equations we used the UT1 and UT2 indicators for 

the latent variable “use of technology”. The specification of the structural equation of the latent 

variable is found in Equation (2). 

 

 
Figure 1 - MIMIC structure 

 
𝐻𝐼 = 𝑠𝐻𝐸 ∙ 𝐻𝑖𝑔ℎ𝑒𝑟𝐸𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛 +  𝑠𝑅𝑀 ∙ 𝑅𝑒𝑑𝑢𝑐𝑒𝑑𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑠𝑉𝐼𝑃 ∙ 𝑉𝑖𝑠𝑢𝑎𝑙𝑙𝑦𝐼𝑚𝑝𝑎𝑖𝑟𝑒𝑑 + 𝜎𝐻𝐼 (1) 

𝑈𝑇 = 𝑠𝐻𝐼 ∗ 𝐻𝑖𝑔ℎ𝐼𝑛𝑐𝑜𝑚𝑒 +  𝑠𝐸 ∗ 𝐸𝑙𝑑𝑒𝑟𝑦 + 𝜎𝑈𝑇 (2) 

 

The estimated parameters from the MIMIC model of the latent variable human interactions, pre-

sented in Table 3, are consistent with what is expected (only the structural equations’ results are 

presented). Parameter 𝑠𝐻𝐸 is positive, and therefore people with higher education value more 

human interactions when travelling. Parameters 𝑠𝑅𝑀 (significant with a confidence level of over 

80%) and 𝑠𝑉𝐼𝑃 are positive, so people with reduced mobility and VIP perceive human interactions 

as important, with VIP being the ones who most assign importance to human interactions. 

 

Table 3- Estimated parameters of the latent variable human interactions 

 Parameter Description Value t-test 

Structural 

equation 

𝑠𝐻𝐸 Higher education 0.42 3.68 

𝑠𝑅𝑀 Reduced mobility 0.37 1.60 

𝑠𝑉𝐼𝑃 Visually impaired people 1.17 5.93 

𝜎𝐻𝐼 Standard deviation 0.78 5.81 

 

Table 4 presents the estimated parameters for the structural equation of the latent variable use of 

technology. People with high income have a positive sign and people over 60 years of age have a 

negative sign, which indicate opposite effect. People with high income have a greater use of tech-

nology than people who are not part of this category and people over 60 years of age have a lower 

use of technology. 
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Table 4- Estimated parameters of the latent variable use of technology 

 Parameter Description Value t-test 

Structural 

equation 

𝑠𝐻𝐼 Higher income 2.11 7.13 

𝑠𝐸 Elderly -4.34 -9.02 

𝜎𝑈𝑇 Standard deviation -2.96 -10.70 

 

Given that the Public Transport System in Santiago is fully integrated both physically and fare-

wise (DTPM, 2022), it was decided to use a hierarchical structure in the discrete choice model. 

This structure will allow capture the correlation between the bus, Metro and Metro-bus alterna-

tives, which will be grouped in a nest of public transport as shown in Figure 2. 

 

 
Figure 2- Hierarchical structure of the discrete choice model 

 

Regarding utility functions by mode, the specification’s contingency table is presented in Table 

5. All modes have an associated modal constant, in the case of walking, the modal constant was 

set to zero. All modes except walk have a cost parameter associated with them. A generic param-

eter for time in the vehicle was considered, except for the bicycle mode, which has a specific 

parameter, since this mode involves an effort that the cyclist must do. We used a systematic var-

iation of tastes in relation to the binary variable of VIP to analyse how walking time affects VIP. 

This interaction was included in the modes of walking and those related to public transport. For 

modes associated with public transport, a waiting time variable was also included to understand 

how this variable affects people. In addition, a variable for the number of transfers from bus to 

another bus was included in the bus and Metro/bus travel mode alternatives. For the mode only 

Metro, this variable is not included since, by design, it will always take the value zero. The latent 

variable of technology use was included in the utility function of the Apps mobility services 

where, in addition, a parameter associated with the variable latent variable of human interactions 

for this same alternative, finally, there is a specific parameter for the latent variable of human 

interactions for taxi. 

 

Table 6 shows the estimated parameters from the mode choice model. Regarding significance, all 

variables (ignoring modal constants) are significant at a 95% confidence level. The value of the 

t-test with respect to 1 of the parameter 𝜆𝑃𝑢𝑏𝑙𝑖𝑐𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 is 4.95, validating the structure presented 

in Figure 2. Therefore, the correlation of the alternatives within the public transport nest is 87.8%.  
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Table 5- Utility function of the different travel modes 

Travel 

mode 
ASC 

Bi-

cycle 

time 

Walking time 

with VIP in-

teraction  

Vehicle 

time 

Waiting 

time 
Cost 

Bus-Bus 

transfer  

Latent 

variable  

HI 

Latent 

variable  

UT 

Car S   G  G    

Walking *  G       

Bicycle S S    G    

Bus S  G G G G G   

Metro S  G G G G    

Metro-Bus S  G G G G G   

Taxi S   G  G  S  

Apps S   G  G  S S 

S: specific parameter / G: generic parameter / *: fixed parameter 

 

Table 6- Estimated parameters for the choice model 

Parameter Value t-test 

𝐴𝑆𝐶𝐶𝑎𝑟 -0.13 -0.572 

𝐴𝑆𝐶𝑊𝑎𝑙𝑘𝑖𝑛𝑔 0.00 - 

𝐴𝑆𝐶𝐵𝑖𝑐𝑦𝑐𝑙𝑒 -1.32 -2.83 

𝐴𝑆𝐶𝐵𝑢𝑠 0.12 0.554 

𝐴𝑆𝐶𝑀𝑒𝑡𝑟𝑜 0.76 4.16 

𝐴𝑆𝐶𝑀𝑒𝑡𝑟𝑜−𝐵𝑢𝑠 0.28 1.30 

𝐴𝑆𝐶𝑇𝑎𝑥𝑖 -4.94 -4.41 

𝐴𝑆𝐶𝐴𝑝𝑝𝑠 -4.77 -4.14 

𝜆𝑃𝑢𝑏𝑙𝑖𝑐𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 2.86 7.63 

𝛽𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟𝑠𝐵𝑢𝑠𝐵𝑢𝑠 -0.108 -2.75 

𝛽𝑐𝑜𝑠𝑡 -0. 753 -7.52 

𝛽𝑇𝑖𝑚𝑒𝐵𝑖𝑐𝑦𝑐𝑙𝑒 -5.18 -3.28 

𝛽𝑇𝑖𝑚𝑒𝑊𝑎𝑙𝑘𝑖𝑛𝑔 -3.4 -10.30 

𝛽𝑇𝑖𝑚𝑒𝑉𝑒ℎ𝑖𝑐𝑙𝑒 -0.898 -3.68 

𝛽𝑇𝑖𝑚𝑒𝑊𝑎𝑖𝑡𝑖𝑛𝑔 -1.60 -4.46 

𝛼𝑊𝑎𝑙𝑘𝑖𝑛𝑔𝑉𝐼𝑃 -1.12 -2.37 

𝜃𝑈𝑇 0.389 3.66 

𝜃𝐼𝐻_𝐴𝑝𝑝𝑠 2.64 2.74 

𝜃𝐼𝐻_𝑇𝑎𝑥𝑖 3.82 3.79 
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The parameters 𝜃𝐼𝐻_𝑇𝑎𝑥𝑖 and 𝜃𝐼𝐻_𝐴𝑝𝑝𝑠 are statistically different with 90% confidence. The value 

of the latent variable, human interactions, is positive both for the taxi mode and for Apps, meaning 

that people who perceive human interactions as relevant tend to choose modes such as taxi or 

Apps, this may be because these modes are more personalized services where you must interact 

with a person (driver). Also, people who have a greater use of technologies will tend to use modes 

of transport that are requested through mobile applications. 

 

The time parameters follow the relationship: 

|𝛽𝑇𝑖𝑚𝑒𝑉𝑒ℎ𝑖𝑐𝑙𝑒| < |𝛽𝑇𝑖𝑚𝑒𝑊𝑎𝑖𝑡𝑖𝑛𝑔| < |𝛽𝑇𝑖𝑚𝑒𝑊𝑎𝑙𝑘𝑖𝑛𝑔| < |𝛽𝑇𝑖𝑚𝑒𝐵𝑖𝑐𝑦𝑐𝑙𝑒|  

 

In several practical studies the values of the walking and waiting time parameters are two or three 

times the value of the time in the vehicle (Ortúzar and Willumsen, 2011). In this case, the value 

of the waiting time parameter is approximately twice the value of the vehicle time parameter while 

the value of the walking time parameter is approximately four times the value of the vehicle time. 

4. CONCLUSIONS 

In this study, it was verified through discrete choice hybrid models that there is heterogeneity in 

the perception of tangible and non-tangible attributes in the choice of modes of transport by indi-

viduals. The main factors that affect the travel experience were identified according to the mode 

used by VIP or reduced mobility. 

 

From the modelling, we obtained that people with visual disabilities perceive human interactions 

as relevant, which could influence their modal choice, preferring modes with direct contact with 

the driver. This same effect can be distinguished in people with reduced mobility, so they could 

prefer modes such as: taxi, Uber, Cabify or Didi due to the social relationships generated. This 

study has shown that the attitude we have and how we relate to each other as a society can affect 

people with visual disabilities and reduced mobility, leading them to prefer more expensive modes 

such as those mentioned above. There is heterogeneity in the perception of walking times, VIP 

are affected by approximately 30% more walking time than people without visual impairment. 

This implies that people who are blind or have low vision are willing to pay 30% more to save 

the same amount of walking time as a person without visual impairment. 

 

The results of this research are a contribution since they can be used for the social evaluation of 

projects in Santiago as we quantify how much walking time affects people with visual impair-

ments. Based on the results of the qualitative and quantitative study, the need to create transpor-

tation subsidies in Chile for people with visual disabilities is validated and we must also consider 

that in most countries various subsidised transport services are provided to service these popula-

tion groups (elderly and disabled people) (Schmöcker et al., 2008). State subsidies are relevant to 

be applied in Chile, as mentioned above, people with visual disabilities are considerably more 

affected by walking time and, furthermore, both people with reduced mobility and people with 

visual disabilities tend to prefer modes of more costly transport like taxi.  

  

It was expected in the modelling that the latent variable of human interaction would generate a 

positive impact on the metro mode given that within the functions of the metro attendants is as-

sisting people with visual disabilities on the trip, however, this result was not obtained. A possible 

hypothesis to understand these results is the reduction of more than 1,500 Metro workers an-

nounced at the beginning of 2022. On the other hand, it was also expected that people with visual 

disabilities would be decisive in the latent variable of technology use. The Spanish disability ob-

servatory estimates that the population with disabilities is at a 33% disadvantage on the economic 
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ambit in relation to the general population (OED, 2022). Therefore, there could be a correlation 

between the economic income variable that would not allow the visual disability variable to be 

included at the same time. 

 

Finally, as studies to be carried out in the future, two areas of interest are proposed to deepen the 

research presented. In the first place, it would be interesting to study how the variability of travel 

and waiting times affects people with disabilities as it was mentioned in the qualitative analysis 

but not explored in the quantitative models. And, on the other hand, it would be relevant consider 

vehicle crowding in the estimation of the models, which were not considered in this analysis since 

these service levels could not be obtained from a reliable data source for the different travel 

modes. 
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SHORT SUMMARY 

The TrafficFluid concept allows vehicles to move in a lane-free environment and enables capacity 

sharing between two directions without lane restrictions. In this context, Internal Boundary Con-

trol (IBC) has recently been introduced by the authors and its application has been investigated 

using macroscopic models. This paper presents a microscopic simulation-based validation of IBC 

using SUMO TrafficFluid-Sim, i.e. a simulation tool able to implement lane-free traffic. A Linear 

Quadratic Regulator (LQR), that is a feedback control scheme, is employed for IBC. An extension 

of the well-known Cell Transmission Model (CTM) is utilized for the design of the controller. 

Simulation investigations confirm the effectiveness of the proposed scheme. 

 

Keywords: internal boundary control, lane-free traffic, feedback control, SUMO. 

1. INTRODUCTION 

Recently, a new concept for vehicular traffic called TrafficFluid, which is applicable for high 

penetration rates of vehicles equipped with high-level automation and communication systems, 

was introduced by Papageorgiou et al. (2021). The TrafficFluid concept proposes: (1) lane-free 

traffic, whereby vehicles are not bound to fixed traffic lanes, as in conventional traffic; (2) vehicle 

nudging, whereby vehicles may exert a "nudging" effect on, i.e. influence the movement of, ve-

hicles in front of them. 

 

In this context, it turns out to be feasible to utilize Internal Boundary Control (IBC), a control 

strategy that aims to maximize the use of the road infrastructure (Malekzadeh et al., 2021a). IBC 

in lane-free traffic takes advantage of the fact that the traffic flow and capacity demonstrate in-

cremental changes in reaction to corresponding incremental changes of the road width. Thus, on 

a highway or arterial with two opposite traffic directions, the total cross-road capacity (for both 

directions) may be shared between the two directions in real-time, according to the prevailing 

demand per direction, by virtually moving the internal boundary that separates the two traffic 

directions and communicating this decision to Connected automated Vehicles (CAVs), so that 

they respect the changed road boundary. The characteristics of IBC are analyzed by Malekzadeh 

et al. (2021a), where its high improvement potential is demonstrated by formulating and solving 

an open-loop optimal control problem. Additionally, a feedback-based Linear-Quadratic Regula-

tor (LQR) for IBC was developed by Malekzadeh et al. (2021b), aiming at balancing the relative 

densities in the two directions; and has been demonstrated to be robust and similarly efficient as 

the open-loop optimal control solution, while avoiding the need for accurate modelling and ex-

ternal demand prediction. 
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So far, IBC has been investigated utilizing macroscopic models. This work demonstrates that the 

concept and the proposed control scheme can be similarly efficient even in a more realistic envi-

ronment, as a microscopic simulator.  We make use of  the SUMO TrafficFluid-Sim, a simulation 

tool able to implement lane-free traffic (Troullinos et al., 2021). 

2. INTERNAL BOUNDARY CONTROL (IBC) 

To implement IBC, a feedback control strategy is considered. The proposed control scheme is 

designed based on an extension and linearization of the well-known Cell Transmission Model 

(CTM) (Daganzo, 1994). Let us assume two opposite traffic directions subdivided into n  sec-

tions. Then, the total section capacity ,capq  the total critical density 
cr  and the total jam density 

max , are shared between the two directions in each section based on the sharing factor 

,min ,max0 1,     i i i  that is applied per section and which is known in IBC as the control 

input (Malekzadeh et al., 2021b). 

 

In conventional traffic management, traffic densities (in veh/km) characterize clearly the state of 

traffic, depending on their value versus the critical density: free traffic (when density is lower 

than critical density), critical traffic (when density is around critical density) or congested traffic 

(when density is higher than critical density). However, in the proposed IBC concept, the critical 

density for each direction and section is not constant, but a linear function of the sharing factor 

and is changing according to the applied control action. Therefore, the density value by itself is 

not sufficient, in the IBC context, to characterize the traffic situation in a section. To address this 

issue, the following relations define the relative densities (dimensionless) per section and per di-

rection. The relative density of section i  and direction a  or b  is given by dividing the corre-

sponding traffic density with the corresponding critical density, which, on its turn, depends on the 

sharing factor prevailing during the last time-step, as follows 
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− − −
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The relative densities reflect clearly the state of the traffic in the IBC context. Specifically, if the 

relative density of a section and direction is less than 1, it reflects under-critical (free-flow) traffic 

conditions; if it is around 1, it reflects capacity flow; and if it is greater than 1, it reflects over-

critical (congested) traffic conditions (Malekzadeh et al., 2021a). 

Linear Quadratic Regulator (LQR) 

Linearization of the CTM dynamic equations around a nominal point was presented analytically 

by Malekzadeh (2021b). To achieve this, the one-step retarded control input was defined as a new 

state variable according to ( 1) ( ),i ik k + =  1,2, , .i n=  Following the linearization procedure 

by Malekzadeh (2021b), the linearized state-space model is 

 

 ˆ ˆ( 1) ( ) ( )k k k+ = +x Ax Bu  (2) 

 

where 1 1 1( ) [ ,..., ]a b a b T

n n nk k k k k k k     =  ( ) ( ) ( )  ( ) ( ) ( )x  is the state vector and 
( ) ( )=k ku Δε  is the control vector, whereby 1( ) [ ( ), , ( )] .T

nk k k =  Δε  Also, 
(.)( ) (.)( ) (.) ,Nk k = −  the superscript N  denoting the nominal values, while it has been as-

sumed that (.)( ) 0k =  for all disturbances (upstream mainstream inflows, as well as the on-ramp 
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flows, of each direction). 3 3ˆ n nA  and 3ˆ n nB  are the time-invariant state and input matrices, 

respectively, while 3nx  and nu . If the control time-step is defined as a multiple of the 

model time-step, i.e. ,cT MT=  where M  is an integer, then the discrete control time index is 
.c c

k kT T=     Thus, the linear state-space equation may be changed as follows, in order to be 

based on the control time-step ,cT  

 

 ( 1) ( ) ( )+ = +c c ck k kx Ax Bu  (3) 

 

where ˆ ,M=A A  and 
1 2ˆ ˆ ˆ( .... ) .M M− −= + + +B A A I B  

 

When employing the LQR methodology, as done by Malekzadeh (2021b), the control goal is the 

minimization of the quadratic criterion. 
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where 3 3n nQ  is a diagonal positive semidefinite matrix and n nR  is a diagonal positive 

definite matrix. The first term penalizes deviations of the state variables from zero, i.e. deviations 

of ( ),a

i ck  ( ),b

i ck  ( ),i ck  1,2, , ,i n=  from their respective desired nominal values. The sec-

ond term penalizes deviations of the control inputs from the nominal values. 

 

The nominal value for relative densities on both directions is set equal to 1 so that the controller 

is motivated to operate the system near capacity, which is good for traffic efficiency. In particular, 

due to the quadratic penalty terms, the controller tends to mitigate strong density departures from 

the critical density at specific sections, i.e., mitigate traffic congestion. In addition, if capacity 

flow is not feasible (e.g. due to lack of demand), then minimizing a sum of squares has the ten-

dency to balance deviations from the nominal values at different sections and directions, some-

thing that is conform with the secondary operational sub-objective of balancing the margin to 

capacity across sections and directions. On the other hand, the nominal value for the sharing fac-

tors is set to 0.5, so as to have smooth and moderate internal boundary changes. Thus, minimiza-

tion of the second term in (4) mitigates deviations of the sharing factors from 0.5 and balances 

these deviations in space and time, which is a secondary operational sub-objective, as unneces-

sarily strong internal boundary changes over space and time should be avoided. The optimal con-

troller minimizing criterion (4) subject to the model (3) is given by a linear state-feedback control 

law of the form ( ) ( )c ck ku = Kx , where 
3n nK  is a constant gain matrix given by  

 

 1( )T T−= +K R B PB B PA  (5) 

 

and P  is a unique positive semidefinite solution of the discrete-time algebraic Riccati equation. 

Lane-Free Microscopic Simulation for IBC 

Experimental evaluation is performed using TrafficFluid-Sim (Troullinos et al., 2021), a lane-free 

extension of the well-known microscopic simulator SUMO (Lopes et al., 2018). For IBC, addi-

tional functionalities had to be developed in order to facilitate the use of moving boundaries, some 

of which are outlined as part of future work in (Troullinos et al., 2022). Consider a network with 

multiple routes, e.g., a highway with on-ramps and off-ramps. Each vehicle entering the network 

is assigned a specific route. In conventional lane-based traffic, the vehicle would need to do ap-

propriate lane-changing operations in order to follow its routing scheme, whereas in lane-free 
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environments, this would be translated to the vehicle operating according to left and right bound-

aries that guide its lateral placement appropriately, e.g., a vehicle entering from an on-ramp would 

need to merge appropriately in the main highway. Consequently, the boundaries are designed with 

the use of sigmoid functions that specify the lateral availability of the associated route and allow 

for smooth lateral movement. 

 

In TrafficFluid-Sim, monitoring and control of vehicles is feasible through an API, which now 

includes additional functionality that provides density information according to the sectioning of 

the network, and controls the moving boundaries’ lateral level in an online manner. As such, the 

user can now specify the sectioning of a bidirectional highway containing on-ramps and off-

ramps, rendering the lane-free microscopic environment compatible with the proposed IBC prob-

lem formulation. Density information per section and direction of movement can be directly re-

quested from the updated API for the calculation of relative densities ( )a

i k , ( )b

i k . The control 

vector stemming from LQR is parsed appropriately to the control function of the API, updating 

the lateral level of the left boundary (from the perspective of each direction) for each section. The 

left boundaries of each direction are essentially “synced” according to the control input, while the 

right boundaries corresponding to the exterior part of the road remain unaffected. 

 

For practical purposes, the microscopic simulator includes a lateral distance margin between the 

two directions so that vehicles traveling near the boundary retain a safety distance from the other 

direction. Additionally, a moderate delay time is specified in every section at the direction that 

the road widens, so that vehicles travelling on the other direction have the necessary time to com-

ply with the reduced lateral space. Figure 1 demonstrates a snapshot of the employed simulator. 

This snapshot includes an on-ramp and its acceleration area before merging with direction a as 

well as direction b that is separated from direction a using internal boundaries (red and green). 

 

 

Fig. 1: A snapshot of the simulation environment TrafficFluid-Sim 

3. RESULTS AND DISCUSSION 

The hypothetical highway for the simulation is depicted in Fig. 2. Its length is 3 km and, when no 

control action is applied, the width for each direction is 10.2 m (corresponding to the width of 3 

lanes). The highway is subdivided to 6 equal virtual sections in order to design and apply IBC. 

The vehicles are moving following the Ad-hoc strategy presented by Malekzadeh et al. (2022). 

The dimensions for each one of the vehicles are determined by choosing randomly (with uniform 

distribution) one of the six "dimension classes" reported in Table 1. 
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Fig. 2: The considered highway stretch 

 

Table 1. The different dimension classes for the vehicles used in the simulation 

 Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 

Length (m)  3.20 3.90 4.25 4.55 4.60 5.15 

Width (m) 1.60 1.70 1.80 1.82 1.77 1.84 

 

 

The nominal values for the control design are defined based on observations as 28000=cap N
q

veh/h and 360 =cr N
veh/km, while the CTM time-step and the control time-step used are 

10=T s and 60=cT s, respectively. The weighing matrices used in the objective function are 

selected to be 
1 2diag( , , , )n=Q S S S  where 

2 2 1 1 3[ , ; ]i  =S I 0 0  and 210 n n

−

=R I . The upper and 

lower bounds for the sharing factors, used to avoid utter blocking of any of the two directions, are 

equal for all sections 1,2, ,6i =  and are given the values ,min 0.1i =  and ,max 0.9. =i  These 

values are used to truncate the LQR outcome. 

 

The mainstream and on-ramp demand flows per direction are presented in Fig. 3 while the exit 

rate used for the off-ramps is on average 5%. If no control is used and the mainstream capacity is 

shared evenly between the two directions, the highway faces congestion. Figure 4 displays the 

corresponding spatio-temporal evolution of the relative density defined in (1). It can be observed 

that congestion is formed around time 23 min for direction a and time 53 min for direction b due 

to on-ramp merging. In both cases, congestion spills back and covers upstream sections. 

 

Fig. 3: Demand flows per direction and on-ramps 
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Fig. 4: Relative density for the two directions in the no-control case 

 

Fig. 5: Relative density for the two directions in the IBC case 

 

On the other hand, congestion is solved utterly when IBC is activated. The corresponding spatio-

temporal evolution of the relative density in the presence of IBC is presented in Fig. 5. It is evident 

that the relative densities in both directions are under 1. More insights can be gained by the tra-

jectories for flow, relative density and the sharing factor per direction that are presented in Figs 

6-8 over the whole simulation period. It can be seen that flow and relative density increase in 

section 5 for direction a due to the presence of inflow from the corresponding on-ramp. Likewise, 

this happens in section 3 for direction b. However, the controller is able to  avoid the congestion 

by proper capacity sharing between the two directions. 
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Fig. 6: Flow, relative density and control input for the IBC case (Section 1 & 2) 

 

Fig. 7: Flow, relative density and control input for the IBC case (Section 3 & 4) 
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Fig. 8: Flow, relative density and control input for the IBC case (Section 5 & 6) 

4. CONCLUSIONS 

In this study, applicability of internal boundary control for lane-free traffic has been investigated 

via microscopic simulation. In order to implement the IBC scheme, the LQR controller has been 

employed. The controller was designed based on the well-known Cell Transmission Model. Then, 

a feedback control scheme that uses the relative densities in each section as input has been imple-

mented. The simulation results validated the effectiveness of the proposed IBC scheme. Future 

work includes testing of the same and other control schemes, e.g. those developed by Malekzadeh 

et al. (2023), on longer highways. 
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SHORT SUMMARY 

The decision of how many vehicles should a household have –if any– is likely to depend on life 

events that change the transport requirements of the household, such as the birth of a child, the 

change of employment status, a significant income variation, or a child moving out of the house-

hold to start living in another one. In this paper, we model changes in car ownership level as a 

function of socioeconomic individual and household attributes, as well as significant life events 

using a large sample of UK households sourced from the Understanding Society survey. We es-

timate a discrete choice model with specific parameters for increasing or decreasing car owner-

ship levels and considering panel and dynamic effects. Results show that life events play a sig-

nificant role in predicting car ownership levels, and that households are relatively stable over time 

in terms of car holdings. 

 

Keywords: Car ownership, Discrete choice models, Life events, Longitudinal survey, Panel 

data 

1. INTRODUCTION 

The decision of how many vehicles should a household have –if any– is likely to depend on 

socioeconomic, environmental, and accessibility attributes (de Jong et al., 2004 and Anowar et 

al., 2014), and also on life events that change transport requirements, such as the birth of a child, 

the change of employment status, a significant income variation, or a child moving out of the 

household to start living in another one. A large part of the car ownership literature has adopted 

a cross-sectional approach, analysing the number of vehicles in a household at a specific point in 

time. Despite its relevance, the key effect of life events has been much less frequently studied, 

likely because of the lack of suitable longitudinal datasets that allow following household deci-

sions over time. 

 

In this paper, we model changes in car ownership level as a function of socioeconomic individual 

and household attributes, as well as significant life events, using a large sample of UK households 

sourced from the Understanding Society survey (University of Essex et al., 2020). This survey 

has previously been used in the transport context.  Whittle et al. (2022) use this data analyse 

transport mode frequency changes triggered by life events, focusing on individual behaviour. 

They do not study car ownership at the household level. Clark et al. (2016), on the other hand, 

model car ownership changes in UK households, but they only make use of the first two waves 

of the Understanding Society survey. Additionally, they study the effects of the two possible out-

comes (increasing or decreasing car holdings) using independently estimated models, as opposed 

to a single specification, which allows for a proper representation of the dynamics. This approach 
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has surprisingly been followed in other studies in different contexts (Prillwitz et al., 2006; Oakil 

et al., 2014). 

 

We take advantage of the richness of our dataset and estimate a single discrete choice model with 

specific parameters for increasing or decreasing car ownership levels. Furthermore, we estimate 

additional parameters to analyse potential differences due to the current car ownership level, as it 

would be expected that, for example, the increased utility drawn from buying an additional vehicle 

differs from what the household would get from purchasing their first car. To our knowledge, this 

is the first study to estimate a single discrete choice model that simultaneously accounts for all 

these effects. 

 

We estimate an error component model with systematic heterogeneity in the preferences, which 

accounts for the panel effects, i.e., correlations due to the dataset containing repeated observations 

from the same unit of analysis. In addition, we investigate possible dynamic effects in consecutive 

choices, incorporating lagged choice variables as explanatory attributes in the utility functions, 

and correcting for possible endogeneity.  

2. METHODOLOGY 

We rely on data sourced from the Understanding Society survey, a UK-based household longitu-

dinal survey that collects information about social, economic, and behavioural variables, includ-

ing some transport behaviour questions (University of Essex et al., 2020). The survey follows a 

large sample of individuals over time, with each observation point defined as a “wave”. We define 

respondents of wave 9 (2018) as the initial household set and work backwards to identify their 

corresponding household in every previous wave. Our processed dataset contains 10,067 house-

holds. The main household attributes remain relatively stable over time, with mean car ownership 

almost invariant (1.32 cars per HH in the last wave), and the average household size showing a 

slight 3.3% decrease between waves 1 and 8. Household attributes from wave 1 were used as 

baseline variables in the discrete choice models. 

 

Inter-wave “life events” were identified by comparing each wave with the previous one. The main 

household-based inter-wave life events identifiable from the sample are: 

• Car ownership changes. 

• Household structure changes: Variations in the number of adults and children in the 

household. 

• Residential relocation: Change of address between waves. Some relocations can be fur-

ther identified as long-distance moves (switching regions), urban to rural moves, and rural 

to urban moves. 

• Income changes between waves. 

• Household splits: Household members appear in different households in the next wave. 

 

Similarly, the main personal inter-wave life events are: 

• Partner gains and losses. 

• New-born child. 

• Employment changes: Employment start, Employment exit, Employment switch, Retire-

ment. 

• Driving licence acquisition. 

 

On average, 16.2% of households change their level of car ownership between any two waves. 

The most frequent life events are changes in employment (12.1%) and household composition 
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(11.3%), while residential relocations (4.3%), childbirths (2.3%) and partner gains and losses 

(2.1%) are scarcer. 

 

To model the decision of changing the number of vehicles on each household we assumed that, 

during inter-wave period t, each household h faces three alternatives j:  

• Keeping the number of vehicles in the household constant (𝑗 =  0). 

• Increasing the number of vehicles in the household (𝑗 =  1). 

• Decreasing the number of vehicles in the household (𝑗 =  2). 

We defined the systematic utility that household h derives from choosing alternative j during 

period t as follows: 

𝑉0ℎ𝑡 = 𝛼0 

𝑉1ℎ𝑡 = 𝛼1 + ∑ 𝛽1𝑘 ∙ 𝑋𝑘ℎ𝑡

𝐾

𝑘=1

+ ∑ 𝜃1𝑙 ∙ 𝑌𝑙ℎ

𝐿

𝑙=1

 

𝑉2ℎ𝑡 = 𝛼2 + ∑ 𝛽2𝑘 ∙ 𝑋𝑘ℎ𝑡

𝐾

𝑘=1

+ ∑ 𝜃2𝑙 ∙ 𝑌𝑙ℎ

𝐿

𝑙=1

 

 

(1) 

Here, 𝑋𝑘ℎ𝑡 is the value of attribute k for household h during period t. These K attributes are inter-

wave changes. Analogously, 𝑌𝑙ℎ is the value of attribute l, one of the L baseline attributes that 

characterise the initial condition of household h in the dataset. Since, for each household and 

period, these attributes have the same value across all alternatives, we estimate 2 (𝐾 + 𝐿) alter-

native-specific parameters 𝛽𝑗𝑘 and 𝜃𝑗𝑙, as well as the alternative-specific constants 𝛼𝑗. Sensitivi-

ties to the attributes might not be constant across the population and, furthermore, the current car 

ownership level might influence their relevance. We investigate this effect using systematic taste 

variations (Ortúzar and Willumsen, 2011) in the inter-wave parameters 𝛽𝑗𝑘. When estimating 

these effects, we use households with one car as the reference level. 

 

Next, to address the correlation between observations from the same household in different waves, 

we define the net utility of this model as: 

 

𝑈𝑗ℎ𝑡 = 𝑉𝑗ℎ𝑡 + 𝜆𝑗ℎ + 𝜀𝑗ℎ𝑡 

 

(2) 

Here, the error term has two components: 𝜀𝑗ℎ𝑡 are i.i.d. extreme value (EV) type 1 error terms and 

𝜆𝑗ℎ = 𝜎𝑗𝜂ℎ, known as the panel effect, varies across individuals but not across waves. We assume 

that the 𝜂ℎ terms are Normal (0,1) distributed error components for each household h, which 

capture the correlation between observations from the same household. 𝜎𝑗 are alternative-specific 

parameters to be estimated. The described model (Model 1) is an error component model with 

systematic heterogeneity in the preferences. Following Walker et al. (2007), the panel data struc-

ture allows estimating the three alternative-specific variances. 

 

In a second specification (Model 2) we deal with the time sequence of household choices in a 

dynamic model. First, we assume that the choice at time 𝑡 partly depends on choice at 𝑡 − 1 only 

(dynamic process of order 1), that this dependence is household-specific (i.e., it only depends on 

previous choice of the same household), and that the weight of this dependence, 𝜌 is the same for 

every household (Danalet et al., 2016). The net utility of this model becomes: 

 

𝑈𝑗ℎ𝑡 = 𝑉𝑗ℎ𝑡 + 𝜆𝑗ℎ + 𝜌𝑦𝑗ℎ,𝑡−1 + 𝜀𝑗ℎ𝑡 (3) 
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Here, 𝑦𝑗ℎ,𝑡−1 is a dummy variable that takes the value 1 when household ℎ chooses alternative j 

at time 𝑡 − 1. As explained by Woolridge (2005), this modelling structure introduces endogeneity 

due to correlation between the lagged variable 𝑦𝑗ℎ,𝑡−1 and the unobserved factors 𝜀𝑗ℎ𝑡. This phe-

nomenon, called the initial conditions problem, must be corrected to obtain consistent parameters. 

Following the method proposed by Woolridge (2005) and implemented in Danalet et al. (2016), 

we model the panel effect term as follows: 

 

𝜆𝑗𝑛 = 𝜆2 + 𝛾 ∙ 𝑦𝑗ℎ2 + 𝜏 ∙ 𝑦𝑗ℎ𝑡
𝑐𝑜𝑢𝑛𝑡 + 𝜉𝑗𝑛 

 
(4) 

Here, 𝑦𝑗ℎ2 is the choice that household h makes in the first inter-wave period (for most house-

holds, 𝑡 = 2, or the period after wave 1), while 𝑦𝑗ℎ𝑡
𝑐𝑜𝑢𝑛𝑡 is the count of previous choices of 

alternative j up to time t (but not including the choice at time 𝑡). The inclusion of these terms 

addresses the endogeneity issue. Finally, 𝜆2, 𝛾 and 𝜏𝑚 are coefficients to be estimated and  𝜉𝑗𝑛 is 

the panel effect term. 

 

Since the initial choice is used in the panel effect and this specification considers the trajectory of 

consecutive choices by the household, we can only model choices from inter-wave period 𝑡 =
1onwards. In our case, this means that the decision of changing car ownership level between 

waves 1 and 2 is not modelled.  

3. RESULTS AND DISCUSSION 

For clarity, we split the modelling results in two tables. Table 1 presents the main life events 

coefficients for both estimated models and Table 2 details the goodness-of-fit indicators and the 

main validation results. For space reasons, we omit the baseline coefficients. 

 

The main life event effects have the expected signs in both specifications. Increasing the number 

of adults in the household has a positive effect on the probability of acquiring an additional car, 

although this effect is more relevant for 1-car households than for carless households or those 

with 2 or more vehicles. Conversely, a higher number of adults tends to reduce the likelihood of 

discarding a car, with the effect being more significant in households with 2 or more cars. An 

increase in the number of kids in the household between two waves tends to increase the proba-

bility of buying an additional car and reduce the likelihood of discarding one. 

 

As previously found in several studies, the effect of residential relocation in car holdings is mixed. 

The probability of buying an additional car increases after a house move for carless households 

and those with just one car and decreases for households with two or more cars. Car dependency 

has been shown to exist in rural areas where the access of alternatives to the private car is limited 

(e.g., Zhao and Bai, 2019; Carroll et al., 2021), and our results show that moving from an urban 

to a rural setting significantly increases the probability of adding a vehicle to the household. Con-

versely, relocating from an urban to a rural area appears to have the opposite effect, making it 

more likely that the household discards one of their vehicles. A long-distance move positively 

influences a reduction in car holdings. As expected, a household split is significantly tied to a 

reduced car ownership level. This is likely explained by the splitting households sharing the ve-

hicles that originally belonged to the “parent” household, or at least one of them becoming a 

carless household as a result of the split.  
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The effects of employment change depend strongly on the current ownership level in the house-

hold. Entering employment has a clear and significant positive effect in the likelihood of buying 

an additional car only for carless households and those with 1 car, but the effect is not significant 

for households with 2 or more vehicles. Similarly, an employment switch seems to both increase 

the likelihood of buying an additional car and reduce the probability of discarding one; however, 

the effect is opposite for households with 2 or more cars. On the other hand, as expected, job 

losses and retirement seem to be positively correlated with car disposals.  

 

Table 1. Model results I – Life events coefficients 

Attribute Unit 

Model 1: Panel effect, static Model 2: Panel effect, dynamic 

1: Increase 2: Decrease 1: Increase 2: Decrease 

Coef. t-test (0) Coef. t-test (0) Coef. t-test (0) Coef. t-test (0) 

Alternative specific constant  – -3.541 -22.90 -1.866 -12.17 -4.297 -31.73 -2.352 -13.68 

Household size                   

Adult number increase 

Reference 0.992 9.88 -0.691 -8.02 0.983 8.45 -0.626 -6.38 

0 car HH -0.613 -3.71 – – -0.521 -2.93 – – 

2+ car HH -0.616 -4.73 -1.326 -11.76 -0.581 -3.66 -1.366 -10.50 

Children number increase 
Reference 0.447 5.05 -0.540 -5.78 0.563 5.77 -0.489 -4.51 

2+ car HH -0.310 -2.65 – – -0.305 -2.17 – – 

Residential relocation                   

Residential relocation 
Reference 0.503 3.76 – – 0.303 1.96 – – 

2+ car HH -0.973 -4.14 – – -0.719 -2.65 – – 

Urban to rural move – 0.947 4.42 – – 1.321 5.41 – – 

Rural to urban move – – – 1.052 4.01 – – 0.851 2.67 

Long distance move – 0.271 1.41 0.705 3.64 0.444 2.00 0.865 3.85 

Household split – – – 0.389 1.60 – – 0.398 1.38 

Personal life                   

Partner gain 
Reference 1.744 12.01 – – 1.926 11.02 – – 

2+ car HH -1.720 -5.55 – – -2.044 -5.29 – – 

Partner loss – – – 0.507 5.95 –   0.613 6.16 

Employment status                   

Enter employment 
Reference 0.643 6.71 – – 0.590 5.35 – – 

2+ car HH -0.932 -5.96 – – -0.721 -3.96 – – 

Exit employment – – – 0.392 4.05 –   0.334 3.01 

Retired – – – 0.330 3.20 –   0.371 3.25 

Switch employment 
Reference 0.627 7.26 -1.247 -5.72 0.524 5.07 -1.323 -5.02 

2+ car HH -0.751 -6.10 1.597 6.90 -0.564 -3.78 1.634 5.87 

Transport                   

Licence acquisition 
Reference 1.093 6.42 – – 1.284 5.46 – – 

0 car HH 1.316 4.80 – – 1.217 3.31 – – 

Income level                   

Income increase (x £1,000) – 0.101 8.63 –   0.078 8.38 – – 

Income decrease (x £1,000) – – – 0.046 5.12 – – 0.055 5.53 

 

Acquiring a driving licence has been widely acknowledged as a major transport milestone, and 

an important predictor of car ownership increase (Clark et al., 2014; Clark et al., 2016; Rau and 

Manton, 2016). Our models show that this effect is significant for all households, but more than 

doubled for those without a car. Partner loss is associated with a decrease in car ownership and, 

conversely, gaining a partner contributes to increase the probability of acquiring an additional car, 

but only in households with less than 2 vehicles. Finally, family income changes have a significant 

effect on car ownership variations, but the effect is not symmetric. We found that an increase in 

income influences the likelihood of buying an additional car, while a reduction in the same 

amount has a lower effect on the probability of discarding a vehicle. 

  

 



6 

 

Table 2. Model results II – Panel/dynamic coefficients, model fit, and validation 

Attribute 
Model 1 Model 2 

Coef. T-Test Coef. T-Test 

Panel and dynamic coefficients         

Panel effect – Base alternative  1.062 41.69 1.576 41.04 

Panel effect – Increase -0.012 -1.82 -0.028 -1.03 

Panel effect – Decrease -0.003 -0.54 -0.018 -1.12 

Previous choice (𝜌) – – -0.895 -13.46 

First choice (𝛾) – – -0.204 -3.88 

Choice frequency (𝜏) – – -0.708 -15.78 

Model fit         

Number of households 7,080 – 7,051 – 

Number of observations 48,930 – 41,838 – 

Log-likelihood (0) -50,380 – -43,063 – 

Log-likelihood (k) -26,183 – -22,044 – 

Log-likelihood (*) -22,001 – -18,385 – 

Adjusted rho index (0) 0.562 – 0.571 – 

Adjusted rho index (k) 0.157 – 0.163 – 

 

Table 2 shows that there is a significant correlation between observations by the same household, 

as shown by the significant variances of the error term for the base alternative in both models. 

However, only Model 2 considers the trajectory of household choices over time (e.g., the dynamic 

effect). The three dynamic parameters are significant and have the expected signs as they all point 

to a stability of car ownership levels. In particular, the probability of purchasing an additional car 

in wave t is strongly reduced if the household already bought an additional vehicle in time t – 1. 

Similarly, the household is much less likely to discard a car if they already did so in the previous 

wave.  Households are also less likely to change their car ownership status if they have done so 

in the past, which is the main reason why both the choice frequency and the first-choice parame-

ters are negative and statistically significant in explaining choice over time. The dynamic effects 

appear to reflect the fact that the number of car households tends to be very stable over time, that 

changes are mostly induced by significant life events, and that they are unlikely to be repeated. 

4. CONCLUSIONS 

Using a highly detailed panel dataset from a nationally representative longitudinal survey, which 

followed a large sample over a period of 9 years, we estimated choice models to explain changes 

in car holdings in UK households. The results show that important life events related to household 

size and structure, employment status, income level changes, transport milestones, and other per-

sonal events, can help understanding the decision to increase or decrease vehicle holdings in 

households.  

 

Our models account for correlation between observations from the same household over time, 

and our preferred specification (Model 2), also considers dynamic effects. All these are significant 

in explaining car ownership level changes, and their sign confirms that households are relatively 

stable over time in terms of car holdings, and they are unlikely to change their car ownership 

status if they have previously done so. Although both modelling frameworks allow obtaining ro-

bust parameters to understand car ownership level change, the dynamic specification shows a 

slightly improved explanatory power.  
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It could be argued that life events can also trigger vehicle replacements, which involve substitu-

tions of fuel type, vehicle segment, and even make and model. In addition, a specific life event 

can also disrupt car use. However, the available dataset is not transport-specific and does not 

include these variables. In addition, the modelled events are likely not the only causes of changes 

in car ownership levels. Health-related issues, personal circumstances, and school relocations are 

examples of variables that cannot be sourced from the sample. Similarly, the decision of buying 

a car might also be influenced by personal beliefs, attitudes, and social norms, aspects that are 

absent from the survey. 

 

Our results confirm that plans directed at tackling the increase of the number of cars must not 

only consider economic measures, but also how to provide access to transport alternatives. The 

effect of residential location is telling in this respect, as the provision of better transport links 

might reduce the need of buying a car when moving to a rural setting. Increases in car ownership 

should not be considered as the only response to changes in the life cycle, or an inevitable conse-

quence of economic growth. The focus should be on offering more sustainable transport oppor-

tunities that allow satisfying these needs without relying on additional vehicles, especially con-

sidering their adverse environmental and social effects. 
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Providing a Revenue-forecasting Scheme to Relocate Groups of
Ride-Sourcing Drivers

Caio Vitor Beojone* and Nikolas Geroliminis

Urban Transport Systems Laboratory (LUTS), École Polytechnique Fédérale de Lausanne
(EPFL), Lausanne, CH-1015, Switzerland

Short summary

Proper positioning of ride-sourcing drivers may improve vacant travel times, waiting times, and
matching opportunities. Herein, we evaluate the potential repositioning response of drivers when
provided a guidance based on estimates of their earnings in a system offering ride-hailing (solo) and
ridesplitting (shared) rides. We develop a strategy that enumerates the best regional repositioning
destination based on the expected number of requests. A mixed continuous-discrete time Markov
Chain (MDCTMC) is developed to predict drivers activities and the revenues associated with
them. Our main findings indicate that the proposed approach is likely to retain drivers confidence
by improving their earnings compared to other drivers. We also show that it manages to decrease
the number of unserved requests compared to several state-of-art benchmarks and decreased the
deadheading.
Keywords: Macroscopic Fundamental Diagram; Markov chain; Shared mobility; Urban mobility.

1 Introduction

In a daily basis, geographical variations on the demand can create an imbalance between the
ride-sourcing service demand and supply of drivers to serve it, requiring actions to maintain a
satisfactory service quality. However, the fleets of this service are formed by drivers that are free
to make a series of decisions.
Therefore, the operator requires persuasion to relocate the available pool of drivers. Sadeghi &
Smith (2019), and Powell et al. (2011) incentivized drivers to decide on the location for the next
assignment. However, these strategies suffer from a reactive nature, mainly accounting for past
events. For instance, if an area faces recurrent losses of requests, customers will likely change their
travel option.
Other strategies emerge from the optimization of passenger-driver matching algorithms. These
strategies include Alonso-Mora et al. (2017) who sent empty vehicles to the location of recently
unsatisfied customers. Other examples can be found in Wang & Yang (2019) and references
therein. More recent studies, try to take actions before losing these passengers. Zhu et al. (2022)
uses coverage control to proactively position idle drivers. Although proactive, these approaches
assume full compliance, ignoring the individual objectives of human drivers.
From all the above, multiple challenges arise when positioning ride-sourcing currently available
drivers. The first challenge is to take the burden of identifying the most profitable options from
drivers with limited information, which only have access to limited information while accouting
for drivers’ future activities. A challenge remains in giving positions that minimizes unnecessary
overlapping in demand coverage among drivers. Finally, the strategy must ensure that compliant
drivers have an improved outcome to ensure compliance.
Herein, we evaluate the potential repositioning response of drivers when provided an estimate of
their earnings. The operator uses a mixed discrete-continuous time Markov chain (MDCTMC) to
estimate individual earnings for a given decision in the short-term. A microscopic process identifies
the positions and paths with the highest chances of matching. In a simulated study, we compared
the performance of guided drivers and unguided ones. We show that guided drivers have increased
revenues and are likely to follow the provided guidance in the long term. Finally, the proposed
strategy is compared to state-of-art strategies, achieving superior results in terms of lost requests
and deadheading.
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2 Identifying the best regional repositioning decisions

Assume that the objective of the repositioning strategy is to maximize the driver’s revenues by
maximizing the number of requests served during a short prediction horizon τ . Therefore, the
driver moves from the current position i to the potential position j for a significant portion of the
prediction. Then, we can summarize the expected number of requests a driver can cover Pij(t) in
this period as shown in Equations [1] and [2]. Finally, Equation [3] indicates the chosen path for
the driver.

Pij(t) =
∑
o∈R

∑
d∈R

P od
ij (t) (1)

P od
ij (t) =

∫ t+τ

t

podij (s) ds (2)

argmax
j

Pi = Pij(t) (3)

Where P od
ij (t) and podij (t) represent the number of requests and the demand rate with a regional

OD-pair od covered in the path between driver’s current location i and potential repositioning
destination j, respectively.
For the computation of the instantaneous covered demand rates podij (t) we consider: (i) geographical
distribution of demand, (ii) the associated path, and (iii) other drivers’ demand coverage. Figure
1 depicts these elements.

1.00 1.09 1.19
Demand rate (req. / h)

Street network
Demand nodes
Vehicle's position
Covered area
Repositioning path
Destination

Figure 1: Illustration of the computation of podij (t).

3 Providing drivers with repositioning guidance based on rev-
enue forecasting

While drivers decide about repositioning by themselves, they have incomplete information about
the system conditions. Therefore, it is more likely that the service provider, who concentrates
information about all drivers and demand can use the mobile application to supply drivers with
repositioning information. The idea is to present the driver with the expected best decisions
whenever he becomes available for relocation.

Predicting drivers’ activities

Since ride-sourcing drivers offer rides for a profit, one should expect their decisions aiming to
maximize it. Therefore, to convince drivers about the best decisions they should be presented with
the consequence of their choices on their earnings.
To predict the earnings, it must identify the driver’s activities and actions in the near-future.
Inspired by Beojone & Geroliminis (2022), consider a list of activities A, such that A ∈ A indicates
a driver’s current activity. A set R with R heterogeneous regions, i.e., R = {1, 2, ..., R} illustrate
the urban network area, while the pair od ∈ R2 depicts a driver’s current and destination regions.
Therefore, Aod ∈ K describes a driver current state in the set of all possible states. Setting the list
of activities A = {I,RH, S1, S2} assumes that a driver can execute the following four activities
completing the state-space with a size |K| = |A| · |R|2.
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• Vacant (I): a vacant driver available for passengers.

• Ride-hailing (RH): a busy driver assigned to a ride-hailing passenger.

• Single ridesplitting (S1): a driver assigned to a single ridesplitting passenger.

• Shared ridesplitting (S2): a driver assigned to two ridesplitting passengers.

Assuming that the time spent in each activity is random, a Markov chain can depict a driver’s
movements. If the operator has detailed information on the urban area, then it can accurately tell
the time a driver needs to reach different areas in their repositioning activities.
Based on the previous, we can break a driver’s activity predictions into three phases. In the first
phase (a), a continuous time Markov chain (CTMC) represents the movements of a driver before
reaching the subsequent region in the repositioning path. In the second phase (b), a discrete time
Markov chain (DTMC) represents the driver reaching the boundary of the current region. Lastly,
in the third phase (c), after a driver reached the destination region, he is once again free to get
any assignments in the network. Therefore, obtaining a construct referred as a mixed discrete-
continuous time Markov chain (MDCTMC) model (Ingolfsson, 2005).

Repositioning movements: phase (a)

The provided shortest path is summarized in the sequence of regions r = (r1, r2, ..., rn) the driver
will cover on the movement between regions o and d (r1 = o and rn = d). Therefore, the transitions
in phase (a) include those from the starting region o until the current region l. Equation [4] further
details the dynamics for state probabilities πK

ij (t).

π̇I
ij(t) = − πI

ij(t)
∑
s∈S

λs
ij(t) (4a)

π̇RH
ij (t) = − πRH

ij (t)µRH
ij (t) + πI

ij(t)λ
H
ij (t) (4b)

π̇S1
ij (t) = − πS1

ij

(
µS1
ij (t) +

∑
h∈r

βh
ijλ

S
ih(t)

)
+ πI

ij(t)λ
S1
ij (t) + πS2

ij (t)ϑiij(t)µ
S2
ij (4c)

π̇S2
ij (t) = − πS2

ij (t)µS2
ij (t) +

∑
h∈R

λ̂S2
ihj(t) (4d)

Where the base transitions can be described through the arrival process λs
od(t) for a service s ∈ S =

{H,S} (ride-hailing and ridesplitting), and the service process µK
od(t), in which driver completes a

ride or transfers to a neighboring region. Note that any µK
ij (t) and λs

ij(t) is only defined for j = d

and i ∈ r1, ...rn−1, otherwise they have a value of 0. βh
od represents the ratio of od trips that will

pass through region h. ϑiij indicates the probability of the driver in S2ij having a passenger to
deliver in i before proceeding to j with the other one.

Repositioning boundary: phase (b)

The DTMC of phase (b) is depicted in Equation [5], which is supported by Equations [6] and [7]
detailing the transition matrix. Note that the only change from the end of phase (a) occurs from
state Iid to Ild, whereas the remaining states keep the same probabilities. Since the travel time to
reach region l is assumed deterministic, the transition occurs with certainty.

π(t+) = B(i, d, l)π(t−) (5)

B(i, d, l) =
[
bKij (i, d, l)

]
∈ B|K|×|K| (6)

bKij (i, d, l) =

{
1, for Kij = Ild, RHid, S1id, S2id, S2ih

0, otherwise
, (7)

Where t+ and t− refer to the instant right after and right before time t. B(i, d, l) is the transition
matrix representing the DTMC. K is the state space of the model, and |K| is its cardinality.
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After repositioning: phase (c)

Once the driver reaches the area intended in the repositioning decision, it becomes free to answer
any requests and a CTMC (different from phase(a)) depicts its activities. Figure 2 illustrates the
state space of a single region and the possible transitions. In the figure, regions ‘k’ and ‘h’ can be
a set of regions immediately before or after region ‘o,’ respectively.

Region o
IooRHoo S1oo S2oo

IodRHod S1od S2od

From Regions k
into Region o

Iko

Ikd

RHko

RHkd

S1ko

S1kd

S2ko

S2kd

From Region o
into Regions l IldRHld S1ld S2ld

Figure 2: General state transition structure focusing on a region o and the inflows and
outflows related to this region.

Therefore, we can describe the CTMC with the respective Equation 8, where we estimate the state
probability πK

od(t). Table 1 provides the entries for each state in the CTMC.

π̇K
od(t) = − Exits + Entrances (8)

State Exits Entrances

Ioo πI
od(t)

∑
s∈S

∑
h∈R

λs
oh(t) πRH

oo µRH
oo (t) + πS1

oo (t)µ
S1
oo (t)

Iod πI
od(t)

∑
s∈S

λs
od(t)

∑
h∈R

µ̂I
hd(t)

RHod πRH
od (t)µRH

od (t)
∑
h∈R

πI
oh(t)λ

H
od(t) +

∑
h∈Ro

µ̂RH
hod(t)

S1od πS1
od (t)µ

S1
od (t) + λ̂S2

ohd(t) + λ̂S2
odh(t)

∑
h∈R

πI
oh(t)λ

S
od(t) +

∑
h∈Ro

µ̂S1
hod(t) + µ̂S2

od (t)

S2od πS2
od (t)µ

S2
od (t)

∑
h∈R

λ̂S2
ohd(t) +

∑
h∈Ro

µ̂S2
hod(t)

Table 1: Summary of state transitions in the Markov Chain model.

We have to detail the entries of the coefficients for ‘Exits’ and ‘Entrances,’ in Equation [8]. To
shorten the description in Table 1, we aggregated some particular transitions explained in Equations
[9]–[13]. In particular, Equation [9] illustrates that a driver can use different paths on his way to the
destination. Equations [10] and [11] illustrate that shared ridesplitting drivers might complete a
ride (Equation [10]) before transferring (Equation [11]). Finally, Equations [12] and [13] illustrate
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that new shared ridesplitting rides can have different delivery order, such as a last-in-first-out
(LIFO) order (Equation [12]) or a first-in-first-out (FIFO) order (Equation [13]).

µ̂K
hod(t) = πK

hd(t)·θhod ·µK
hd(t) K ̸= S2 (9)

µ̂S2
od (t) = πS2

od (t)·ϑood(t)·µS2
od (t) (10)

µ̂S2
hod(t) = πS2

hd (t)·(1− ϑood(t))·θhod ·µS2
hd(t) (11)

λ̂S2
ohd(t) = πS1

od (t)·βh
od ·λS

oh(t) (12)

λ̂S2
odh(t) = πS1

od (t)·βd
oh ·λS

oh(t) h ̸= d (13)

Where, θhod ∈ [0, 1] distributes transfer flows over its neighboring regions such that the equality∑
h∈Ro

θohd = 1 holds; ϑood becomes the fraction of shared trips passing through o that will deliver
a passenger before continuing to d; and βh

od (βd
oh) represents the ratio of od (oh) trips that will

pass through region h (d).
Note that there are two forms of transition processes, generally represented by λs

od(t) and µK
od(t)

for the passenger assignment rate and trip completion/transfer rates, respectively. These are
translations of the macroscopic transitions in Beojone & Geroliminis (2022) to the individual level.

Estimating drivers’ expected revenues

Drivers’ earnings come from the fares passengers pay when booking rides, which are composed by
a couple of elements. Firstly, there is a fixed booking fee fs,B

od relative to the reservation of a ride.
Secondly, there is a travel fee relative to the trip distance fs,T

od . The platform keeps a commission
κ for this fare and returns to the drivers the remaining part.
From the MDCTMC, one can approximate the revenue generation by means of a continuous rate.
Therefore, a driver receives a part of the fees proportionally to the number of received assignments
during the evaluation and to the kilometers traveled in busy states. Equation [14] summarizes the
expected revenue after commission κ. However, it requires us to break the gross revenue into its
minor components throughout Equations [15] – [21].

E[Rnet] = (1− κ)E[R] (14)

E[R] = E[RB +RT ] = E[RB ] + E[RT ] (15)

E[RB ] = E

[∑
s

Rs,B

]
=
∑
s

E
[
Rs,B

]
(16)

E[Rs,B ] = E

[∑
od∈R

Rs,B
od

]
=
∑

od∈R2

E
[
Rs,B

od

]
(17)

E[Rs,B
od ] = E

[
fs,B
od ns,B

od

]
= fs,B

od E
[
ns,B
od

]
(18)

E[RT ] = E

[∑
s

Rs,T

]
=
∑
s

E
[
Rs,T

]
(19)

E[Rs,T ] = E

[ ∑
od∈R2

Rs,T
od

]
=
∑

od∈R2

E
[
Rs,T

od

]
(20)

E[Rs,T
od ] = E

[
fs,T
od ds,Tod

]
= fs,T

od E
[
ds,Tod

]
(21)

Where ns,B
od is the number of booked rides for service s from region o to region d; and ds,Tod is the

passenger-distance traveled for a service s from region o to region d.
Finally, Equations [22] and [23] estimate the remaining expected number of booked rides and
passenger-distance travelled based on the instantaneous probabilities from the MDCTMC. In sum-
mary, these estimates are functions of a starting time t0 and an evaluation period τ for a particular
choice γ.
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E[ns,B
od (t0, τ |γ)] =

∫ t0+τ

t0

λs
od(t)

∑
K∈Ks

B

πK
od(t) dt Ks

B =

{
{I,RP}, if s = H,

{I,RP, S1}, if s = S
(22)

E[ds,Tod (t0, τ |γ)] =
∫ t0+τ

t0

vo(t)
∑

K∈Ks
T

nK
p πK

od(t) dt Ks
T =

{
{RH}, if s = H,

{S1, S2}, if s = S
(23)

Where nK
p is the number of assigned passengers to a driver in activity K. For states RH and S1,

nK
p = 1, while for S2 have nS2

p = 2.

4 Computational results

In this prototype application, we represented the central business district of Shenzhen, including
parts of the Luohu and Futian Districts. The considered network consists of 1’858 intersections
connected by 2’013 road segments. The experiment used a simulator based on Beojone & Gerolim-
inis (2021, 2022), using Floy-Warshall algorithm to compute shortest paths and a Speed-MFD to
estimate average traveling speeds. A network-weighted k-mean algorithm separated the area into
three distinct regions and the Speed-MFD data (Figure 3).

Streets
Region 1
Region 2
Region 3

0 1 2 3

Accumulation (veh)       104

0

10

20

30

40

S
pe

ed
 (

km
/h

)

Figure 3: Settings of the experiments. (Left) urban area map and regions with respective
centroids of the k-mean problems. (Right) Regional speed-MFD.

We assume a non-homogeneous Poisson arrival process for all travelers in the area to highlight the
effects of imbalanced demand. Note that around 85% of arriving travelers use private vehicles,
while the remaining use one of the ride-sourcing service options.

Sensitivity analysis

The first analysis of the repositioning strategy focused on the sensitivity to the fraction of drivers
receiving the repositioning guidance. One can correlate such scenarios with the operator selecting a
groups of drivers for a “loyalty program”, and as part of the benefits, these drivers receive improved
guidance in their search for assignments. In the direction of this parallel, we refer to drivers which
receive guidance as ‘guided’ ones, whereas the others are referred as ‘unguided’.
We assume a logit decision process, where the utility of each option is depicted exclusively by
the revenue it generates to a ‘guided’ driver. Finally, we define that ‘unguided’ drivers look for
the region with the highest demand per driver rate (similar to a ‘high demand’ flag in current
ride-sourcing operations).
Additionally, we evaluated the results for fleet sizes of 2000, 2500 and 3000 active drivers in ride-
sourcing services. We ran cases with 0%, 25%, 50%, 75% and 100% of drivers covered in the
‘loyalty program’. As final parameters, we considered booking fares of US$2.20 and US$2.00, and
traveling fares of US$1.00 and US$0.80 for ride-hailing and ridesplitting, respectively.
Since the proposed repositioning framework must persuade ‘guided’ drivers, their outcomes should
be higher than those of ‘unguided’ drivers. Figure 4 shows the average revenues of both groups
of drivers at different guidance rates (fraction of the fleet that receives repositioning guidance
information). Firstly, average revenues increased compared to a scenario where drivers never
relocate in all cases with guidance (the exception occurs at 0% guidance rate). We must point out
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that guided drivers consistently had higher revenues than non-compliant ones. It highlights that
the proposed framework captured the possibility of areas with lower demand being more profitable.
However, it is interesting to observe that as the operator expands the number of ‘guided’ drivers
(more than 75% of the fleet), the combined average revenue slightly decreases.
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Figure 4: Average revenues of ‘guided’ and ‘unguided’ drivers following by a combination
of these in scenarios with different penetration rates of the loyalty program, compared to
the base ‘No-repositioning’ case.

It is interesting to take a closer look at individual revenues and understand their distribution.
Figure 5 shows the histograms of the revenues for ‘unguided’ and ‘guided’ drivers in the base
‘No-repositioning’ scenario and one with 25% guidance ratio for a service fleet of 2000 drivers.
With a left skewed distribution, no repositioning scenario had lower average revenue average. In
the scenario with 25% of ‘guided drivers, the distribution of revenues was unimodal with the
average close to the mode, creating a clear distinction between the groups. The average revenue
of compliant drivers was higher than the revenue of 97% of non-compliant ones.
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Figure 5: Histograms of revenues in two separated instances with 2000 drivers.

Benchmark comparisons

As argued earlier, other repositioning strategies exist to improve service quality but they can fall
short on their reactive nature and/or full compliance assumptions. Here, we position the proposed
strategy in comparison with other benchmark strategies. In addition to the ‘No-repositioning’ base
case and the ‘Proposed’ strategy, we evaluate the strategies named below:

1. ‘Past-revenue’: Provides a portion of ‘guided’ drivers with an average revenue estimation
accounting exclusively for past events in each area;

2. ‘Past-loss’: Dispatches the closest idle driver to the area of a recently lost request (Alonso-
Mora et al., 2017);

3. ‘Coverage’: Performs optimal coverage control, distributing idle drivers according to the
demand distribution in the area (Zhu et al., 2022);

7



It is important to highlight that the ‘Past-revenue’ strategy has a reactive nature but allows drivers
to decide, whereas ‘Past-loss’ strategy is reactive and assumes full compliance with the instructions.
Foremost, the objective of repositioning vehicles is to improve the service quality, especially by
making the service available in previously uncovered areas. Figure 6 compares the number of
unattended service requests (abandonments) for all evaluated strategies. Firstly, when no drivers
receive guidance and base their decisions on ‘high-demand areas’ information (0% guidance) it,
actually, worsened the service increasing abandonments compared to the base case. Reactive
strategies (‘Past revenues’ and ‘Past losses’) performed poorly, with little to no improvement
compared to the base case. The most interesting point goes to comparison between the ‘Proposed’
and the ‘Coverage’ approaches. Although optimized, the ‘Coverage’ approach was outperformed
by the ‘Proposed’ approach with a 50% guidance ratio, decreasing abandonments by 61% for a
fleet of 2000 vehicles. Nevertheless, there are small increase in abandonments if guidance ratio
is higher than 50%, which highlights the limitations the individualized decision-making towards
service quality.
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Figure 6: Summary of passenger abandonment results for all compared strategies.

In a different direction, most attention to ride-sourcing effect over congestion goes to their dead-
heading. In Figure 7, we summarize the deadhead accumulated for each strategy for the same tested
cases with 2000 vehicles and 50% guidance ratio. The only strategy to increase it, both in the
unassigned and pick-up activities, is the ‘Past-revenues’ strategy. In the ‘Proposed’ approach, the
unassigned deadhead is minimized but the ‘Coverage’ approach minimized the ‘Pick-up’ deadhead.
It highlights two distinct points about of these strategies. First, while the ‘Proposed’ approach
maximizes the chances of a drivers being assigned, the driver only needs to be as close as passen-
gers’ waiting time tolerance accepts. Second, ‘Coverage’ approach had minimal ‘Pick-up’ deadhead
because it “mimics” the expected demand distribution.
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Figure 7: Summary of the deadhead associated with each repositioning strategy, separated
into unassigned and pick-up kilometrages. Scenario with 2000 drivers and 50% of guidance
rate in the ‘Proposed’ and ‘Past revenues’ methods.
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5 Conclusions

In this paper we proposed a relocation strategy for ride-sourcing drivers by providing them with
an estimate of their earnings. Therefore, we do not assume drivers unrestricted compliance to the
provided guidance and, thus, they are free to make the decision that they expect will maximize
their earnings. The first step in the proposed approach identifies the locations that are expected to
maximize the chances of a driver getting a match in the forecast horizon. Then, a MDCTMC model
is developed to capture the activities a driver will perform depending on his/her decision, which is
later translated into an estimate of the driver’s earnings. We showed that the proposed approach
is likely to retain drivers confidence by improving their earnings compared to other drivers if the
operator selects only a fraction of active drivers to provide guidance. Besides improving earnings,
we show that the proposed approach manages to decrease the number of unserved requests in the
system compared to several state-of-art benchmarks. It increased vehicle occupancy, and decreased
the deadheading.
The findings provide a path for testing the impacts of different regulatory schemes in such systems.
The provided guidance could further benefit drivers and unserved passengers, if it comes paired with
other mechanisms to foster movements to poorly covered areas. It could include lower commissions
in these areas, or other price changes to make it more attractive to drivers. Other research directions
include developing optimal control to reposition without the decision-making process by drivers,
which would be more realistic in cases with autonomous vehicles but it would also serve as upper
(lower) bound for performance measurements and evaluation.
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Abstract 

The selection of transportation modes has been a popular topic in transportation planning, 

and it has been studied for several decades using random utility optimization. However, recent 

developments in machine learning techniques have opened up new opportunities for accurate 

prediction. In this study, we used data from the Chicago including activity and travel records for 

12,000 households in a 24-hour period. Our objective was to develop travel mode choice models 

for commute trips through estimating a multinomial logit model to identify the factors that 

influence people's choices of commute travel mode. Notably, our study is the first in Chicago to 

consider seven travel modes, including walking, biking, walking to transit, driving to transit, auto 

driver, auto passenger, and TNC. Additionally, we employed a machine learning classifier to 

model the mode choice problem and compared its performance with the econometric model.  

 

Introduction 

Investigating the contributing factors in forming people’s decision to select a travel mode 

and ultimately finding accurate and reliable predictions for the share of each mode in the network 

is critical to transportation planning and development (Ortúzar and Willumsen 2011). 

Traditionally, the most widely employed approach to address the mode choice problem has been 

based on the concept of Random Utility Maximization (RUM) which is usually formulated through 

the multinomial logit models (MNL) (McFadden 1973). The simple parameter estimation 

procedure offered by the closed-form mathematical structure of the MNL models has resulted in 

widespread adoption of them in travel behavior studies (Hagenauer and Helbich 2017). Moreover, 

mailto:Mjavad2@uic.edu
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the MNL models can shed light on the contribution of each explanatory variable on the dependent 

variable (i.e., the outcome choice) by providing the marginal effect values which are very useful, 

especially for policy implications and analysis. More recently and especially in the past decade, 

the emergence of big data and the computational power and insights brought by machine learning 

(ML) techniques have led to incorporating data-driven approaches into travel demand modeling. 

ML models act as powerful classifiers with high accuracy power. Instead of using a prespecified 

utility function, ML techniques rely on the relationships between the explanatory variables and the 

outcome class (i.e., the mode choice) and are able to capture complex and nonlinear relationships 

(Hillel et al. 2021). However, ML techniques are mostly considered black box tools, meaning they 

provide their predictions without giving enough information on how they have reached such 

results. 

In this study, we develop travel mode choice models for commute trips in Chicago by 

employing a dataset from the Chicago Metropolitan Agency for Planning (CMAP) travel tracker 

survey conducted in 2018-19. The motivation for this study was to estimate a mode choice module 

for POLARIS, which is an agent-based modeling framework for integrated travel demand and 

network simulations in Chicago metropolitan area (Auld et al. 2016). One of our contributions is 

to estimate a mode choice model through the inclusion of emerging modes such as TNC by using 

the most updated travel survey available in Chicago. To do so, we use a multinomial logit model 

as well as a machine learning classifier to develop models that represent the choice between several 

modal options, including Walk, Bike, Auto driver, Auto passenger, Walk to public transit, Drive 

to public transit (i.e., park & ride) and TNCs (e.g., Uber, and Lyft). Moreover, using the MNL 

model, we calculate the value of time, which is a  critical policy variable for transportation-related 

decisions for auto, transit, and TNC modes. Finally, we will compare the results of our econometric 

and machine-learning mode choice models.            

 

• Methodology 

In this study, we utilized two approaches to address the mode choice problem. Firstly, we 

employed the well-established multinomial logit (MNL) model (i.e., econometric analysis) to 

characterize the underlying factors that affect the decision of people in selecting commute travel 

modes in Chicago. Secondly, we utilized Gradient Boosting as a classification tools. 

The Gradient Boosting method is an advanced version of decision-tree-based models, 

firstly developed by Friedman (2001). This method boosts the accuracy of a given learning 

algorithm by fitting a set of models. As a result, the ensemble of models outperforms the single 

model. The Gradient Boosting model, firstly, fits a simple decision tree to the train data, which 

usually has a poor fitting performance. Subsequently, it trains another decision tree to improve the 

error term (i.e., the difference between prediction and observation) in the previous tree. This 

process will continue to iterate until it gets to the minimized error term. 

• Results and Discussion 
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• Data 

The main data source for this study was obtained from a comprehensive travel survey 

conducted by Chicago metropolitan Agency for Planning (CMAP). This activity-based survey was 

implemented between August 2018 and April 2019 and includes the activity and travel information 

of 12,391 households on an assigned travel day. Considering the significant impact of work trips 

on the transportation system and traffic flow, in this study, we are only focused on mandatory 

commute trips to model the mode choice of individuals. After the cleaning process, the final dataset 

for commute trips includes 11442 trips that are used for the modeling steps of this study. We 

considered seven travel modes including, walking, biking, transit, park and ride (i.e., drive to 

transit), auto driver, auto passenger, and TNC (e.g., Uber, and Lyft) in the choice set. With almost 

36% share, the auto driver had the highest rank among all other modes in commute trips in 

Chicago. 

• Multinomial Logit Model 

Table 1 presents the estimation results for the multinomial logit model for seven commute 

travel modes. In order to validate our econometric mode choice approach, we calculated the scalar 

measures of fit, i.e., McFadden's R2, for the estimated multinomial logit model which turned out 

to be 0.22. As can be seen in Table 2, the travel times corresponding to each mode are significantly 

negative in all utility functions which is consistent with the literature on mode choice modeling. 

People who possess a graduate degree are more likely to use active modes (i.e., walking or biking) 

for their commute trips. In the auto driver mode, the travel cost (e.g., the cost of gasoline) and the 

parking cost are two significant factors that negatively affect the utility of this mode. Moreover, 

people who own their homes and people with a higher number of vehicles in the household are 

more likely to use auto driver mode for commuting. This finding makes sense and can act as a 

proxy for the wealth of individuals.  

 

Table 1. the results of the estimation of the MNL mode choice model for commute trips. 

  

Variable 
Walk Bike 

Auto 

driver 

Auto 

Passenger 
 Transit 

Park & 

ride 
TNC 

Constant 4.018*** REF1 3.229*** 2.086*** 4.174*** 2.056*** -0.230 

Walk Time -0.140**             

Graduate 

Degree 

2.433***  2.100***           

Flexible Work 1.045***             

Bike Time   -0.073*            

# Household 

Vehicle 

  -0.179** 0.385***       -0.503** 

Employment   1.094***         2.624*** 

Auto Travel 

Time 

    -.0332** -.0332***     -0.033** 

Auto Cost     -.126*** -.126***       

Homeownership     .477***         

Parking Cost     -.00101*         

Transit Time         -0.0188*     

Transit Cost         -0.126**     
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Transit Access 

Time  

        -0.076**     

Transit Egress 

time 

        -.077***     

Under 18         -2.586**     

Park & Ride 

Time 

          -0.018**   

Park & Ride 

Cost 

          -0.126**   

TNC Wait Time             -0.190** 

TNC Cost             -0.101** 

Note: 1) REF means the reference point. 

* Significant at 90%, ** Significant at 95%, *** Significant at 99%.  

Regarding the transit mode, the time and cost of the travel as well as the access/egress time 

revealed to be the significant determining factors. Moreover, travel cost and time are the only 

significant variables in the utility of the park & ride mode. One important finding is the 

significance of the TNC wait time in our MNL model suggesting in-vehicle travel time and travel 

cost are not the only alternative-specific features that influence the choice of TNCs. This finding 

can have policy implications, especially for companies such as Uber and Lyft to take measures 

that can lead to lower waiting times and increase the share of TNC mode in people's commute 

trips. 

Another piece of information that can be extracted from table 2 is the value of times. The 

value of time (VOT) is the marginal substitution of the time associated with the cost of each mode 

(Abdel-Aal 2017). According to table 1, the VOT for auto modes (both auto driver and auto 

passenger) is $ 15.8 per hr., for transit modes (both transit and park & ride) is $ 8.9 per hr., and for 

TNC is $ 19.7 per hr. These findings are consistent with the literature (Lam and Small 2001) given 

that it is expected for TNC to have higher VOT compared to auto and transit modes, and for transit 

mode to have the lowest among the specified modes. 

 

• Machine learning model 

The entire dataset has 11,441 records with 68 explanatory variables and a target variable 

(i.e., mode choice class). Since some key variables contain a high percent of missing values (e.g., 

transit time with 44% missing), complete case analysis leads to loss of information. This issue is 

not the case for MNL model since it only needs features to be available in the corresponding utility 

functions. For instance, access time to transit is only available for trips that have transit as an 

available option in the choice set (please note that the available choice set is not the same for all 

observations). To tackle this issue in Machine Learning methods, we employed imputation by K-

nearest Neighbors. Among different K values, K=10 (i.e., 10 neighbors) led to better imputation 

results in terms of bias reduction. 

To train the models, we split the dataset into 80% train and 20% test datasets. Moreover, 

we employed 5-fold cross validation to calibrate the hyperparameters of the models.  
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2 shows the accuracy of the individual and final models over 5-fold train, and test datasets, 

respectively. As shown, the fluctuation (i.e., coefficient of variation) of the accuracy of the 

Gradient Boosting model on train data is marginal implying a consistent performance. The model 

has a mean accuracy of 0.877 on train data. Although the training datasets of the MNL and 

Machine Learning model are different, the R2 statistics can reflect the train accuracy of the MNL 

model. According to Table , the R2 of the MNL is 0.22 implying the poor performance of the MNL 

compared to the Gradient Boosting model. This difference highlights the advantage of the machine 

learning models over econometric models in terms of performance.  

Table 2. Accuracy of Employed Methods on Train (5-fold Cross Validation) and Test Data 

    Gradient Boosting 

Train Data Accuracy 

 (Cross Validation)  

Fold 1 0.894 

Fold 2 0.898 

Fold 3 0.891 

Fold 4 0.898 

Fold 5 0.898 

Mean 

(Coeff. of Variation) 

0.896 

(0.0036) 

Test Data Accuracy Accuracy 0.897 

 

To understand the pattern of misclassification among classes, we used confusion matrix. 

Confusion matrix constitutes the frequency table showing the distribution of the predicted and 

observed (true) classes for the test data instances. Therefore, it provides a validation of a 

classification model with respect to ground-truth information. 1 illustrates the confusion matrices 

for the Gradient Boosting model. In this figure, the cell numbers represent the percentage of each 

observed class falling into a predicted class. Therefore, the summation of the cells in each row is 

1. Besides, this percentage is also represented by color intensity. Based on 1, in general, our ML 

model has a good performance in class prediction.  

In our employed dataset, bike, park & ride, and TNC classes are the minority classes with 

the associated frequencies between 1% to 3% from whole data while the other classes have a 

frequency over 17%. Predicting minority classes is one of the challenges of ML models. According 

to Figure 1, the Gradient Boosting model can correctly predict 69% of instances with bike, 46% 

of park & ride, and 22% of TNCs. This pattern pertains to the low accuracy of the machine learning 

models in predicting minority classes in unbalanced data. In these cases, the MNL models can be 

a good alternative to predict the minority classes, especially noting the benefits of the MNL model 

in interpretation and policy evaluation. 
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Figure 1: Confusion Matrix of Gradient Boosting Model 

As a remarkable advantage, Gradient Boosting provides the feature importance facilitating 

to understand the individual contribution of the explanatory variables. In figure 2, feature 

importance of top 16 variables is illustrated. As shown, among all variables, Auto Travel Time has 

the most significant effect on the target variable (i.e., mode choice) with the feature importance of 

0.164. Furthermore, Auto Availability, Walk Time, Number of Passengers, and Transit Cost are 

the other significant variables affecting individuals’ mode choice. As shown, mainly time and cost 

attributes constitute the important factors affecting individuals’ mode choice in the Gradient 

Boosting model which is consistent with the results of the MNL. Most of the significant variables 

that appeared in the feature importance are also identified by the MNL model except for Auto 

Availability, # of Auto Passengers, Destination in CBD. This trend confirms that although MNL 

has a poor prediction performance, it can detect the most significant attributes affecting the target 

variable. 
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Figure 1: Feature Importance of Gradient Boosting Model 

• Discussion 

In this study, we developed travel mode choice models for commute trips in Chicago by employing 

a dataset from CMAP travel survey conducted in 2018-19. We considered seven travel modes 

including walking, biking, walking to transit, driving to transit (i.e., park and ride), auto driver, 

auto passenger, and TNC in the choice set. We employed econometric (i.e., Multinomial Logit 

Model) and machine learning (i.e., Gradient Boosting) techniques to address the mode choice 

problem. According to our results, travel times and costs are the most contributing factors in 

forming individuals’ decision to select a mode. In comparison, the MNL framework did not require 

imputing all the missing values due to the different utilities associated with the different choice 

sets defined for each observation. Moreover, consistent with the previous literature, we also 

corroborated the higher accuracy of ML techniques compared to the MNL model. Nonetheless, 

the accuracy power of the ML model was not equal in predicting all outcome classes. In general, 

in the presence of unbalanced data, the precision of our ML models to predict the minority classes 

decreased. The MNL model provided useful and interpretable alternative-specific variables related 

to the minority classes (such as the TNC wait time) that are very valuable for policy implications.  
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Short summary

Shared Mobility Services (SMS), e.g., Demand-Responsive Transit (DRT) or ride-sharing, can
improve mobility in low-density areas, often poorly served by conventional Public Transport (PT).
Such improvement is mostly quantified via basic performance indicators, like wait or travel time.
However, accessibility indicators, measuring the ease of reaching surrounding opportunities (e.g.,
jobs, schools, shops, ...), would be a more comprehensive indicator. To date, no method exists
to quantify the accessibility of SMS based on empirical measurements. Indeed, accessibility is
generally computed on graph representations of PT networks, but SMS are dynamic and do not
follow a predefined network. We propose a spatial-temporal statistical method that summarizes
observed SMS trips in a graph on which accessibility can be computed. We apply our method to
a MATSim simulation study concerning DRT in Paris-Saclay.
Keywords: Accessibility; Public Transport; Shared Mobility;

1 Introduction

Location-based accessibility measures the ease of reaching surrounding opportunities via transport
(Miller (2020)). Accessibility provided by conventional PT is generally poor in low-demand areas,
e.g., suburbs (Badeanlou et al. (2022)), because a high frequency and high coverage service in such
areas would imply an unaffordable cost per passenger. Poor PT accessibility in the suburbs makes
them car-dependent, which prevents urban regions from being sustainable ((Saeidizand et al., 2022,
Section 2.2)). SMS, e.g., Demand-Responsive Transit (DRT), ride-sharing, carpooling, car-sharing,
are potentially more efficient than conventional PT in the suburbs (Calabrò (2023)). However, their
current deployment is commonly led by private companies targeting profit maximization. This may
turn SMS into additional source of congestion and pollution (Henao & Marshall (2019); Erhardt
et al. (2019)).
We believe that SMS deployment should be overseen by transport authorities under the logic of
accessibility improvement. To this aim, a method is needed, able to compute impact of SMS on
accessibility, based on empirically observed trips. To the best of our knowledge, this paper is
the first to propose such a method. Chandra et al. (2013) study how DRT improves connection
to conventioal PT stops, without considering the impact on accessing opportunities. Nahmias-
Biran et al. (2021) and Zhou et al. (2021) calculate based accessibility from Autonomous Mobility
on Demand, based on utilities perceived by agents within simulation. By contrast, our method
computes accessibility solely based on observed SMS trip times, either from the real world or
simulation. A first attempt of integrating SMS into the graph-based description of PT is done
by Le Hasif et al. (2022). However, they use analytic models to model SMS performance and
thus fail to give real insights adapted to the areas under study. Our effort consists instead of
estimating accessibility from empirical observations via spatial-temporal statistics. General Transit
Feed System (GTFS) is the standard data format for PT schedules. Recently, the GTFS-Flex
extension allows also describing SMS (Craig & Shippy (2020)). Although uur estimates could thus
be fed into GTFS-Flex data, for the sake of simplicity, we use plain GTFS instead.
Our contribution consists in developing a spatial-temporal statistical pipeline to transform SMS
trip data observations in a graph representation, on top of which well-established accessibility

1



Figure 1: Time-expanded graph, representing two trips on line A and one trip on line B,
as well as a potential change.

computation can be performed. The observations that can be taken as input might come from
real measurements or from simulation. This paper’s observations come from a MATSim simulation
study of DRT deployment in Paris Saclay, from Chouaki et al. (2023).
By providing a first method to compute the accessibility of SMS on empirical observations, this
work can contribute to a better understanding of the potential of SMS and guide their future
deployment.

2 Methodology

Accessibility

As in (Biazzo et al. (2019)), the study area is tessellated in hexagons with a grid step of 1km,
whose centers u ∈ R2 are called centroids and denoted with set C ⊆ R2. Each hexagon contains
a certain quantity of opportunities, e.g., jobs, places at school, people. With Ou we denote the
opportunities in the hexagon around u and with T (u,u′, t) the time it takes to arrive in u′, when
departing from u at time t. As in Miller (2020), accessibility is the amount of opportunities that
one can reach departing from u at time of day t within time τ :

acc(u) ≡
∑

u′∈C(u,t)
Ou′ . (1)

C(u, t) = {u ∈ C|T (u,u′, t) ≤ τ} is the set of centroids reachable within τ . By improving PT, such
set can be enlarged such as to consent to reach more opportunities. In this work, the opportunities
are the number of people (residents) that can be reached. T (u,u′, t) is always computed on a
graph representation of the transport network. However, SMS are not based on any network. Our
effort is thus to build a graph representation of SMS, despite the absence of a network model.

Time-Expanded Graph Model of conventional PT

Inspired by Fortin et al. (2016) and Le Hasif et al. (2022), we model PT as a time-expanded graph G,
compatible with the GTFS format. The nodes of G are stoptimes. Stoptime (s, t) indicates the
arrival of a PT vehicle at stop s ∈ R2 (modeled as a point in the plane) at time t ∈ R. Different
trips on a certain line are represented as sequences of different stoptimes, as in Figure 1, as well
as potential line change, within 15 minutes walk, assuming 5 Km/h walk speed, if it is possible to
arrive at the new line on time. When a user departs at time t0 from location x for location x′,
they can simply walk (but no more than the maximum walk time). Or they can walk to s, board a
PT vehicle at t (corresponding to a stoptime (s, t), use PT up to a stoptime (s′, t′) and from there
walk to x′. The arrival time at x′ will be t′ plus the time for walking. Users are assumed to always
choose the path with the earliest arrival time. Path computation is performed within CityChrone
(Biazzo et al. (2019)). No capacity constraints are considered.

Integration of shared mobility into the time-expanded graph

SMS is assumed to provide a feeder service to traditional PT. In a feeder area F(s) ⊆ R2 around
some selected stops s (which we also call hubs), SMS provide connection to and from s. The set
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Figure 2: Hub and virtual trips provided by SMS

of centroids in such an area is C(s) = C ∩F(s). In this section, we will focus on access trips (from
a location to a PT stop) performed via SMS. The same reasoning applies to egress trips, mutatis
mutandis. We assume to have a set O of observations. Each observation i ∈ O corresponds to an
access trip and contains:

• Time of day ti ∈ R when the user requested a trip to the flexible service

• Location xi ∈ R2 where the user is at time ti

• Station si where the user wants to arrive via the SMS feeder service

• Duration wi indicating the wait time before the user is served: it can be the time passed
between the time of request and the time of pickup from a vehicle, in case of ride-sharing,
DRT or carpooling; it can be the time to wait until a vehicle is available at the docks in a
car-sharing or bike-sharing system.

• Travel time yi: time spent in the SMS vehicle to arrive at s.

We interpret yi and wi as realizations of spatial-temporal random fields (Handcock & Wallis
(1994)): for any time of day t ∈ R and physical location x ∈ F(s), random variables W s(x, t), Y s(x, t)
represent the times experienced by a user appearing in t and x, for any stop s. In the following
subsection we will compute estimations ŵs(u, t), ŷs(u, t) of expected values E[W s(u, t)],E[Y s(u, t)]
at centroids u ∈ C(s).
To integrate SMS into PT graph G, SMS are represented as a set of “virtual” trips, running between
centroid u ∈ C(s) and hub s (Figure 2). Each trip has travel time ŷs(u, t). The access connection
between centroid u and hub s is modeled as a sequence of trips, corresponding to stop times (u, tj),
for different values of departure time. We thus have to compute the list of such departure times.
To do so, we interpret the inter-departure time between sich trips as a random field Hs(x, t), which
represent a “virtual” headway. The value of such an interval in x and t is also a spatial-temporal
random field. We use the common approximation Hs(x, t) = 2 · W s(x, t), idealizing the SMS
headway as regular so as to apply (2.4.28) from Cascetta (2009). Therefore, we separate stoptimes
by 2 ·ws(u, t). More precisely, the stoptimes corresponding to access trips departing from centroid
u to hub s are:

(u, t0),

(u, tj) where tj = tj−1 + 2 · ŵs(u, tj−1)for j = 1, 2, until 11:59 pm, (2)
(u, tj) where tj = tj+1 − 2 · ŵs(u, tj+1)for j = −1,−2, until 00:00 am.

Correspondent stoptimes are added to represent the arrival of access trips (s, tj + ŷs(u, tj)) and
an edge between each departure stoptime and the respective arrival stoptime is added. A similar
process is applied for egress trips. At the end of the described process, time-expanded graph G
is enriched with stoptimes and edges representing SMS trips. Having done so, it is possible to
reuse accessibility calculation methods for time-expanded graphs, such as CityChrone Biazzo et al.
(2019), with no modifications required.

Estimation of Waiting and Travel Times

We now explain how we construct estimation ŵs(u, t) used in the previous subsection, for access
SMS trips only. Similar reasoning can be applied to ŷs(u, t) and egress trips. We assume random
field W s(x, t) is approximately temporally stationary within each timeslot:

W s(x, t) = W s(x, tk), ∀x ∈ R2,∀t ∈ [tk, tk+1[,∀ station s (3)
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Figure 3: Implementation pipeline. CityChrone is from Biazzo et al. (2019).

For any timeslot, we thus just need to find estimation ŵs
tk
(u) of the expected values of random

field W s
tk
(x) ≡ W s(x, tk). First the observations O are projected onto time-slot [tk, tk+1]:

Os
tk

≡ {observation i = (xi, wi, yi)|i ∈ O, t ∈ [tk, tk+1[, i is related to an access trip to s} (4)

Estimation ŵs
tk
(u) is computed by Ordinary Kriging ( AA.VV. (2018)) on the observations Os

tk
as

a convex combination of observations wi:

ŵs
tk
(x) =

∑
i∈Os

tk

λi · wi (5)

In short (details can be found in Section 19.4 of Chilès & Desassis (2018)), coefficients λi are
computed based on a semivariogram function γs

tk
(d), which obtained as a linear regression model,

with predictors di,j (distances between all pair of observations) and labels γi,j , which are called
experimental seminariances:

γi,j ≡
1

2
· (wi − dj)

2 (6)

The underlying assumption here is that correlation between wait times in different locations van-
ishes with the distance between such locations. The semivariogram gives the “shape” of this
vanishing slope. In estimation (5), closer observations will have a higher weight. Under hypothesis
on spatial stationarity and uniformity in all directions (Kriging Interpolation (2023)), Theorem 2.3
of Yakowitz & Szidarovsky (1985) proves that Kriging gives an aymptotically biased estimator: as
the number of observations tends to infinite, ŵs

tk
(x) tends to the “true” E[W s

tk
(x)].

3 Implementation

The methodology of Section 2 is implemented in a Python pipeline, which we release as open source
(Diepolder (2023)) and is depicted in Figure 3.

1. We first get centroids and cells performing the tessellation via CityChrone.

2. We read the file containing the observations (SMS trips). Such a file can be a simulation
output or measurements of real SMS. Each observation includes the same information as in
page 3. Observations are stored in a dataframe.

3. We assume SMS is deployed as feeder (as it is the case for the MATSim simulation on which
we perform our analysis). Therefore, we can classify every SMS trip as either access or
egress, depending on whether the origin or the destination is a PT stop.

4. To establish the feeder area F(s), we find among the observations O the furthest cell from
s in which a trip to/from s has occurred. All cells within such a distance, are assumed to
be in F(s). Observe that feeder areas of different hubs may overlap.

5. We group observations in timeslots (Figure 9).

6. In each time slot [tk, tk+1[ and each centroid u around each stop s, we perform Kriging via
library pyInterpolate (Moliński (2022)) to obtain estimations ŵs(u) and ŷstk(u).
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Table 1: Parameters used for the numerical results.

Parameter Value Reference
Side of a hexagon (tessellation) 1km Badeanlou et al. (2022)
τ (Equation (1)) 1 hour Badeanlou et al. (2022)
Total number of DRT trips 14700
- access trips 5289
- egress trips 9412
Total number of hubs 16
Walk times Computed via OpenStreetMap
Population Distribution from the simulation scenario from Chouaki et al. (2023)

7. We obtain stoptimes and edges using the estimations above, as specified in (2). We add
stoptimes and edges to the GTFS data of conventional PT, following the specifications in
GTFS Reference Document (2023).

8. We give the obtained graph to CityChrone, which will give us accessibility scores in all the
centroids.

4 Results and discussion

Data Source of the observations

The observation dataset in this study comes from a MATSim simulation, from Chouaki & Puchinger
(2021); Chouaki et al. (2023), of door-to-door Demand-Responsive Transit (DRT), deployed as a
feeder to and from conventional PT, in Paris-Saclay. The area in which DRT is deployed is depicted
in Figure 4, but the entire Paris Region is simulated. Scenario parameters are in Table 1.

Analysis of Temporal and Spatial Patterns of DRT trips

Figure 5 clearly shoes morning peak [7 : 00, 10 : 00[, evening peak [16 : 00, 19 : 00[ and off-peak
(all the other intervals).
In the following figures, the measures DRT trips toward/from all hubs, without distinguishing
between hubs. Figures 6 and 7 are negative results: wait and travel times (figures on the right) do
not appear to be spatially stationary (the distribution of values measured close to the related PT
stops is different than further). Therefore, our estimations are not guaranteed to be asymptotically
unbiased (page 4). In our future work, we will explore indirect estimation of wait and travel times
through other indicators, e.g., the detour factor of DRT, which respect the requirements for the
unbiasedness of Kriging.
Figure 8 shows that wait time follows expected peak/off-peak patterns. Values are generally slow
since the simulation is configured so that a DRT trip is accepted only if it the dispatcher predicts
it is possible to serve it within 10 minutes. All wait times exceeding this limits might be due to
the dispatcher not taking traffic correctly into account.

Estimation of Waiting and Travel Times

Figure 9 shows that timeslots of 1h preserve the temporal pattern of trips, so 1h should be preferred
to smaller timeslots, so as to perform Kriging with as many observations as possible.
Within each timeslot, estimation of wait and travel times is based on Kriging, which exploits spatial
correlation. First, we note in Figure 10 that travel times close to hubs are shorter than further
away. Then, we note that the experimental semivariance in Figure 11, i.e., the γi,j between pair of
observation i, j (Equation (6)), increases with the spatial distance between the observations: the
closer the observations, the more similar are the respective travel times measured therein.
Such trends are not as evident for wait times (Figure 12) although similarity between observations
still decay with distance (Figure 13).
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Figure 4: Hub Catchment Areas and Hub Locations. Each dot corresponds to the origin
of one trip observed during the simulation. The differentiation in color of the observed trip
origins indicates the catchment by different hubs

Figure 5: Trips over time. One trip is defined by the departure within the study area of
Paris Saclay. A trip consisting out of multiple legs (e.g. walk + drt + PT is considered as
one trip)
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Figure 6: Relation between travel time and distance measures. Traveled distance is the
actual Km traveled by the user inside the DRT vehicle. Direct distance is the one from the
shortest road network road from the origin centroid to the hub. Beeline is the Euclidean
distance.

Figure 7: Relation between wait time and distance measures.

Figure 8: Mean Wait Time - A moving average of wait time during one day

7



Figure 9: Comparison of different timeslot sizes. Values exceeding 10 minutes are not
depicted, as they are due to simulation events unpredictable for the SMS dispatcher

Figure 10: Spatial Trend Travel Time for access time, morning peak (evening and off-peak
show similar trends).
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Figure 11: Spatial correlation of travel time observations

Figure 12: Spatial Trend Wait Time - No clear pattern can be identified, indicating low
spatial autocorrelation

Figure 13: Spatial correlation of wait time observations
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Figure 14: Headway and Travel Times of some examples of virtual DRT trips. Each
departure time of a virtual DRT trip is indicated by a cross. The respective travel time is
indicated by the y-axis value.

Figure 15: Sociality Score - Access Only - Morning Peak 07:00 - 10:00

Improvement of Accessibility Brought by DRT

Figure 14 shows headway and travel times of the virtual DRT trips added to the PT graph. We can
then compute accessibility on this graph. Note that accessibility varies with the time of day (1).
However, in the following figures we show averages over the time periods mentioned.
First, we study a system with DRT access services only (no egress). Figure 15 shows that the
catchment area is expanded, especially in the south: hexagons with no access to PT within 15
minutes walk, can now use PT. Figure 16 shows more clearly the improvement in accessibility
brought by improved access to PT thanks to DRT. As only access SMS feeder is added in Paris
Saclay, the areas outside Saclay do not show any changes, except sligth improvement in some
locations, for instant south of Versaille, possibly due to the possibility for travelers starting from
there to make changes in Saclay, which are enhanced by DRT.
Accessibility improvements are even greater in peak hours (Figures 17 and 18, as DRT compensates
for the low frequency of conventional PT.
Figure 19 shows the improvement in accessibility when both access and egress trips are added, av-
eraged over the entire day. Improvement is much greater than the access-DRT only case. Moreover,
improvement is also visible also outiside Saclay: users from everywhere can now reach opportunities
in Saclay faster, thanks to DRT egress connections.
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Figure 16: Sociality Score Improvement - Access Only - Morning Peak 07:00 - 10:00

Figure 17: Sociality Score - Access Only - Off Peak 10:00 - 16:00
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Figure 18: Sociality Score Improvement - Access Only - Off Peak 10:00 - 16:00

Figure 19: Sociality Score Improvement - Access & Egress - Full Day 05:00 - 23:00
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5 Conclusions

We proposed a method to compute the impact of SMS on accessibility, based on empirical ob-
servations of SMS trips. Our method can support transport agencies and authorities in future
deployment of SMS. In our future work, we will empirically validate the results by running simu-
lations where we replaced simulated SMS with our estimated virtual trips. Finally, we will apply
our method to car- or bike-sharing feeder and, possibly, on observations from real deployments.
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SHORT SUMMARY 

This study develops a novel econometric model that allows for the endogenous identification of 
minimum bounds on consumption. This is done by combining a censored Tobit model with a 
Multiple Discrete Continuous Extreme Value model. Whilst the former is employed to identify 
the minimum consumption of a good/service based upon the socio-demographic characteristics 
of the consumer, the latter is used to assess multiple discrete continuous consumption patterns. 
The proposed modelling framework is applied to investigate individuals’ expenditure behaviour 
with the attention being placed on the following expenditure categories: Transport, Shopping, 
Child Care, Entertainment, Household Bills, and Rent/Mortgage.  
 
 
Keywords: Multiple Discrete Continuous Decisions, Minimum Consumption Patterns, 
Expenditure Behavior, Censored Tobit Model 

1. INTRODUCTION 

Numerous consumption choices result in economic-agents selecting multiple goods or services at 
the same time. Along with the selection of the type of good to purchase, consumers also usually 
decide how much of the selected product to consume, with the latter representing a continuous 
quantity dimension within the underlying decision-making process. These choice situations have 
thus far been widely analysed in the economics literature via the use of multiple discrete contin-
uous (MDC) demand models. Unlike traditional single discrete choice models, MDC methods 
allow for assessing interior (goods are assumed to be imperfect substitutes) and corner solutions 
(goods are treated as perfect substitutes), whilst also accounting for potential satiation effects. 
The latter effects typically arise with increasing consumption of a good or a service. Since its 
advent, the Multiple Discrete Continuous Extreme Value (MDCEV) model (Bhat, 2005; 2008) 
has become the benchmark framework within the transportation literature for analysing individ-
uals’ decisions being discrete and continuous in nature. Further, the MDCEV model has been 
extended in a variety of directions. These are, for example, a) heterogeneity in parameters (Bhat 
et al., 2016; Shobani et al., 2013), b) flexible utility profiles (Palma and Hess, 2022; Pellegrini et 
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al., 2021; Bhat, 2018, Bhat et al., 2015), and c) multiple constraints (Mondal and Bhat, 2021; 
Castro et al., 2012). 

A downside of many MDC models is that they fail to account for the impact of minimum con-
sumption patterns for goods/services on the analysis of consumer behaviour. For example, it is 
reasonable to believe that leisure activities (going to a museum) cannot be performed without 
devoting a certain minimum amount of time for it, or travelling to holiday destinations cannot be 
done without individuals spending a certain minimum amount of monetary expenditure. The first 
attempt to incorporate lower bounds on consumption quantities traces back to Van Nostrand et al. 
(2012) who recast the utility function formulated in Bhat (2008) to capture the existence of a 
minimum amount of time allocated to location destination vacation choices (see, Astroza et al., 
2017, for an application involving time-use data). Specifically, the authors observed the minimum 
time that each individual allotted for every destination under investigation and imposed this value 
as the lower bound when estimating the log-likelihood function. The empirical evidence from the 
study suggested the implementation of lower bounds on consumption patterns provided more re-
alistic predictions of the time use allocation decisions, whilst also resulting in a better goodness 
of fit relative to the traditional MDCEV model.  Recently, Saxena et al. (2021) proposed an ex-
tension of the MDCEV model in which the analyst is able to integrate both lower and upper 
bounds on consumption choices into a trackable and flexible framework. Despite such improve-
ments, lower bounds on consumption are imposed disregarding the socio-demographic and eco-
nomics characteristics of the consumers. It is quite unrealistic to assume that households with 
children versus childless households allot the same minimum time value for entertainment activ-
ities. Likewise, house owners versus tenants are unlikely to engage with similar minimum house-
hold related expenses. As such, it is likely necessary to exploit individual consumer differences 
to better understand consumer preference behaviour.    

Given the above considerations, the aim of this paper is to develop a model of MDC demand 
wherein lower bounds on consumptions are specified based upon the demographic information 
of different decision-makers. To do this, we propose using a censored Tobit regression model to 
identify minimum consumption patterns for the discrete alternatives, which subsequently serve 
as lower bounds within a MDCEV model. The developed framework is adopted for investigating 
consumer expenditure behaviour of 858 Australian residents of New South Wales (NWS), Aus-
tralia. The expenditure categories involved in this study comprise of nine different categories, 
consisting of transport, shopping, childcare, entertainment, household bills, and rent/mortgage 
payments, savings, miscellaneous costs, and other expenditure items.  

METHODOLOGY 

The framework that we formulate for this study consists of the joint estimation of two empirical 
methods, namely the censored Tobit model and the MCEV model. Specifically, a censored Tobit 
model is first employed to the identify the minimum amount of money that each respondent i 
spent on the expenditure category j, such that 
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𝑦!"∗ = 𝛽$ + 𝛽𝐾 + 𝜖!" , 𝜖!"~𝑁(0, 𝜎"%) (1) 
 
where 𝐾 is a 𝑁 × 𝑇 matrix that describes the socio-demographic and economic characteristics of 
the consumers,	𝑦!"∗  is a latent variable, 𝛽 is a vector 𝑇 × 1 of parameters to be estimated, and 𝜖!" 
are independently and identically normally distributed error terms. The amount of money spent 
by the respondent i on the alternative j is specified such that   
 

𝑦!" = 2
												𝑦!"∗ 	if	𝑦&" < 𝑦!"∗ < 𝑦'"

𝑦&" 	if	𝑦!"∗ < 𝑦&"
𝑦'" 	if	𝑦!"∗ > 𝑦'"

    (2) 

 
In the above equation, the Tobit model is assumed to be bounded between (𝑦&" , 𝑦'"), with	𝑦&" 
being the below censored point whereas 𝑦'" representing the above censored point. By computing 
the conditional expectation,  𝑦!"$ = 𝐸	8𝑦!"9	𝑦!"∗ 	if	𝑦&" < 𝑦!"∗ < 𝑦'" , 𝑋;,	 we are able to endoge-
nously determine the minimum expenditure that respondents made for each alternative j. The 
estimated minimum expenditure is then integrated into the utility function of the MDCEV model, 
 
𝑈!(𝒀) = 𝑦!(𝜓( +∑ δ!"(𝑦!")	

)
"*% . (3) 

 
In Equation (3), 𝑦!" are inside goods (i.e., the expenditure categories under scrutiny) whilst 𝑦!( is 
the linear outside good whose role is to acknowledge the possibility of consumers spending 
money on expenditure categories other than those analysed in the analysis. The appeal of a linear 
formulation for the outside good resides in the fact that the corresponding first derivate equals 
one and hence drops out in the calculation of the KKT conditions for optimality. Further, 
δ!"(𝑦!")	can be written such as 
 
δ!"(𝑦!") = 𝜓!"𝑦!" 	 if 𝑦!" ≤ 𝑦!"$  
        (4) 

δ!"B𝑦!"C = 𝜓!"𝑦!"$ + 𝛾!"𝜓!"ln G
+!",+!"

#

-!"
+ 1H if 𝑦!" > 𝑦!"$  

 
where	𝛾!" govern satiation patterns,	𝜓!" is the baseline marginal utility at the point of zero ex-
penditure, and 𝑦!"$  is the minimum required expenditure of an alternative j (if it is selected). Both 
𝛾!" 	and	𝜓!" can be further parametrized to incorporate demographic and economic variables at-
tached to the consumer i as below 
 
𝛾!" = expB𝛿𝑟!"C 
𝜓!" = expB𝛼𝑟!" + 𝜏"C     (5) 
 
where 𝜏" are independently and identically error terms with a type 1 extreme value distribution 
 
The underlying assumption is that the economic-agent i is assumed to maximize the utility func-
tion expressed in Equation (3), 𝑈!(𝒀), subject to a monetary constraint 𝑦!( +∑ 𝑦!" =	M! 	

)
"*% , 

where M! represents the available monetary budget. The optimal expenditure allocations 𝑦!"∗ (𝑗 =
,1… , 𝐽) can be obtained by forming the Lagrangian function and applying the KKT conditions 
for optimality, such that 
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ℒ = 𝑈(𝑌) − 𝜆B𝑦!( + ∑ 𝑦!" 	
)
"*% −𝑀C, (6) 

 
where 𝜆 is the Lagrangian multiplier associated with the specified monetary budget constraint. 
The KKT conditions for the optimal expenditure allocations for the individual i are given by: 
 
𝑢!.B𝑦!"∗ C − 𝜆 = 0, if 𝑦!"∗ > 0, 𝑗 = 1,… , 𝐽 
𝑢!.B𝑦!"∗ C − 𝜆 < 0, if 𝑦!"∗ = 0, 𝑗 = 1,… , 𝐽		(7) 
 
where 𝜆 = 𝜓(, with 𝜓( = exp	(𝜏() 
 
The KKT conditions formalized in Equation (7) can be re-written as: 
 
𝑉!" + 𝜏" =	𝜓( if 𝑦!"∗ > 0, 𝑗 = 1,… , 𝐽 
𝑉!" + 𝜏" <	𝜓( if 𝑦!"∗ = 0, 𝑗 = 1,… , 𝐽 (8) 

where 𝑉!" = 𝜓!" if 𝑦!" ≤ 𝑦!"$  whilst 𝑉!" = 𝜓!" G
+!",+!"

#

-!"
+ 1H

,(
 if 𝑦!" > 𝑦!"$  

 
The maximum likelihood estimation method is next adopted for estimating the parameters of the 
two methodological approaches involved in the optimization process.  

2. DATA 

Respondents 18 years and older drawn from New South Wales Australia were recruited using the 
online panel QOR Surveys (www. https://www.qorsurveys.com.au/)  between 27th March and 
20th April 2022 and asked to complete an online survey associated with environmental issues 
related to the Murray Darling Basin area. As part of the survey, respondents were asked to provide 
a summary of their average monthly household expenditure across nine different expenditure cat-
egories. The nine expenditure categories consisted of expenditure on transport, shopping, child 
care, entertainment, household bills, and rent/mortgage payments, savings, miscellaneous costs, 
and other expenditure items. After providing information regarding actual expenditure, respond-
ents were next asked what would be the absolute minimum amount of expenditure that could be 
allocated to each category over a given month. As such, the survey captured both actual expendi-
ture as well as the minimum perceived expenditure amount across each expense category. 
 
A total of 2,056 respondents completed the survey. After extensive data cleaning involving re-
moving data from respondents whose total survey response time was considered to be too fast to 
meaningfully complete the survey, who undertook straight lining behaviour in answering attitu-
dinal questions, and who provided inconsistent responses to survey questions such as suggesting 
minimum expenditure amounts were necessary that were greater than actual amounts reported, 
the final sample consists of data collected from 858 respondents. The socio-demographic charac-
teristics of this final sample match the recent 2021 Census values, with the sole exception of being 
slightly more skewed towards males (54.6% relative to 49.3%).  
 

3. RESULTS 

In addition to the proposed model, we also estimated a MDCEV model in which minimum bounds 
on consumption are imposed without accounting for the differences among consumers (bounds 
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are exogenous to the model). The goodness of fit measures reveal that the framework developed 
herein outperforms the model with exogenous bounds on expenditure patterns. Focusing on the 
empirical findings, we found that large households (with at least one adult) are more likely to 
spend on utility bills than single-person households. The presence of kids results in households 
spending more on childcare followed by entertainment and shopping. Full-time workers are in-
clined to allocate a larger portion of the monetary budget to transportation and utility bills cate-
gories. Finally, we conducted a simulation study to compare the forecasting performance of the 
two models estimated in this study. The evidence suggests that the proposed modelling framework 
provides more accurate predictions relative to the model where bounds on consumptions are ex-
ogenously specified, suggesting that respondents do indeed have different minimum consumption 
patterns.  
 

4. CONCLUSIONS 

In this study, we restrict our attention to the formulation of a novel econometric model that permits 
the identification of minimum bounds on consumption based upon the sociodemographic and 
economics characteristics of the decision-makers. Unlike traditional applications where minimum 
bounds are exogenous to the model, we exploit the features of a censored Tobit model to endog-
enously determine the minimum amount of money that can be potentially spent by respondents. 
The estimated minimum consumption value is then used in the MCEV model which is employed 
to assess individuals’ expenditure behaviour.  
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SHORT SUMMARY 

This paper assesses the fast-charging infrastructure requirements to satisfy all long-distance trips 

by fully electric passenger cars. The main goals of this study are developing an accurate model 

for electric vehicle (EV) owner trips and their charging behavior, identifying candidate charging 

station locations and the number of chargers per station for fast charging infrastructure based on 

the developed model. The transition to EVs is gaining momentum, but the success of this shift 

relies heavily on the availability and accessibility of charging infrastructure. Several aspects of 

the fast-charging infrastructure planning problem are investigated based on the developed multi-

agent model of EVs’ usage using MATSim. The main contribution of this study is the introduction 

of a novel methodology to identify candidate locations for fast-charging infrastructure needs 

based on the missing energy event (MEE) in the MATSim EVcontrib and its application to assess 

the fast-charging infrastructure needs for passenger cars in Sweden. 

 

Keywords: Electric vehicles, Fast charging infrastructure, Long-distance trips, MATSim. 

1. INTRODUCTION 

There is no doubt that transportation is a major contributor to greenhouse gas emissions, but elec-

tric vehicles (EVs) offer solutions for a more environmentally friendly way of transport. The pop-

ularity of EVs is growing due to their potentially environmental-friendly energy sources’ usage 

that reduces dependence on fossil fuels. Several factors are preventing EVs from becoming widely 

used, including the limited range, long recharging time, and lack of charging infrastructure. 

The EVs range refers to how far they can travel on a single charge. Many EV owners can charge 

their EVs at home enough to complete their daily trips. It is estimated that 90% of European Union 

trips do not exceed 80 km, whereas the typical range of an EV is higher than 200 km (Metias et 

al., 2022).  

Charging times for EVs vary depending on the battery size and charging power used.  For a typical 

EV with a 60kWh battery, it takes just under 8 hours with a 7kW charger to charge it from empty 

to full, which is suitable for overnight charging, or about 30 minutes with a fast charger (> 150 

kW) while on the route. 

The availability and accessibility of fast-charging infrastructure are paramount for the widespread 

adoption of EVs, especially for long-distance travel. Since the cost of such infrastructure is high, 

it is important to carefully choose their location and size to maximize the number of EVs they 

serve. There are several studies on the matter. 
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(Liu et al., 2021) proposes a strategy for placing EV charging stations along German motorways, 

considering cost and driver satisfaction.  

(Baltazar, Vallet, & Garcia 2022) provides a multi-perspective analysis of the potential of EVs 

for long-distance mobility, highlighting the interest in assessing environmental impacts, user be-

havior, and EV diversity and proposing general suggestions for EV deployment, including the 

need for real-world traffic data and consideration of the diversity of EVs and their states of charge 

(SOC). 

(Ge and MacKenzie, 2022) investigates the factors that determine EV users' charging behavior 

on long-distance trips, using data from a stated choice experiment. The study found that EV driv-

ers' decisions to charge are mostly influenced by their battery SOC and the ability to reach the 

next station without deviating from their original travel plan, in addition to other secondary factors 

such as charging cost, time, detour time to reach a station, and amenities at the station. 

The main goals of this study are developing an accurate model for EV owner trips and their charg-

ing behavior, identifying candidate charging station locations, and the number of chargers per 

station for fast-charging infrastructure based on the developed model. To achieve that, a novel 

methodology to identify candidate locations for fast-charging infrastructure is proposed. The de-

veloped approach is based on using missing energy event (MEE) in the Multi-Agent Transport 

Simulation (MATSim) EVcontrib (Horni, Nagel, & Axhausen, 2016) to assess the fast-charging 

infrastructure needs for passenger cars in Sweden. 

2. METHODOLOGY 

In this paper, the MATSim tool is used for modeling electric passenger cars’ owner trips and their 

charging behavior based on the previous Sweden case study (Bischoff et al., 2019; Márquez-

Fernández et al., 2019; Márquez-Fernández et al., 2021). Using MATSim, every EV movement 

on the transportation network, its energy consumption while driving, and each charging activity 

can be modeled and tracked. These results can later be aggregated for each vehicle type/fleet as 

well as for a certain type of charging infrastructure or for a specific geographical area. 

Synthetic population 

The Sweden study case is based on the SAMPERS (Sveder, 2002) aggregated travel demand 

model modified to account only for passenger car flows on roads. To be able to use it in MATSim, 

the flows in the SAMPERS model have been disaggregated into individual agents using the orig-

inal origin and destination (OD) information combined with Corine Land Cover Data to determine 

specific OD locations for each agent (Bischoff et al. 2019). Only trips that are estimated to be 

longer than 150 km are considered, shorter trips are assumed not to need fast charging. 

In cases where the travel distance exceeds 400 km and a round-trip on the same day is improbable, 

the model results are translated directly, without any adjustments, and for travel distances ranging 

between 150 km to 400 km, the model included a probability of scheduling a same day return trip 

for the agent, which decreases as the distance increases. 

Regarding departure time selection the following cases are considered: if the distance of the trip 

is more than 1000 km then the departure time is selected randomly between 8 am and 10 am. For 

shorter trips, private trips start between 5 am and 12 pm in 70% of cases, between 12 pm and 4 

pm in 20% of cases, and only 10% of cases after 4 pm. Business trips start between 5 am and 10 

am in 80% of the cases and the rest of the cases start after 10 am. 
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Charging activity 

Apart from the general plans, each agent is also assigned specific charging activities before every 

iteration in MATSim. 

For each long-distance trip, the shortest route and the corresponding energy consumption profile 

are established. This, together with the capacity and initial SOC of the EV battery allows for 

determining the locations for the charging activities along the route. Charging activities are in-

cluded in the plan according to: in 80% of cases, a charging activity is considered when the SOC 

reaches a value between 20 - 30% (randomly selected); for the rest 20% a charging activity is 

considered when the SOC reaches a value between 30 - 50% (randomly selected). 

Charging activities are integrated into MATSim's activity-based modeling, but they do not pro-

vide any positive score (utility function of each agent in the MATSim model). The estimated time 

required for charging the vehicle defines the duration of each charging activity and in this model, 

it depends on the desired SOC after charging the EV battery capacity, and the rated power of the 

charging station. 

At this point, the EVs’ movements and their charging activities are established in the model, but 

the location of charging infrastructures and their specifications must be defined. For each charging 

station the total number of chargers, their type, and rated power must be defined. In the next part, 

an approach for finding candidate fast-charging infrastructure is introduced. 

Candidate Fast Charging Infrastructure 

The flowchart of the proposed strategy for finding candidate locations for fast-charging infra-

structure is shown in Figure 1. First, it is assumed that there are no charging stations on the road 

and that all EVs start their long-distance trips with an initial SOC (𝑆𝑂𝐶𝑖𝑛𝑖𝑡) distributed as follows: 

in 50% of cases 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 = [90% 100%], in 30% of the cases 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 = [70% 90%] and and 

in 20% of the cases 𝑆𝑂𝐶𝑖𝑛𝑖𝑡 = [50% 70%] (randomly assigned except for the first step of pro-

posed approach at Figure 1 where the lowest value is used).  

Then the locations where the energy level of the EV battery runs down to zero are identified using 

the MEE. Afterward, the MEEs are aggregated in an area within a 30km radius. These areas are 

ranked based on the frequency of MEEs and the first 100 top ranks of them are selected as the 

selected candidate locations for charging stations. In the next step, the developed MATSim model 

is run with these 100 charging stations in place, and their impact is assessed based on the % of 

successful trips (the long-distance trips do not contain any MEEs). If this percentage is lower than 

90%, more fast-charging station is added and the simulation reruns again until the required per-

formance is achieved. 
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Run all trips with an empty repository of fast charging infrastructure

Start

Identify the locations of MEEs (aggregate them within 30km) 

Rank the aggregated locations in descending order of MEEs

Choose 100 first locations and update the repository of fast charging 

infrastructure

Run the simulation with the updated repository of fast charging infrastructure

& evaluate performance

End

The percentage of the successful trips

is lower than 90%
YES

NO

 
Figure 1: Flowchart of the proposed approach for identifying fast charging infra-

structure locations. 

 
Figure 2. shows the distribution of aggregated MEEs in a hexagonal network within a 30 km 

radius. This distribution results from running the developed MATSim model without any fast-

charging infrastructure. As expected, a high number of MEEs occur on the route between Gothen-

burg (the second-largest city in Sweden) and Stockholm (the capital and largest city of Sweden). 

There is also a high number of MEEs near the border between Sweden and Denmark and around 

Malmo (the third-largest city in Sweden). 
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Figure 2: The Distribution of MEEs in the hexagonal network with a 30 km radius. 

3. RESULTS AND DISCUSSION 

In the simulation setup, the first part that must be defined is the mix of EVs fleet and their related 

specification which are mentioned in Table 1. The initial energy level of EV batteries (𝑆𝑂𝐶𝑖𝑛𝑖𝑡) 
and the starting time of the trips are already mentioned in previous sections. 

 

Table 1: Assignment of EVs 

 
Vehicle 

Type 

Battery 

Capacity 

kWh 

Fleet 

Share 

% 

Small 60 15 

Medium 80 50 

SUV 100 35 
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However, to make the simulation more manageable, a standard practice of utilizing a 10% sample 

of the population (the total number of trips in the MATSim model) is employed. 

In the next step, the location of charging infrastructures must be introduced as input to the model.  

In Figure 3, all candidate locations are achieved based on the first step of the proposed approach 

(no-charging station scenario of developed MATSim model) and the 100 selected locations are 

shown based on the distribution of aggregated of MEEs in Fig 2. The total number of candidate 

locations is equal to 350. For the first iteration, charging stations are placed at the 100 locations 

with the highest number of MEEs. Each of these stations is equipped with an unlimited number 

of chargers, so every vehicle reaching the stations will be allowed to charge. 

 

 

Figure 3: The candidate location and the 100 top-rank selected locations for fast-

charging infrastructure based on the distribution of MEEs. 

For subsequent iterations, more fast-charging infrastructure locations are added to the charging 

infrastructure repository of the MATSim model, by a step of 100 new fast charging stations at 

each iteration. These 100 new fast-charging stations are selected following the same procedure, 

based on the distribution of MEEs resulting from the previous iteration. 

In Table 2, the percentage of successful trips before and after adding candidate fast-charging in-

frastructures at each iteration of the proposed methodology is shown.  
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Table 2: The percentage of successful trips before and after adding fast charging 

infrastructure with an unlimited number of chargers. 

 
Number of fast-charging stations Percentage of successful trips % 

0 9.43 

100 85.56 

200 88.90 

300 89.04 

400 89.07 

 

If all candidate locations (350 locations in Figure 3) for fast-charging infrastructure in the first 

step of the proposed approach are considered, then the percentage of successful trips is equal to 

89.28.  The reason for the higher percentage of the successful trip with all candidate locations 

based on the no-charging station scenario compared to the result of 400 fast charging stations 

based on the proposed method in Figure 1 is that in the no-charging scenario, the distribution of 

initial SOC is set to lower bound of each case, then the candidate locations are found, but in the 

proposed approach the distribution of initial SOC is set based on the mentioned range for each 

case and the new candidate locations are found based on the higher value of initial SOC, therefore  

since the charging activities are initiated at the higher value of 20% EVs battery capacity the 

newly found candidate location cannot cover the trips that are started with the lower value of 

initial SOC and also the improvement in the percentage of successful trips decreases while the 

number of the charging station is increased. 

Another important reason for this result is the consideration of the unlimited number of chargers 

at each fast-charging station. 

Based on the results, it is observed that with 200 fast-charging infrastructure locations almost 

90% of long-distance trips by passenger electric cars can be satisfied if there is an unlimited num-

ber of chargers in each location. 

 

 

Figure 5: The Distribution of the maximum number of simultaneously charging 

EVs at a fast-charging station.  

 

As can be seen in Figure 5, in more than 80% of cases the maximum number of EVs that are 

charging at the same fast charging station location simultaneously is not more than 30 in the 

scenario with 400 charging stations with unlimited chargers at each location. 
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Therefore, the limitation of the number of chargers is added to the proposed methodology with 

the consideration of a maximum of 30 chargers at each fast-charging station in the real world. 

Since 10% of all long-distance trips above 150km are considered in the MATSim model, each 

fast-charging infrastructure location is equipped with 3 chargers. 

Table 3 displays the success rate percentages of trips before and after the inclusion of candidate 

fast-charging infrastructures that consist of three chargers at each charging station in every itera-

tion of the proposed methodology. 

 

Table 3: The percentage of successful trips before and after fast charging infra-

structure with 3 chargers on each location 
Number of fast-charging infrastructure Percentage of successful trips % 

0 9.43 

100 46.93 

200 53.71 

300 59.29 

400 61.41 

 

If all candidate locations (350 locations in Figure 3) for the fast-charging infrastructure in the no-

charging station scenario are considered with 3 chargers on each location, then the percentage of 

successful trips is equal to 54.40. 

Based on the results of Table 3, after considering 3 chargers at each location the percentage of 

successful trips based on the proposed methodology (adding new charging stations based on the 

iterative method Figure 1) is higher compared to considering all found locations in the no charging 

case is higher. 

4. CONCLUSIONS 

This paper presents a novel methodology based on the missing energy event concept of MATim 

EVcontrib to assess the fast-charging infrastructure needs for fully electric passenger cars on long-

distance trips in Sweden. The proposed methodology accurately models EV owner trips and 

charging behavior, identified candidate charging station locations, and assessed them and the 

number of chargers per station required for fast-charging infrastructure. The results highlight the 

importance of investing in fast-charging infrastructure to promote the widespread adoption of 

EVs and pave the way for a sustainable transportation system. 

Future research will improve the accuracy of our methodology by refining the synthetic popula-

tion of the MATSim model for long-distance trips by electric passenger cars. This can involve 

developing a more detailed representation of EV owner demographics, travel patterns, and charg-

ing behavior, and incorporating data on the spatial distribution of charging infrastructure. Such 

research will provide a more comprehensive assessment of the fast-charging infrastructure re-

quirements for EVs and inform the planning and deployment of charging infrastructure. 
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SHORT SUMMARY 

Electric vehicle market growth makes understanding user charging behaviour essential for policy 

design and EV adoption facilitation. In this study, we examined the heterogeneity in charging 

preferences of 994 respondents across Australia, using a latent class cluster model that considers 

indicators of charging behaviour as outcomes of interest. We used sociodemographic character-

istics, travel needs, and EV adoption status as covariates to predict class membership. Our find-

ings identify five segments of consumers with distinct charging style preferences: cost-sensitive 

planners, cost-sensitive on-demanders, predictability seekers, flexibility seekers, and indifferent 

late adopters. We provide targeted policies for each segment based on their charging style and 

profile, aimed at facilitating EV adoption and meeting their charging needs. Our results suggest 

that two broad categories of action are necessary to facilitate EV adoption and meet charging 

needs of upcoming EV users: improving EV-related knowledge and providing economical home 

charging options. 

 

Keywords:  Charging style, electrification and decarbonization of transport, latent class 

cluster analysis 

1. INTRODUCTION 

Transitioning to Electric Vehicles (EVs) from Internal Combustion Engine Vehicles (ICEVs) re-

quires significant behavioural changes and increased cognitive effort from consumers, as charging 

decisions are multidimensional, involving scheduling, location and charger type choice, and 

highly variable prices. While current activity-based demand models tend to assume that drivers 

deliberate about charging before or after every trip based on the battery state of charge and charger 

availability, this assumption may not be behaviourally realistic for many EV users. That is, users 

may reduce the cognitive load of charging decisions by using heuristics, relying on daily routine 

cues and habit. In this sense, segmenting individuals based on their behavioural patterns can be a 

more effective way of modelling charging behaviour.   

 

The notion of “style”, as in “lifestyle” (Talvitie, 1997), "mobility style" (Lanzendorf, 2002), "mo-

dality style" (Vij et al., 2013), has been adopted by researchers to represent behavioural patterns 

together with their underlying motivations and attitudes towards different aspects of life, travel, 

and/or modal preferences. Analogously, the term “charging style” can be used to represent charg-

ing behaviour patterns (including heuristics and cues that individuals may use) associated with 

underlying personal subjective orientations. Yet, only a couple of studies have explored this idea.   
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Franke et al. (2013) proposed that EV users adopt a charging style as a preferred coping strategy 

to interact with the limited battery resources of their vehicles. They developed the concept of user 

battery interaction style (UBIS) to measure differences in coping strategies related to charging. 

An individual with high UBIS makes charging decisions based on the vehicle's state of charge, 

while people with low UBIS use other cues to make a charging decision, such as routine or op-

portunity. Subsequently, Daina et al. (2015) used this concept of UBIS to predict charging de-

mand. Although UBIS can capture the coping strategies of EV users, it does not define charging 

style as a representation of a general pattern of charging. That is, it requires additional factors to 

generate a prediction of charging choices.  

 

Considering that a comprehensive construct representing charging styles can benefit integrated 

energy and transport demand models, the current study utilises empirical data from a survey with 

EV owners and potential owners together with a latent class cluster analysis (LCCA) approach to  

(1) identify classes of electric vehicle charging styles, (2) define user profiles for each style, and 

(3) provide tailored policy recommendations to facilitate charging and potentially increase EV 

adoption among consumers with different styles. 

2. METHODOLOGY 

The conceptual framework of this study, as shown in Figure 1, aims to classify current and pro-

spective EV users into different classes based on their charging style. The dimensions of charging 

style were identified based on literature review and include three main categories: charging at-

tributes, coping strategy with battery resources, and risk attitude. 

 

Charging attributes include three dimensions representing user preferences regarding charging: 

(1) time regularity, (2) location, (3) trade-offs between cost and charging speed, and cost and 

perceived convenience. To measure individuals' coping styles related to charging, a scale was 

developed based on UBIS, measuring the trade-off between battery level and opportunity, and 

battery level and routine. Risk attitude was not directly considered, but it was inferred through 

the trade-off between planning for charging and deciding on the go. The framework also takes 

into account socio-demographic characteristics, EV adoption cohort, and travel needs to under-

stand the charging profile of people in different classes. 

 

2.1 Latent class cluster analysis 

LCCA is used to reveal the charging style classes using poLCA package (Linzer and Lewis, 

2011). LCCA groups individuals into distinct charging style classes based on observable charging 

preferences and individual characteristics. The model has a measurement component, which links 

the underlying latent categorical variable to its indicators, and a structural component, which de-

fines the relationships between explanatory covariates (active covariates) to determine class mem-

bership. The model simultaneously estimates these sub-models using a probabilistic approach. 

Inactive covariates provide additional profiling of the identified classes.  
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Figure 1: Conceptual Framework 

 

2.2 Data collection and sample 

We obtained our data through an online survey conducted between July and August of 2021 as 

part of the EV Integration (2020-2022) project in Australia (University of Melbourne, 2022). The 

sampling strategy aimed for around 10% responses from EV drivers and a sample of ICEV drivers 

representative of the Australian driver population. The final sample size comprised 994 observa-

tions, including 97 EV drivers. The survey collected information on socio-demographic charac-

teristics, travel needs, EV ownership and intentions to purchase, and charging preferences. We 

used three cohorts of EV adoption: EV owners, early majorities (likely to own an EV within five 

years), and late majorities (likely to own an EV within ten years or have no plans to own one). 

Detailed information about the data can be found in the project’s report (Lavieri and Oliveira, 

2021).  
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The last column of Table 2 shows descriptive statistics of the sample. While the sample is not 

representative of the overall driving-age population due to the oversampling of EV owners, the 

sub-sample of ICEV drivers is. Relative to the driving-age population, EV owners in the sample 

are more likely to be men, in 35-54 age category, have tertiary education, be employed full-time, 

and have high income. Furthermore, they drive twice the national average of annual distances 

driven per person. 

 

3. RESULTS AND DISCUSSION 

Models with 2 to 6 classes were compared using AIC and BIC, and the five-class model was 

chosen as the best fit. Tables 1 and 2 present the behaviour and the profile of each class while 

Table 3 presents the class membership model results.  

3.1 Charging styles and profiles  

Class 1: 26.7% of the total sample are cost-sensitive planners who prefer home charging and 

prioritize cost over convenience or speed. This group mostly charges based on routine and oppor-

tunity. They usually charge on weekdays and plan their charging in advance. This class has the 

highest proportion of mid-low-income households, the largest share of households with solar pan-

els, and high vehicle ownership.  

 

Class 2: Comprising 27.5% of the total sample, cost-sensitive "on-demanders" prefer home charg-

ing, prioritize cost over convenience, and charge based on battery level. This class has a high 

proportion of homeowners, households with off-street parking, and late majorities (in terms of 

EV adoption). 

 

Class 3: Named as predictability seekers, they make up 18.9% of the total sample and prioritize 

convenience over cost. They tend to charge their vehicles based on routine and opportunity. They 

prefer home charging. They have the highest average weekly distance travelled and plan their 

charging in advance to meet their travel needs. This class has the highest proportion of high-

income households, women, and those in early majority cohort. 

 

Class 4: Flexibility seekers comprise 18.5% of the total sample and prioritize charging conven-

ience and speed over cost. They charge based on battery level. This group prefers fast charging 

and destination charging the most among the five classes. This class has the highest proportion of 

men, young individuals, high-income earners, highly educated individuals, and EV owners.  

 

Class 5: known as Indifferent Late Adopters, they make up 8.5% of the sample. They have no 

defined charging preferences yet. This group has the highest proportion of individuals who are 

unemployed or not in the workforce, low-income households without solar panels and/or off-

street parking, or individuals living in rented properties. They are mostly among the late adopter 

cohort.  
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Table 1: Summary Statistics of Indicators  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Class 1 Class 2 Class 3 Class 4 Class 5 Sample total 

Class name  Cost-sensitive 
planners 

Cost-sensitive 
“on-demanders” 

Predictability 
seekers 

Flexibility 
seekers 

Indifferent 
late adopters 

 

Class share (%) 26.7 27.5 18.9 18.5 8.5 100 

Class size (n) 271 274 185 179 85 994 

Opportunity vs. battery level: 
Opportunity 
Equal 
Battery level 

 
80.2% 
13.9% 
5.9% 

 
17.9% 
46.0% 
36.1% 

 
43.1% 
32.6% 
24.4% 

 
30.1% 
17.0% 
52.9% 

 
2.2% 

94.6% 
3.3% 

 
40.2% 
33.6% 
26.2% 

Routine vs. battery level: 
Routine 
Equal 
Battery level 

 
96.1% 
2.8% 
1.1% 

 
32.0% 
29.4% 
38.6% 

 
57.9% 
17.0% 
25.1% 

 
18.6% 
10.1% 
71.4% 

 
0.0% 

95.6% 
4.4% 

 
48.9% 
21.9% 
29.2% 

Charging location preference: 
Home 
Destination charging 
Fast charging 

 
70.7% 
10.9% 
18.3% 

 
79.0% 
8.2% 

12.8% 

 
74.0% 
9.1% 

16.9% 

 
51.1% 
17.9% 
31.0% 

 
57.8% 
16.2% 
26.0% 

 
68.9% 
11.6% 
19.5% 

Cost vs. convenience: 
Cheapest 
Equal 
Most convenience 

 
90.4% 
1.7% 
7.9% 

 
83.6% 
10.0% 
6.4% 

 
2.4% 

54.4% 
43.2% 

 
8.0% 
7.4% 

84.6% 

 
0.0% 

89.0% 
11.0% 

 
49.1% 
22.3% 
28.6% 

Cost vs. charging speed: 
Cheapest 
Equal 
Fastest 

 
95.3% 
2.9% 
1.8% 

 
97.5% 
2.5% 
0.0% 

 
19.7% 
61.9% 
18.4% 

 
11.6% 
12.4% 
76.1% 

 
0.5% 

92.4% 
7.1% 

 
58.1% 
23.2% 
18.6% 

Day: 
Weekdays 
Equal 
Weekends 

 
84.2% 
9.5% 
6.3% 

 
26.7% 
50.7% 
22.7% 

 
63.4% 
28.6% 
8.0% 

 
36.1% 
20.6% 
43.3% 

 
2.2% 

94.4% 
3.4% 

 
48.7% 
33.6% 
17.7% 

Time of day: 
Same 
Equal 
Different 

 
91.1% 
6.6% 
2.3% 

 
38.2% 
41.8% 
20.1% 

 
58.7% 
25.0% 
16.3% 

 
37.1% 
22.0% 
40.9% 

 
0.0% 

99.3% 
0.7% 

 
52.8% 
30.4% 
16.8% 

Plan vs. decide on the go: 
Plan 
Equal 
Decide on the go 

 
85.8% 
10.0% 
4.2% 

 
61.5% 
34.3% 
4.2% 

 
51.3% 
35.2% 
13.4% 

 
36.8% 
15.8% 
47.4% 

 
0.0% 

98.7% 
1.3% 

 
56.3% 
30.0% 
13.7% 
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Table 2: Summary Statistics of Covariates  

 
Covariates  Class 1 Class 2 Class 3 Class 4 Class 5 Sample total 

EV ownership and adoption status: 
Early majority 
EV owners 
Late majority 

 
39.9% 
4.2% 

55.9% 

 
35.5% 
1.9% 

62.6% 

 
40.6% 
12.9% 
46.6% 

 
31.8% 
29.3% 
38.9% 

 
33.6% 
3.5% 

62.9% 

 
36.8% 
9.8% 

53.4% 

Gender: 
Female 
Male  

 
52.9% 
47.1% 

 
43.4% 
56.6% 

 
55.5% 
44.5% 

 
32.1% 
67.9% 

 
49.7% 
50.3% 

 
46.7% 
53.3% 

Age:  
18 to 34 
35 to 54 
55 and older 

 
29.7% 
33.8% 
36.5% 

 
20.0% 
35.7% 
44.3% 

 
23.1% 
38.5% 
38.4% 

 
36.3% 
42.1% 
21.6% 

 
33.7% 
27.5% 
38.8% 

 
27.4% 
36.2% 
36.4% 

Income: 
$100,000 or more 
$35,000 to $99,999 
Less than $34,999 

 
41.0% 
42.2% 
16.8% 

 
43.9% 
41.6% 
14.5% 

 
52.5% 
31.4% 
16.1% 

 
73.4% 
14.1% 
12.5% 

 
46.3% 
36.1% 
17.6% 

 
50.4% 
34.3% 
15.3% 

Education: <Inactive> 
Bachelor and higher 
Below bachelor  

 
35.8% 
64.2% 

 
40.6% 
59.4% 

 
37.9% 
62.1% 

 
59.1% 
40.6% 

 
38.5% 
61.5% 

 
42.1% 
57.9% 

Employment status: <Inactive> 
Full-time 
Not in workforce or unemployed 
Part time 

 
40.2% 
35.3% 
24.5% 

 
36.0% 
41.0% 
23.1% 

 
44.0% 
34.8% 
21.3% 

 
65.4% 
25.9% 
8.7% 

 
43.3% 
42.3% 
14.4% 

 
44.7% 
35.6% 
19.7% 

Family composition: 
Have children 
No children  

 
43.4% 
56.6% 

 
32.3% 
67.7% 

 
27.3% 
72.7% 

 
52.8% 
47.2% 

 
30.15 
69.9% 

 
37.9% 
62.1% 

Average number of cars in household 1.81 1.78 1.77 1.54 1.43 1.71 

Living situation: <Inactive> 
Own 
Rent 

 
67.4% 
32.6% 

 
74.6% 
25.4% 

 
74.1% 
25.9% 

 
72.8% 
27.2% 

 
65.0% 
35.0% 

 
71.4% 
28.6% 

Building type: <Inactive> 
Flat or apartment  
Separate house 
Townhouse  
Other  

 
10.3% 
69.7% 
9.8% 

10.2% 

 
7.2% 

76.5% 
7.8% 
8.5% 

 
9.8% 

66.1% 
12.8% 
11.3% 

 
15.2% 
59.4% 
17.2% 
8.2% 

 
10.4% 
74.7% 
8.4% 
6.5% 

 
10.3% 
69.4% 
11.1% 
9.2% 

Having off-street parking: 
No 
Yes 

 
10.2% 
89.8% 

 
7.1% 

92.9% 

 
15.9% 
84.1% 

 
17.3% 
82.7% 

 
23.9% 
76.1% 

 
12.9% 
87.1% 

Having solar panels:  
No 
yes 

 
63.1% 
36.9% 

 
67.7% 
32.3% 

 
64.8% 
35.2% 

 
73% 
27% 

 
75% 
25% 

 
67.5% 
32.5% 

Average typical weekly distance travelled (km) 229.0 154.3 246.8 237.2 174.4 208.8 

Average time window (hour) 25.0 28.3 25.5 23.8 29.0 26.1 

Solar Panel condition: <Inactive> 
Do not have 
Already have 
Will adopt if buy an EV 

 
40.6% 
36.9% 
22.5% 

 
49.2% 
32.3% 
18.5% 

 
47.4% 
35.2% 
17.4% 

 
56.6% 
27.0% 
16.4% 

 
69.2% 
25.0% 
5.8% 

 
49.6% 
32.5% 
17.9% 

3.2 Class membership model   

The cost-sensitive planners serve as the reference category, and coefficients are interpreted ac-

cordingly. In summary, belonging to: 

 

 Class 2 is more likely for individuals with high income and no children, but less likely 

for those who drive long distances. 
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 Class 3 is more likely for EV owners, those aged 35 or more, and those with income 

between $35,000 to $99,999 and no children. Less likely for those with off-street parking. 

 Class 4 is more likely for EV owners, males, and those with income between $35,000 to 

$99,999 or $100,000+, but less likely for those with more cars or off-street parking and 

solar panels. 

 Class 5 is more likely for those with income between $35,000 to $99,999 and less likely 

for those with more cars or off-street parking. 

 

Table 3: Class Membership Model 

 

Covariates 
Class 2 vs. 

class 1 
Class 3 vs. 

Class 1 
Class 4 vs. 

Class 1 
Class 5 vs. class 1 

Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) Coef. (t-stat) 

Intercept  -0.690(-1.042) -0.621(-0.903) 1.805(2.644) 1.343(1.815) 

EV adoption status (reference: early majority) 
EV owners  
Late majority 

 
- 
- 

 
1.174(2.320) 

- 

 
2.269(4.753) 

- 

 
- 
- 

Gender (reference: female) 
Male  

 
- 

 
- 

 
0.700(3.044) 

 
- 

Age (reference: 18 to 34) 
35 to 54 
55 and older 

 
- 
- 

 
0.787(2.161) 
0.819(2.343) 

 
-0.631(-1.800) 

- 

 
- 
- 

Income (reference: Less than $34,999) 
$35,000 to $99,999 
$100,000 or more 

 
- 

0.658(1.912) 

 
0.626(2.132) 

- 

 
  1.497(4.114) 
  0.784(1.685) 

 
0.623(1.960) 

- 

Family composition (reference: have children) 
Do not have children 

 
0.532(2.134) 

 
1.076(3.657) 

 
- 

 
- 

Average number of cars in household - - -0.407(-2.472) -0.659(-2.592) 

Having off-street parking (reference: no) 
Yes 

 
- 

 
-0.663(-1.835) 

 
-0.706(-1.916) 

 
-0.949(-2.317) 

Having solar panel (reference: no) 
Yes 

 
- 

 
- 

 
-0.763(-2.572) 

 
- 

Typical weekly distance (km) -0.002(-3.265) - -0.001(-1.998) - 

 

3.3 Policy recommendation  

Our study found that EV users may exhibit diverse charging behaviours, and therefore we discuss 

tailored policies that could be targeted at each charging style segment. We conducted a literature 

review of pertinent policies and identified three main categories of recommendations that could 

be customised to each class: 1) financial and regulatory support for residential charging, 2) finan-

cial and regulatory support for solar charging, and 3) educational campaigns.  

 

Class 1: 

 

1. Offer financial incentives to landlords for installing level 2 chargers or low-interest loans 

to tenants for home charger installation. Streamline permitting processes for installation 

in rental properties. 

2. Offer tax credits or incentives for solar panel installation and promote shared solar pro-

grams. Offer bundled incentives for EV and solar purchases to encourage the adoption of 

both technologies. 

3. Provide information about the financial incentives available for EV purchase and home 

and solar charging, along with the long-term cost savings associated with solar charging. 
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Class 2: 

 

1. Offer cash rebates or discounts for EV adoption and home charger installation.  

2. Offer tax credits and incentives for solar panel purchase and installation. 

3. Offer educational campaigns that raise awareness about financial incentives for EV pur-

chases, home charging, and solar charging. 

 

Class 3: 

 

1. Allocate curb-side or public charging options for those without access to off-street park-

ing. 

2. Offer EV and solar panel bundles, emphasizing their convenience and environmental 

benefits. Encourage community solar programs. solar panel installation, and flexible 

work policies. 

3. Educate consumers on the increasing driving range of EVs and how home charging can 

adequately meet their travel needs. Highlight the expanding network of public chargers 

as a backup. Additionally, emphasize the long-term benefits associated with solar charg-

ing. 

 

Class 4: 

 

1. Facilitate approval for home charging installation and offer curb-side or public charging 

for those without access to off-street parking. 

2. Programs that promote the adoption of solar batteries and encourage weekend charging, 

as well as support working from home to overcome the limited flexibility barrier for solar 

charging in this group. 

3. Highlight the increasing driving range of EVs, educate consumers on the adequacy of 

home charging for their travel needs, and emphasize the growing network of public 

chargers as a backup. 

 

 

Class 5: 

 

Educational campaigns to increase the knowledge about EVs is a prerequisite for this class, which 

does not even consider EV adoption in a distant future. This can be achieved through EV festivals, 

test drives, and incentives, while also making them aware of available support for charging their 

EVs, including financial and regulatory assistance. 

 

4. CONCLUSIONS 

In this study, we performed a LCCA to identify five distinct charging style classes among current 

and prospective EV users in Australia. Indifferent late adopters have no preferred charging style, 

while flexibility seekers prioritize speed, convenience, and battery level. Predictability seekers 

have a fixed charging time and location preference. The largest classes, cost-sensitive planners 

and on-demanders, prioritize cost savings and home charging. Based on the likely behavioural 

pattern of each class, as EV adoption continues to grow, home charging will become increasingly 

crucial, and offering an affordable home charging option is key to meeting the needs of many 

upcoming EV adopters. 
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Modelling the impact of activity duration on utility-based scheduling
decisions: a comparative analysis
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Short summary

There exist two major categories of activity-based models: on one side, utility-based or economet-
ric models are founded on the principles of random utility maximisation, and use discrete choice
modelling techniques to solve activity-based problems. On the other hand, rule based approaches
refute the assumption that decision-makers are perfect optimisers and their activity-travel be-
haviour is the product of context-dependent rules. Recently hybrid models (e.g. OASIS) combine
both approaches, to keep the flexibility and theoretical robustness of utility-based models, with
the addition of spatio-temporal constraints which increase the behavioural realism and simplify
the estimations. However, hybrid models suffer from two main issues: specifying a utility func-
tion that accurately reflects the decision-making process, and estimating parameters in a highly
complex space due to the constraints. In this paper, we answer these questions within the context
of the OASIS framework (Pougala et al., 2022). We first estimate the parameters of two state-of-
the-art utility functions (Charypar & Nagel, 2005; Feil, 2010), using data from the Swiss Mobility
and Transport Microcensus (Office fédéral de la statistique and Office fédéral du développement
Territorial, 2017) and compare them with OASIS’ default linear-in-parameters utility function of
the model.
Keywords: activity-based modelling, discrete choice modelling, parameter estimation

1 Introduction

Activity-based models (ABMs) stem from the fundamental assumption that travel demand is de-
rived from the need to perform activities, rooted in a spatiotemporal context, and influenced by
personal and environmental factors. By focusing on individuals and explicitly considering these
interactions, ABMs aim to be more behaviourally realistic than traditional trip-based models, and
to provide more flexible and targeted insights on individual mobility. Successful applications of
activity-based models have demonstrated the added value of shifting the focus to individuals and
their activities. Two main approaches can be cited: utility-based and rule-based models. The
scheduling process is a result of random utility maximisation for the former, and the satisfaction
of a set of spatio-temporal rules for the latter. While historically both approaches were consid-
ered contradictory, there has been increased research in hybrid models which combine elements
from either theory. One limitation of hybrid approaches can be the significant complexity of the
models, which require both a robust utility specification able to reflect the dynamics and inter-
actions involved in the decision-making process, and informative constraints that can efficiently
reduce the solution space without impacting the completeness of the results. We present the case
of the OASIS framework, an integrated framework to simulate daily activity schedules by con-
sidering all choice dimensions (activity participation, timing decisions, mode and location choice)
simultaneously. The model was designed to accommodate any utility specification and constraints
depending on the context, but current implementations have relied on many simplifying assump-
tions both for the utility specification and formulation of constraints, mainly to compensate for the
lack of available data. As a result, the utility function is too simple to properly capture all facets
of activity-travel behaviour, which limits possible extensions of the model (including multiday or
multiperson scheduling).

The formulation of behaviourally realistic utility functions has been the focus of many works in
utility-based models for activity-travel behaviour. In particular, authors have been interested on
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the impact of timing (start time and duration) on the utility of performing an activity. One com-
mon assumption, derived from studies on departure time (Small, 1982), is that individuals have
preferences regarding the timings of their activities, and penalise deviations from such preferences
(e.g. Pougala et al., 2022; Charypar & Nagel, 2005; Allahviranloo & Axhausen, 2018). These de-
viations can be asymmetrical (e.g. being late is more penalised than being early). Other authors
consider these preferences more implicitly: for example, Joh et al. (2005) formalise an S-shaped
utility for duration, which captures the behavioural assumption that a frustration (e.g. being
involved in an activity for a duration too short) and satiation (e.g. the activity duration is too
long) effects exist. This formulation always considers an increasing utility function, but at different
rates depending on whether the threshold of satiation has been reached. This is not the case for
formulations that consider explicit scheduling preferences, where the utility (of activity duration)
can decrease. Joh et al.’s S-shaped function was adopted by multiple authors, such as Feil (2010)
and Ettema & Timmermans (2003). An important gap in the literature is the calibration of utility
parameters to observed data, either due to lack of data or due to the complexity of the model.

In this paper, we investigate different utility specifications for activity participation and timing, to
be used within the OASIS framework. The specifications presented here are: the OASIS default
utility function and two utility functions (Charypar & Nagel, 2005; Feil, 2010) used as scoring
functions in the state-of-the-art agent-based microsimulator MATSim. We use the estimation
component of the OASIS framework to estimate the parameters of all three utility specifications,
using the Mobility and Transport Microcensus (MTMC), a nationwide travel survey of Switzerland
(Office fédéral de la statistique and Office fédéral du développement Territorial, 2017). The purpose
of this investigation is two-fold:

1. first, to test our methodology for parameter estimation on state-of-the-art utility functions,

2. to empirically investigate the differences of these utility specifications, and their implications
in terms of behaviour.

.
This paper is organized as follows. In Section 2, we present the OASIS framework, and in particular
the methodology to estimate the parameters of the model based on Metropolis-Hastings sampling.
We apply this procedure on the three utility functions described, using a sample of the MTMC
data. Finally, we discuss key differences between the specifications, and propose some insights for
future investigations.

2 Methodology

OASIS framework

In this section, we briefly introduce the OASIS framework (Pougala et al., 2022). The framework
(Fig. 1) is composed of two main elements:

1. A simulation model that outputs distributions of feasible schedules for given individuals,
based on a mixed-integer optimisation model where the objective function is the utility of
the schedule.

2. An estimation component to calibrate the parameters of the said utility function.

Parameter estimation

In the OASIS framework, the estimation of parameters is two-fold:

1. For a given individual n, generate a set of K feasible alternatives C̃n = {S0, ..., Sk−1, Sk}
which includes the chosen schedule Sk = S∗. The non-chosen schedules Si∀i ̸= k are sampled
using the Metropolis-Hastings algorithm (Algorithm 1), where the target distribution is
proportional to the utility function of the problem. The parameters of the target distribution
are estimated on a random choice set:

(a) Begin with an initial schedule S0

(b) At each iteration i, propose a candidate state Snew by modifying the current schedule
in one dimension (activity participation, timing, or travel).
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Figure 1: OASIS framework

(c) Accept or reject Snew based on the predefined acceptance probability.

2. Considering the choice probability in Eq.1, the maximum likelihood estimators of the pa-
rameters β̂ are derived from the corresponding likelihood function.

Pin = Pn(i|C̃n) =
eµVin+lnPn(C̃n|i)∑

j∈C̃n
eµVjn+lnPn(C̃n|j)

(1)

Given that the parameters are estimated on a sample of alternatives C̃n, the choice probabil-
ity is corrected with a term lnPn(C̃n|j), in order to obtain unbiased estimators (Ben-Akiva
& Lerman, 1985). This term corresponds the sampling probability of the choice set C̃n, and
is directly obtained from the Metropolis-Hastings routine.

Algorithm 1 Choice set generation for the ABM with Metropolis-Hastings
t← 0, initialise state with random schedule Xt ← S0

Initialise utility function with random parameters ŨS

for t = 1, 2, ... do
Choose operator ω with probability Pω

X∗, q(Xt, X
∗)← ApplyChange(ω,Xt)

function ApplyChange(ω, state X)
return new state X ′, transition probability q(X, X ′)

end function
Compute target weight p(X∗) = ˜US(X∗)

Compute acceptance probability α(Xt, X
∗) = min

(
p(X∗)q(Xt|X∗)
p(Xt)q(X∗|Xt)

)
With probability α(Xt, X

∗), Xt+1 ← X∗, else Xt+1 ← Xt

end for

Simulation

The scheduling process for a given individual n, a set of activities to be scheduled An, and sets
of possible modes Mn and La,n is summarised in 2. The set of estimated parameters βa,n is also
provided as input.
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The objective function of the maximisation problem is the utility function of the schedule. This
function is expressed as a sum of a deterministic element and an error term (Eq.2). We assume
the distribution of the error term to be known.

US = VS + εS (2)

The decision variables (activity participation, start time, duration, sequence,...) are chosen such
as to maximise the utility of the schedule subject to constrained. For a draw of the error term εrS ,
the maximisation problem becomes deterministic, and yields one optimal schedule Sr which is a
draw from the distribution of schedules for n.
The constraints of the optimisation problem can be classified in two categories:

1. Mathematical constraints: they ensure that the resulting schedule is valid. For example, the
time budget T cannot be exceeded, activities cannot overlap,...

2. Context-dependent constraints: they are additional rules that influence the activity-travel
behaviour. For example, some activities must take precedence over others (e.g. picking up
children from school must happen after they were picked up),...

Algorithm 2 Simulation of activity schedules
Initialise n, βn, An, Mn, Ln

for r = 1,2,...,R do
Draw εrS from distribution of error terms.
Draw schedule Sr

n by solving Ω = maxUS(Xn, βn, ε
r
S) s.t. constraints

end for

Utility specification

For an individual n, each activity a provides a utility Uan , composed of the following elements:

1. A participation term, which is constant with respect to time.

2. A utility with respect to activity start time.

3. A utility with respect to activity duration.

4. Utility terms with respect to travel, considering the influence of travel time and cost to the
activity.

In this paper, we test different specifications of the utility function, more specifically, the utility
terms associated with start time and duration.

Default OASIS utility function

In the default OASIS utility function (Eq.3), the influences of start time xa and duration τa are
considered by penalising deviations from preferred start time x∗

a (earlier or later starts are penalised,
see Eq. 4) and duration τ∗a (shorter or longer durations are penalised, see Eq. 5). For each activity,
we therefore estimate four parameters corresponding to the penalties: {θearly, θlate, θshort, θlong}, as
well as activity-specific constants. The assumption is that individuals have asymmetrical penalties
for positive and negative deviations from their preferences1, and penalise differently each activity
(implying different ranges of flexibility).
Further assumptions are taken for the home activity:

1. The start time is constrained: the day must start at home. There is therefore no utility
associated with start time.

2. The duration of the home activity is not associated with a preference, but results from the
other scheduled activities. There is therefore no utility associated with duration.

1The preferred start time and duration can be a fixed point or a continuous range.
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US = U +

A−1∑
a=0

(Uparticipation
a + U start time

a + Uduration
a +

A−1∑
b=0

U travel
a,b ) (3)

U start time
a = θearly

a max(0, x∗
a − xa) + θlate

a max(0, xa − x∗
a) + εstart time (4)

Uduration
a = θshort

a max(0, τ∗a − τa) + θlong
a max(0, τa − τ∗a ) + εduration (5)

MATSIM scoring function

The utility function used in MATSIM was formalised by Charypar & Nagel (2005). The utility
of activity duration has a logarithm form (Eq. 7), which implies a decreasing marginal utility. In
addition, a too short duration is penalised. For start time (Eq. 8), schedule deviations such as
being late or early are penalised.
The parameters are: a parameter common to all activities βact, a typical duration τ∗a (considered
known), a scaling factor A and a priority term ρ. βshort, βearly, βlate penalise schedule deviations
(δ).

US = U

A−1∑
a=0

(Uduration
a + U start time

a + U travel
a ) (6)

Uduration
a = max

[
0, βactτ

∗
a ln

(
τa

τ∗a exp(−A/(ρτ∗a ))

)]
+ βshort

a δshort
a (7)

U start time
a = βearly

a δearly
a + βlate

a δlate
a (8)

PlanomatX utility function

We test the utility specification proposed by Feil (2010), which is a modification of the MATSIM
utility function (Section 2). The utility function considers the impact of activity duration with an
asymmetric S-shaped curve with an inflection point, as formalised by Joh et al. (2005) (Eq. 10).
The parameters of the S-shape are: the inflection point αa, the slope βa, and the relative vertical
position of the inflection point γa. When γa = 1, αa can be considered as the duration where the
utility reaches its maximum. They do not consider start time in their utility function.

US =

A−1∑
a=0

(Uact
a + U travel) (9)

Uact
a = Umin

a +
Umax
a − Umin

a

(1 + γa expβa [αa − τa])1/γa
(10)

3 Results and discussion

Case study

We use the Mobility and Transport Microcensus (MTMC), a Swiss nationwide survey gathering
insights on the mobility behaviours of local residents (Office fédéral de la statistique and Office
fédéral du développement Territorial, 2017). Respondents provide their socio-economic character-
istics (e.g. age, gender, income) and those of the other members of their household. Information
on their daily mobility habits and detailed records of their trips during a reference period (1 day)
are also available. The 2015 edition of the MTMC contains 57’090 individuals, and 43’630 trip
diaries. In order to illustrate a real-life application of the simulator, we focus on the sample of
full-time students residing in Lausanne (236 individuals).

Following the methodology described in Section 2, we start by generating the choice sets of daily
schedules for each individual in the sample. Each choice set is composed of 10 alternatives, includ-
ing the chosen (recorded) schedule.

The models are estimated with PandasBiogeme (Bierlaire, 2020). The estimation process is done
using 70% of observations in the sample data, where one observation is the daily schedule of one
individual.
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Estimation results

Tables 1, 2, and 3 present the parameter estimates for the OASIS utility function, the MATSIM
scoring function, and the PlanomatX function, respectively. We have chosen to display only signif-
icant parameters at a 5% level. For the estimation of the MATSIM function, we have considered
the same assumptions as described by Charypar & Nagel (2005) for the values of the scaling pa-
rameter (A = −200) and the priorities for each activity (ρa = 1 for a ∈ {home, education, work}
and ρa = 3 otherwise).

Similarly, we have assumed for the estimation of the PlanomatX function that Umin
a = 0 and

γa = 1 ∀a, as described by Feil (2010).

Finally, given that in the OASIS context, home is the reference alternative and therefore associated
with a null utility, we do not have estimated any parameter for this activity. The magnitudes and
signs of the other coefficients should therefore be considered relative to the home baseline.

OASIS

For education, being early seems to be slightly more penalised than being late, although the penal-
ties are almost symmetrical. For duration, cutting the activity short is associated with a negative
penalty, whereas a long duration is not regarded negatively (the associated parameter is not sig-
nificantly different from 0). Surprisingly, for work the penalty for being late is not statistically
significant, while being early or a short duration are significantly penalised.

For leisure, only being late is penalised. This can be explained by the fact that, while leisure is
usually considered as a discretionary activity, it is likely constrained by the participation of other
individuals or feasible times (e.g. opening hours of facilities The penalty for a short duration for
both leisure and shopping is not significant, which implies that these activities are more flexible
than education or work for scheduling trade-offs.

Param. Rob. Rob. Rob.
Parameter estimate std err t-stat p-value

Education: ASC 7.62 1.26 6.04 1.55e-09
Education: early -1.15 0.282 -4.07 4.62e-09
Education: late -0.89 0.214 -4.15 3.28e-05
Education: short -0.452 0.23 -1.97 0.0493
Leisure: ASC 5.02 0.679 7.38 1.57e-13
Leisure: late -0.747 0.135 -5.54 3.1e-08
Leisure: long -0.137 0.0497 -2.75 0.00593
Shopping: ASC 5.04 0.807 6.25 4.07e-10
Shopping: early -0.652 0.144 -4.53 5.88e-06
Shopping: late -0.534 0.0944 -5.65 1.57e-08
Shopping: long -0.17 0.06 -2.84 0.00456
Work: ASC 4.34 1.53 2.84 0.00448
Work: early -0.71 0.223 -3.19 0.00145
Work: short -1.37 0.481 -2.86 0.00423

Summary statistics
L(0) = −454.1869
L(β̂) = −152.0466
ρ̄2 = 0.621

Table 1: Estimation results for OASIS utility function. Only statistically significant pa-
rameters were included.
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MATSIM

A similar behaviour is implied by the estimates of these parameters. For education both start time
deviations are penalised (being early slightly more than being late) in comparable magnitudes.
Being early at a leisure activity is not associated with a statistically significant penalty, as opposed
to being late. For work, we have once again an insignificant parameter for being late.

Param. Rob. Rob. Rob.
Parameter estimate std err t-stat p-value

βact 0.0514 0.00974 5.27 1.34e-07
Education: early -1.6 0.449 -3.57 0.00036
Education: late -1.01 0.291 -3.48 0.00051
Leisure: late -0.467 0.122 -3.84 0.00012
Shopping: early -0.476 0.119 -4.01 6.04e-05
Shopping: late -0.293 0.0842 -3.48 0.00049
Work: early -2.75 0.712 -3.87 0.000111
Work: short -1.59 0.493 -3.22 0.00126

Summary statistics
L(0) = −593.8925
L(β̂) = −248.568
ρ̄2 = 0.56

Table 2: Estimation results for MATSIM utility function. Only statistically significant
parameters were included.

PlanomatX

On the other hand, the parameters estimates for the S-shaped utility function are more difficult
to interpret, especially the values of the inflection point α, which is the duration when the utility
function reaches its maximum. For education and work, this parameter is around 2 hours, which
means that beyond this duration, the utility increases at a decreasing rate (satiation effect). The
fact that longer durations are usually scheduled for these activities suggests that the time allocation
for education and work is more constraint-driven than utility-driven. For shopping, we observe the
opposite. The inflection point is at a very high duration as compared to the typical values in the
dataset. However, the negative slope suggests a decreasing utility.

Comparison of utilities

Figures 2-5 illustrate the utilities as functions of activity duration for education, work, leisure and
shopping.

Given the similarity of their specifications, the OASIS and MATSIM utility functions have compa-
rable trends for the education and work activities. The OASIS utility seems to converge towards
the PlanomatX utility for very long durations.

For leisure and shopping, the results are more heterogeneous. For the MATSIM specification, the
impact of duration seems negligible as the utility varies very little with duration. For these two
activities the OASIS function and PlanomatX are in concordance: about the inflection point for
leisure, and the overall decreasing trend for shopping.

These results show that a linear-in-parameter specification is able to capture overall utility trends.
An in-depth investigation of simulation results is now required to understand the impacts of the
utility specifications on results (accuracy and interpretability), and on model performance.
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Param. Rob. Rob. Rob.
Parameter estimate std err t-stat p-value

Education: Umax 4.79 0.443 10.8 0.00
Education: α 1.57 0.202 7.75 9.1e-15
Education: β 7.56 4.84 1.56 0.119
Leisure: Umax 4.47 0.379 4.50 9.1e-15
Leisure: α 0.668 0.213 3.13 0.00172
Leisure: β 2.53 0.686 3.69 0.000225
Shopping: Umax 2.12 0.333 6.36 2.04e-10
Shopping: α 3.66 0.975 3.75 0.000175
Shopping: β -4.85 2.3 -2.1 0.0353
Work: Umax 3.31 0.637 5.19 2.08e-07
Work: α 2.07 0.0459 45. 0.00
Work: β 11.5 0.792 14.5 0.00

Summary statistics
L(0) = −454.1869
L(β̂) = −187.871
ρ̄2 = 0.56

Table 3: Estimation results for PlanomatX utility function, considering Umin
a = 0, and

γa = 1.

Figure 2: Utility of activity duration for education
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Figure 3: Utility of activity duration for work

Figure 4: Utility of activity duration for leisure

Figure 5: Utility of activity duration for shopping
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4 Conclusions

In this work, we have tested three different utility specifications to explain activity-travel behaviour,
with a particular emphasis on the sensitivity to activity duration. The contributions of this work
are a demonstration of the estimation methodology of the OASIS framework applied to different
utility functions. In addition, we have compared some behavioural insights provided by the three
models, and started identifying focus areas for further investigations. Therefore, future work will
include:

1. A comparative analysis of simulation outputs (schedule distributions) using the three utility
functions. This analysis will be based on dedicated indicators of performance.

2. A sensitivity analysis to the model inputs, in particular to the size of the choice set, and its
composition (e.g. diversity of the alternatives).

3. A relaxation of some assumptions on the values of the parameters. For instance, estimating
the parameters of the PlanomatX function without the assumption of γa = 1.

4. An investigation of the influence of other variables and their effect on the utility of activities.
For example, travel time and cost or socio-demographic characteristics.
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Short summary

Multimodal mobility systems provide seamless travel by integrating different types of transporta-
tion modes. Most existing studies model service operations and travelers’ choices independently or
limited in multimodal travel options. We propose a choice-based optimization model for optimal
operations of multimodal mobility systems with embedded travelers’ choices using a multinomial
logit (MNL) model. We derive a mixed-integer linear formulation for the problem by lineariz-
ing transformed MNL constraints with bounded errors. The preliminary experimental test for a
small mobility on demand and public transport network shows the model provides a good solution
quality.
Keywords: Integrated service operations and user choices, Linearization of discrete choice con-
straints, Multimodal mobility systems.

1 Introduction

Multimodal mobility systems integrate different modes of transportation, such as walking, cycling,
driving, public transportation, and ride-sharing services, into a seamless and efficient network.
Recent advances in autonomous vehicles have the potential to increase coordination among traffic
modes, especially for Mobility-on-Demand (MoD) services (e.g., taxis, Lyft, Uber, and DiDi) which
provide point-to-point services and can connect travelers to public transportation.

In the multimodal mobility area, from the supply side, service providers decide on operations
like vehicle routing. For the demand side, travelers choose the modes (e.g., Subway, ride-sharing
services, or a combination of them) and path according to the features of available options like
travel time and price. However, most studies model service providers’ operations and travelers’
choices independently or limited in multimodal travel options. For example, Wollenstein-Betech et
al. (2022) proposed an integrated Autonomous Mobility-on-Demand (AMoD) system with public
transportation. They optimize the routing and rebalancing of the AMoD fleet from the system-
optimum perspective, while the travelers’ choices of modes are exogenous to the operation opti-
mization model. Liu et al. (2019) developed a multimodal transportation system integrating a
choice model in which travelers can choose either public transport or MoD services but not multi-
modal travel options. Pi et al. (2019) integrated a choice model in a multimodal dynamic traffic
assignment model by repeatedly updating travelers’ pre-defined multimodal mode choices and as-
signment results until convergence.

Conceptually, an effective operation modeling in a multimodal mobility system should jointly con-
sider service operations (supply) and travelers’ choice preferences (demand). Mathematically, this
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can be modeled as a choice-based optimization problem. Choice-based optimization models are
mathematical models that optimize decision-making based on choices made by individuals. These
models are commonly used in marketing, economics, and other fields where individuals make
choices based on various factors such as price, quality, and convenience. Many studies found that
the choice-based optimization model is highly relevant in the real world since it can provide more
accurate predictions of decision-making behavior Roemer et al. (2023).

The paper proposes a choice-based optimization model for cooperative travels in the multimodal
mobility system, which aims to minimize the total system travel time by deciding part of service op-
erations while satisfying travelers’ choice preferences characterized by the multinomial logit model
(MNL). Due to the non-linearity and non-convexity of the MNL model embedded in the problem,
limited research has thus far been devoted to solving it. Pacheco Paneque et al. (2021) proposed a
mixed-integer linear formulation based on simulation for the related discrete choice models. Later,
Pacheco Paneque et al. (2022) adopted scenario decomposition and scenario grouping based on
their aforementioned paper into a novel Lagrangian decomposition method to solve a choice-based
optimization problem.

Different from the simulation and the Lagrangian decomposition-based methods, we propose and
explore a new mixed-integer formulation for the choice-based optimization model for the studied
problem. The main contributions of this paper are two-fold:

• Propose a choice-based optimization model for cooperative travels in multimodal mobil-
ity systems. It optimizes system travel times by deciding part of service operations while
satisfying travelers’ choice preferences.

• Propose a novel mixed-integer formulation to effectively solve the choice-based optimization
problem by linearizing transformed MNL constraints with bounded errors.

Note that we validate our model on a simple network with MoD and public transport services
and compared it with sampling and simulation-based approach in linearizing MNL constraints.
More experimental tests on the real-world network will be conducted and also compared with
state-of-art models and general nonlinear optimization solvers, such as numerical optimization and
meta-heuristics.

2 Methodology

Model description

We define a multi-modal transportation network G containing multiple layers. One layer represents
MoD services, and each other layer can represent a specific mode, such as subway, buses, shared
bikes, or walking. For simplicity, we only discuss one MoD layer and one public transportation
layer (e.g., subway), as shown in Fig 1. However, our formulation can be easily expanded to one
MoD layer and multiple other layers.

Figure 1: A simple example of a multi-modal transportation system

Denote G = {Gm∪Gp} that MoD layer Gm = (Vm, Em) has vertices Vm and edges Em. The same
for the public transportation layer Gp = (Vp, Ep). There are transition links T connecting two
different layers to represent possible transfers of modes. Denote G = (V,E) that V = {Vm ∪Vp} is
the set of all points in the network and E = {Em ∪ Ep ∪ T} is the set of all edges in the network.

To model demand over different OD pairs, denote by w = (ws, wt) an OD pair starting from vertex
ws to vertex wt and dw ≥ 0 as the travel demand rate in this OD pair. Define W as the set of
OD pairs. We denote by xw

e the travel flow by OD pair w on edge e, xe =
∑

w∈W xw
e the total

flow on edge e, and xb
e the rebalancing flow of MoD services. X = {xw

e |e ∈ E,w ∈ W} and

2



Xb = {xb
e|e ∈ E} are non-negative continuous decision variables.

For OD pair w, denote Rw as the set of possible routes and θwr as the percentage of travelers
taking route r. To model relationships between edges and routes, define δwer as equal to 1 if edge e
belongs to route r of OD pair w, 0 otherwise. Along with each edge e ∈ E, we also have associated
non-negative travel time te ≥ 0 and non-negative cost pe ≥ 0. We can set travel time and prices
for edges to express different travel time patterns and price policies. The travel time tr and cost
pr can then be expressed simply by the equations

tr =
∑
e∈E

δwerte ∀w ∈ W, ∀r ∈ Rw, (1)

pr =
∑
e∈E

δwerpe ∀w ∈ W, ∀r ∈ Rw. (2)

We assume the utility function of route r for the OD pair w as follows:

µwr = −β1t
r − β2p

r, (3)

where β1 and β2 are marginal costs for time and price respectively.

To model our problem, denoted P0, we define E+(i) ∈ E as the set of edges starting from vertex
i, and E−(i) ∈ E as the set of edges ending with vertex i. Then, P0 can be expressed as follows:

min
X,Xb

∑
e∈E

te (xe)xe (4)

s.t.
∑

e∈E−(i)

xw
e + 1i=ws

dw =
∑

e∈E+(i)

xw
e + 1i=wt

dw ∀w ∈ W, i ∈ V, (5)

∑
e∈E−

m(i)

(
xb
e + xe

)
=

∑
e∈E+

m(i)

(
xb
e + xe

)
∀i ∈ Vm, (6)

xw
e = dw

∑
r∈Rw

δwerθ
wr ∀w ∈ W, ∀e ∈ E, (7)

θwr =
exp (µwr)∑

r′∈Rw
exp (µwr′)

∀r ∈ Rw, ∀w ∈ W, (8)

xw
e ≥ 0 ∀w ∈ W, ∀e ∈ E, (9)

xb
e ≥ 0 ∀e ∈ E. (10)

Objective (4) minimizes total travel time in the multi-modal system. Constraint (5) complies
with flow conservation and demand. Constraint (6) regulates the rebalancing flow of MoD service.
Constraint (7) describes the relationship between flow and route. Constraint (8) ensures the
percentages of routes’ choices fulfill an MNL model. Constraints (9) and (10) define non-negative
ranges for the decision variables.

Linearizing transformed MNL constraints

The main computational challenge of the model is due to the nonlinear parts, especially the non-
linear constraint (8). Based on three reasonable assumptions, we are able to separately deal with
distinct cases for constraint (8) to avoid some computational challenges.

For OD pair w, we select an arbitrary route r0 as the base route. Then, constraint (8) can be
represented by the constraints

θwr

θwr0
=

exp (µwr)

exp (µwr0)
,∀r ∈ Rw/r0,∀w ∈ W, (11)

∑
r∈Rw

θr = 1,∀w ∈ W. (12)

.
Take the natural logarithm on both sides of constraint (11):

ln θwr − ln θwr0 = µwr − µwr0 ,∀r ∈ Rw/r0,∀w ∈ W (13)
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Then, We give an equivalent formulation P ′
0 for our original problem: (4), s.t.{(5), (6), (7), (9),

(10), (12), (13)}

In P ′
0, constraint (13) is still non-linear and could be handled by a piece-wise linear approximation.

However, for φ = lnθ, it is difficult to obtain accurate piece-wise linearization when θ is close to
0 since φ

′
= 1/θ → +∞, when θ → 0. Therefore, we apply slight transformations of the original

problem to avoid that θ takes a value close to 0 when doing piece-wise linearization.

Constraint (8) describes the MNL model. We revise the model by adding three assumptions for
an OD pair w:

1. θwr can only take values of 0 ∪ [ϵ, 1] where ϵ is a small threshold, such as 0.1%, that fulfills
the accuracy requirements of the application.

2. if θwr1 ≥ ϵ and θwr2 ≥ ϵ, r1, r2 ∈ Rw, then:

θwr1

θwr2
=

exp (µwr1)

exp (µwr2)
. (14)

3. if θwr = 0, then ∀θwr′ ≥ ϵ, r′ ∈ Rw, r′ ̸= r :

θwr′ exp (µ
wr)

exp (µwr′)
< ϵ. (15)

We argue that these assumptions are reasonable. In practice, the original MNL model assigns
extremely small probabilities to options/routes no matter how inferior they are according to con-
straint (8). It is common to round the probabilities for these unattractive options to 0 as long as
they are lower than a threshold similar to assumption 1. Assumption 2 ensures that all non-zero
probabilities fulfill the MNL relationship. Assumption 3 ensures that options with 0 probability
are unattractive options. Thus, the assumptions allow us to exclude parts of the search space that
are not interesting for the application but may create numerical challenges.

We now calculate the error boundary when these three assumptions are used to replace constraint
(8). For simplicity, we restrict the discussion to one OD pair and assume there are n options/routes.
Denote by θ̂i the probability of route i computed based on the assumptions and by θi the proba-
bility computed by the original constraint. µi is the utility function of route i. We define sets N0

and N1 that route i ∈ N0 if θ̂i = 0, i ∈ N1 if θ̂i ≥ ϵ. N is the union of N0 and N1.

For route i ∈ N0:
∆i = |θi − θ̂i| = θi

=
exp (µi)∑

j∈N exp (µj)
≤ exp (µi)∑

j∈N1
exp (µj)

Since: exp (µj) >
θ̂j exp (µi)

ϵ
,∀j ∈ N1

<
ϵ∑

j∈N1
θ̂i

= ϵ

(16)
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For route i ∈ N1:
∆i = |θi − θ̂i|

=
exp (µi)∑

j∈N1
exp (µj)

− exp (µi)∑
j∈N exp (µj)

=
exp (µi)

∑
j∈N0

exp (µj)∑
j∈N1

exp (µj)
∑

j∈N exp (µj)

= θ̂i

∑
j∈N0

exp (µj)∑
j∈N exp (µj)

≤
∑

j∈N0
exp (µj)∑

j∈N exp (µj)

=
1

1 +
∑

j∈N1
exp(µj)∑

j∈N0
exp(µj)

≤ 1

1 +
∑

j∈N1
exp(µj)

|N0|maxj∈N0
exp(µj)

Since: exp (µj) >
θ̂j maxk∈N0 exp (µk)

ϵ
,∀j ∈ N1

<
|N0|ϵ

|N0|ϵ+
∑

j∈N1
θ̂j

=
|N0|ϵ

|N0|ϵ+ 1

≤ |N |ϵ
|N |ϵ+ 1

(17)

Therefore, with a threshold of an acceptable error bound maxi |∆i|, we can define our new problem
P1 with the replacement of constraint (8) by the three assumptions.

To encode the logic implied by the assumptions into our optimization problem, we introduce binary
variables bwr. These binary variables work as indicators with bwr = 1 if θwr ≥ ϵ, and 0 otherwise.
We assume the absolute value of the utility function (3) has an upper bound |U |max. Then, define
continuous variables φwr ∈ [ln ϵ − |U |max, 0], w ∈ W, r ∈ Rw, φ̃wr ∈ [ln ϵ, 0], w ∈ W, r ∈ Rw, and
θ̃wr ∈ [ϵ, 1], w ∈ W, r ∈ Rw for auxiliary. Define a small positive value τ to deal with the strict
inequality in assumption 3 and avoid numerical issues in (20).

P1:

min
X,Xb

∑
e∈E

te (xe)xe

s.t. (5), (6), (7), (9), (10), (12),
θwr = 0 ∪ [ϵ, 1] ∀w ∈ W, r ∈ Rw, (18)
bwr ≥ θ/2 ∀w ∈ W, r ∈ Rw, (19)
bwr ≤ θ/ϵ+ τ ∀w ∈ W, r ∈ Rw, (20)
φwr − φwr0 = µwr − µwr0 ∀w ∈ W, ∀r ∈ Rw/r0, (21)

φ̃wr = ln θ̃wr ∀w ∈ W, ∀r ∈ Rw, (22)
bwr = 1 → φwr = φ̃wr ∀w ∈ W, ∀r ∈ Rw, (23)

bwr = 1 → θwr = θ̃wr ∀w ∈ W, ∀r ∈ Rw, (24)
bwr1 = 0 and bwr2 = 1 →
µwr1 − µwr2 ≤ ln ϵ− φwr2 − τ ∀w ∈ W, ∀r1, r2 ∈ Rw, r1 ̸= r2, (25)

bwr ∈ {0, 1} ∀w ∈ W, ∀r ∈ Rw, (26)
ln ϵ− |U |max ≤ φwr ≤ 0 ∀w ∈ W, ∀r ∈ Rw, (27)
ln ϵ ≤ φ̃wr ≤ 0 ∀w ∈ W, ∀r ∈ Rw. (28)

Constraints (18), (19), and (20) restrict the ranges of θwr. They indicate that θwr is non-zero by
bwr = 1 and zero by bwr = 0. Constraints (21), (22), (23), and (24) ensure assumption 2 holds
when probabilities of two routes are greater than ϵ and make piece-wise linearization of natural
log function starts from ln ϵ. Constraints (25) ensure assumption 3 holds. Constraints (26), (27),
and (28) define ranges of variables.

In a sophisticated mixed-integer linear programming solver, such as Gurobi, it is possible to include
constraint (18) by semi-continuous variables, and constraint (22) through so-called general con-
straints. The formulation P1, thus, allows us to utilize powerful mixed-integer linear programming
software.

5



3 Results and discussion

In this section, we present experiments based on an artificial network to show the accuracy of the
results. As shown in Fig (2), the case has two layers of MoD services and Subway connected by
some transition links. In the MoD layer, points represent districts in a virtual city while edges are
abstracted roads. In Subway layer, there are two lines. Each station is connected with a point in
the MoD layer by a transition link.

1 2 3

4 5 6

7 8

10

11

12

13 14

Transition Links

MoD services Subway

Figure 2: The case illustration

For fare, we set a distance-based fare for MoD services that pe = 10$,∀e ∈ Em and an entrance-
based fare for the subway that pe = 4$,∀e = (i, j), i ∈ Vm, j ∈ Vp. As for the travel time, we
assume a constant travel time of 5 min for transition links and 15 min for all edges in the public
transportation layer. We use Bureau of Public Roads function (29) for edges in the MoD layer,
given by

te (xe) = t0e

(
1 + α (xe/me)

β
)
, (29)

and we use the typical values α = 0.15 and β = 4. t0 = 10
√
2 min is set in function (29) for edge

(4, 7) and t0 = 10 for the rest of edges. We also assume all edges have the same capacity m = 20k
pcu/h. We set a fixed time of 15 min for edges in Subway layer and 5 min for transition links.
To solve the model, we apply piece-wise linearization to (29). Gurobi can handle the quadratic
terms in the objective (4) by "translating them into bilinear form and applying spatial branching"
according to its website (https://www.gurobi.com/documentation/10.0/refman/nonconvex.html).

The parameters in the utility function (3) are normally estimated by real data. However, we di-
rectly define β1 = 1/min and β2 = 1/$ for two reasons: (1) Our contribution is in the algorithm.
Such settings are enough for illustration and basic exploration. (2) For utility function’s parameter
estimation, most literature on the multi-modal transportation system normally do modal split first
to decide demands for each mode. However, our problem jointly considers mode and route choices.
It is difficult to find a perfectly suitable estimation in current research.

In the given case settings, we solve P1 with a threshold ϵ of 0.01 by an i9-12900H CPU and Gurobi
10.0.0 in 22.42s. Table 1 displays the solution results of our model. There are 4 OD pairs and
corresponding flows as shown by w : dw. |Rw| represents the number of available routes of OD
pair w. r ∈ Rw shows the detailed information of active routes which have non-zero choice proba-
bilities and how many inactive routes. θ̂wr is the choice probability obtained by P1 and θwr is the
one computed by the original MNL model based on the utility values in the solution. ∆wr is the
difference between two computations of choice probabilities to measure the solution quality.

Table 1 shows the solution results of the proposed formulation. The differences ∆wr between the
linearized MNL and the original MNL models are quite small, which illustrates that the proposed
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Table 1: Results of the proposed formulation

OD: flow Routes Route P1 MNL Error
w : dw |Rw| r ∈ Rw θ̂wr θwr ∆wr

(1, 8): 15k 22 [1, 4, 7, 8] 100.00% 100.00% 0.00%
21 routes remain... 0.00% ≤ 0.00% ≤ 0.00%

(8, 1): 30k 22 [8, 6, 3, 2, 1] 4.05% 4.02% 0.03%
[8, 6, 5, 2, 1] 6.67% 6.65% 0.03%
[8, 7, 4, 1] 89.27% 89.10% 0.18%
19 routes remain... 0.00% ≤0.21% ≤0.21%

(3, 7): 23k 21 [3, 6, 5, 7] 43.71% 43.25% 0.46%
[3, 6, 14, 11, 12, 7] 7.67% 7.58% 0.09%
[3, 2, 5, 7] 41.68% 41.24% 0.44%
[3, 2, 10, 11, 12, 7] 6.94% 6.86% 0.09%
17 routes remain... 0.00% ≤0.99% ≤0.99%

(7, 3): 25k 21 [7, 8, 6, 3] 19.15% 19.14% 0.01%
[7, 5, 6, 3] 29.83% 29.82% 0.01%
[7, 5, 2, 3] 42.18% 42.17% 0.00%
[7, 12, 11, 14, 6, 3] 3.25% 3.22% 0.03%
[7, 12, 11, 10, 2, 3] 5.60% 5.59% 0.01%
16 routes remain... 0.00% ≤0.03% ≤0.03%

method gives a good approximation.

We also tried the sampling and simulation method inspired by Pacheco Paneque et al. (2021) to
linearize the choice constraint (Table 2). We set 100 draws for each OD pair and solved the same
case in 3039.57s. Here, θ̂wr is the probability obtained by the simulation-based method and θwr is
the one calculated by the MNL model based on the utility values in the solution. We still use the
differences between the two probabilities to measure the solution quality.

Table 2: Results of the simulation-based formulation

OD: flow Routes Route Simulation MNL Error
w : dw |Rw| r ∈ Rw θ̂wr θwr ∆wr

(1, 8): 15k 22 [1, 4, 7, 8] 100.00% 100.00% 0.00%
(8, 1): 30k 22 [8, 6, 3, 2, 1] 4.00% 5.61% 1.61%

[8, 6, 5, 2, 1] 6.00% 8.98% 2.98%
[8, 7, 4, 1] 90.00% 85.08% 4.92%

(3, 7): 23k 21 [3, 6, 5, 7] 46.00% 37.67% 8.33%
[3, 6, 14, 11, 12, 7] 7.00% 7.73% 0.73%
[3, 2, 5, 7] 40.00% 45.64% 5.64%
[3, 2, 10, 11, 12, 7] 7.00% 7.96% 0.96%

(7, 3): 25k 21 [7, 8, 6, 3] 18.00% 19.30% 1.30%
[7, 5, 6, 3] 31.00% 27.02% 3.98%
[7, 5, 2, 3] 42.00% 44.93% 2.93%
[7, 12, 11, 14, 6, 3] 4.00% 3.03% 0.97%
[7, 12, 11, 10, 2, 3] 5.00% 5.66% 0.66%

As shown in Table 2, the simulation-based formulation produces the same routes of non-zero
probabilities as the ones by our proposed formulation. However, the error of the simulation-based
formulation can be up to 8.33% which is much greater than the error shown in Table 1. The
comparison suggests our proposed formulation has good solution quality.
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4 Conclusions

This paper proposes a choice-based optimization model for integrated service operations and trav-
eler choices in multimodal mobility systems. We derive a mixed-integer formulation by linearizing
the MNL-based discrete choice constraints with bounded errors. Preliminary experiments show
that the proposed formulation provides a good solution quality. Future work will derive the com-
putation complexity and test the methodology on large-size problems, as well as compare it with
state-of-art solution methods.
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SHORT SUMMARY 

Stated preference surveys are typically used to derive reliability multipliers, defined as a trade-

off between a minute of lateness and scheduled journey time. In this study, travel satisfaction data 

from the National Rail Passenger Survey in the United Kingdom is used to estimate the impact of 

scheduled journey length and delays on passenger satisfaction. An ordered logit model with OD 

fixed effects is estimated and reliability multipliers are subsequently derived. The estimated val-

ues are slightly larger than previously suggested, ranging from 4 to 9 for arrival delay and 2 to 6 

for departure delay. The study offers some degree of novelty in terms of the type of data used in 

the estimation process. As a result, some caution is needed in using and interpreting the estimated 

multipliers. On the other hand, this study highlights the potential that satisfaction surveys may 

have in transport economics. 

 

Keywords: lateness valuation, passenger satisfaction, rail economics, reliability multiplier, 

transport economics and policy  

1. INTRODUCTION, 

Transport researchers are interested in the impact that journey lengths, fares and delays have on 

passengers. Ticket sales data is often used to estimate the effect that generalized journey time 

(𝐺𝐽𝑇) components have on rail demand. Following Wheat and Wardman (2017), the demand 

function is specified as: 

 

 𝑉 = 𝜇𝐺𝐽𝑇𝐹𝐺𝑉𝐴  (1) 

 

where 𝐹 is the fare, 𝐺𝑉𝐴 income, , ,  are respective elasticities and µ represents all the other 

factors impacting the demand. Generalised journey time is a composite index specified as: 

 

 𝐺𝐽𝑇 = 𝑇 + 𝛼𝐻 + 𝛽𝐼  (2) 
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where 𝑇 is the station-to-station journey time, 𝐻 is the service headway and 𝐼 is the number of 

interchanges with 𝛼 and 𝛽 being the respective penalty multipliers converting interchanges and 

headway into equivalent journey time. 

 

Extending the demand specification presented in the equation 1, Batley, Dargay and Wardman 

(2011) used the following relationship between demand and average lateness at the destination 

prescribed by the Passenger Demand Forecasting Handbook (ATOC, 2005) in the UK: 

 

 𝑌 = [1 +
𝑤(�̅�𝑛𝑒𝑤

+  − �̅�𝑏𝑎𝑠𝑒
+ )

𝐺𝐽𝑇𝑏𝑎𝑠𝑒
]


  (3) 

 

where 𝑌 is the proportionate change in demand, �̅�𝑛𝑒𝑤
+  and �̅�𝑏𝑎𝑠𝑒

+  represent average lateness at the 

destination in the base and new scenarios, 𝐺𝐽𝑇𝑏𝑎𝑠𝑒 generalized journey time in the base scenario, 

 is the elasticity of demand to GJT and 𝑤 is the reliability (lateness) multiplier. 

 

The lateness multiplier 𝑤 defines the conversion rate of 1 minute of lateness to the equivalent of 

journey time. It is estimated as the ratio of the utility of lateness to the utility of scheduled journey 

time. Wardman and Batley (2014) provides a review of estimates of reliability multipliers with 

most of the initial values being around 2.5 to 3. Similar studies conducted throughout the years 

generally supported that figure but suggested values of up to 6.5 for airport journeys with Preston 

et al. (2009) estimating the different reliability multipliers by journey purpose and length as 

showed in Table 1. 

 

Table 1: Reliability multipliers (Preston et al., 2009) 
 

Journey Purpose Short Long 

Business  2.70  1.80 

Commute  3.22   2.10 

Leisure  5.30  1.88  

 

 

Stated preference (SP) surveys are most often used in studies where reliability multipliers are 

estimated (e.g. Bates et al., 2001; Preston et al., 2009; Batley and Ibáñez, 2012). In such cases, 

passengers are presented with alternative hypothetical travel options and make a choice regarding 

their preferred scenario. The differences in the options presented to the respondent are the ticket 

prices, scheduled journey lengths and performance. While the SP data can be subjected to biases, 

such as systematic bias (divergence between hypothetical and actual choices), justification bias 

(rationalizing actual choices) or strategic bias (influencing policy) (for review see Wardman, 

1988), it has become a standard approach as it is often the only possible source of such data (Bates 

et al., 2001). An alternative to SP data is revealed preference (RP) data where passengers' actual 

travel choices are investigated. While economists typically prefer data on actual choices, RP data 

is more difficult to obtain and based on the assumptions of perfect information about the travel 

alternatives (Wardman, 1988; Bates et al., 2001; Preston et al., 2009).  

 

An alternative to SP and RP surveys can be sought in satisfaction surveys where passengers score 

their satisfaction with an actual travel experience ex post. There is an abundance of literature 

looking at the impact of different journey aspects on passenger satisfaction (for reviews see de 

Oña and de Oña, 2014; Rong et al., 2022). In the rail context, Monsuur et al. (2021) used the 

National Rail Passenger Survey to estimate the impact of delays on passenger satisfaction, sug-

gesting that passengers are very unlikely to remain satisfied with journeys delayed by over 30 

minutes. Satisfaction data, typically from longitudinal household panels, have been widely used 
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in economic valuation in labour (Layard, Mayraz and Nickell, 2008), health (Ferrer-i-Carbonell 

and van Praag, 2002) and environmental economics (Frey, Luechinger and Stutzer, 2009). How-

ever, similar approaches have not been as widely used in transport economics, possibly resulting 

from a lack of transport surveys with such detailed information or from household surveys lacking 

enough transport-related information. The most important exception is a study by Dickerson, Hole 

and Munford (2014) looking at the relationship between life satisfaction and commuting.  

 

This piece of work draws on earlier work using SP surveys to estimate reliability multipliers (e.g. 

Bates et al., 2001; Preston et al., 2009; Batley and Ibáñez, 2012). At the same time, the method-

ology used in this study is similar to the large body of literature using data from surveys on life 

satisfaction (e.g. Layard, Mayraz and Nickell, 2008; Dickerson, Hole and Munford, 2014). The 

major difference is the use of a survey on journey, not life, satisfaction and its cross-sectional 

nature. National Rail Passenger Survey is used where passengers’ satisfaction with a journey is 

reported on a 5-point Likert scale. The passenger responses are matched to operational data to 

study the impact of the scheduled journey time and delays on passenger satisfaction. An ordered 

logit model of passenger satisfaction is used to estimate the utilities of both scheduled journey 

length and delay (at departure and arrival) that are subsequently used in the estimation of a relia-

bility multiplier. 

2. METHODOLOGY 

National Rail Passenger Survey (NRPS) dataset 

275,000 responses from 10 waves (between 2015 and 2020) of NRPS in the UK were obtained 

directly from Transport Focus (for more details see Transport Focus, 2020). The data has been 

used in multiple studies, i.e. Monsuur et al. (2021) looking at the impact of delays on satisfaction, 

Stead, Smith and Ojeda-Cabral (2019) comparing satisfaction with open access and franchised 

operators or Lyons, Jain and Weir (2016) looking at passengers’ use of in-vehicle time. The re-

sponses were subsequently matched with operational data using the Historic Service Performance 

platform to compute scheduled journey length and corresponding delay lengths for each of the 

passengers. Following initial analysis, some responses were discarded based on: 

 

1) Frequency of travel 

Out of the 46% of passengers responding to the question regarding the frequency of travel 

on a given route, 73% admitted to travelling at least every 2 months. It is assumed that 

only the frequent travellers are affected by potential changes in scheduled journey length 

on a given route. 

 

2) Journey purpose 

Airport journeys, commuter journeys longer than 60 minutes and passengers using special 

ticket types were removed from the dataset. 

 

3) Recorded delay length and delay perception 

Responses where a passenger reported late arrival, but no delay was matched using the 

operational data (5.7%), were discarded as well the delays of more than 30 minutes to 

remove outliers and possibly erroneous responses. 

 

4) Number of responses for a given origin-destination pair 
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OD pairs with more than 10 and 25 responses were selected as 792 OD pairs were iden-

tified with more than 10 responses over 26,026 responses and 270 pairs with more than 

25 responses over 17,695 responses.  

 

The passengers scored their overall satisfaction with their journey on a 5-point Likert scale, from 

‘very satisfied’ to ‘very dissatisfied’ as showed in Figure 1. Similarly, passengers scored their 

satisfaction with the train, station, value for money and service frequency. 

 

 

 

Figure 1. Overall satisfaction questions (Transport Focus, 2020) 

Deriving the reliability multiplier 

As the dependent variable (satisfaction) can take one of the five outcome categories, which are in 

sequential order, an ordered logit model is used for estimating the latent continuous variable y*. 

In this case, the probability of choosing a satisfaction category i is estimated for a given number 

of k categories, thus: 

 

 𝑃(𝑌 = 𝑖) = 𝑃(𝑘𝑖−1 < 𝑦∗ ≤ 𝑘𝑖)  (4) 

 

where journey satisfaction is modelled as follows: 

 

 𝑃(𝑌 = 𝑖) = 𝑃(𝑘𝑖−1 < 𝛽0 + 𝛽1𝑆𝐽𝑇 + 𝛽2𝐿𝐷 + 𝛽3𝐿𝐴 + ∑ 𝛽𝑛𝑆𝑎𝑡𝑛
𝑛
𝑛=1 ≤ 𝑘𝑖)  (5) 

 

where 𝑆𝐽𝑇 is scheduled journey time, 𝐿𝐴 and 𝐿𝐷 -  length of delay at arrival (destination) and 

departure (origin) and 𝑆𝑎𝑡𝑛 is a dummy variable representing passengers’ satisfaction with train 

or station (models 1-4) and also value for money or frequency (model 4). It takes value of 1 if the 

passenger is satisfied with a given journey aspect or 0 otherwise. 

 

In models 2-4, OD pair fixed-effects are included in the models by introducing a dummy variable 

representing each of the OD pairs represented in the sample. This allows treatment of the dataset, 

which is cross-sectional in nature, as a pseudo-panel of frequent rail travellers to estimate the 

impacts of both changes in journey times and delays on passenger satisfaction. 

 

The ordered logit model is conceptually most suitable for modelling ordinal data (Dickerson, Hole 

and Munford, 2014; for review see Boes and Winkelmann, 2006), but its major disbenefit is the 

difficulty in interpreting the coefficients. However, as noted in Dickerson, Hole and Munford 

(2014), the ratios of the coefficients in the ordered model can be used to evaluate the trade-offs 

between variables. In this case, reliability multipliers are estimated as a ratio of utility of departure 

and arrival delay 𝛽2and 𝛽3 to the utility of scheduled journey length 𝛽1. The multipliers are cal-

culated separately for the two types of delays, at departure (𝑤𝐷) and arrival (𝑤𝐴) following Batley 

and Ibáñez (2012) for the selected three journey types. In line with the literature (i.e. Bates et al., 
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2001; Preston et al., 2009; Batley and Ibáñez, 2012), the reliability multiplier represents the value 

of delayed time respective to the scheduled time.  

 

 𝑤𝐷 =
𝛽2

𝛽1
  and  𝑤𝐴 =

𝛽3

𝛽1
 (6) 

3. RESULTS AND DISCUSSION 

The models of passenger satisfaction are estimated using an ordered logit model with estimated 

coefficients presented in Table 2.  

 

 

Table 2: Model estimates 
 

 1 t-stat 2 t-stat 3 t-stat 4 t-stat 

Constant         

   Business 0 . 0 . 0 . 0 . 

   Commute -0.0778 -0.93 -0.225 -1.85 -0.186 -1.25 -0.117 -0.69 

   Leisure -0.0124 -0.14 -0.0553 -0.48 -0.0223 -0.16 -0.0793 -0.49 

Station_Sat         

   Business 1.345*** 20.32 1.350*** 17.26 1.325*** 15.10 1.137*** 12.27 

   Commute 1.111*** 27.59 1.183*** 20.87 1.195*** 16.40 0.980*** 12.94 

   Leisure 1.401*** 27.85 1.465*** 21.53 1.413*** 17.07 1.172*** 13.56 

Train_Sat         

   Business 3.059*** 45.77 3.066*** 38.20 3.127*** 34.03 2.866*** 28.90 

   Commute 3.049*** 72.16 2.998*** 51.96 3.042*** 41.61 2.770*** 35.98 

   Leisure 3.438*** 62.16 3.418*** 46.02 3.401*** 36.61 2.999*** 30.14 

Freq_Sat         

   Business       0.803*** 8.15 

   Commute       0.888*** 12.25 

   Leisure       0.919*** 9.88 

VfM_Sat         

   Business       1.049*** 15.92 

   Commute       1.120*** 15.00 

   Leisure       1.123*** 19.61 

L_ A (𝛽3)         

   Business -0.0505*** -8.82 -0.0567*** -8.89 -0.0521*** -7.68 -0.0537*** -7.53 

   Commute -0.101*** -18.36 -0.1000*** -14.12 -0.114*** -13.05 -0.109*** -12.03 

   Leisure -0.0593*** -12.30 -0.0583*** -9.74 -0.0570*** -8.45 -0.0576*** -8.20 

L_D (𝛽2)         

   Business -0.0690*** -7.77 -0.0683*** -6.46 -0.0729*** -5.99 -0.0758*** -6.01 

   Commute -0.0522*** -7.71 -0.0472*** -5.20 -0.0296** -2.60 -0.0349** -2.97 

   Leisure -0.0404*** -6.30 -0.0421*** -5.02 -0.0354*** -3.54 -0.0402*** -3.84 

SJT (𝛽1)         

   Business -0.0009* -1.99 -0.0120*** -5.43 -0.0121*** -5.00 -0.0134*** -5.27 

   Commute -0.0058*** -6.76 -0.0134*** -5.26 -0.0142*** -4.74 -0.0123*** -3.93 

   Leisure 0.0002 0.53 -0.0105*** -4.95 -0.0102*** -4.34 -0.0125*** -5.06 

N 40363  25457  17316  16632  

LL -36770.8  -22388.3  -15181.8  -13920.9  

r2 0.234  0.246  0.231  0.267  

Fixed effects X  V  V  V  

VfM and Freq X  X  X  V  

Minimum N 1  10  25  25  
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Model 1 is based on estimating the ordered logit without OD fixed effects. In this model, the 

delays at arrival and departure both have a statistically significant negative impact on satisfaction 

while the impact of journey length is less clear. However, it is not expected that passengers simply 

travelling longer are less satisfied with their journeys, as journey lengths naturally increase with 

distance. However, it is worth noting the significant and negative coefficient on scheduled journey 

time for commuters that may be potentially explained by their general dissatisfaction with longer 

travel for work (irrespective of distance). Nevertheless, it can be expected that respondents who 

travel on the same OD pair may be sensitive to changes in scheduled journey times and it is further 

assumed that these impacts are similar for travellers on the same OD. With the introduction of 

OD fixed effects in models 2-4, the coefficient on scheduled journey length becomes significant 

and negative for all journey purposes. 

 

Using the estimated coefficients, reliability multipliers for arrival and departure delay are calcu-

lated for the models with OD fixed effects as showed in Table 3. The estimated reliability multi-

pliers at arrival are around 4.0-4.7 for business travellers, 7.4-8.9 for commuters and 4.6-5.6 for 

leisure travellers. The respective departure reliability multipliers are 5.6-6.0 for business travel-

lers, 2.1-3.5 for commuters and 3.2-4.0 for leisure travellers. The reliability multiplier is larger at 

departure for business travellers, slightly larger at arrival for leisure travellers and much larger 

for commuters at arrival. This would suggest that 1 minute of delay is valued as around 4 minutes 

at arrival and 6 minutes at departure for business travellers, 8 minutes at arrival and 3 at departure 

for commuters, and 5 minutes at arrival and 3 at departure for leisure travellers. 

 

Table 3: Reliability multipliers 

 
Journey 

Purpose 

𝑤𝐴 𝑤𝐷 

 

 

 (2) (3) (4) (2) (3) (4) 

Business  4.74   4.31   3.99   5.72   6.02   5.64  

Commute  7.43   8.02   8.86   3.51   2.08   2.83  

Leisure  5.52   5.61   4.61   3.99   3.49   3.21  

4. CONCLUSIONS 

This study adds a degree of novelty in using passenger satisfaction data instead of the typically 

used SP survey data to estimate reliability multipliers. This study combined the previous work 

using life satisfaction surveys (e.g. Layard, Mayraz and Nickell, 2008) with work using passenger 

satisfaction surveys to study the impact of delays on passengers (e.g. Monsuur et al., 2021) and 

studies using SP surveys to estimate reliability multipliers (e.g. Batley and Ibáñez, 2012). Passen-

ger satisfaction data was used to estimate an ordered logit model with origin-destination pair 

fixed-effects to estimate the utilities of delay and scheduled journey length. Subsequently their 

ratios were calculated to derive reliability multipliers, a conversion rate between lateness and 

scheduled journey length.  

 

The estimated reliability multipliers are slightly larger than the ones typically estimated in the SP 

studies and some caution is needed while applying these values. To the best of our knowledge, it 

is the first study attempting to use journey satisfaction data in such an application. Therefore, it 

is believed that the methodology outlined in this study can be applied to similar satisfaction da-

tasets for comparison of results. The study does, however, highlight the potential of using such 

data in transport economics. One of the key recommendation of this study is to consider including 
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more questions relating to income or fares in journey satisfaction questionnaires that could allow 

the estimation of more sophisticated metrics, including the value of time. 
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Short summary

Understanding the capacity of runway system under different operational conditions is of critical
importance to airport operators and planners. The availability of granular data on day-to-day
runway operations facilitates the development of models that allow a precise comprehension of
runway capacity. However, the exercise is empirically challenging due to statistical biases that
emerge via the complex interactions between air traffic control and runway capacity. This paper
develops a novel causal statistical framework based on a confounding-adjusted Stochastic Frontier
Analysis (SFA) to deliver estimates of runway capacity and its parameters that are robust to such
biases. The model captures the key factors and interactions affecting runway capacity in a com-
putationally intensive manner. The performance of the model is demonstrated via benchmarking
of the estimated capacities of three major airports around the world.

Keywords: Airport operations; Runway capacity; Empirical estimation; Confounding; Causal
statistical modelling; Stochastic frontier analysis.

1 Introduction

Runway capacity, the maximum number of aircraft movements that a runway system in an airport
can operate in a given time period, is a primary input to air traffic management and planning
(De Neufville et al., 2013). Knowledge of runway capacity supports decisions in planning and
operations, including (1) distributing the daily runway demand over the available runway capacity
(that is, available slots) (Gilbo, 1993; Cheung et al., 2021), (2) modeling airport delay or even delay
propagation within the airport network (Pyrgiotis et al., 2013), and (3) appraising investments in
runway capacity expansion (Hansen, 2004), among others. By nature, runway capacity is highly
dynamic because it is determined by various time-varying operational factors such as weather
conditions, runway configuration, and fleet mix (Ashford et al., 2011). However, even after many
endeavors to estimate runway capacity, the literature lacks methods that can robustly quantify
its dynamic nature, while being less resource-intensive in terms of time, labour, data, and other
monetary requirements (such as expenses for a software license). This study attempts to address
this gap by developing a model to precisely estimate runway capacity and the parameters of its
associated factors.
Previous models of assessing runway capacity can be grouped into four main categories: (1) table
lookup and spreadsheet (FAA, 1983; TRB, 2012), (2) analytical (Blumstein, 1959; Cheung et al.,
2017; Mascio et al., 2020), (3) simulation (Bubalo & Daduna, 2011; Kuzminski, 2013; Barrer et al.,
2005), and (4) empirical (Gilbo, 1993; Hansen, 2004; Kim & Hansen, 2010; O’Flynn, 2016; Kim
et al., 2015). The first two categories of models carry several assumptions on runway operations;
such as the absence of airspace constraints and the control of air traffic controllers; that seldom
hold true in practical airport operation conditions. Simulation models offer the flexibility to un-
derstand the dynamic nature of runway capacity under different operational scenarios. However,
the construction of such varying scenarios requires highly granular data on time-varying factors
such as air traffic control regulations, which are often difficult to obtain. Moreover, the high cost
in time, money and human resources (well-trained programmers) make simulation models remain
frequent use only in big and hairy projects (such as detailed airfield design) rather than assessing
runway capacity solely. Empirical models provide the ability to understand runway capacity in
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the least data-hungry manner. Such models derive estimates of capacity from data on historical
throughput that implicitly represent varied operational conditions. Nonetheless, we highlight that
estimating capacity from the throughput data is not straightforward as there are external unob-
served (unquantifiable) factors such as air traffic control regulations, that are correlated with both
capacity and its observed determinants (such as the mix of aircraft served). We note that state-of-
the-art empirical approaches in the literature, such as censored regression, fail to adjust for such
unobserved sources of confounding, which limits their ability to provide a statistically robust and
reproducible characterisation of runway capacity.
To fill these research gaps, we propose an empirical method to estimate runway capacity by em-
ploying a causal statistical approach, confounding-adjusted SFA, first developed by Karakaplan &
Kutlu (2017); Karakaplan (2022) and further applied in Karakaplan & Kutlu (2019); Ojo & Baiye-
gunhi (2020); Xu et al. (2022). The proposed model uses historical throughput as the dependent
variable and associated operational condition factors as covariates. Demand and delay are intro-
duced in the inefficiency to determine the deviation from throughput to capacity. The adopted
SFA delivers estimates of runway capacity by constructing a confounding-robust throughput fron-
tier. The confounding biases originate due to either the correlation between observed operational
condition factors and unobserved operational condition factors in random error, the correlation
between inefficiency and random error, or both. To the best of our knowledge, this study presents
the first application of causal statistical modelling in empirical estimation of runway capacity. Fur-
ther, we apply the proposed model to three major airports around the world by making use of
data on their day-to-day operations in 2018 as maintained by the Airport Benchmarking Group
(ABG) within the Transport Strategy Centre (TSC) at Imperial College London Airport Bench-
marking Group (n.d.). The corresponding weather records are sourced from Weather Underground
Weather Underground (n.d.), Visual Crossing Visual Crossing (n.d.) and ECMWF Reanalysis v5
Copernicus Climate Change Service (n.d.). Based on these high-granular and large-scale data, the
estimates of parameters for operational factors provide insights into how these factors contribute
to changes in runway capacity. Additionally, the reliability of our runway capacity estimates is
validated by comparing them against reported data from table lookup and spreadsheet in FAA’s
Advisory Circular Report 150/5060-5 FAA (1983) and Eurocontrol’s Airport Corner Eurocontrol
(n.d.); and testing statistically via censored regression Kim & Hansen (2010). Such accurate es-
timates of runway capacity under specific operational conditions facilitate air traffic controllers a
better understanding of the capacity under these conditions and further decisions.

2 Data and Variables

Data

To estimate the runway capacity, we use large-scale and high-granular operational data for three
congested airports provided by the ABG of TSC at Imperial College London. Because of data
confidentiality, these three airports are anonymous in this study, denoted as A, B, and C. For
each airport, the data provide detailed records for all aircraft movements in 2018, including sched-
uled and actual arrival and departure time, aircraft type, allocated runway and gate, and number
of passengers. Such high-granular data including individual flight records ensure the metrics for
operational factors are as close to what happens in actuality as possible Kim et al. (2015). The
historical weather data for these airports are sourced from Weather Underground Weather Un-
derground (n.d.), Visual Crossing Visual Crossing (n.d.) and ECMWF Reanalysis v5 Copernicus
Climate Change Service (n.d.).
Based on these raw data, we construct panel data for each airport such that cross-sectional unit
i = 1, 2, . . . , N is defined as a time interval with 15 minutes length in a week and temporal unit
t = 1, ..., T is the weeks in 2018. These time intervals are particularly sampled from the peak
hours (10 am - 8 pm) on weekdays in a week since night hours, some holidays, and other off-peak
periods are typically times of low traffic demand, which should be excluded for capacity estimation
and delay performance evaluation Gelhausen et al. (2013). Therefore, we calculated the relevant
variables on the basis of all individual flights that are recorded to be served in the runway system
during each quarter-hour.
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Variables

In this section, we introduce the dependent variable (throughput), frontier variables (factors deter-
mining capacity), and environmental variables (factors determining inefficiency) for the confounding-
adjusted SFA, summarized in Table 1. The frontier is the capacity, determined by various frontier
variables. These factors are categorized into airport design factors (such as active runway layout
and the number of runway exits), aircraft movement characteristics (such as arrival rate and fleet
mix), environmental factors (such as visibility, ceiling, precipitation, density altitude, crosswind
speed, headwind speed, tailwind speed), and air traffic control factors (such as separation gap,
ATM procedures, and air traffic controllers’ behaviors) Ashford et al. (2011). Inefficiency, the
deviation from the frontier (capacity) to dependent variable (throughput) is explained with two
environmental variables, delay, and demand. Delay has a positive effect on inefficiency since the
runway system cannot be fully utilized as scheduled when scheduled flights are delayed Diana
(2021). Throughput is the minimum value of capacity and demand. When demand is low during
off-peak hours or in less congested airports, airport efficiency, and throughput decrease as follows
Hansen (2004).

Table 1: Variables for confounding-adjusted SFA

Category Factor Definition Data source
Output Throughput The number of aircraft that are served in the runway

system
ABG

Frontier
variables

Arrival rate (%) The ratio of actual arrivals to actual departures ABG
Fleet mix (%) The percent of large aircraft plus three times the percent

of heavy aircraft
ABG

Runway layout An ordinal variable to represent the active runway lay-
out

ABG

Number of runway exits The average number of runway exits of this active run-
way system

ABG

Separation gap (s) The average spacing time between leading and trailing
aircraft

ABG

Precipitation (mm) The product of the condensation of atmospheric water
vapor that falls under gravitational pull from cloud

Visual Crossing

Visibility (miles) The distance at which an object or light can be clearly
discerned

Visual Crossing

Ceiling (ft) The height of the lowest clouds that cover more than
half of the sky

ECMWF Reanalysis
v5

Density altitude (ft) The pressure altitude corrected for temperature Weather underground
Crosswind speed (mph) The average crosswind speed Weather underground
Headwind speed (mph) The average headwind speed Weather underground
Tailwind speed (mph) The average tailwind speed Weather underground

Environmental
variables

Delay (min) The average flight delay for both arrival and departure
flights

ABG

Demand The number of aircraft that are scheduled to be served ABG

However, some frontier variables, such as the behaviors of air traffic controllers and the regulation
rules they decided on are difficult to observe and estimate in empirical data. Therefore, the complex
correlations between these unobserved frontier variables and other observed frontier/environmental
variables result in confounding biases. In Figure 1, we use the level of air traffic control (ATC) to
represent the air traffic controllers’ preferences and regulation rules. For example, first-come-first-
serve (FCFS) is a common discipline to serve the aircraft in the runway system, while quite often,
air traffic controllers loosen (decrease) the level of air traffic control and process a sequence of
arrivals first and insert departures without disturbing the arrivals flow, which increases the runway
capacity De Neufville et al. (2013). Therefore, when the level of ATC is tight (increase), the
runway capacity decreases and arrivals would be served as a priority. The downward bias observed
in the effect of arrival rate on runway capacity is due to confounded with the effect of ATC on
runway capacity. The fleet mix also has a negative effect on runway capacity, while the increase
in ATC might cause either a decrease or an increase in the fleet mix depending on the behaviors
of air traffic controllers. Therefore, the effect of fleet mix on runway capacity would have either
an upward or downward bias. The positive effect of delay on inefficiency is explained by non fully
utilized runway system when scheduled flights are delayed. The inefficiency also increases when
ATC becomes strict. Therefore, the estimated causal effect of delay on inefficiency experiences an
upward bias when the unobserved ATC cannot be handled properly.
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Figure 1: Causal relationships between variables

3 Methodology

To address the confounding biases discussed above, we employ a confounding-adjusted SFA, which
allows the existence of a correlation between frontier variables/environmental variables and random
error Karakaplan & Kutlu (2017); Karakaplan (2022).

yit = cit − uit + vit, where cit = xfitα (1)

uit = exp(xuitβ)ui (2)

xen
it = zitγ + ϵit (3)

The confounding-adjusted SFA under a panel data specification is developed in Equation 1, where
unit i = 1, ..., N is the set of all 15 minutes length time intervals in a week; time t = 1, ...T is the
set of weeks. yit is observed throughput for time interval i at week t. The deviation of throughput
yit from latent capacity cit is the sum of negative inefficiency −uit and random error vit. As
we review in Section 2, runway capacity is determined by multiple airport operational condition
factors. Therefore the latent runway capacity cit is expressed as a function of a vector of airport
operational condition factors, frontier variables, xfit and α is a vector of unknown parameters to
be estimated. vit follows a normal distribution with time-invariant variance vit ∼ N(0, σ2

v). uit

is explained by a vector of environmental variables xuit. Delay and demand are introduced as
environmental variables to determine inefficiency. ui follows a non-negative normal distribution
ui ∼ N+(µ, σ

2
u). xen

it represents a vector of frontier variables and environmental variables that are
confounding with error term; zit is a vector of instrumental variables for xen

it . The confounding
biases are introduced by the correlation between ϵit and vit, as Equation 4.[

ϵ̃it
vit

]
=

[
Ω−1/2ϵ̃it

vit

]
∼ N(

[
0
0

]
,

[
Im σvρ
σvρ

′ σ2
v

]
) (4)

where Ω is the variance-covariance matrix of ϵit, σ2
v is the variance of vit, and ρ is a vector of

correlation between ϵ̃it and vit. By adopting Cholesky decomposition of the variance-covariance

matrix of
[
ϵ̃it
vit

]
, we have [

ϵ̃it
vit

]
=

[
Ip 0
σvρ

′ σv

√
1− ρ′ρ

] [
ϵ̃it
w̃it

]
(5)

where ϵ̃it ∼ N(0, 1) and w̃it ∼ N(0, 1) are independent. Therefore, Equation 1 is expressed as

yit = xfitα− uit + wit + σvρ
′ϵ̃it = xfitα+ (xen

it − zitγ)
′η + eit (6)

where eit = wit − uit, wit = σv

√
1− ρ′ρw̃it and η = σvΩ

−1/2ρ. Therefore, eit is conditionally
independent from frontier variables xfit given xen

it and zit. Therefore, the log-likelihood function
for each panel i, constructing by all Ti time periods for unit i, is given by Equation 7.

lnLi = lnLi,y|x + lnLi,x (7)
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lnLi,x = −1

2
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t=1

(ln(|2πΩ|) + ϵ′itΩ
−1ϵit) (9)

where µi∗ =
σ2
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′
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σ2
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′
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w
; σ2

i∗ =
σ2
wσ2

u

σ2
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w
; σw = σv

√
1− ρ′ρ; hi = (hi1, hi2, ..., hiTi

); h2
it =

exp(x′
uitβ); eit = yit − x′

fitα − ϵ′itη; ϵit = xen
it − zitγ; and Φ is the standard normal cumulative

distribution function. The formula to predict inefficiency is EFFi = exp(−ui). Based on the
α̂ obtained from Maximum Likelihood Estimation, the expected runway capacity estimation is
xfitα̂.

4 Results and discussion

Estimation results

In this section, we apply confounding-adjusted SFA to Airport A, B, and C respectively. Table
2 provides insights into how these airport operational factors contribute to the change of runway
capacity and environmental factors affect inefficiency. For those exogenous factors, their param-
eters are in line with the intuition. The positive effect of the number of runway exits shown in
airport A is in accordance with the intuition that sufficient runway exits shorten runway occupancy
time and thus increase runway capacity. However, insignificant and even counter-intuitive results
shown in other airports might be due to little variations in the number of runway exits for those
airports with a symmetric parallel runway layout. Higher visibility and ceiling mean a greater
flexible flight rule and more runway capacity. They are less significant in some airports because
these European airports prefer to declare a more robust capacity, usually closer to the capacity
under instrument meteorological condition (IMC), and thus capacity experiences less change when
visibility and ceiling decrease Gulding et al. (2010). The results show that the increase in precip-
itation, crosswind speed, headwind speed, and even tailwind speed causes a significant reduction
in runway capacity. Although headwind shortens runway occupancy time for both takeoffs and
landings, such improvement is offset by a long time traveling through the terminal maneuvering
area with a low speed due to the headwind.
In addition to these exogenous variables, three variables (arrival rate, fleet mix, and delay) are
identified as endogenous. The endogeneity of these three variables is detected as statistically
significant in terms of both joint significance η and individual significance η1, η2, η3. Therefore,
the proposed model corrects these endogenous variables with their associated lagged difference as
instruments ∆xit(xit−xit−1) and ∆xit−1(xit−1−xit−2) Arellano & Bover (1995). The performance
of Model EN is reliable since these instruments pass the tests for exclusion (exogeneity) and
inclusion restriction (relevance), which are the J test for over-identifying instruments (less than
critical value χ2

3,0.95 = 7.81) and reduced from regression (greater than 10 based on the rule of
thumb) respectively. The results show that arrival rate and fleet mix have negative effects on
runway capacity, and delay has a positive effect on the inefficiency term, which is in accordance
with intuitive signs.

Validation results

To further assess the reliability of the proposed confounding-adjusted SFA, we aim to validate our
capacity estimates by simply comparing them with estimates from other empirical methods and
testing them via a statistical model. Table 3 displays hourly capacity estimates under visual mete-
orological condition (VMC) from different empirical sources and methods, including table lookup
FAA (1983), spreadsheet FAA (1983), Airport Corner in Eurocontrol Eurocontrol (n.d.), and our
proposed confounding-adjusted SFA. To make this comparison practical, the operational condi-
tion across methods should be as consistent as possible, although the required inputs (operational
condition factors) in each method are different.
The estimates from confounding-adjusted SFA in airport B and C appear to be low compared with
the direct estimates from table lookup and spreadsheet methods while being within a reasonable
range with 90 % of those estimates (in parentheses). Such a 10% reduction is suggested to make
estimates comparable with the actual flow during peak hours since estimates from the previous
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Table 2: Estimation Results

Airport A Airport B Airport C
Dep.var:throughput
constant 24.401*** 20.806*** 23.751***

(0.280) (0.068) (0.312)
arrival rate -0.247*** -0.448*** -0.513***

(0.055) (0.033) (0.047)
fleet mix 0.074 -0.225*** -0.156**

(0.061) (0.042) (0.049)
runway layout 0.614*** 0.136*** 0.409***

(0.046) (0.031) (0.032)
number of runway exits 0.617*** -0.019 -0.052*

(0.046) (0.026) (0.030)
separation gap -0.302** -0.567*** -0.070

(0.093) (0.076) (0.082)
precipitation -0.080* -0.011 -0.103**

(0.034) (0.026) (0.033)
visibility -0.015 0.070* 0.106**

(0.041) (0.029) (0.034)
ceiling -0.010 0.068* -0.044

(0.042) (0.029) (0.032)
density altitude 0.464*** 0.192*** 0.323***

(0.040) (0.028) (0.034)
crosswind speed -0.115*** -0.069** -0.080**

(0.033) (0.027) (0.031)
headwind speed -0.149*** -0.114*** -0.099**

(0.036) (0.029) (0.032)
tailwind speed -0.047* -0.054* -0.100**

(0.034) (0.027) (0.031)
Dep.var:lnσ2

u

constant 3.456*** 0.312* 3.671***
(0.126) (0.149) (0.127)

demand -0.504*** -0.529*** -0.542***
(0.28) (0.140) (0.027)

delay 0.032*** 0.221*** 0.029**
(0.009) (0.038) (0.009)

Dep.var:lnσ2
w

constant 2.632*** 2.241*** 2.458***
(0.012) (0.012) (0.012)

η1(arrival rate) -0.458*** -0.102* -0.190*
(0.089) (0.056) (0.075)

η2(fleet mix) 0.235* -0.051 -0.226**
(0.095) (0.063) (0.09)

η3(delay) -0.263*** -0.212*** -0.322***
(0.063) (0.054) (0.062)

η (joint endogeneity) x2=48.76 x2=19.61 x2=40.09
p=0.000 p=0.000 p=0.000

exogeneity 0.55 3.21 0.13
relevance 34668.57 52558.43 37160.94
observations 14000 13999 13999
log likelihood -85190.00 -77971.76 -82539.24
mean technical efficiency 0.0430 0.4419 0.0316
median technical efficiency 0.060 0.4295 0.0031
Notes: Standard errors in parenthesis. Asterisks indicate significance at 0.1% (***), 1 % (**) and 5% (*)levels. All

inputs are demeaned.
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two empirical methods are calculated based on minimum separation gap TRB (2012). The large
deviation in airport A is largely caused by mis-specifying runway layout in the first two methods
without considering the runway incursion in actual runway operation that arrivals crossing the
departure runway for taxing in. The performance of our proposed method is also validated in
airport B and C by comparing it with the declared capacity from Eurocontrol’s Airport Corner.
Such declared capacity for the whole system is calculated by summing up the declared capacity for
each runway as provided, which is valid when runways are independent, such as airports B and C.
However, in airport A, the dependent parallel runways and incursion problem make actual operation
cannot attain the maximum movement of each runway. Our estimate from the proposed method
is still reasonable and acceptable since the percentile 99 of the throughput per hour observed in
2019 is only 108 from Eurocontrol’s performance review report Commission (1997). Other slight
differences, within the 10% or even less variance range, might be due to different specifications in
operational condition factors across methods or measurement errors.

Table 3: Validation via comparison

Airport Runway layout Capacity estimation
method

Fleet mix
(%)

Maximum ca-
pacity (VMC,
hourly)

A
Dual
independent
parallel runway

Table lookup 121-180 189 (170)
Spreadsheet 121-180 187 (168)
Eurocontrol − 148
Confounding-adjusted SFA 149 98

B Independent
parallel runway

Table lookup 121-180 103 (93)
Spreadsheet 121-180 95 (86)
Eurocontrol − 88
Confounding-adjusted SFA 174 83

C Independent
parallel runway

Table lookup 81-120 111 (100)
Spreadsheet 81-120 110 (99)
Eurocontrol − 90
Confounding-adjusted SFA 116 95

Although the reliability of our estimates has been validated via simple comparison with other em-
pirical methods, it is just a point estimate for the capacity under normal condition. Our proposed
method is able to provide the estimates of runway capacity for each 15 minutes time interval un-
der different runway operational conditions. Therefore, we further adopt censored regression to
validate the proposed method statistically Kim & Hansen (2010).

y∗i = β1xi + ϵi (10)

yi =

{
y∗i y∗i ≤ ci

ci y∗i > ci
(11)

In this model, y∗i is the latent capacity for a 15 minutes time interval i, yi is the throughput (ob-
served capacity), and ci is the upper censoring limit, demand. xi is the estimated capacity from
the confounding-adjusted SFA. ϵi follows the independent identically distributed normal distribu-
tion with mean 0 and variance σ2

0 . If estimates from our proposed method are reliable, β̂1 → 1
could be yielded from the estimation of censored regression. Therefore, we calculate t-statistic
β̂−β
SE(β) for the coefficients with hypothesis H0 : β1 = 1 against H1 : β1 ̸= 1. Table 4 shows the
results of censored regression based on the whole data set with 14000 time intervals. The estimates
for β1 are reasonably and acceptably close to the expected value in practice. Although the null
hypothesis is rejected in terms of the t-statistic value, this is always a statistical problem that the
null hypothesis will be rejected when the sample size is extremely large. Overall, the estimates
from confounding-adjusted SFA are found to be reliable and compared favorably with the other
capacity estimation method.
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Table 4: Validation via censored regression

Airport A Airport B Airport C

Estimate Error t-statistic Estimate Error t-Statistic Estimate Error t-Statistic
β1 0.9239 0.0034 -22.38235 1.0683 0.0031 22.03226 0.8861 0.0033 -34.51515
σ0 6.9568 0.0605 − 5.2932 0.0463 − 6.8202 0.0571 −

5 Conclusion

The contribution of this study is bifold, (1) first developing the idea of empirically estimating the
runway capacity based on the SFA framework along with available large-scale and high-granular
data, and (2) further demonstrating the added value by handling the confounding problems prop-
erly and obtaining unbiased estimates of runway capacity and the parameters of their operational
condition factors via a confounding-adjusted SFA. This confounding-adjusted SFA is applied to
three airports’ day-to-day operation data respectively. The estimation results show the parameters
for those exogenous variables are in line with the intuition. The endogeneities for those endoge-
nous variables are statistically significant, and their parameters after instrument correction via the
proposed method are also in accordance with the intuitive signs. Moreover, the runway capacity
estimates from our proposed method are validated by comparing them with estimates from other
empirical methods and testing via a statistical model. The capacity estimates from our proposed
method are within 10% or less variance range and even nearly the same as the estimates from
other methods in terms of the point estimate under the normal operational condition. The results
from the statistical test also demonstrate the estimated capacity is reasonably and acceptably close
to the true capacity in practice. Therefore, such unbiased estimates of parameters for associated
operational condition factors facilitate airport operators’ better understanding of how these fac-
tors contribute to the dynamic change of runway capacity. Based on unbiased parameters, runway
capacity during short time intervals is estimated accurately which allows air traffic controllers to
manage the daily demand on the runway by allocating optimal runway capacity effectively and
modeling airport delay and delay propagation within airport networks. Moreover, the proposed
method developed to estimate runway capacity is also capable to evaluate the latent capacity in
other transport modes.
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SHORT SUMMARY 

Public transit crowding influences riders’ satisfaction and needs to be tackled using both demand 

and supply management approaches. In this study, we focus on the policy response to public 

transit crowding using customer incentive schemes. We used statistical tests and an an Integrated 

Choice and Latent Variable model to analyze data collected in Metro Vancouver, Canada, during 

the COVID-19 pandemic. Our findings suggest that people who favor incentives tend to be more 

likely to change their travel behavior in response to crowding and that incentives that reduce the 

cost of travel have more potential to shift riders’ travel time, while other incentives have a more 

pronounced effect on the decision to travel via a less crowded route. These findings are aimed at 

public transit agencies interested in employing policy instruments to manage transit crowding and 

researchers seeking to advance the knowledge about the influence of personal attitudes on travel 

behavior. 

 

Keywords: Incentives, Transportation Demand Management, Transit Crowding, 

Transportation Behavior, Discrete Choice Modelling 

1. INTRODUCTION 

Overcrowded public transit impacts customer satisfaction and can lead some riders to opt for other 

modes (Cho & Park, 2021; de Oña & de Oña, 2015; dell’Olio et al., 2011; Eboli & Mazzulla, 

2007; Haywood et al., 2017). Accordingly, effective strategies must be utilized for public transit 

crowding management that tackle the issue both quickly and efficiently. The traditional approach 

of adding system capacity offers a long-term solution to the challenges of transit crowding, how-

ever, such an approach is usually a prolonged and expensive endeavor that requires years of plan-

ning and execution. On the other hand, managing demand on public transit using policy tools 

might be an equally feasible intervention, able to provide much faster and more affordable con-

gestion relief.  Some cities, including Washington D.C., Melbourne, Sydney, Tokyo, and Hong 

Kong, use pre-peak hour free fares, discounts at off-peak hours, and fee increases during rush 

hours to manage the demand among public transit riders. More elaborate approaches attempted 

to use the knowledge about the human tendency to gamble (Anselme & Robinson, 2013) and 

engaged riders via smartphone games that offer opportunities to win prizes more valuable than a 

discounted or free fare, though this approach did not become widespread. To better equip public 

transit agencies with guidance regarding the incentives schemes that can engage riders to avoid 

the most congested routes or travel at less congested times, this study aims to systematically assess 

the riders’ preferences for various incentives in the context of crowding reduction and investigate 
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whether the favorable view of incentives increases the likelihood of behavioral change necessary 

to reduce system crowding.  

2. METHODOLOGY 

This study pursued two objectives. To understand the differences in preferences between the of-

fered incentives, we compared the values of collected indicators, as well as disaggregated them 

by income groups to gain further insights. Given the nonparametric nature of the attitudes meas-

ured on a Likert scale, the significance of the differences was evaluated using the Wilcoxon T-

test (Siegel, 1956).  

 

To achieve the second objective, we investigated the influence of the attitudes toward incentives 

on the decision to either change travel time or public transit route using an Integrated Choice and 

Latent Variable (ICLV) approach (Ben-Akiva et al., 2002). This modeling technique allows con-

necting the choices individuals make and attitudes they express via unobservable constructs (i.e. 

latent variables) and understanding the strength of the effect that attitudes have on the choices. 

The final integrated likelihood function for the estimated model comprised the likelihood of a 

selected outcome, the likelihood of observing the considered attitudinal indicators, and the distri-

bution of the latent variable (LV). It took the following form: 

 

𝐿𝑞 = ∫𝜂𝑃(𝑦|𝑋𝑞 , 𝜂𝑞;  𝛽𝑋, 𝜀𝑞) ∙ 𝑃(𝐼𝑞| 𝜂𝑞; 𝛾𝜂 , ϛ𝑞) ∙ 𝑓(𝜂𝑞|𝑋𝑞 , 𝑌𝑞 , 𝛼𝑦, 𝜐𝑞) ∙ 𝑑𝜐                                     (1) 

 

There is no closed-form expression to the equation above, so it is commonly solved via numerical 

techniques, like a maximum simulated likelihood estimation (Ben-Akiva et al., 2002). We per-

formed the modeling using the Apollo package (Hess & Palma, 2019) in the R statistical software 

(R Core Team, 2013). A 1000 Sobol draws (Sobol’, 1967) were used to approximate the integra-

tion distribution and multiple starting values were tested to avoid obtaining the results for only a 

local optimum. 

3. RESULTS AND DISCUSSION 

The analysis was performed using data collected by the means of two waves of a survey dissem-

inated in December 2020 and May 2021. Hard age and gender quotas were used to recruit a sam-

ple of respondents representative of Metro Vancouver from the panel managed by a marketing 

research company. Given the public transit focus of the survey, we only kept respondents who 

frequently commuted to work or education via transit before the COVID-19 pandemic. The final 

sample used for the analysis includes 1,201 respondents, the majority of whom (57.1%) did not 

stop using public transit during the pandemic. On top of the demographics of the individuals, we 

also recorded their attitudes toward incentives and actions in response to crowding using a 5-point 

Likert scale. Admittedly, government restrictions remained unchanged between the two waves of 

the survey, though the general shift towards remote employment and more private vehicle use has 

been observed (Kapatsila et al., 2022). 

 

Figure 1 reveals that a fare discount is the type of incentive that had the highest support in our 

sample (median=4, IQR=2), followed by a 20$ credit for a monthly pass (median=3, IQR=2) and 

a free coffee, or a discount coupon for a meal (median=3, IQR=3). The other options like a dis-

count for other modes, the opportunity to participate in a raffle, or make a donation to a charity 

seem to be less preferable, with a median score of 2 and an equal spread. At the same time playing 

a smartphone game with an opportunity to win points and exchange them for a cash reward seems 
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to be appealing at least to some respondents. Though the median score for it is also 2, the inter-

quartile range is as high as observed for the food coupons/discounts - 3. Lastly, an advantage over 

peers on a leadership board was the least preferable incentive (median=1, IQR=2), though a com-

parison to other options spread indicates that some people might consider it as well. All differ-

ences described above were found to be statistically significant. 

 

 
Figure 1: Attitudes towards incentives by income 

 

Comparing the preferences towards incentives by different income groups provides additional 

insights. Although a fare discount remains the top choice across all income groups, the high-

income earners (those making more than $200,000 annually) display a larger range, suggesting 
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that some of them (most likely those at the top of the category) have a comparatively low prefer-

ence for incentives in general. This, of course, is of no surprise, as it is expected that small rewards 

would have lower benefits for those with higher incomes. Another finding that stands out is that 

both medium- (making between $50,000 and $100,000 a year) and low-income (those earning 

less than $50,000 annually) earners have a higher preference for winning points in a smartphone 

game when compared to high-income ones, and that difference is statistically significant (p=0.074 

and p=0.021 respectfully).  

 

In the second stage of the analysis, we simultaneously estimate two ICLV models, one evaluating 

the probability of changing the travel start time, and the other the probability of changing the 

public transit route, with both being subject to the influence of the identified LVs that captured 

attitudes towards incentives. Given the similar nature of the dependent variables, we introduced 

a normally distributed error term for both outcomes to capture the correlation effect of the param-

eters that could not be included in the model (e.g. social norms, trip context). The diagrammatic 

representation of the selected model is visualized in Figure 2. 

 

 
Figure 2: Diagrammatic representation of the selected ICLV model 

 

The results of the model are presented in Table 1. Inspection of the structural equations estimates 

highlights the influence of several individual characteristics. Importantly, for both LVs they are 

nearly identical, with the only difference being individuals with kids influencing LV Other Incen-

tives. As for other characteristics, individuals in the 20-34 age group are generally more likely to 

favor incentives, which goes along the lines of findings from other studies that pointed engage-

ment with incentives to go down with aging (Dhingra et al., 2020). It is also natural that full-time 

workers are less likely to respond to consider incentives as they are caught between professional 

and domestic responsibilities and have little flexibility for any changes. The fact that people who 

stopped using public transit during the COVID-19 pandemic are less likely to favor incentives on 

transit is also fairly intuitive. It is hard to imagine for people who abandoned public transit out of 

concern or necessity to see incentives to change travel behavior on public transit in a positive 

light. The ebb and flow of the pandemic tide can also explain the more positive view of incentives 
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that respondents from the second wave of the survey had. In May 2021 Metro Vancouver saw a 

gradual increase in vaccination and a decline in COVID-19 hospitalizations (British Columbia 

Provincial Health Services Authority & BC Centre for Disease Control, 2022), which most likely 

improved the uneasiness towards public transit in general, and incentives on it as well. 

 

Table 1: Results of the Model 

 

Variable Equation Estimate SD t-test 

Age 20-34 

S.E. LV1: Fare Incentives 

0.165 0.066 2.498 

Full-time worker -0.194 0.064 -3.045 

No transit use (pandemic) -0.181 0.063 -2.855 

Second wave of the survey 0.133 0.063 2.122 

Age 20-34  

 

S.E. LV2: Other Incen-

tives 

 

0.364 0.066 5.506 

Full-time worker -0.134 0.062 -2.133 

No transit use (pandemic) -0.415 0.063 -6.642 

Second wave of the survey 0.111 0.062 1.801 

Has kids 0.306 0.069 4.416 

ASC Change Route 

Utility Change Route 

2.396 0.221 10.844 

Medium income 0.414 0.179 2.315 

Undergraduate degree or 

higher 
0.250 0.189 1.325 

Full-time worker -0.050 0.187 -0.272 

No transit use (pandemic) -0.262 0.184 -1.422 

LV 1: Fare Incentives 0.255 0.118 2.158 

LV 2: Other Incentives 0.663 0.117 5.678 

Threshold 1  0 - - 

Threshold 2 1.504 0.102 - 

Threshold 3 3.675 0.149 - 

Threshold 4 5.504 0.194 - 

ASC Change Route 

Utility Change Travel 

Time 

3.102 0.236 13.131 

Medium income 0.436 0.180 2.423 

Undergraduate degree or 

higher 
0.472 0.190 2.486 

Full-time worker -0.652 0.189 -3.447 

No transit use (pandemic) 0.895 0.187 4.780 

LV 1: Fare Incentives 0.722 0.123 5.862 

LV 2: Other Incentives 0.472 0.115 4.109 

Threshold 1  0 - - 

Threshold 2 1.530 0.120 - 

Threshold 3 3.638 0.162 - 

Threshold 4 6.069 0.213 - 

Correlation Change Route & Change Travel Time 2.325 0.111 20.89 

Number of observations: 1201    

Number of parameters: 70     

Log-likelihood of the whole model: -15422.72    
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Shifting focus from the LVs to their impact on the choices, we can see that both LVs have a 

positive influence on the likelihood of either changing travel time or public transit route in re-

sponse to crowding. This confirmation is a piece of encouraging evidence suggesting that at least 

in the stated preference design setting people who are more likely to respond to incentives and 

change their travel habits also tend to have a higher probability of changing travel behavior in 

response to crowding. Another insight worth noting is the size of the effect each LV has on the 

choices. Looking at the choice to change the public transit route, we can see that it is more likely 

to pertain to the individuals favoring other incentives since the respective LV has a higher impact 

than LV Fare Incentives on that choice. On the other hand, the reverse is true for the choice to 

change travel time. One explanation for this difference can be the familiarity of respondents with 

the fare price change in Metro Vancouver where it is more expensive to travel on light rail and 

ferries between the 3 zones at peak hours (TransLink, n.d.). As for the higher influence of LV 

Other Incentives on the likelihood to change the public transit route, several explanations can be 

hypothesized. There might be a correlation in the skills and preferences needed to both opt for 

another transit line and to play a game on a smartphone to win points, as both can be achieved 

using a smartphone (e.g. getting navigation via a route planning mobile application in the case of 

the former), however, the latter is impossible without a smartphone. Similarly, there is potentially 

a positive relationship between the propensity to switch to other public transit routes and respond-

ing to a discount for the use of other modes, as both require a change in the usual means of com-

muting. 

4. CONCLUSIONS 

This study investigated the differences in preferences towards various incentive schemes on pub-

lic transit and assessed the relationship between the riders’ eagerness to modify their travel pat-

terns in response to crowding and the likelihood to respond to incentives that influence them to 

do the same. We found that people who favor incentives tend to be more likely to change their 

travel behavior in response to crowding and that incentives that reduce the cost of travel on public 

transit have more potential to shift riders’ travel time, while other incentives have a more pro-

nounced effect on the decision to travel via a less crowded public transit route. Similarly, we 

identified the incentive schemes that received the highest support and the demographics of poten-

tial users who favor those. Nevertheless, this study was subject to several limitations that should 

be acknowledged. First, the analysis was performed using a stated choice survey, which does not 

necessarily mean that the opinions respondents expressed would reflect their actual behavior. 

Similarly, some people might be highly favorable to incentives but have very limited options to 

change their travel time or route in practice. As such, future research should explore the opportu-

nities to analyze the revealed choices of public transit riders when it comes to incentives. Sec-

ondly, both waves of the survey data were collected during the COVID-19 pandemic, and this 

time of heightened attention to public health and fewer systematic professional and personal travel 

needs could have affected the results obtained.  
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SHORT SUMMARY 

This research aims to analyse the perception of covid-19 infection risk in long-distance travel in 

Europe and how it impacts mode choice and travel behaviour. We make use of an HII variant type 

experiment and model it by means of a latent class choice model, where we uncover four distinct 

user groups. For infection risk perception, we apply a novel approach in the field, utilising a 

weighted least squares regression, to obtain segment-specific regression functions, based on their 

respective probabilistic segment allocations. Some segments exhibit risk-aversion behaviour that 

is time-based (longer journeys perceived as more risky), whereas others see it as time-independ-

ent. With respect to modal preferences, the four segments either show a strong preference or 

aversion to one of the two land-based modes: car-loving, car-averse (using train or air), train-

loving and train-averse (using car and air).  

 

 

Keywords: COVID-19, Discrete choice modelling, Hierarchical information integration, Long-

distance travel, Risk perception, Travel behaviour 

1. INTRODUCTION 

In recent years, long-distance travel has become an increasingly prolific topic of both scientific 

literature and political discussion. With many new proposals, projects and service launches, a fair 

amount of research has been carried out in order to evaluate their impacts. Sun et al. (2017), 

provide an extensive literature review on research concerning long-distance travel, with a focus 

on high-speed rail (HSR). Perhaps their most relevant finding is that many papers within this 

domain report conflicting conclusions with regard to the consequences of introducing HSR. These 

differences can presumably be attributed to varying implementations, service patterns, policies 

and regulation of the air, rail and road markets in different contexts. 

 

With respect to long-distance travel behaviour, most studies analysed passengers’ perception of 

in-vehicle time, access/egress time, frequency/headway/waiting time, reliability and comfort. In-

vehicle time was found to be valued at 10-30 €/h, with travellers being 1-2 times as sensitive to 

access/egress time as opposed to in-vehicle time (Bergantino & Madio, 2018; Ortúzar & 

Simonetti, 2008; Román et al., 2014; Román & Martín, 2010). The perception of other attributes 

differed even more, due to the different survey contexts. 
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There are many other potential trip characteristics that travellers may consider (transfer charac-

teristics, luggage, reliability,…), making it challenging to capture everything. An approach that 

can help alleviate this is Hierarchical Information Integration (HII), first proposed by Louviere 

(1984). In it, respondents firstly evaluate groups of attributes (safety, reliability, comfort,…) one 

at a time. Secondly, a bridging experiment includes all attribute groups in a single discrete choice 

task, requiring respondents to trade-off the values of the different groups. Since its introduction, 

different versions of HII have been proposed, summarised by Molin & Timmermans (2009) as 

Conventional HII (Louviere, 1984), HII variant (Bos et al., 2004) and Integrated Choice experi-

ment (Oppewal et al., 1994). Recently, the HII variant approach was applied onto two topics 

relating to long-distance travel, namely to the perception of airline safety (Molin et al., 2017) and 

the perception of night trains (Heufke Kantelaar et al., 2022). 

 

Another aspect impacting long-distance travel behaviour, which has been at the forefront of travel 

behaviour research in recent years, is the COVID-19 pandemic and the associated (travel) behav-

iour changes. While many studies look into the impact of the pandemic on everyday life and the 

perception of risk on commuters’ behaviour (Currie et al., 2021; de Haas et al., 2020; 

Shamshiripour et al., 2020; Shelat et al., 2022; Shortall et al., 2022; Tirachini & Cats, 2020), its 

impact on long-distance travel behaviour has, to the best of our knowledge, not been studied. 

 

Molin et al. (2017) and Heufke Kantelaar et al. (2022) both utilised a Panel Mixed Logit (ML) 

model for the bridging experiment to capture respondent heterogeneity. Another common ap-

proach for capturing heterogeneity is the Latent Class Choice Model (LCCM). While ML allows 

parameters to vary within the sample, LCCM probabilistically allocates respondents to a discrete 

number of Multinomial Logit (MNL) models, each with its own set of taste parameters. LCCMs 

allow for a more straightforward interpretation, as the market segments can be clearly distin-

guished based on their different trade-offs. Additionally, attitudinal and socio-demographic in-

formation can be used to predict an individual’s probability of belonging to a specific segment. 

 

Applying LCCMs to HII data is challenging, as the perception of the subjective ratings in the 

bridging experiment will result in different parameters for each market segment. If the rating 

experiment is modelled with a regression function (as is common practice), it results in an equal 

perception of factors across segments. Intuitively, this subjective perception should differ be-

tween segments, yet to the best of our knowledge, latent class segmentation has not been at-

tempted in HII. 

 

One possible way of capturing segments’ different perceptions of rating factors is by estimating 

separate regression models for each segment. However, since the class allocation of individuals 

in LCCM is probabilistic, this would have to be translated into the regression models as well. One 

approach that could utilise the allocation probabilities is Weighted Least Squares (WLS), which 

associates a weight with each data point, indicating the accuracy/importance of said data point for 

the regression model. 

 

The contributions of this paper are twofold. Firstly, we evaluate the perception of various COVID-

19 measures aimed at limiting the spread of the COVID-19 virus, through an HII variant type SP 

survey. The rating experiment includes eight attributes associated with the perception of infection 

risk. This is then carried into the bridging experiment, along with travel cost, travel time and travel 

class, where respondents choose their preferred travel mode for a long-distance trip of approxi-

mately 500km and 1000km. Secondly, upon modelling the bridging experiment by means of an 

LCCM, we estimate several WLS regression models to uncover different perceptions of infection 

risk as experienced by different population segments obtained from the LCCM. 
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2. METHODOLOGY 

We design an HII variant type experiment, comprised of two sections: the rating experiment and 

the bridging experiment. Both experiments have their own design and modelling approach, all of 

which is presented in this section. We first present both survey designs, followed by both model-

ling approaches. 

Survey design 

In the rating experiment, respondents are presented with a variety of factors pertaining to COVID-

19 and their perceived risk of infection. Shelat et al. (2022) performed an HII experiment for 

COVID-19 risk perception for train route choice in the Netherlands. In the rating experiment, they 

analysed on-board crowding, number of transfers, mask policy, sanitisation, infection rate and 

lockdown status. Crowding has also been recognised as a major influencing factor on mode choice 

by Currie et al. (2021). We consider most of the listed factors as relevant for long-distance travel. 

We do not consider the number of transfers, as in long-distance travel, these can vary substantially 

and would be very difficult to present to respondents in a consistent and understandable way. We 

expand the lockdown status into two categories, one considering the originating country (travel 

advice) and the other considering the destination country (entry requirements). Finally, we add 

vaccination rate to the design, as vaccination had become widespread and the concept of herd 

immunity may make travellers feel more at ease. 

 

As we do not have priors for all factors, we design an orthogonal (fractional factorial) design in 

Ngene (ChoiceMetrics, 2018). The design has 20 rows, divided into four blocks, resulting in five 

choice tasks per respondent. Based on the levels of the following eight factors, respondents had 

to indicate their perceived level of risk on a 5-point Likert-scale : 

 Mask policy (type of mask required) 

 Air circulation (ventilation, air-conditioning) 

 Cleaning policy 

 Government travel advice (in the origin country for the destination country) 

 Visiting country entry requirements (proof of vaccination/recovery/negative test) 

 Infection rate at the destination 

 Vaccination rate at the destination 

 

Next, respondents are confronted with the bridging experiment, where the perceived risk of in-

fection is presented alongside travel time, travel cost and travel class (first/business or sec-

ond/economy class). Each attribute is associated with three travel modes: car, train, aircraft. Based 

on past research, these seem to be the most frequently used modes and the most relevant attributes 

in long-distance travel (Bergantino & Madio, 2018; Ortúzar & Simonetti, 2008; Román et al., 

2014; Román & Martín, 2010). For both travel time and cost, we consider them to be door-to-

door, meaning they include the access and egress time to the airport/train station and the time 

spent there.  

 

We employ a Bayesian D-efficient design, using priors from literature. A value-of-time of 10 €/h 

is used, based on a detailed study carried out for the Dutch government (Kouwenhoven et al., 

2014). For first/business class, we assume an additional willingness-to-pay (WtP) of 50€ (Ortúzar 

& Simonetti, 2008). For perceived risk, we take the value of 5€ per risk level (Shelat et al., 2022). 

We make no assumptions on mode-specific constants and leave them at 0. A Bayesian efficient 

design includes standard errors of all priors, indicating the level of certainty. We set these standard 

errors at half the value of the prior. Given the assumed normal distribution, this results in a 0.975 
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certainty that the prior has the correct sign (negative for travel time, cost and perceived infection 

risk, positive for comfort). 

Model estimation 

The bridging experiment in HII is a regular discrete choice experiment (DCE) and can thus be 

analysed using choice modelling techniques. We assume that respondents make decisions by 

maximising their expected utility (Random Utility Maximisation) (McFadden, 1974). As outlined 

in the Introduction, we apply a Latent Class Choice Model (Greene & Hensher, 2003) on the 

bridging experiment. We also include socio-demographic information in the class allocation func-

tion and iteratively exclude them one-by-one, until only significant predicting socio-de-

mographics remain (significant for at least one of the classes). 

 

Based on the parameter estimates of the LCCM, each respondent is assigned a probability of 

belonging to each of the market segments. These probabilities are included in the modelling of 

the rating experiment by means of a WLS regression. WLS is very similar to regular Ordinary 

Least Squares (OLS) regression, with the weighted sum of squares (WSS) assigned an extra var-

iable – weight () –determining the importance of each data point. As a higher probability of 

belonging to a certain class is analogous to the importance of a data point, we adopt this approach. 

Equation 1 presents the calculation of WSS, where 𝑥 represents the attribute level, 𝑦 the observed 

perceived risk value and 𝛽 the estimated parameter, determining the impact of an attribute on the 

level of perceived infection risk. 

 

𝑊𝑆𝑆𝑠 = ∑ (𝜋𝑛,𝑠 ∙  (𝑦𝑛 − ∑ 𝑥𝑛,𝑘 ∙ 𝛽𝑠,𝑘
𝐾
𝑘=1 )

2
)𝑁

𝑛=1    (1) 

3. RESULTS AND DISCUSSION 

Preliminary results, based on 705 valid responses collected through the Dutch railways’ panel 

(NS, 2020), indicate that our sample can be segmented into four distinct groups with respect to 

long-distance international trips in Europe. Based on their travel preferences, we denominate the 

four segments as follows: 

1. Time-sensitive travellers 

2. Prudent travellers 

3. Frequent train-loving travellers 

4. Cautious car travellers 

 

Time sensitive travellers are, as the name implies, highly time sensitive (WtP > 70 €/h, compared 

to 40€/h for the full sample). They prefer the train for shorter trips and flying for longer ones, 

avoiding the use of car, indicating they may also value the time they have while travelling (not 

having to drive themselves). With respect to infection risk, they perceive it as a function of time, 

not as a fixed penalty irrespective of travel time. Prudent travellers exercise the most trading-

off behaviour, showing the highest variation in mode choice, switching modes quickly when cir-

cumstances change. Unlike the previous segment, they see risk as a fixed penalty, irrespective of 

travel time (but different per mode). Frequent train-loving travellers strongly prefer the train, 

even for very long trips. For them, risk is also seen as a fixed penalty, not based on the duration 

of travel. Finally, the Cautious car travellers will often choose to travel by car. They have the 

lowest WtP (< 20 €/h) and see infection risk as both a function of time and a fixed penalty. To 

better highlight the modal share of each segment for different risk levels and trip distances, we 
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simulate trips varying between 100km and 1500km. The results are presented in a ternary graph 

in Figure 1. 

 

Figure 1. Ternary graph, indicating the modal split between car, train and air, for 

distances of 100km to 1,500km, for risk levels of 1, 3 and 5 for all four market seg-

ments 

4. CONCLUSIONS 

In this study we present a novel approach of capturing sample heterogeneity in an HII experiment 

through a latent class choice model, by utilising a weighted least squares regression approach, as 

opposed to the conventionally used ordinary least squares, when the full sample is analysed as a 

whole. We apply the model on survey data investigating the impact of COVID-19 infection risk 

on long-distance travel in Europe. 

 

We identify four distinct user groups. Overall, risk for air travel is rarely seen as time-dependent 

due to the short flight time and small differences in flight time when travelling in Europe. For 

trains, some segments see risk as fixed, whereas others as time-dependent (increasingly risky with 

a longer travel time). 

 

Through the rating experiment, we are also able to uncover which policy measures make travellers 

more at ease and reduce their perceived risk. This will be investigated further but preliminary 

outcomes show that some groups prefer to evaluate the data on their own (rate of infections, vac-

cination rate), whereas others rely on government policies and advice and trust those. 

 

This gives operators and policymakers important knowledge on how to react in situations of in-

creased risk of respiratory and other diseases. It enables them to make informed decisions on 

which measures to take, how to adjust their policies on masks, cleaning, pricing etc.  
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Short summary

As demand for online shopping and home delivery increases rapidly, courier companies often of-
fer services focusing on customer satisfaction. This places strong constraints on the planning of
delivery routes for courier vehicles, making delivery routes inefficient. The objective of this study
is to present a framework to evaluate demand management policies in terms of the balance be-
tween customer satisfaction and delivery efficiency. To this end, we first estimate a delivery option
choice model using the stated choice data of e-commerce users. Then, based on day-to-day delivery
demand simulated by the estimated model, we optimize a multi-period vehicle routing problem
and evaluate the delivery efficiency. We implement two policies: a surcharge for morning delivery
and an expansion of the time slot range. The results show that the former significantly reduces
customer satisfaction, while the latter achieves higher customer satisfaction and delivery efficiency.

Keywords: E-commerce, demand management, discrete choice modeling, multi-period vehicle
routing problem, last-mile delivery, operations research applications

1 Introduction

The COVID-19 pandemic has boosted demand for home delivery. Online-shopping customers are
placing greater emphasis on speed of delivery, delivery fees, and their own time constraints, result-
ing in heavy use of express delivery services and demand concentration at certain times of the day.
This also imposes severe constraints on delivery route planning, resulting in inefficient deliveries.
While delivery demand management (e.g. pricing or slotting) could potentially improve delivery
efficiency, changes in service levels could also lead to lower customer satisfaction and fewer orders
(Rao et al., 2011; Marium & Arsalan, 2017). Practical demand management requires analyzing
customer preferences for delivery options and identifying policies that improve delivery efficiency
while retaining customer satisfaction.

E-marketplaces like Amazon often offer their customers several delivery options with different
flexibility for delivery, including regular delivery, scheduled delivery where customers can specify
the delivery date and time slot, and express delivery such as next-day or same-day delivery. Sched-
uled delivery may produce the demand concentration on a specific day or time, and express delivery
imposes a hard time constraint, while regular delivery gives flexibility to delivery. As such, the
delivery option choice behavior of customers highly impacts day-to-day delivery efficiency. There-
fore, to analyze the effect of this option choice behavior, delivery efficiency has to be evaluated
over multiple days with multiple time slots.

Regarding delivery demand management, the management of delivery time slots has been re-
cently studied, as reviewed by Waßmuth et al. (2023). Agatz et al. (2011) and Köhler et al. (2020)
indicated that longer time slots can reduce delivery costs by relaxing time window constraints.
However, they did not analyze customers’ preferences or model their option choices, and thus
could not analyze the policy impact on customer behavior or satisfaction. Most of the studies on
delivery time slot management have focused on scheduled delivery services for e-grocers, which
require prompt and accurate in-person delivery, and the effect of delivery option choice behavior

1
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Figure 1: Flamework of this study

on delivery efficiency has yet to be analyzed.

Delivery costs are generally calculated by optimizing delivery routes by solving a Vehicle Routing
Problem (VRP). The planning period of a typical VRP is a single day, and delivery options such
as next-day delivery or regular delivery cannot be considered in the problem. For this reason,
it is necessary to apply a multi-period vehicle routing problem (Multi-period VRP) that extends
the planning period to multiple days, e.g., Archetti et al. (2015). Most of the studies related to
multi-period VRP focus on formulation and runtime, and there are no studies on analyzing delivery
efficiency based on customer choice behavior.

The objective of this study is to evaluate and identify policies that achieve the balance between
delivery routing efficiency and customer satisfaction. To this end, we first analyze customer choice
behavior of delivery options among next-day, regular, and scheduled delivery, by estimating a dis-
crete choice model using the stated choice data. Then, we formulate and optimize a multi-period
VRP with due dates and time windows, given the delivery demand simulated by the estimated
choice model, and evaluate the routing costs. Finally, based on routing efficiency and customer
satisfaction, different scenarios of policies are evaluated. The framework of the study is summa-
rized in Figure 1.

The contribution of the study lies in the following three items.

1. Behavioral analysis of different delivery options
To date, most analyses of delivery option choice have focused on specific delivery options,
such as scheduled delivery. In contrast, this study analyzes customer choice among delivery
options widely offered by Amazon and other e-marketplaces, including next-day, scheduled,
and regular delivery.

2. Evaluating policies based on customer Satisfaction
Most previous studies that attempted to improve delivery efficiency did not take customer
satisfaction into account. In this study, to consider more realistic demand management,
customer satisfaction was calculated and evaluated as an indicator for policy considering the
balance with routing efficiency.

3. Optimize day-to-day delivery routes based on customer choice of delivery options
There is no study that reflects customer choice behavior in the optimization of delivery
plans by solving a multi-period VRP. The novelty of this study is that it optimizes day-to-
day delivery plans using multi-period VRP to analyze the effect of delivery option choices
on delivery efficiency.

2 Methodology

Stated choice data
We analyzed customer delivery option choice behavior based on responses from a stated preference
(SP) survey conducted from April 30 to May 14, 2021. The respondents were among "Kuroneko
Members," members of Yamato Holdings Co., Ltd. which has the largest share of parcel delivery
in Japan. The survey was conducted on the assumption that respondents would purchase the same
products again that they purchased online the previous time. Respondents were asked to select
a delivery option among (1) next-day delivery, (2) scheduled delivery (2 to 8 days after order),
and (3) regular delivery (date and time can not be specified). Respondents who selected sched-
uled delivery were additionally asked to select delivery date and time. Each respondent makes one
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Figure 2: Nest Structure of Choice Model

choice for each of the five different choice scenarios. For each scenario, three attributes were varied:
delivery fee, delivery time (the number of days required for delivery), and range of a time slot.
For details on the survey design and data, see Oyama et al. (2022). The survey was completed
by 4,872 respondents (response rate 4.87%), and given that five scenarios were presented to each
respondent, the original sample size is 24360. Data cleaning was then performed based on the
experience of online shopping, choice of dominated alternatives, resulting in the final sample size
of 18,928.

Delivery option choice model
We then develop a delivery option choice model. In addition to next-day and regular deliveries,
we assume six alternatives for scheduled delivery, which are a combination of delivery day (week-
day and holiday) and time slot (morning, daytime, and nighttime). With these eight alternatives
in total, we apply the Nested Logit (NL) Model with a nest of scheduled delivery based on the
assumption that the utilities of the six options are correlated (Figure 2).

The utility Vni of option i for individual n is defined as

Vni = ASCi + βday · dayi + βfee · feei + βslot_range · slot_rangei · δi, scheduled (1)

where ASCi is the alternative specific constant for i, dayiis the number of days required to be
delivered when choosing i, feei is the delivery fee in JPY, and slot_rangei is the time slot range in
hours, which implies how long the individual has to be at home to receive the item. The dummy
variable δi,scheduled is 1 if i is an option for scheduled delivery and 0 otherwise, implying that
slot_rangei only matters for scheduled delivery.

Multi-period VRP
The delivery cost is evaluated on a day-to-day basis, by simultaneously optimizing the delivery
routes for multiple days based on a multi-period VRP. Let n be the number of customers, cij
be the travel cost between points i, j (distance between two points), T be the planning horizon.
Then, let ui be the amount of cargo loaded when the vehicle leaves point i, ti be the arrival time
at point i, m be the capacity of the vehicle k, K be the actual number of vehicles in service, and
the capacity of all vehicles is Q. For customer i, the holding cost of the package is hi, the day the
package arrives at the depot is oi, the quantity demanded is qi, the specified delivery time is ei
to li, and the specified delivery day is si to di (si = di for next day delivery and scheduled delivery).

The decision variable of the problem is:

xt
ijk =

{
1 if vehicle k travels from point i to j on day t,
0 otherwise,

and the optimal route is found by solving the following problem:

min
x

z(x) ≡
K∑

k=1

n∑
i=0

n∑
j=0

T∑
t=1

cijx
t
ijk +

n∑
i=1

H∑
t1=oi

hi(1−
t1∑

t2=oi

n∑
j=0

K∑
k=1

xt2
ijk), (2)

subject to
K∑

k=1

n∑
j=0

di∑
t=si

xt
ijk = 1 (i = 1, 2, · · · , n) (3)
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Table 1: Delivery option choice
Delivery option (N=18928) Next-day delivery 44.8%

Scheduled delivery 38.3%
Regular delivery 16.8%

Delivery time (N=7253) Morning 45.9%
Daytime 28.8%
Night 25.3%

Delivery Date (N=7253) Weekday 18.5%
Holiday 81.5%

Day 1 (Sat) Day 24 (Mon)

Delivery route optimization for the entire planning period

…                             

Day 2 (Sun) Day 10 (Mon)

… …

Evaluation Period

Day16 (Sun)

Select Delivery Option

① Next-day delivery

② Scheduled delivery 

③ Regular delivery

：Customer (delivery date specified / not specified)

：Depot

：Optimized delivery routes

：Delivery routes rejected in optimization

/

Figure 3: Overview of multi-period vehicle routing problem

n∑
j=0

xt
ijk =

n∑
j=0

xt
jik (i = 0, 1, 2, · · · , n), (k = 1, 2, · · · ,K), (t = 1, 2, · · · , T ), (4)

K∑
k=1

n∑
j=1

xt
0jk ≤ m (t = 1, 2, · · · , T ), (5)

ui − uj +Q · xt
ijk ≤ Q− qj (t = 1, 2, · · · , T ), (k = 1, 2, · · · ,K), (i, j = 1, 2, · · · , n), i ̸= j, (6)

ti − tj +M · xt
ijk ≤ M − cij (t = 1, 2, · · · , T ), (k = 1, 2, · · · ,K), (i, j = 1, 2, · · · , n), i ̸= j, (7)

qi ≤ ui ≤ Q (i = 1, 2, · · · , n), (8)

ei ≤ ti ≤ li (i = 1, 2, · · · , n). (9)

The objective function (2) includes transportation and holding costs, respectively represented by
the first and second terms. Constraint (3)ensures that the delivery is made within the specified
date. Constraint (4) ensures that the number of vehicles arriving at and departing from customer
i on each day is equal. Inequality (6) and constraint (7) , which is called the potential (MTZ)
formulation (Miller et al., 1960), are constraints on subtour elimination.Note that M in inequality
(7) represents a sufficiently large constant.

Indicators for evaluation
To evaluate demand management policies, this study uses two indicators: (i) routing efficiency and
(ii) customer satisfaction. The routing efficiency is calculated as the operation cost for delivery,
directly obtained as z(x∗) where x∗ is the optimal plan for multi-period vehicle routing given
a simulated demand. Customer satisfaction is based on the expected maximum utility (EMU),
calculated with the estimated choice model. The EMU is defined as follows:

EMUn =
1

µ
ln

{
exp(µVn,Next-day) + exp(µVn,Regular) +

µ

µg

(∑
i∈S

exp(µgVni)
)}

(10)

where S is the collection of six alternatives for scheduled delivery, and µg is a scale parameter
associated with the subgroup.
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Table 2: Parameter estimation results
MNL NL

Parameter Estimate t-stat Estimate t-stat

ASCNext-day 0.628 15.21∗∗ 0.638 16.68∗∗

ASCHoliday-Morning 0.427 5.68∗∗ 0.590 7.59∗∗

ASCHoliday-Daytime -1.152 −1.50∗∗ 0.150 1.76∗∗

ASCHoliday-Night 0.172 2.19∗∗ 0.441 5.11∗∗

ASCWeekday-Morning -1.054 −12.74∗∗ -0.616 −6.02∗∗

ASCWeekday-Daytime -1.190 −14.10∗∗ -0.726 −6.87∗∗

ASCWeekday-Night -0.922 −10.58∗∗ -0.452 −4.21∗∗

βday -0.221 −18.50∗∗ -0.213 −19.87∗∗

βfee -0.010 −81.91∗∗ -0.009 −77.51∗∗

βslot_range -0.068 −3.16∗∗ -0.066 −3.08∗∗

µg 1.231 28.03∗∗

Sample size 18928 18928
Initial log likelihood -39359.67 -39359.67
Final log likelihood -25503.85 -25489.04
Adjusted rho-square 0.3520 0.3524

Likelihood-ratio test −2{L(β̂MNL)− L(β̂NL)} = 29.62 > 3.84 = χ2
1,0.05

3 Results and discussion

Table 1 shows an aggregate result, the percentage of each delivery option being chosen. Approxi-
mately 45% of observations chose next-day delivery, and among those for scheduled delivery, 46%
selected morning delivery. Note that the survey period coincided with "Golden Week" (a major
holiday period in Japan), which resulted in approximately 81% of observations choosing a holiday
to receive the ordered items.

The estimation result of the delivery option choice model is shown in Table 2, compared with
the result of the standard multinomial logit (MNL) model. Both models suggest the same signs for
delivery attributes, and the likelihood ratio test suggests the statistical preference of the NL model
over the MNL model. The scale parameter µg was estimated to be 1.231, which gives 1/µg = 0.812,
confirming an appropriate nest structure. The value of delivery time (VODT) for e-commerce users
was calculated as approximately 23.67 JPY/day (0.17 EUR/day at the rate of 140 JPY to 1 EUR).
This describes the customer’s willingness to pay for a shorter delivery day, implying that, on av-
erage, customers are willing to wait one additional day if the delivery fee is about 24 JPY higher.
The VODT has been analyzed in different contexts (e.g., Hsiao, 2009; Meister et al., 2023), and
ours was calculated in the context of delivery option choice of e-commerce users as in Oyama et
al. (2022). Moreover, our estimation result suggests that an increase in the range of time slots
decreases the utility. This is because customers have to be at home for a longer period of time.

In this study, we evaluate the following two policies that can change the delivery option choice
behavior of customers and have impacts on delivery efficiency.

1: Additional charge of 100 JPY for morning delivery
The SP survey results show that about 45% of those who chose scheduled delivery specified
morning delivery, indicating that there is a high demand for morning time slots. Therefore,
the number of vehicles in operation may be unevenly distributed depending on the time of
day. The pricing is expected to reduce the demand for morning slots and thus may improve
the routing efficiency.

2: Change of the time slot range from 2 to 4 hours.
The current service provided by Yamato Holdings Co., Ltd. has a 2-hour time slot for
afternoon deliveries. In addition to this, we evaluate the cases with a time slot range of 3 or
4 hours. A longer time slot relaxes the time window constraints for delivery to be satisfied
in finding the optimal route, thus improving the efficiency of the delivery route. However,
on the other hand, longer slot ranges increase the uncertainty of the delivery time, which is
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Table 3: Scenario evaluation result
Scenario AM +100 Slot range Costa ∆Costb ∆Satisc ∆Cost/∆Satisd

Bm × 2h 3300.54 — — —
1 ◦ 2h 3200.67 3.03% -0.129 23.54
2 × 3h 3246.39 1.64% -0.029 56.75
3 ◦ 3h 3170.72 3.93% -0.154 25.56
4 × 4h 3202.21 2.98% -0.057 52.22
5 ◦ 4h 3162.10 4.19% -0.179 23.50

aAverage cost of delivery for 100 simulations
bReduced delivery costs
cChanges in customer satisfaction
dCost savings divided by reduction in customer satisfaction

Benchmark Scenario1 Scenario2 Scenario3 Scenario4 Scenario5
2600

2800

3000

3200

3400

3600

3800

Figure 4: Delivery cost variation of different scenarios

expected to decrease customer satisfaction.

Regarding the multi-period VRP, we set the planning horizon to 24 days, with the first day being
Saturday. The demand for home delivery is generated at a random point in a square with side
lengths of 100 on each day of the planning horizon. Each customer’s choice of delivery options
is simulated according to the choice probability of the NL model. Given the simulated delivery
demand, we optimize the delivery schedule for a multi-day period and calculate the operation cost
by solving the multi-period VRP, as shown in Figure 3. We implemented the optimization using
the Gurobi Optimizer mathematical optimization solver. Since the demand that occurred before
the planning period cannot be considered in the early stages of the planning horizon, the evaluation
focuses on the seven days from the 10th day (Monday) to the 16th day (Sunday). We summed
up the operation costs of the seven days, which is defined as the delivery cost and computed for
different policies. For each scenario, we performed 100 runs of the demand simulation and routing
optimization.

Table 3 reports the average indicator values over 100 runs, and Figure 4 shows the variation
of operation costs, for different scenarios. As a result, both the policies implemented reduced the
cost of delivery. In particular, Scenario 5 which introduced the morning slot pricing and expanded
the time slot to four hours lowered costs the most, but it also caused the most significant decrease
in customer satisfaction. Although charging an additional fee for morning delivery is more effec-
tive than expanding the range of time slots in terms of reducing costs, it is not the optimal policy
because of the large decrease in customer satisfaction.

To evaluate the balance between delivery efficiency and customer satisfaction, we calculated the
cost reduction rate divided by the decrease in customer satisfaction, which is shown in the right-
most column of Table 3. The result shows that Scenario 2 has the best value. In conclusion, it
is clear that the policy of expanding the range of time slots is more effective than the policy of
charging an additional fee for morning deliveries.
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4 Conclusions

This study evaluated policies for day-to-day delivery demand management based on the balance be-
tween delivery routing efficiency and customer satisfaction. For such evaluation, we first estimated
a delivery option choice model and analyzed the customer preferences. Moreover, the multi-period
VRP was formulated and optimized to evaluate the impact of the option choice behavior on the
day-to-day delivery efficiency.

Specifically, two policies were considered: an additional charge of 100 JPY for morning deliv-
eries, and the change in time slot range from 2 to 4 hours. While the surcharge policy for morning
delivery reduced delivery costs, it also significantly decreased customer satisfaction. The best value
was obtained in terms of the balance when the time slot range was 3 hours, regardless of whether
the surcharge policy was implemented or not. From the above, we conclude that the optimal time
slot range for this case study is 3 hours and that the morning delivery surcharge policy should not
be implemented.

Future work includes the improvement of simulation setup conditions. This study assumed all
demand during the planning horizon to be generated a priori and did not consider demand dy-
namically occurring on a day-to-day basis. Therefore, it is not possible to reflect a decrease in
delivery efficiency due to sudden demand for next-day delivery. Therefore, a more advanced policy
evaluation is needed in the future by incorporating the day-to-day dynamic nature of demand and
optimizing the delivery plan with uncertainty.
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SHORT SUMMARY 

Activity-based approaches have become state-of-the-art in travel demand modelling due to their 

behavioural realism. While there have been great advances in modelling techniques, most studies 

do not consider the household context, and almost all are limited to the generation of single-day 

activity schedules. Therefore, we propose an activity generation and scheduling approach for one 

week, considering the household context. This study provides a general overview over the pro-

posed framework, and further details the model used to generate household-level activity time-

use for the period of one week.  

The proposed model contributes to the current state of activity-based models as it goes beyond 

individual, single-day travel demand and allows for analysis of household-level decisions for the 

modelling period of one week.  

 

 

Keywords: activity-based model, MDCEV, week activity schedules, time-use 

1. INTRODUCTION 

 

Activity-based approaches have become state-of-the-art in travel demand modelling due to their 

behavioural realism. While there have been great advances in modelling techniques, most studies 

do not consider the household context, and almost all are limited to the generation of single-day 

activity schedules. Therefore, we propose an activity generation and scheduling approach for one 

week, considering the household context. This study provides a general overview over the pro-

posed framework, and further details the model used to generate household-level activity time-

use for the period of one week.  

Activity-based approaches can be categorised into rule-based and econometric models. Rule-

based models rely on hard-coded rules and heuristics, which make them easier to implement. 

However, this limits their behavioural realism and the ability to generalise model results. 

 Econometric approaches mitigate these limitations by modelling individual decisions, not 

through rules and heuristics, but based on the principle of utility maximisation. Bowman and Ben-

Akiva  (Bowman & Ben-Akiva, 2001) presented the first disaggregate activity-based approach, 

which generates activity schedules by sequentially modelling individual decisions through 

(nested) logit models. Although the sequential model of decisions remains a popular approach in 

activity-based travel demand models, the method has some limitations. The sequence in which 

the analyst considers the decisions in the model claims that there is an order among the individual 

decisions. This possibly arbitrary order does not allow for consideration of trade-offs between all 

choices. This limitation has given rise to the development and application of the multiple discrete-

continuous extreme value (MDCEV) model ((Bhat, 2005, 2008)). In this approach, individuals 

do not consider alternatives as perfect substitutes for each other but simultaneously as a 
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combination of different activities and the time allocated to them, subject to a time budget con-

straint. While the first formulation of the model only allowed for modelling aggregated time al-

location to each activity type, more recent studies show that the model can also consider activity 

episodes (Palma et al., 2021) and their order (Saxena et al., 2022) .  

Another approach to overcome some of the limitations of sequential models is to consider trade-

offs between daily scheduling choices by formulating an optimisation problem ((Manser et al., 

2022; Pougala et al., 2022)). In this approach, the objective is to maximise the utility of an indi-

vidual's schedule through a mixed-integer linear program.  

Although the presented approaches all improve state-of-the-art activity-based models, some lim-

itations are worth noting. First, they only consider activities and their schedules for one day. How-

ever, past studies highlight the importance of considering multiple days for a more realistic sim-

ulation of travel behaviour within travel demand models ((Hilgert et al., 2017; Mallig & Vortisch, 

2017)). Furthermore, all choices are considered on an individual level and disregard the context 

of the household. While this is sensible for some activities like work or work-related activities, 

the household context influences who conducts certain activities, such as shopping or escorting 

activities.  

However, the proposed approaches cannot simply be transferred from the single-day to the 7-day 

context. Considering 7-day schedules and household context significantly increases the dimen-

sions of the models, which will likely render the currently defined optimisation problems too large 

to find a solution within a sensible timespan. Furthermore, we challenge that the underlying as-

sumptions regarding the choice situations of scheduling activities still hold in the 7-day context. 

In utility theory, we assume that individuals know all possible alternatives within a choice set and 

choose the one that maximises their utility. Manser et al. (Manser et al., 2022) elaborate on the 

issue concerning this assumption regarding modelling activity schedules and present a method to 

generate a feasible choice set. Although the authors propose a sensible approach for single-day 

activity schedules, it is arguable whether activity schedules of one week actually result from in-

dividuals comparing and choosing among a set of alternative schedules or rather from scheduling 

activities such that they meet a set of constraints. 

In this study we combine the idea of activity generation through an MDCEV model and the sched-

uling using an optimisation approach. The rest of this paper is structured as follows. We will first 

provide an overview over the activity generation and scheduling framework. Subsequently, we 

describe the data used in our study and detail the model specification of the MDCEV model. We 

go on to present the estimation results and conclude our paper with future work and final remarks. 

2. MATERIALS AND METHODS 

Although the scope of this paper is focusing on the estimation of parameters to model household-

level time-use, the motivation for the chosen model specification is rooted within the framework 

of modelling week activity schedules. This section, therefore, first provides an overview over the 

proposed framework. We subsequently provide a brief overview over the data used in this study, 

and finally specify the model. 

 

Activity Generation Scheduling Framework 

We propose an activity generation and scheduling approach for one week, considering the house-

hold context through a combination of the MDCEV model and a constraint satisfaction optimisa-

tion approach. The framework for activity generation and scheduling is illustrated in figure 1. The 

input data can consist of either 7-day travel diary data or time-use data. Additionally, multiday  
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data generated through pattern sampling based on single-day data (as proposed by Zhang et al. 

(Zhang et al., 2018)) is also possible.  
  

 

Figure 1 - Activity Generation and Scheduling Framework 

 

Based on this data, we estimate an MDCEV model. The estimated parameters are then applied to 

the synthetic population of the model region. At this stage, we define the model according 

to Bhat's (Bhat, 2005) original formulation such that activities and the time allocated to them are 

predicted at an aggregate level. The model specification and results are scope of this study and 

detailed in the following sections.  

Given the household-level activity types and times, the activity scheduler then considers each 

time slice of the activities and allocates it to a time slice within a household member's schedule. 

Similar to Pougala et al. (Pougala et al., 2022) and Manser et al. (Manser et al., 2022), we propose 

to define an optimisation problem to generate these schedules. However, instead of defining an 

objective function that needs to be maximised, we propose to solve a constraint satisfaction prob-

lem (CSP). In this case, no objective function is necessary. The objective of a CSP is to find a 

feasible solution subject to previously defined constraints. These constraints can either be defined 

as hard (hc) or soft constraints (sc). If a hard constraint is violated, the solution is rejected, whereas 

the violation of a soft constraint results in a penalty. We propose to use constraints that apply to 

household members and those that apply to the timing of activities: 

 

• Work activities can only be assigned to employed household members (hc) 

• Education activities can only be assigned to household members in education (hc) 

• Shopping and escorting activities can only be assigned to household members over the 

age of 16 (hc) and should ideally be conducted by adult household members (sc) 

• Work activities are subject to regional employment law, which constrains the total work 

time per week, the work time per day and required breaks (hc). Soft constraints could be 

added to, e.g. account for flextime or different durations for lunch breaks.  

• Education activities can only be conducted during reasonable times (e.g. secondary 

school times start between 7:30 and 8 am and finish at the latest at 5:30 pm). 

• Shopping can only be conducted during shop opening hours. 
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Additionally, we include constraints that ensure all activities have a reasonable minimal duration 

and that frequent switches between short activities are avoided.  

Data 

 

The data used in this study stems from the German Mobility Panel (MOP), a longitudinal 

survey that has been conducted annually since 1994. In the survey, participants report 

their trips in a 7-day travel diary in addition to providing personal and household infor-

mation.  

For this study, we used data from 2017 to 2019, which includes data on 4.564 households. 

As the data is collected using a travel diary and not a time-use diary, we had to prepare 

the data such that it reflects activity time-use. We set the start of each diary to midnight 

of the first survey period and assigned the time until the first trip to “home”. We repeated 

the same for the activity of the last trip of the week, setting the end of the diary to midnight 

on the last assigned survey day. We then determined the time-use for each activity per 

person and subsequently summarized the values at the household-level.   

We differentiate eight alternative activities: home, work, business or work-related (mean-

ing work activity outside the workplace), shopping, escorting someone, education, lei-

sure, ad other activities. Further, we have included parameters to account for household 

information on income (high vs. low), number of children in the household (yes/no), and 

household size. 

Household-Level Time-Use Estimation 

The household-level time use is estimated using a MDCEV model approach as it was first pre-

sented by Chandra Bhat (Bhat, 2005). The model is specified such that home activities are treated 

as an outside good. Integrating an outside good ensures the positive consumption of that alterna-

tive; in this case the specification results in all individuals conducting a home activity. The prob-

lem is defined by: 

 

𝑀𝑎𝑥 ∑
𝛾𝑘

𝛼
 Ψ𝑘 ((

𝑥𝑘

𝛾𝑘
+ 1)

𝛼

− 1)

𝐾

𝑘=1

 (1) 

 

Subject to the budget constraint B 

 

𝐵 = ∑  x𝑘

𝐾

𝑘=1

 

 

(2) 

where K is the number of considered activities, xk is the amount of time spent on activity k. The 

budget of a household is the number of minutes per week (10.080) times the number of household 

members. The α and γ parameters determine the satiation. In our model, we specified α such that 

it does not vary over alternatives, while different γ parameters are determined for each alternative.  

The probability of an observed combination of activities including their duration is given by: 

 

𝑃(𝑥1
∗, 𝑥2

∗, … , 𝑥𝑀
∗ , 0, … , 0) =  

1

𝜎𝑀−1
(∏ 𝑓𝑚

𝑀

𝑚=1

) ( ∑
𝑝𝑚

𝑓𝑚

𝑀

𝑚=1

) (
∏ 𝑒𝑉𝑖/𝜎𝑀

𝑚=1

(∑ 𝑒𝑊𝑘/𝜎𝐾
𝑘=1 )𝑀

) (𝑀 − 1)! (3) 
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We estimated several models accounting for different parameters. The final model is the one in 

which all parameters were statistically significant.  

3. RESULTS AND DISCUSSION 

Table 1 provides the estimated parameters of the MDCEV model on household-level activity time 

use.  

 

 

Table 1: Parameter Estimates of MDCEV model 

 
 δ-coefficient 

(utility) 

γ-coefficient 

(satiation) 

 

Work 

 Intercept  

 High Income 

 

-5.400 

0.378 

21.149 

Business/work-related 

 Intercept  

 High Income 

 

-6.546 

0.503 

5.157 

Shopping 

 Intercept 

 Household size 

 

-2.806 

-0.137 

0.279 

Escorting someone 

 Intercept 

 Children under 10 y/0 in the household (yes/no) 

 

-5.793 

1.335 

0.489 

Education -6.887 20.988 

Leisure 

 Intercept  

 High Income 

 

-3.767 

0.021 

3.470 

Travel 3.293 0.00288 

 

 

The results show that travelling has largest the δ parameter indicating that this is the most popular 

activity. This is not surprising as in our case, all activities (except home) are bound to travelling 

to a different location. On the other hand, considering the satiation parameter of travel, we can 

see that the least time is invested in travel. Escorting someone is the least popular activity, but the 

utility is increased when children under the age of 10 are living in the household. This is sensible, 

as smaller children are more likely to be escorted e.g., to childcare or school. The satiation pa-

rameter is, again, comparatively low meaning that not a lot of time is invested into the activity. 

Both work and work-related have similar coefficients, albeit work-related activities are slightly 

less popular. The utilities of both alternatives are increased in households with higher income. 

The two activities differ considerably regarding their satiation. Work activities have the highest 

overall satiation parameter indicating that most time is spent working. Although the satiation pa-

rameter for work-related activities is still relatively large, it is much smaller compared to the one 

for work activities at the workplace.  

Compared to the other activities, shopping is rather popular. This reasonable, as almost all house-

holds conduct some shopping activity throughout the week. Interestingly, the utility of shopping 

decreases with increased household size indicating that larger households actually conduct fewer 
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shopping activities per week. While this seems counterintuitive at first, this can be explained by 

the fact that smaller households are less likely to buy in bulk and, thus, have to go shopping more 

frequently. The satiation parameter for shopping shows that time spent is rather small.  

Leisure activities are less popular than shopping activities, indicating that households conduct 

fewer leisure activities compared to shopping, however, the satiation parameter shows that a com-

paratively large amount of time is invested.  

There are few comparable studies that allow for a discussion of the model results in relation to 

other research. Our model is most similar to the aggregated time-use model presented  by Palma 

et al. (Palma et al., 2021). In this study, the authors also find that travelling is considered the most 

popular activity, whereas work and escorting activities are less popular.  

 

4. CONCLUSIONS 

This study presents a household-level activity generation and scheduling framework with a focus 

on model estimation for the generation of activity time-use. We propose a combined MDCEV 

model and constrained satisfaction approach as a realistic representation of household level ac-

tivity time-use and scheduling decisions.  

The presented results of the MDCEV model are sensible and show that e.g. shopping activities 

need to be considered in the household context. It is somewhat difficult to relate the model results 

to the literature as there are only few studies conducted applying an MDCEV model to activity 

time use and especially because activities are often defined differently. In future work, we will 

relate the entire modelling framework to other published work as this allows for a more compre-

hensive discussion of our results. 

At the current stage of the model, we only consider aggregate household-level activity time-use. 

In further modelling work, we will test to see if the consideration of some activities on the indi-

vidual level (such as work activities) by specifying the activities as individual alternatives leads 

to better results.  

The proposed model contributes to the current state of activity-based models as it goes beyond 

individual, single-day travel demand and allows for analysis of household-level decisions for the 

modelling period of one week.  
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Short summary

Bayesian Networks (BNs) are probabilistic graphical models representing conditional dependencies
existing between variables of interest. Recent studies have employed BNs for population synthesis
and daily activity plan generation. Those studies highlight the ability of BNs to efficiently de-
tect the causality links between variables in an easily interpretable way. This short paper aims
to propose a further application of BNs for both population and daily activity plan synthesis in
Switzerland. We show that understanding the dependency structure linking the population charac-
teristics and its mobility behaviour is key to generating representative synthetic activity patterns.
Furthermore, we lay the foundations for the development of temporally transferable travel demand
models.
Keywords: Activity-based modeling; Bayesian networks; Synthetic Populations; Travel demand
generation;

1 Introduction

According to Rasouli & Timmermans (2014), three main categories of activity-based models have
been developed since their emergence in the late 60s (Chapin, 1968): constraint-based models
(Jones et al., 1983), rule-based models (Arentze & Timmermans, 2000; Guan et al., 2003) and
utility-maximization frameworks (Ben-Akiva & Bowman, 1998). Virtually all of them are depen-
dent on a synthetic population: the quality of the outputs of the activity-based models is highly
dependent on the quality of the input population. This is why Rasouli & Timmermans (2014)
conclude their review paper by leading the research community towards the development of be-
haviourally rich models allowing the investigation of causality rules.

Approaches based on Markov processes, initially implemented for population synthesis (Farooq et
al., 2013) are a step toward this direction. However, the approaches developed in this paper require
the researchers to prepare manually the full set of conditional distributions. Sun & Erath (2015)
address this issue and introduces Bayesian Networks (BNs) as an efficient tool for population syn-
thesis. This first study was replicated and expanded by Joubert (2018). The first application of
BNs for activity pattern generation was proposed by Joubert & De Waal (2020) and extended in
de Waal & Joubert (2022). In these studies, the authors focus on the working population of Cape
Town, South Africa, and show that their mobility behaviour is linked to the individuals’ age, and
employment status and to their owning a car and a driving license. All those studies show that
BNs avoid over-fitting and scalability issues without being trapped by the curse of dimensional-
ity. Moreover, they are easily interpretable and can detect complex dependency structures. They
can create unobserved patterns, contrary to frequentist approaches, and allow the combination of
multiple data sources into one single model. Thus, BNs appear as a promising approach in the
domain of travel demand generation.

In this short paper, we propose to apply this methodology and open-source software to generate
a synthetic population and its daily activity patterns. Our main contributions will be the follow-
ing: first, develop a model linking population synthesis and activity chain generation using BNs;
and, second, highlight the advantages of BNs compared to statistical matching in a “forecasting”
experiment.
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2 Methodology

Data

The Micro-census - Mobility and Transport (BFS, 2015) (referred to afterward as MZMV) is a
travel survey conducted by the Swiss Federal Office of Statistics every five years. For this study,
we focus on the 2010 and 2015 releases. For each edition, around 1% of the Switzerland resident
population above the age of 6 is asked to report on their mobility on a certain day: for each of their
trips, they have to provide information (among others) about the travel time and distance, the
chosen transport mode and the trip purpose. Information about the respondents themselves and
their households is collected too. Personal attributes include age, gender, driving license ownership,
employment status and level of education, while the household description provide insights into
the household size, structure and monthly income. Each observation (household, person, trip) is
weighted. In the following, we consider the persons’ weights as the focus lies on the individuals’
complete activity chains. The trips data set allows us to reconstruct the individuals’ activity
chains.
After cleaning and removing incomplete trip data, the data set contains 50 576 personal records
for 2015 and 57 087 for 2010. Those individuals reported 170 541 trips in 2015 and 190 308 in 2010
(average number of trips per respondent: 3.37 in 2015 and 3.33 in 2010). Both data sets contain
around 3 000 distinct records of activity chains (2 880 in 2015 and 3 054 in 2010). The maximum
activity chain length observed in the data set is 22, and 95.5% have a length lesser or equal to 7.
Thus, to keep the BN structure concise and follow the approach of Joubert & De Waal (2020), we
focus only on the observations where the activity chain length is not greater than 7.

Bayesian Networks

Bayesian Networks (Jensen et al., 1996) (BNs) are probabilistic graphical models consisting of
two parts: a structure - one of a directed acyclic graph in which the vertices represent random
variables, and the edges correspond to dependency links between the vertices - and parameters,
which are joint probability tables encoding the probability distribution of the random variables.
The structure and the parameters are estimated from the data or manually defined by an expert.
The two approaches can complement each other. Learning the structure of a BN is an unsupervised
learning problem. In this study, we use Python 3.9.7 and the library pgmpy (Ankan & Panda,
2015). An implementation of the Hill-Climb search algorithm (Selman & Gomes, 2006) based on
the Bayesian Dirichlet equivalent uniform (BDEU) score (Heckerman et al., 1995) is used for the
network structure estimation. The parameter learning is based on a maximum-likelihood estimator
(White, 1982).

Learning the BN structure

Our goal is to compare the BN approach with the statistical matching algorithm (D’Orazio et al.,
2006), which was implemented in the Switzerland eqasim scenario (Hörl & Balac, 2021a). Because
of constraints inherent to this scenario, all activity chains not starting or not ending at home had
to be removed from the data set. The base idea behind statistical matching is to link each agent
with one activity chain record based on the weight and five socioeconomic attributes: age class,
household size class, municipality type, sex, and marital status (Hörl & Balac, 2021b). Those
attributes are usually obtained from national censuses, which only report a limited set of such
socio-economic variables. For the BN estimation, three other attributes are included: the monthly
household income, the respondent’s employment status, and their ownership of a driver’s license.
Two main classes of variables are thus considered: the socioeconomic variables, among which are
the five matching attributes, and the seven activities forming the activity chain.
Most of the BN’s structure was estimated from the data, yet we imposed the following constraints.
First, the five attributes mentioned above (age class, household size class, municipality type, sex,
and marital status) are seen as “root” nodes in the network. This means that they cannot have
parent variables. Second, we are interested in detecting how socioeconomic attributes influence
activity chains. Consequently, we impose that an “activity” node can only influence the following
activities. Finally, to sample a synthetic population from the BN, we generate a new activity chain
for each observation – consisting of the set of socio-economic attributes – present in the training
data set using the conditional probability tables estimated in the previous step.
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3 Results and discussion

Replicating a given distribution

The first experiment aims to verify that the proposed travel demand generation approach is able
to replicate a given activity chain distribution. Only the most recent release of the MZMV is used.
The structure of the learned Bayesian Network is depicted in Figure 1. One can distinguish two
“layers” in the network: on the top are socio-economic variables while the activities are on the
bottom. The employment and the driving license ownership connect the two parts of the network,
which is similar to the findings of Joubert & De Waal (2020). Figure 2a shows the comparison
between the activity chain distributions. Dark blue bars represent the prevalence of activity chains
sampled from the Bayesian Network while gray bars correspond to the distribution computed
from the input data. Light blue bars represent the activity chain prevalence distribution obtained
from statistical matching. The comparison shows that the statistical matching replicates almost
perfectly the input distribution, which is confirmed by a Wasserstein distance (Vallender (1974))1
between the two distributions of around 0.09. The distance between the distribution sampled from
the BN and the input data is higher (around 0.12), which we can observe on Figure 2a by the
larger gaps existing for some activity chains, such as the under-represented “h-w-s-h” or the over-
represented “h-w-h-w-h”, using the abbreviations of activity names introduced in Figure 2. Still,
those differences disappear when we focus on the aggregated count of activities, as represented in
Figure 2b.

Figure 1: Bayesian Network structure.

Consequently, both Bayesian Networks and statistical matching are suitable methods when it
comes to replicating a given distribution of activity chains. The relatively weaker performance of
the BN, which we pointed out while computing the Wasserstein distances, can be explained by its
ability to generate unobserved activity chains: looking at all the activity chains generated by the
BN, regardless of their prevalence, 47.3% of them are absent from the training data set and were
“created” by the BN. However, those activity chains are very rare and represent only 5.4% of the
agents’ daily plans. An advantage in favor of the BN approach yet seems to stand out when one
combines data sources from different time contexts, as the next experiment shows.

1Here, instead of considering the entire range of activity chains, we take into account only the 50 most
prevalent activity chains, so as to ensure that all activity chains are observed a minimal number of times.
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(a) Most prevalent activity chains in the MZMV 2015, obtained from
statistical matching and sampled from the BN.

(b) Percentage of activity chains containing at least one activity of
each purpose.

Figure 2: Activity chain distribution and prevalence of each activity type. The six activities
considered in this study are the following: home (h), work (w), education (e), leisure (l),
shopping (s) and other (o).
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Table 1: Accuracy, precision and F-score of the Bayesian Networks and of the Statistical matching
approach

Chain
MZMV
2015
prevalence

BN
prevalence

Statistical
matching
prevalence

BN Statistical matching

Accuracy Precision F-score Accuracy Precision F-score
h 10.7% 10.3% 10.6% 82.7% 18.0% 17.6% 82.2% 16.4% 16.3%
h-w-h 9.5% 8.5% 8.1% 85.0% 17.6% 16.6% 84.7% 14.5% 13.3%
h-l-h 5.5% 5.3% 5.5% 90.0% 6.9% 6.7% 89.8% 6.8% 6.8%
h-s-h 5.3% 5.7% 5.9% 90.1% 9.5% 9.9% 89.8% 8.1% 8.5%
h-h 2.6% 2.5% 2.7% 95.0% 2.8% 2.8% 94.9% 2.9% 2.9%
h-w-h-l-h 2.3% 2.0% 2.2% 95.9% 3.9% 3.6% 95.6% 3.4% 3.3%
h-w-h-w-h 1.8% 2.6% 2.4% 95.8% 2.7% 3.2% 95.9% 2.7% 3.1%
h-w-s-h 1.8% 1.3% 1.9% 97.0% 2.9% 2.3% 96.5% 4.7% 4.7%
h-s-h-l-h 1.7% 1.7% 1.7% 96.7% 3.5% 3.5% 96.7% 1.5% 1.5%
h-e-h 1.6% 1.4% 1.3% 97.3% 10.6% 9.9% 97.3% 7.3% 6.7%
Average 90.3% 9.8% 9.6% 90.1% 8.6% 8.4%

Towards temporally transferable travel demand generation models

In this second experiment, the BN is estimated using the older release of MZMV, dating back
to 2010, while, as in the previous experiment, the population for which we generate the activity
chains is the set of respondents of MZMV 2015. The obtained network has the same structure as
the one depicted in Figure 1; however, the conditional probability tables changed as the training
data set is different. To generate the corresponding data with the statistical matching algorithm,
activity chains extracted from MZMV 2010 were matched to MZMV 2015 respondents.

Aggregated performance indicators: Similarly as before, the aggregated performance of both
approaches can be measured with the Wasserstein distance. The distance between the activity
chain distribution estimated from the BN and the one from the MZMV 2015 is 0.172, almost ex-
actly the same as the distance from the statistical matching distribution and the reference data,
which is 0.171. This shows that, although the BN method has a disadvantage because it is able
to generate unseen activity patterns, it can compensate it by better reacting to changes in the
socio-economic structure of the population, such as those one can observe between the two releases
of MZMV.

Disaggregated performance indicators: Beyond the Wasserstein distance, disaggregated indi-
cators such as accuracy, precision and F-score can be used to compare the performance of the two
approaches. Those indicators are presented in Table 1 for the 10 most prevalent activity chains;
the averages are related to the 15 most prevalent activity chains. The three indicators show similar
values to the ones presented in Joubert & De Waal (2020) and de Waal & Joubert (2022). More-
over, they show that the BN approach outperforms in almost all cases the statistical matching
algorithm.

Discussion

A detailed analysis shows that those better results are mostly linked to the fact that the BN
captures with a higher accuracy the links between the population characteristics and its activity
chains. More precisely, the statistical matching algorithm cannot be implemented using more than
a few matching attributes, as explained in Hörl & Balac (2021b), and those attributes must be
chosen by the researchers. Figure 1 highlighted that the employment status and the ownership of
a driving license, which are not used for matching in Hörl & Balac (2021b), are directly influencing
the mobility behavior. In the previous experiment, the fact that those variables were extracted
from the most recent release of the MZMV thus led to improved results. To confirm this, a similar
experiment was realized without sampling those two attributes from MZMV 2015: the distributions
were kept unchanged compared to MZMV 2010. The average accuracy, precision and F-score are
presented in Table 2. The table shows that, in this case, the BN approach is outperformed by
statistical matching. Consequently, the BN identified which attributes are linking the population
characteristics with its observed mobility behavior, which results in a more representative synthetic
travel demand.

5



Table 2: Average accuracy, precision and F-score, over the 15 most prevalent activity chains, obtained
with the statistical matching algorithm, the BN method using non-matching attributes and without using
the non-matching attributes.

Accuracy Precision F-score
BN with employment status and driving license 90.3% 9.8% 9.6%
BN without employment status and driving license 90.0% 8.4% 8.2%
Statistical matching 90.1% 8.6% 8.4%

4 Conclusions

This short paper presents an application of Bayesian Networks for synthetic population and travel
demand generation. Contrary to Joubert & De Waal (2020), who focus on the employed population
living in Cape Town, we can synthesize agents representative to the Swiss people, except for children
below six years of age. This study is based on open-source software. We used both aggregated
and disaggregated indicators to evaluate our approach. We showed that BNs could accurately
replicate a given activity chain distribution and outperform the statistical matching algorithm
when combining two data sources in a “forecasting” experiment. We highlighted that the ability
of BN to identify the critical socio-economic attributes influencing the activity chain is of great
help to generating representative synthetic population and travel demand. Several points indicate a
potential for future research: this study will first be extended to include experiment results obtained
from the 2005 release of MZMV. Moreover, the networks were estimated using a combination of
data-driven, machine-learned methods and expert knowledge, as some constraints about the links’
directions were imposed. It would thus be relevant to conduct sensitivity analyses to evaluate the
impact of imposing these constraints. A third possible future research direction is to estimate
networks specific to given socio-economic categories. In this way, one could capture and represent
the differences in dependency structures and ultimately contribute to the understanding of social
mechanisms leading to heterogeneity in mobility behaviour.

Acknowledgements

This study is part of a National Research Program (NFP78) funded by the Swiss National Science
Foundation.

References

Ankan, A., & Panda, A. (2015). pgmpy: Probabilistic graphical models using python. In Proceed-
ings of the 14th python in science conference (scipy 2015).

Arentze, T., & Timmermans, H. (2000). Albatross: a learning based transportation oriented
simulation system. Citeseer.

Ben-Akiva, M. E., & Bowman, J. L. (1998). Activity based travel demand model systems. In
Equilibrium and advanced transportation modelling (pp. 27–46). Springer.

BFS. (2015). Mikrozensus Mobilität und Verkehr. https://www.bfs.admin.ch/bfs/de/home/
statistiken/mobilitaet-verkehr/erhebungen/mzmv.html. (Accessed: 2022-05-03)

Chapin, F. S. (1968). Activity systems and urban structure: A working schema. Journal of the
American Institute of Planners, 34 (1), 11–18.

de Waal, A., & Joubert, J. W. (2022). Explainable Bayesian networks applied to transport
vulnerability. Expert Systems with Applications, 209 , 118348.

D’Orazio, M., Di Zio, M., & Scanu, M. (2006). Statistical matching: Theory and practice. John
Wiley & Sons.

Farooq, B., Bierlaire, M., Hurtubia, R., & Flötteröd, G. (2013). Simulation based population
synthesis. Transportation Research Part B: Methodological , 58 , 243–263.

6

https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-verkehr/erhebungen/mzmv.html
https://www.bfs.admin.ch/bfs/de/home/statistiken/mobilitaet-verkehr/erhebungen/mzmv.html


Guan, J., Roorda, M. J., & Miller, E. J. (2003, January). Approximation of 24 Hour Travel Times
in the Greater Toronto Area. Presented at the 82nd Annual Meeting of the Transportation
Research Board, Washington DC .

Heckerman, D., Geiger, D., & Chickering, D. M. (1995). Learning bayesian networks: The combi-
nation of knowledge and statistical data. Machine learning , 20 (3), 197–243.

Hörl, S., & Balac, M. (2021a). Introducing the eqasim pipeline: From raw data to agent-based
transport simulation. Procedia Computer Science, 184 , 712–719.

Hörl, S., & Balac, M. (2021b). Synthetic population and travel demand for Paris and Île-de-
France based on open and publicly available data. Transportation Research Part C: Emerging
Technologies, 130 , 103291.

Jensen, F. V., et al. (1996). An introduction to Bayesian networks (Vol. 210). UCL press London.

Jones, P. M., Dix, M. C., Clarke, M. I., & Heggie, I. G. (1983). Understanding travel behaviour
(No. Monograph).

Joubert, J. W. (2018). Synthetic populations of South African urban areas. Data in brief , 19 ,
1012–1020.

Joubert, J. W., & De Waal, A. (2020). Activity-based travel demand generation using Bayesian
networks. Transportation Research Part C: Emerging Technologies, 120 , 102804.

Rasouli, S., & Timmermans, H. (2014). Activity-based models of travel demand: promises, progress
and prospects. International Journal of Urban Sciences, 18 (1), 31–60.

Selman, B., & Gomes, C. P. (2006). Hill-climbing search. Encyclopedia of Cognitive Science, 81 ,
82.

Sun, L., & Erath, A. (2015). A Bayesian network approach for population synthesis. Transportation
Research Part C: Emerging Technologies, 61 , 49–62.

Vallender, S. (1974). Calculation of the Wasserstein distance between probability distributions on
the line. Theory of Probability & Its Applications, 18 (4), 784–786.

White, H. (1982). Maximum likelihood estimation of misspecified models. Econometrica: Journal
of the Econometric Society , 1–25.

7



Simulated Annealing in a Co-Evolutionary, Agent-Based Transport Modeling
Framework - The Example of Ride-pooling Driver Supply Optimization

Nico Kuehnel*1, Shivam Arora2, Felix Zwick1, and Qin Zhang3

1MOIA GmbH, Germany
2Department of Civil Engineering, IIT Roorkee, India

3School of Engineering and Design, Technical University of Munich, Germany

Short summary

This paper introduces an integrated simulated annealing optimization method within the co-
evolutionary agent-based transport modeling framework MATSim, using a small illustrative ride-
pooling service as an example to optimize driver shift supply for a given and static demand.
Simulated annealing is a metaheuristic optimization algorithm that has already been employed
in a wide range of problems and domains. MATSim makes use of a co-evolutionary design in
which individual agents try to optimize their daily schedule by finding optimal transport options.
The iterative nature of both simulated annealing and MATSim’s co-evolutionary design makes
the implementation straightforward and compatible. The outcomes validate the feasibility of the
approach in optimizing specific components of the transport model and indicate its potential for
future use in comparable applications. The presented case of driver supply optimization may help
to design scenarios for new services and to better assess the efficiency and costs of such a service.

Keywords: agent-based transport model, demand-supply-matching, MATSim, on-demand mobil-
ity, operations research, simulated annealing.

1 Introduction

Transport systems are complex and involve various stakeholders, multiple modes of transportation,
and numerous decision-making processes. Agent-based transport models, such as MATSim (Multi-
Agent Transport Simulation, Horni et al., 2016), enable researchers to simulate and analyze the
behavior of individual travelers and their interaction in the context of the wider transport system.
The central feature of MATSim’s is a co-evolutionary algorithm that enables individual agents to
optimize their daily activity schedules through the identification of the most optimal travel options.
Consequently, the decisions made by one agent can have implications for every other agent, often
impacting shared resources such as road or bus capacity.

In numerous simulation studies, the supply side of the transportation system is treated as static
while searching for a stable demand equilibrium. Typically, the effects of alterations to the supply
side are analyzed across multiple simulations rather than within a single simulation. While this
approach is suitable for many use cases, there are situations where the supply side must also react
dynamically within the simulation. One example is the simulation of competing minibus operators
that do not operate on fixed schedules, but are instead demand-driven and can be modeled using
an evolutionary algorithm (Neumann, 2014). Other examples include public transport pricing and
supply planning (Kaddoura et al., 2015), the implementation of traffic actuated or traffic adaptive
transport signals that dynamically respond to current traffic flows (Kühnel et al., 2018), the opti-
mization of charging infrastructure placement (Fadranski et al., 2023) or tour planning in freight
applications (Zilske & Joubert, 2016). An in-depth discussion about optimization problems in
(iterative) and stochastic simulation frameworks is given in (Flötteröd, 2017).

A prime example of an inherent necessity for supply-side optimization can be found in recent
demand-responsive transport (DRT) systems such as online ride-hailing and ride-pooling, wherein
an operator must dynamically respond to passenger requests. To address such cases, a central
dispatcher optimizes the fleet supply using various algorithms such as insertion heuristics (Ma-
ciejewski, 2016) or integer linear programming (Alonso-Mora et al., 2017). A recent study high-
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lighted the need for explicit simulation of operational aspects such as charging, hub facilities, and
driver shift supply to yield realistic results for current human-operated fleet operations in which
the drivers are employees of the operator (Zwick et al., 2022). This underscores the importance of
generating realistic driver shift plans that minimize operating costs while maintaining high-quality
service. For simulation studies without available historical data, or those subject to new policies
or other changing conditions, the driver shift plans must be scheduled to match the anticipated de-
mand. Given that these scheduling problems are typically NP-hard (Chuin Lau, 1996), simulated
annealing (SA) has proven to be a valuable tool for addressing this challenge (Thompson, 1996).

SA is a metaheuristic optimization algorithm that has been applied across a range of domains,
including transportation, to address complex optimization problems. SA can be integrated with
co-evolutionary algorithms to optimize distinct facets of the transport system, as both approaches
share important similarities and fall into the category of general iterative algorithms (Youssef et
al., 2001). In this study, we provide a case illustration of SA employed within MATSim to optimize
the supply side of DRT systems in the form of driver shift planning, based upon initial findings
(Arora, 2021).

We demonstrate that SA is well-suited for the iterative design of a co-evolutionary transport model
framework and can generate favorable outcomes for optimizing specific simulation components, as
exemplified by driver shift planning. The versatility of the SA approach lies in its adaptability
to various mobility-related optimization problems, including but not limited to DRT stop or hub
placement, charging strategies, traffic signal plans, or fleet sizes. Consequently, the generic SA
implementation within the MATSim framework will be made available as an open-source feature
to encourage further optimization research in the field.

2 Methodology

Based on the DRT extension by Maciejewski (2016) including its default re-positioning strategy
(Bischoff & Maciejewski, 2020) and the operational aspects described in Zwick et al. (2022) we
simulate a human-operated ride-pooling service in MATSim and use SA to optimize the driver
shift plan.

The general outline of SA is as follows:

1. Initialize the system with an initial solution λ0 and set the initial temperature T0 (to a high
value).

2. Choose a candidate solution λi for iteration i by making a perturbation to the current
solution.

3. Calculate the energy (or cost) difference between the candidate solution cost c(λi) and the
current accepted solution cost c(λa).

4. If the energy difference is negative, accept the candidate solution as the new current solution.

5. If the energy difference is positive, accept the candidate solution with a probability Pi(λi)
that depends on the current temperature Ti and the energy difference. This probability
decreases as the temperature decreases and is designed to allow the algorithm to escape
from local minima.

6. Decrease the temperature according to a cooling schedule.

7. Repeat steps 2-6 until the stopping criterion is met (e.g., a maximum number of iterations
is reached).

The acceptance probability in step 5 is calculated as:

Pi(λi) = e
−(

k·(c(λi)−c(λa)

Ti
) (1)

Multiple cooling schedules exist to adjust temperature Ti. In this study we use an exponential
multiplicative schedule:

Ti = T0 ∗ αi, (2)
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with a constant 0 < α < 1.

In our application of optimizing driver shifts, we assume an infinite pool of drivers and limit the
optimization to a single day. Shifts s are characterized by their start and end times and are of a
fixed duration td,s of either 5 or 8 hours. An 8-hour shift requires a mandatory break of duration
tb,s= 60 min, which must occur no earlier than 3.5 hours and no later than 5.5 hours into the shift.
The solution λ is defined as a shift plan, i.e., the set of n shifts λ = {s1, s2, . . . , sn}.

For the cost function, we propose a function that

1. sums up the driving hours of all shifts (shift durations td,s minus optional break durations
tb,s) and multiplies it with the cost per operational hour θ,

2. subtracts from the costs the sum of revenues ϵr of all served rides r ∈ R(λ) served with
solution λ,

3. adds a penalty δ for each time bin t in which the rejection rate ηλ was greater than a
predefined threshold ηmax:

c(λ) = θ ·
∑
s∈λ

td,s − tb,s −
∑

r∈R(λ)

ϵr +
∑
t

Γ(t, λ) · δ, (3)

with Γ(t, λ) =

{
1 ηλ(t) > ηmax,

0 otherwise
(4)

For the revenue of a ride, we propose a generic cost function that consists of a base fare β0 and a
distance-dependent price per kilometer βkm:

ϵr = β0 + βkm · dr, (5)

where dr is the distance of ride r.

For step 2 of the algorithm, multiple perturbations were defined to allow an extensive but guided
exploration of possible solutions:

Add shift This strategy randomly adds a new shift to the shift plan by drawing from a weighted
random distribution of possible time spans. Using a sliding window approach, each possible
time span over time bins t gets a weight that relates to the request rejection rates η(t) of
the iteration of the last accepted solution. The more rejections a possible time span covers,
the higher the probability of being selected. The time spans have fixed durations of either 5
or 8 hours, which are the two possible shift durations employed in this study.

Remove shift This strategy randomly removes a shift from the plan. Similar to the add shift
strategy, a weighted selection from existing shifts in the plan is performed. Here, the weight
is calculated by the efficiency of the shift, defined as the ratio of revenue earned over the cost
of the shift (duration times the cost per hour) during the last accepted solution’s iteration.

Move shift This strategy randomly moves the start of a shift forwards or backwards in time.
The time difference is randomly drawn from a uniform distribution and respects the service
times of the service.

Duplicate shift This strategy randomly duplicates an existing shift, by drawing from a weighted
distribution. Similar to the removal of shifts, the weights are defined by the efficiency of a
shift during the last accepted solution’s iteration, with more effective shifts being more likely
of being duplicated.

Change shift duration This strategy changes the duration of an existing shift by randomly
choosing between a 5- and an 8-hour shift.

The SA is implemented in parallel to MATSim’s usual iterative cycle as shown in figure 1. The mo-
bility simulation is used in both, the SA algorithm and MATSim’s standard demand co-evolution
and represents the joint environment to allow the evaluation of the solution (set). The actual eval-
uation (i.e. scoring/cost updates) and preparation of new solutions (replanning/solution update)
are performed in separate cycles. The solution update includes the cooling schedule, the decision
for accepting the latest solution and perturbing the accepted solution. For the present study, we
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assume the demand to be static and only optimize the driver shift plan given a fixed demand to
show the applicability of the approach. Thereby, the simulation framework mimics an iterative
traffic assignment model for fleet simulation only, ignoring any additional modes such as private
cars.

Figure 1: Updated MATSim cycle adapted from Horni et al. (2016) to include the imple-
mented simulated annealing cycle which runs in parallel to the original MATSim cycle.

To test our implementation, we make use of a small existing scenario for the city of Holzkirchen
in southern Bavaria, Germany. The scenario has been described by Zwick et al. (2021) and is
available open source1. The temporal distribution of DRT requests is shown in figure 2.

Figure 2: DRT requests over the time of day in the Holzkirchen scenario (Zwick et al.,
2021).

In total, we let the simulation run for 300 MATSim iterations. As the rebalancing algorithm of the
DRT also needs to adapt to previous iterations, we apply a ratio of 2 MATSim iterations per SA
iteration. In addition, we choose to have 3 SA iterations per cooling cycle (making it 6 MATSim
iterations per cycle). The best solution found over all iterations will be fixed for the last 3 iterations
and serves as the final output. The initial temperature T0 is set to 1,500 and α to 0.85. In every SA
iteration, we randomly choose between 1 and 10 perturbations from the strategies defined above.
The cost per driver hour θ is set to EUR 30, to assume somewhat realistic costs of bus drivers,

1https://github.com/matsim-org/matsim-libs/tree/master/examples/scenarios/holzkirchen
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including some overhead (Frank et al., 2008). The cost penalty δ equals EUR 50, which has been
found to be a good value to ensure minimum service level, with the rejection rate threshold ηmax

set to 0.15. On the revenue side, we choose β0 = 5 EUR and βkm = 0.7 EUR/km. The values
given above do not reflect a coherent business case and are chosen for illustrative purposes. The
shift breaks are not part of the optimization in this study, although perturbations on their time
windows would also be possible. The initial shift plan is a manually created plan with a lot of
oversupply (see iteration 0 in figures 4 and 5). In total, a maximum of 20 DRT vehicles may be
employed in the simulation.

3 Results and discussion

The figures presented below illustrate the progression of solution quality and associated costs.
Figure 3 displays the initial, accepted, current, and best overall costs across iterations, as well as
the temperature curve that depicts the cooling schedule. The initial solution is characterized by
high costs resulting from a considerable oversupply. In the first few iterations, the costs improve
considerably and converge towards a minimum of approximately -1334 EUR. The erratic behavior
of the current cost curve indicates that the algorithm is searching around the accepted solution
space. The accepted cost curve reveals that, particularly around iteration 100 when the tempera-
ture remains high, the current accepted solution may be allowed to be inferior to a prior solution
from earlier iterations. In general, the asymptotic nature of the curves suggests a relatively stable
and optimized solution, which the algorithm reached in iteration 232.

It is worth noting that negative costs indicate a profitable service, as revenues exceed driver costs.
However, the cost and revenue factors presented here are for illustrative purposes only and may
not accurately reflect actual scenarios. Additionally, the fixed demand in the Holzkirchen scenario
was estimated based on the assumption of an autonomous service with lower cost factors.

Figure 3: The different cost values (in EUR) and temperature over the course of the
simulation.

Figure 4 depicts six plots of shift histograms and rejections at different iterations during the sim-
ulation. The algorithm aims to minimize driver hours by limiting the number of rejections to
below a specified threshold. In the initial iteration, shifts are evenly distributed throughout the
day, resulting in few rejections. Subsequent shift histograms exhibit a more detailed shift schedule
with fewer total shifts. The final shift setup displays a significantly reduced shift histogram with
an acceptable rejection rate (overall rejection rate of 4 %). The plots illustrate that the algorithm
occasionally adds meaningless shifts randomly, such as shifts starting at midnight in iteration 60,
which are subsequently eliminated. Additionally, the final shift plan is consistent with the demand
pattern in figure 2, with a noticeable peak around 5 pm. In this hypothetical scenario, it shows
that a fleet size of around 10 vehicles may be sufficient.

Figure 5 illustrates the vehicle occupancy at the same six iterations as the shift histograms in
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Figure 4: Shift histograms and rejections over the iterations 0, 60, 120, 180, 240 and 300.
Each vertical line represents a rejected request. The blue and black lines depict the number
of active shifts and shift breaks, respectively.

figure 4. The occupancy plot for iteration 0 reveals that too many shifts were scheduled given the
demand, with "STAY" indicating vehicles on shift without tasks. A similar yet less pronounced
pattern is present in iteration 60. In contrast, the shift schedules in iterations 240 and 300 demon-
strate an efficient utilization of shifts based on demand, indicating that the algorithm has likely
found a satisfactory solution to the problem.

Figure 5: Occupancy plots over the iterations 0, 60, 120, 180, 240 and 300. It shows
the distribution of vehicle states over the time of day, including the number of boarded
passengers.

4 Conclusions

In conclusion, the results presented in this study demonstrate the applicability of the simulated
annealing algorithm for the given problem. However, it is important to note that these results are
only illustrative and require further refinement of input parameters, particularly in relation to driver
costs, revenues, and demand. In addition, the cost optimization could be extended to also include
other operating costs such as the distance-dependent costs of electricity for electric vehicles. Given
that one can also infer the maximum amount of simultaneously operating vehicles one can also
estimate the number of required vehicles in the fleet. Given the unpredictable nature of demand,
an approximate and valid solution of supply is sufficient for the problem, which supports the idea
of using heuristic approaches such as SA. Future research should focus on exploring adaptive and
co-evolving demand, testing larger and realistic scenarios, and optimizing other components of
the simulation to improve the accuracy of the results. The findings presented here may also be
transferable to other iterative transport models.

6



Declaration of interests

We acknowledge that Nico Kuehnel and Felix Zwick are employed at the ride-pooling operator
MOIA.

7



References

Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., & Rus, D. (2017). On-demand high-
capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the National Academy
of Sciences of the United States of America, 114 (3), 462–467. doi: 10.1073/pnas.1611675114

Arora, S. (2021). Optimization of driver shift (and break) schedule using simulated annealing in
ride-pooling services (Master’s thesis, School of Engineering and Design, Technical University of
Munich). doi: 10.13140/RG.2.2.16415.64162

Bischoff, J., & Maciejewski, M. (2020). Proactive empty vehicle rebalancing for demand
responsive transport services. Procedia Computer Science, 170 , 739-744. Retrieved from
https://www.sciencedirect.com/science/article/pii/S1877050920306220 doi: https://
doi.org/10.1016/j.procs.2020.03.162

Chuin Lau, H. (1996). On the complexity of manpower shift scheduling. Computers Operations
Research, 23 (1), 93-102. Retrieved from https://www.sciencedirect.com/science/article/
pii/030505489400094O doi: https://doi.org/10.1016/0305-0548(94)00094-O

Fadranski, D., Syré, A. M., Grahle, A., & Göhlich, D. (2023). Analysis of charging infrastruc-
ture for private, battery electric passenger cars: Optimizing spatial distribution using a genetic
algorithm. World Electric Vehicle Journal , 14 (2). Retrieved from https://www.mdpi.com/
2032-6653/14/2/26 doi: 10.3390/wevj14020026

Flötteröd, G. (2017). A search acceleration method for optimization problems with transport
simulation constraints. Transportation Research Part B: Methodological , 98 , 239–260.

Frank, P., Friedrich, M., & Schlaich, J. (2008). Betriebskosten von Busverkehren schnell und genau
ermitteln. Der Nahverkehr , 11 .

Horni, A., Nagel, K., & Axhausen, K. (Eds.). (2016). Multi-Agent Transport Simulation MATSim.
London: Ubiquity Press. doi: 10.5334/baw

Kaddoura, I., Kickhöfer, B., Neumann, A., & Tirachini, A. (2015). Agent-based optimisation of
public transport supply and pricing: impacts of activity scheduling decisions and simulation
randomness. Transportation, 42 , 1039–1061.

Kühnel, N., Thunig, T., & Nagel, K. (2018). Implementing an adaptive traffic signal control algo-
rithm in an agent-based transport simulation. Procedia Computer Science, 130 , 894-899. Re-
trieved from https://www.sciencedirect.com/science/article/pii/S1877050918304484
doi: https://doi.org/10.1016/j.procs.2018.04.086

Maciejewski, M. (2016). Dynamic Transport Services. In The Multi-Agent Transport Simulation
MATSim (pp. 145–152). Andreas Horni, Kai Nagel and Kay W. Axhausen. Retrieved from
https://matsim.org/the-book

Neumann, A. (2014). A paratransit-inspired evolutionary process for public transit net-
work design. Retrieved from https://depositonce.tu-berlin.de/bitstream/11303/4393/
1/neumann_andreas.pdf

Thompson, G. M. (1996). A simulated-annealing heuristic for shift scheduling using
non-continuously available employees. Computers Operations Research, 23 (3), 275-288.
Retrieved from https://www.sciencedirect.com/science/article/pii/0305054895000127
doi: https://doi.org/10.1016/0305-0548(95)00012-7

Youssef, H., M. Sait, S., & Adiche, H. (2001). Evolutionary algorithms, simulated annealing
and tabu search: a comparative study. Engineering Applications of Artificial Intelligence,
14 (2), 167-181. Retrieved from https://www.sciencedirect.com/science/article/pii/
S0952197600000658 doi: https://doi.org/10.1016/S0952-1976(00)00065-8

Zilske, M., & Joubert, J. W. (2016). Freight Traffic. In The Multi-Agent Transport Simulation
MATSim (pp. 155–156). Andreas Horni, Kai Nagel and Kay W. Axhausen. Retrieved from
https://matsim.org/the-book

8

https://www.sciencedirect.com/science/article/pii/S1877050920306220
https://www.sciencedirect.com/science/article/pii/030505489400094O
https://www.sciencedirect.com/science/article/pii/030505489400094O
https://www.mdpi.com/2032-6653/14/2/26
https://www.mdpi.com/2032-6653/14/2/26
https://www.sciencedirect.com/science/article/pii/S1877050918304484
https://matsim.org/the-book
https://depositonce.tu-berlin.de/bitstream/11303/4393/1/neumann_andreas.pdf
https://depositonce.tu-berlin.de/bitstream/11303/4393/1/neumann_andreas.pdf
https://www.sciencedirect.com/science/article/pii/0305054895000127
https://www.sciencedirect.com/science/article/pii/S0952197600000658
https://www.sciencedirect.com/science/article/pii/S0952197600000658
https://matsim.org/the-book


Zwick, F., Kuehnel, N., & Hörl, S. (2022). Shifts in perspective: Operational aspects in
(non-)autonomous ride-pooling simulations. Transportation Research Part A: Policy and Prac-
tice, 165 , 300-320. Retrieved from https://www.sciencedirect.com/science/article/pii/
S0965856422002294 doi: https://doi.org/10.1016/j.tra.2022.09.001

Zwick, F., Kuehnel, N., Moeckel, R., & Axhausen, K. W. (2021). Ride-pooling efficiency in
large, medium-sized and small towns -simulation assessment in the munich metropolitan region.
Procedia Computer Science, 184 , 662-667. Retrieved from https://www.sciencedirect.com/
science/article/pii/S1877050921007195 doi: https://doi.org/10.1016/j.procs.2021.03.083

9

https://www.sciencedirect.com/science/article/pii/S0965856422002294
https://www.sciencedirect.com/science/article/pii/S0965856422002294
https://www.sciencedirect.com/science/article/pii/S1877050921007195
https://www.sciencedirect.com/science/article/pii/S1877050921007195


Analyzing Network-wide Energy Consumption of Electric Vehicles in a
Multimodal Traffic Context: Insights from Drone Data

Sijia Sun*1,2, Hossam M. Abdelghaffar2, Sérgio F. A. Batista2, Mónica Menéndez2,
and Yuanqing Wang1

1Key Laboratory of Transport Industry of Management, College of Transportation Engineering,
Chang’an University. PO Box 487, South 2nd Ring Road., Xi’an, China, 710064

2Division of Engineering, New York University Abu Dhabi, Saadiyat Marina District PO Box
129188 - Abu Dhabi, United Arab Emirates

Short summary

The environmental benefits and driving range of electric vehicles are closely related to their
energy consumption. In this paper, we analyze the energy consumption characteristics of electric
mobility systems in a multimodal urban traffic context by establishing the aggregated relationships
between macroscopic fundamental diagram (MFD) dynamics and network-wide energy consump-
tion. To do this, we utilize a data-based approach, combining vehicle trajectories collected by a
swarm of drones in the downtown areas of Athens, Greece, during the pNEUMA experiment with
microscopic energy consumption models. We assume all the trajectories are driven by electric
vehicles yet maintain the same behavior observed in the pNEUMA dataset. Preliminary results
show well-defined relationships between aggregated traffic parameters and energy consumption at
a network level. The total energy consumption of electric cars and buses in the network increases
linearly with vehicle accumulation under uncongested traffic conditions. At the same time, the en-
ergy consumption per distance traveled by electric buses significantly decreases as the spatial mean
speed increases. While for electric cars, the impact of spatial mean speed on energy consumption
is marginal, especially when the average speed is above 10 km/h.

Keywords: Electric mobility, Energy consumption, pNEUMA dataset, Macroscopic funda-
mental diagram.

1 Introduction

Climate change, mainly caused by carbon dioxide emissions from human activities, severely
threatens human health and the planet’s ecosystem (Zhang et al., 2020). The transportation sector
could play an essential role in climate change mitigation, as the sector is responsible for the highest
energy consumption in 40% of countries globally and contributes to approximately 15% of total
greenhouse gas emissions (IEA, 2022). It is worth mentioning that road transportation is the
largest source of transport emissions, accounting for 69% of the sector’s overall emissions (IPCC,
2022). This situation will be even more alarming in the decades to come as the trend toward
motorization continues (Gao & Newman, 2018).

The electrification of vehicle fleets has been widely recognized as a crucial path to decarbonizing
and alleviating fossil fuel dependency in the road transportation sector. Battery electric vehicles
(EVs) represent an advanced and promising technology that offers an opportunity to increase
energy efficiency and achieve ‘zero emissions’ compared to their traditional fossil fuel-powered
counterparts (Xie et al., 2020). However, EVs are not truly ‘zero emissions’ from the life cycle
perspective as they consume electrical energy, and the indirect emissions produced by the electricity
generation are non-negligible, especially where carbon-intensive grids operate. This highlights that
the environmental benefits provided by EVs are directly dependent on their energy consumption.
Moreover, energy consumption determines vehicle driving range, and the limited driving range
remains one of the significant barriers to the massive adoption of EVs. In this context, optimizing
EVs’ energy consumption plays a vital role in advancing the development of a more sustainable
transportation system while concurrently alleviating concerns surrounding range anxiety for EVs.

Most studies so far have focused on minimizing the energy consumption of EVs from two per-
spectives. One is adopting an eco-driving strategy, which provides drivers with recommendations
for modifying their driving behavior to avoid the high energy consumption caused by aggressive
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driving patterns (Y. Zhang et al., 2022; Donkers et al., 2020; Bingham, 2012). The other is develop-
ing an eco-routing strategy, which incorporates the energy-saving potentials when planning routes
for electric vehicle operation (Ahn et al., 2021; Basso et al., 2019; Fiori et al., 2018). Although
these strategies are efficient and reliable, their real-world application is limited in terms of scope, as
they typically apply to a few routes or trips and a single transportation mode. While several stud-
ies have investigated the impact of eco-routing and eco-driving strategies on network-wide energy
consumption, they mostly resorted to traffic simulators and used the simplest energy consumption
models (e.g., energy consumption is linear to distance) for algorithm simplicity (see e.g., Rakha
et al., 2012; Hiermann et al., 2019)). Moreover, to the best of our knowledge, no study yet has
analyzed the energy consumption characteristics of EVs in a multimodal traffic network. In this
paper, we address this gap, combining real multimodal traffic data with microscopic energy con-
sumption to analyze the network-wide energy consumption of electric mobility systems. Existing
vehicle energy consumption models can generally be classified as either macroscopic or microscopic
(Othman et al., 2019). Macroscopic models use a single value (i.e., energy per unit distance or
time) to roughly calculate the energy demand of vehicles. On the other hand, microscopic models
provide a more accurate estimation of energy consumption based on high-resolution driving profile
data; however, such data are not easily obtained, especially on a large scale. To overcome this,
some studies have used macroscopic fundamental diagram (MFD)-based traffic models to estimate
network-wide vehicle environmental externalities (e.g., CO2 emissions). The MFD describes the
well-defined relationships between network production, accumulation, and speed (Geroliminis &
Daganzo, 2008). Shabihkhani & Gonzales (2014) proposed an analytical model to estimate the
network emissions leveraging the relationship between MFD and the driving cycle. They fur-
ther evaluated this model in an idealized homogeneous network. Saedi et al. (2020) developed a
network-wide emission modeling framework by combining the network fundamental properties with
the microscopic emission model. This framework was applied to an urban network through sim-
ulation. Recently, Barmpounakis et al. (2021) combined large-scale drone data with the MOVES
emission model to establish the relationships between network accumulation, speed, and vehicle
emissions. They referred to this relationship as the emission-MFD. However, these studies only
focused on traditional fossil fuel-powered vehicles, and the impact of electrified technology on
network-scale energy consumption is still unclear.

In this paper, we focus on analyzing the network-wide energy consumption characteristics of
electric vehicles in a multimodal urban traffic context. We do so by utilizing a data-based ap-
proach, combining high-resolution vehicle trajectory data collected by a swarm of ten drones in
the central business district of Athens, Greece, during the pNEUMA experiment (Barmpounakis
& Geroliminis, 2020) with microscopic energy consumption models. This allows us to estimate
the large-scale vehicular energy consumption and further investigate the aggregated relationship
between network-wide energy consumption and macroscopic fundamental diagram dynamics. We
refer to this aggregation relationship as energy consumption-MFD, following the naming method
proposed in Barmpounakis et al. (2021). The analysis conducted in this paper paves the foun-
dation for optimizing the energy consumption and environmental footprint of electric vehicles in
multimodal traffic networks.

The reminder of this paper is organized as follows. In Sect. 2, we describe the pNEUMA dataset
and the data processing method. We also briefly introduce the microscopic energy consumption
models utilized for different vehicle types. In Sect. 3, we discuss the preliminary results on the
aggregated energy consumption at the multimodal urban network. In Sect. 4, we draw the main
findings of this paper.

2 Methodology

In this section, we first introduce the pNEUMA dataset and describe the data pre-processing
method. We then present the energy consumption models utilized for electric vehicles.

Data source and pre-processing

The pNEUMA experiment was conducted in the central business district of Athens, Greece,
in October 2018 (Barmpounakis & Geroliminis, 2020). This experiment collected nearly half a
million naturalistic vehicle trajectories in a 1.3 [km2] urban area using a swarm of ten drones
during morning peak hours (8:00 - 10:30) over four weekdays. Figure 1 shows the overview of
the whole study area and the subareas flown by each drone. The pNEUMA dataset records
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Figure 1: Study area of the pNEUMA experiment and drone-assigned subareas and flight
routes (Barmpounakis & Geroliminis, 2020).

vehicle trajectory information in 0.04-second time intervals, including longitude, latitude, speed,
longitude acceleration, latitude acceleration, and timestamp. Due to the multimodal urban traffic
characteristics in the selected study area, six vehicle types are recorded in the dataset: car, taxi,
bus, motorcycle, medium vehicle, and heavy vehicle. In this paper, we focus on three vehicle types,
i.e., car, taxi, and bus.

Extensive pre-processing of the empirical dataset is necessary because measurement errors
were detected during the observation period of some drones. We follow the pNEUMA dataset pre-
processing method proposed by Hamm et al. (2022), removing the records in the last 2 minutes
of each drone flight from the dataset. In addition, we filter some unreasonable records based on
the mechanical properties of vehicles and the real-world driving conditions in downtown areas. For
example, bus records with instantaneous acceleration greater than 3.5 [m/s2], car records with
average travel speeds higher than 80 [km/h], and vehicle records with zero instantaneous speed
and acceleration throughout the whole trajectory (probably are parked vehicles).

Microscopic energy consumption modeling

According to the information reported in (Barmpounakis et al., 2021), during the pNEUMA
experiment in Athens, the fuel type of taxis and buses was diesel, and the fuel type of cars was
gasoline. For the analysis in our paper, we assume all three vehicle types are electric-powered,
yet they maintain the same behavior as that observed in the pNEUMA dataset. We adopt the
VT-CPEM (Virginia Tech Comprehensive Power-based Energy consumption Model) to calculate
the energy consumption of electric cars/taxis (Fiori et al., 2016). For electric buses, we use the
microscopic power-based energy consumption model (Ma et al., 2021). Both models belong to
the microscopic backward-looking longitudinal dynamic models, which estimate vehicles’ energy
consumption based on the calculation of tractive force. In particular, these models produce the
energy consumption in units of [kwh/km] and the instantaneous energy consumption in units of
[kw] using the instantaneous speed profile as the input. Such input data can readily be provided
by the pNEUMA dataset. Previous studies have widely utilized these models and demonstrated
their accuracy in estimating the energy consumption of vehicles in the urban traffic context (Ahn
et al., 2020; Ma et al., 2021). For the mathematical details of these models, interested readers
could refer to the above references.

It is also worth mentioning that road grade has a significant influence on the energy consump-
tion of electric vehicles (Liu et al., 2017). The city of Athens is surrounded by mountains, resulting
in relatively large terrain fluctuations. Therefore, the impact of road grade on vehicle energy con-
sumption should not be omitted. In this paper, we use the Shuttle Radar Terrain Mission (SRTM)
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digital elevation model to obtain road elevation information and then calculate the road slope
between every two consecutive records in the dataset (Farr et al., 2007).

3 Results and discussion

In this section, we describe the empirical results regarding two aggregated relationships in
the network, specifically, (i) the relationship between accumulation and network-wide total en-
ergy consumption; and (ii) the relationship between spatial mean speed and network-wide energy
consumption per distance traveled. Before showing the results, we discuss how we calculate the
network fundamental properties and network-wide energy consumption.

In this paper, we use vehicle trajectory data collected from 8:30 to 11:00 on October 24th. After
pre-processing the dataset as described in the previous section, we gathered records of 36282 vehicle
trajectories. Among them are 34820 trajectories of private cars and taxis and 1462 trajectories of
buses. We consider 1 minute as the time interval T for aggregating the MFD dynamics and energy
consumption results. For each time interval, the accumulation nr and the spatial mean speed of
cars vr (including private cars and taxis) in the network r are determined as:

nr =

∑Ncar

i=1 tti
T

(1)

vr =

∑Ncar

i=1 tdi∑Ncar

i=1 tti
(2)

where Ncar [veh] is the number of cars circulating in the network during the given time interval;
tti [s] is the time spent by car i in the network during the time interval, and tdi [m] is the distance
traveled by car i during the time interval.

The total energy consumption of car traffic in the network for each time interval is determined
as:

ECr =

Ncar∑
i=1

eci (3)

where eci [kWh] is the energy consumption of car i during the time interval.
The energy consumption per distance traveled [kWh/veh.km] is calculated with Eq. 4:

ECDr =
ECr∑Ncar

i=1 tdi
· 1000 (4)

Regarding the traffic dynamics and energy consumption of buses, we use the same equations
for calculations.

Macroscopic relationship between accumulation and total energy consumption

Figure 2 depicts the total energy consumption of cars and buses in the network as a function
of accumulation (i.e., energy consumption-MFD). The value of each blue or green data point in
the figure represents the aggregated energy consumption of cars or buses in the network over a
given period (i.e., 1 minute). For electric cars, we observe that when the accumulation is smaller
than 1600 [veh], the total energy consumption increases roughly linearly with the increase in
accumulation. This is because when the car traffic in the network is not heavy, the total energy
consumption of the system increases correspondingly with the number of vehicles in the network.
However, when the traffic conditions become congested, the additional effects of congestion make
the relationship between car accumulation and energy consumption non-linear (refer to the blue
points in Figure 2 (a) when the accumulation is larger than 1600 [veh]). This is because heavy
traffic leads to congestion and lower speeds, which means that cars spend more time traveling the
same distance. As a result, the energy consumed by cars in the network further increases. We
also observe that for electric buses, the total energy consumption shows a growing trend with the
increase in accumulation. Considering the empirical dataset has a limited range of obervations,
especially for public transport vehicles, our empirical enegry conusmption-MFD may only represent

4



the aggregated relationship between accumulation and total energy consumption during a part of
the network’s loading and unloading cycles.
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Figure 2: Correlation between total energy consumption and accumulation.

Macroscopic relationship between mean speed and energy consumption

Figure 3 depicts the aggregated relationships between average speed and the energy consump-
tion normalized for distance on a network scale. We observe that when the average speed is lower
than 10 km/h, the energy consumption of electric cars decreases with the increase in average speed.
However, this decreasing trend tends to be minimal, and the energy consumption of electric cars
is basically constant when the average speed is higher than 10 km/h. In contrast, the energy
consumption of electric buses significantly decreases as the average speed increases (at least within
the typical speed range for buses in the pNEUMA dataset). The different relationships between
mean speed and the energy consumption of electric cars and electric buses could be attributed
to their differences in vehicle configurations, such as motor power, vehicle mass, drag resistance
coefficient and rolling resistance coefficient. Electric cars are lightweight and aerodynamically effi-
cient, which results in approximately constant energy consumption over a wide range of speeds. In
comparison, electric buses are heavy and have high rolling resistance. As the speed increases, the
rolling resistance reduces, while the aerodynamic drag resistance only slightly increases, leading to
decreasing energy consumption.
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Figure 3: Correlation between energy consumption per distance traveled and spatial mean
speed.
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4 Conclusions

This paper extends the macroscopic fundamental diagram (MFD) to the energy consumption-
MFD by investigating the aggregated relationships between network traffic dynamics and the
energy consumption of electric mobility systems in a multimodal urban traffic context. We use
a data-based approach, combining naturalistic vehicle trajectories collected by a swarm of drones
during the pNEUMA experiment with microscopic energy consumption models. We assume all the
trajectories belong to electric vehicles yet maintain the same behavior observed in the pNEUMA
dataset. Preliminary results show that well-defined relationships exist between MFD parameters
and the energy consumption of electric vehicles (electric cars or buses) at a network level. The
total energy consumption of electric cars and buses in the network follows a linear relationship
with accumulation under uncongested traffic conditions. When the accumulation exceeds a certain
limit (e.g., 1600 [veh] for car traffic in the pNEUMA dataset), the additional effects of congestion
make the relationship between accumulation and energy consumption non-linear. We also show
that the energy consumption of electric cars decreases as the average speed increases when the
average speed is lower than 10 km/h and then tends to be relatively constant even though the
average speed further increases. For electric buses, their energy consumption exhibits an obvious
decreasing trend with the increase in average speed. These findings provide valuable insights into
understanding the network-wide energy consumption characteristics of electric vehicles. In the next
phase of our research, we propose to comprehensively analyze the energy consumption distribution
of EVs and traditional fossil fuel-powered vehicles across the entire network. On this basis, we
could accurately identify the energy consumption hotspots in the network and track the origin
of these hotspots. Furthermore, we will also leverage a simulation-based approach to generalize
our empirical results and explore viable strategies for mitigating energy consumption hotspots in
networks with both electric and fossil fuel-powered vehicles.
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SHORT SUMMARY 

First, a concept of metamodel-based optimization, in which a transport economics inspired model 

acts as a metamodel over an underlying set-up of directly interfaced transport models, is dis-

cussed. Then, a toll optimization scenario including a city and its neighboring rural municipalities 

is developed and a case study concerning its cooperative version is presented. The metamodel for 

this case study involves the player(s) optimizing their objective based on a schematic network, 

and simplified cost and demand functions, whereas the underlying set-up is a Static Traffic As-

signment over the physical network with physical origin-destination elastic demand. This new 

metamodel-based optimization is then compared with traditional metaheuristics-based optimiza-

tion. Results show that the new approach not only leads to lower computational expense but even 

outperforms metaheuristics-based optimization in terms of optimality.  

 

Keywords: Game theoretical interactions in mobility, Pricing and capacity optimization, 

Transport economics and policy, Metamodel-based optimization, Transportation network 

modelling 

1. INTRODUCTION 

Road pricing is an important topic for many transportation stakeholders. Comprehensive analysis 

of tolling schemes should consider interactions between transportation subsystems/stakeholders 

(travelers, mobility service providers, and local network operators) and other systems (neighbor-

ing governments' network operators, housing market, urban design/land-use).  

 

Thus, for a particular tolling scheme, the challenge for modelers is to 1) identify relevant (sub)sys-

tems/stakeholders and their interactions. 2) develop models that take into account these interac-

tions in a more elaborate way than fixed inputs or unidirectional influences. 3) develop mecha-

nisms for computation of consistent impacts on all interrelated (sub)systems/stakeholders. There 

have been attempts to approach solutions based on three major approaches: 

1. All-encompassing micro-models: These are highly detailed and disaggregate models in 

which every relevant player is modelled at a micro level e.g., the Multi-Agent Transport 

Simulation (MATSim) framework (Horni, Nagel, & Axhausen, 2016). Such frameworks 

can provide information at a very disaggregate level to the stakeholders allowing analysis 

from equity as well as efficiency perspective. However, developing, extending, 
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calibrating, maintaining, and interpreting such models require substantial effort, and 

game-theoretical analyses involving multiple stakeholders with different objectives can 

be prohibitively expensive.  

2. Tailor-made simplified conceptual models: On the other end of the spectrum lie sim-

plified conceptual models which are often used by transport economists (B. De Borger, 

Dunkerley, & Proost, 2007; Bruno De Borger & Proost, 2021). These are comparatively 

easier to develop, calibrate, maintain, and interpret. It is also easy to tailor them and 

focus only on the relevant stakeholders/(sub)systems and their interactions for a partic-

ular problem. However, they involve extensive simplifications of the underlying 

(sub)systems; thus, they only provide highly aggregate and schematic results which is, 

usually, not sufficient for aiding actual decisions. 

3. Tailor-made directly interfaced traditional mono-disciplinary models: Tradition-

ally, a toll optimization problem is solved by using a bi-level optimization framework in 

which toll is altered in an outer loop around the Static Traffic Assignment (STA) 

(Ekström, Rydergren, & Sumalee, 2014). Nowadays, to account for interactions with other 

(sub)systems, dedicated interfaces between relevant mono-disciplinary transportation 

models are being built within the inner loop e.g., the connection between activity-based 

demand model and STA in Strategisch Personen Model Vlaanderen (Vanderhoydonc & 

Borremans, 2020). This approach may provide flexibility and produce disaggregate re-

sults. However, solving complex optimization problems involving several stakeholders 

can still be extremely sluggish because: a) As the number of models increase, attaining 

consistency via bi-directional interfaces becomes computationally quite expensive. b) 

Due to the possibility of only marginal steps in the optimization variables, the risk of 

getting stuck in local stationary points is quite high. 

 

It can be appreciated that none of these three approaches offers the combination of scalability, 

detail, and flexibility required by contemporary transportations problems.  

 

Inspired from the complementary characteristics of the 2nd and 3rd approaches mentioned above, 

we aim to use a transport economics inspired conceptual model as a metamodel to find an 

optimal toll for an underlying set-up of directly interfaced traditional transport models. In 

this way, the underlying set-up only has the computational load related to achieving consistency 

between the directly interfaced models, whereas the computational load for optimization lies com-

pletely at the metamodel level. At every iteration, the underlying set-up is used to (re-)calibrate 

the metamodel which includes a simpler and more aggregate version of all the relevant stakehold-

ers/(sub)systems. Toll optimization is performed for the meta-model and optimal tolls are trans-

mitted to the underlying set-up. At the new tolls, the underlying set-up is evaluated again, and the 

meta-model is recalibrated at the new point. This sequence is repeated until a certain level of 

convergence is achieved in the optimal toll values.  

The objective of this paper is to present the development and results of a proof of this concept 

and thereby, determine 1) the optimality and 2) the computation speed of this framework.  

2. METHODOLOGY 

The fictional problem considered for the proof of concept is as follows: the city municipality is 

looking to impose two non-discriminatory cordon tolls i.e., an entry toll each for radial and ring 

roads with the intention of curbing the use of city infrastructure by transit traffic. To avoid the re-

routing of transit traffic to their infrastructure, rural municipalities come together to charge an 

entry toll for the neighboring rural territory.  
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The framework has three main parts: 1) The underlying Set-up 2) the metamodel 3) the calibration 

interface between underlying set-up and the metamodel. Figure 1 shows a block diagram repre-

senting a basic instance of this framework. 

 

  
Figure 1: Basic instance of framework 

Underlying Set-up 

The underlying set-up, for this exercise, consists of an STA for a fictional city and a simple de-

mand model with linear elasticities per OD. 

 

Static Traffic Assignment (STA): 

Details of STA are mentioned in Table 1.  

Figure 2 and Figure 3 show the network and the zoning respectively.  

 

 
Figure 2: Network shown against the background of OpenStreetMap 
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Figure 3: 173 zones used for the study 

 

Table 1: Static Traffic Assignment details [1: (Boeing, 2017), 2: (Vanderhoydonc & 

Borremans, 2020), 3: (Gentile, 2014)] 

Network

Centre Aarschot

Buffer 17 kms

No. of nodes 43440

No. of links 143368

Source OpenStreetMap

Comment using OSMnx (1)

Demand Data

Centre Aarschot

Buffer 17 kms

No. of zones 173

OD Matrix size 173 X 173

Source Belgium-wide data by Flemish Road Authority (2)

Comment Additional in-house mining on top of source

Assignment

Software PTV Visum

Method LUCE (3)  
 
To include transit traffic through Aarschot, a proportion of the external demand of interest is 

projected onto the periphery zones. The city and the neighboring municipalities are assumed to 

have jurisdiction over Territory 6 and Territory 5 respectively (Figure 4). The three tolls are 

added in units of time to travel costs (BPR) of the appropriate entry links. 
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Figure 4: Territory 6 is under city jurisdiction and Territory 5 is under jurisdic-

tion of rural municipalities. 
 

Demand Model: 

The demand model is a standard linear inverse demand function of the type mentioned in Equa-

tion 1 and it is used to get the demand (𝐷𝑜𝑑) for each of the 173*173 = 29929 OD pairs as a 

function of their cost skims (𝐶𝑜𝑑).   

 

𝐴𝑜𝑑 − 𝐵𝑜𝑑 ∗ 𝐷𝑜𝑑 = 𝐶𝑜𝑑        (1) 

 

For this study, 𝐴𝑜𝑑 and 𝐵𝑜𝑑 have been derived by using the reference OD matrix and reference 

Cost Skim matrix (obtained after assigning reference OD matrix) and a realistic assumption about 

the maximum possible demand (at zero cost) for each OD pair.  

 

The horizontal interface between the STA and the demand model shown in Figure 1 is solved as 

a fixed-point problem with Method of Successive Averages (MSA) smoothening. In future, more 

advanced demand models, such as activity-based demand models, may replace this basic demand 

model.  

Metamodel 

The metamodel is inspired from transport economics models (Bruno De Borger & Proost, 2021). The 

schematic network chosen for this case study is shown in Figure 5 and other details are mentioned 

in Table 2. 
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Table 2: Details of metamodel network 

No. of nodes 9

No. of links 13

Centroid nodes 1, 4, 7, 8 and 9

Left to Right links All except 9 and 12

Right to left links 9 and 12

Radial links 5 and 6

Ring links 7, 4 and 8

Rural links 3, 9, 10, 11 and 12

Radial toll link 5

Ring toll link 7

Rural toll links 10 and 12  
 

 

 

 
 

Figure 5: Network for metamodel: Links (green labels), Nodes (blue labels) and 

Tolled Links (yellow circles) 
 

Links are assumed to have a linear congestion cost function (𝑙𝑐𝑖) of the type: 

 

𝑙𝑐𝑖 =  𝑎𝑖 + 𝑏𝑖 ∗ 𝑓𝑖        (2) 

 

Demand is assumed to be comprised of ten schematic OD pairs between the five centroids (see 

Table 3). There are nineteen paths for the ten OD pairs. The paths using radial links, ring links 

and rural links are mentioned as ‘r’, ‘R’, and ‘M’ respectively. For OD pair 1_4, the path that 

escapes all three tolls is mentioned as ‘e’ in Table 3. The demand in metamodel is also assumed 
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to be elastic with linear inverse demand functions of the type mentioned in Equation 1 with 𝐴𝑜𝑑 

and 𝐵𝑜𝑑 (for each of the 10 OD pairs) being calibration parameters for the metamodel. 

 

Table 3: Metamodel OD pairs 
 

S.No. OD pair (from_to) Available paths Explanation (from_to) Code name

1 1_4 M,R,r,e external_external OD

2 1_7 M external_closerural ON

3 1_8 M,R,r external_opprural ONopp

4 1_9 r external_city OA

5 7_4 M,R,r opprural_external ND

6 8_4 M closerural_external NoppD

7 9_4 r city_external AD

8 7_8 M,R,r rural_rural (opp.) MoMd

9 7_9 r rural_city MoA

10 9_8 r city_rural AMd  
  

Since the scope of the paper is only to provide a proof of concept, the metamodel is used only for 

solving joint optimization problem of the city and rural municipalities as opposed to solving Nash-

Cournot or Stackelberg competitions. The objective function for this joint optimization (minimi-

zation) is a quadratic function of the optimization variables i.e., three tolls (𝑇𝑇𝑙𝑖) and nineteen 

path flows (𝑋𝑝𝑖). It is a sum of (negative) user welfare, total costs including tolls, external costs 

and (negative) total revenue from tolls. Objective function and constraints are shown in Equa-

tions 3-11. 

 

𝑂𝑏𝑗 = −𝑊𝑙𝑓 + 𝑇𝐶 +  𝐸𝐶 − 𝑇𝑅        (3) 

where: 

𝑊𝑙𝑓 =  ∑ (𝐴𝑜𝑑 ∗ 𝐷𝑜𝑑 −10
𝑜𝑑=1 0.5 ∗ 𝐵𝑜𝑑 ∗ 𝐷𝑜𝑑

2 )      (4) 

𝑇𝐶 =  ∑ (𝐶𝑝𝑖 ∗ 𝑋𝑝𝑖
19
𝑝𝑖=1 )          (5) 

𝐸𝐶 =  ∑ (𝜆𝑙𝑖𝑐𝑙𝑖 ∗ 𝑓𝑙𝑖
13
𝑙𝑖=1 )         (6) 

𝑇𝑅 =  ∑ (𝑇𝑇𝑙𝑖 ∗ 𝑓𝑇𝑙𝑖
4
𝑇𝑙𝑖=1 )        (7) 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 
𝑎𝑙𝑙 𝑋𝑝𝑖 ≥ 0, 𝑎𝑙𝑙 𝑇𝑇𝑙𝑖 ≥ 0          (8) 

𝑊𝑎𝑟𝑑𝑟𝑜𝑝′𝑠 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚 (𝑟𝑜𝑢𝑡𝑒 − 𝑐ℎ𝑜𝑖𝑐𝑒)          (9) 

𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑑𝑒𝑚𝑎𝑛𝑑 𝑒𝑞𝑢𝑖𝑙𝑖𝑏𝑟𝑖𝑢𝑚          (10) 

𝑎𝑙𝑙 𝑇𝑇𝑙𝑖 ≤  𝑇𝑀𝑎𝑥         (11) 

 

Wardrop’s equilibrium condition makes the problem highly non-convex because of which special 

checks are required for ensuring global optimality. Details on the solution methods for the meta-

model are the subject of a forthcoming paper (Malik & Tampère, n.d.).  

Interface 

Calibration Interface: 

At the beginning of each new metamodel optimization routine, the metamodel is (re-)calibrated 

by using the underlying set-up. This is done by the calibration interface (represented by red lines 

going up in Figure 1). Specifically, it calibrates: 1) elastic demand parameters for the metamodel 
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i.e., the ten 𝐴𝑜𝑑 and 𝐵𝑜𝑑  mentioned in the previous section, 2) cost parameters of the thirteen 

metamodel links i.e., 𝑎𝑖 and 𝑏𝑖 (Equation 2) and 3) thirteen external cost parameters i.e., 

𝜆𝑙𝑖 (Equation 6).  

 

The zeroth step in this calibration is classifying each of the 29929 physical OD pairs as belonging 

to either one of the ten metamodel OD pairs. This is performed as a preprocessing step using 

geometrical logic. Figure 6 provides an example of the classification for the categories of 1_4, 

1_7, 1_8 and 1_9. Red area represents the city territory and pink + violet areas represent rural 

territory. For an external origin 1, an OD pair is classified based on the area in which the destina-

tion lies i.e., 7, 8, 9 or 4. A similar process is followed for the six remaining OD pair categories.  

 
Figure 6: Geometric logic for classification of physical OD pairs as 1_4, 1_7, 1_8 

and 1_9 in metamodel. 
 

Then, for each meta-OD category, demands of all belonging physical OD pairs are summed to-

gether to give category demand (=metamodel demand for that OD pair) and category cost is given 

by the average of belonging physical OD cost skims weighted by their corresponding maximum 

possible demand levels. We do this at two closest elastic demand equilibrium points of the under-

lying set-up and use them to find locally linearized aggregated inverse demand parameters i.e., 

the ten 𝐴𝑜𝑑 and 𝐵𝑜𝑑 for the metamodel. 

 

The next step is to calibrate link cost parameters of Equation 2. We do this by estimating two 

flow-cost points. The flows of each of the metamodel links are estimated by using their physical 

interpretation e.g., flow on link 1 represents all traffic that’s entering the two territories shown in 

Figure 4. Then, the corresponding metamodel link costs can be estimated by using the total ve-

hicle hours spent on the real physical network on links associated with a particular metamodel 

link. By equating the total vehicle hours on the real and metamodel links, we find the metamodel 

link costs after already having estimated metamodel link flows. Repeating this for a marginally 

higher demand level gives us another metamodel link flow-cost point. This allows us to find 𝑎𝑖 

and 𝑏𝑖 i.e., locally linearized meta-model link cost parameters.  

 

For calibrating the external cost parameters 𝜆𝑙𝑖 for Equation 6, we need to assume certain external 

costs in the underlying set-up first. We used a parameter Λ each for the rural, radial and ring 

physical links. Then, the obvious choice of 𝜆𝑙𝑖 for: 1) links 5 and 6 is Λ𝑟𝑎𝑑𝑖𝑎𝑙, 2) links 7, 4 and 8 

is Λ𝑅𝑖𝑛𝑔, and 3) links 9, 10, 11 and 12 is Λ𝑟𝑢𝑟𝑎𝑙. 𝜆𝑙𝑖 for remaining metamodel links is zero.  

 

Toll Interface: 

This interface is represented by red lines coming down in Figure 1. After the calibration interface 

has calibrated the metamodel, the metamodel computes optimal tolls for that version of the meta-

model. The Toll interface applies an MSA smoothening step on these optimal tolls using the 
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optimal tolls of the last iteration. The smoothened tolls are then implemented in the underlying 

set-up as tolls for the next iteration. 

Metaheuristics-based optimization for benchmarking 

We aim to evaluate optimality and speed of this metamodel-based optimization. This necessitates 

the benchmarking of this framework against a state-of-the-art metaheuristics-based optimization 

framework. Traditionally, metaheuristics like Simulated Annealing (SA) and Genetic Algorithms 

(GA) are used for optimization of such a large-scale network. However, we use SHERPA 

(“SHERPA,” n.d.) as it has been shown to significantly outperform SA and GA both in terms of 

efficiency and robustness.  

 

As compared to Figure 1, the same underlying set-up is used in this case as well. However, the 

interface i.e., the calibration, and the toll interface and the metamodel are replaced by a toll opti-

mization outer loop. As mentioned in the introduction, computational loads for both achieving 

horizontal consistency as well as finding optimal tolls are combined in this case. The objective 

function for optimization is formed completely analogous to Equations 3 -7; however, in this 

case, it is formulated using 29929 OD pairs and 143,368 links.  

3. RESULTS AND DISCUSSION 

We obtained results for the case when both the city and the rural municipalities cooperatively 

optimize the three tolls. Bounds of 0 ≤ 𝑇 ≤ 4 were used for the tolls. Λ𝑟𝑎𝑑𝑖𝑎𝑙, Λ𝑅𝑖𝑛𝑔 and Λ𝑟𝑢𝑟𝑎𝑙 

were set to 40, 0 and 10 respectively. For SHERPA based optimization, the total number of eval-

uations was set to 25. The value of objective function for successive designs is shown in Figure 

7 and Figure 8. The design with Design Id = 23 proved to be the best design with an objective 

value of 128.877 vehicle-hours and the corresponding best tolls were T = [3.92, 0.64, 1.4] hours. 

 

 

 

Figure 7: Objective Function (veh.-hr.) for successive designs in SHERPA-based 

Optimization (Data Tip shows the Best Design) 
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Figure 8: Objective Function (veh.-hr.) for successive designs in SHERPA-based 

Optimization (ignoring outliers) 

For metamodel-based optimization, the number of evaluations was set to 10. The evolution of 

objective function and tolls values over successive iterations is shown in Figure 9 and Figure 10 

respectively. The iterations start with an educated guess of T0 motivated from the values of  

[Λ𝑟𝑎𝑑𝑖𝑎𝑙, Λ𝑅𝑖𝑛𝑔,Λ𝑟𝑢𝑟𝑎𝑙]. This initial guess proved to be a highly favorable point as the objective 

value is extremely low; however, the tolls (and consequently the objective function) move quite 

aggressively away from this point in next MSA-iteration. Regardless, it is remarkable that in the 

subsequent iterations, the model, almost monotonously, manages to find its way back to values 

significantly lower than those suggested by the best design of SHERPA-based optimization. It is 

even more encouraging that it did that within the first 6 iterations while not directly optimizing 

the actual objective function on which optimality is evaluated but instead an aggregated and lin-

earized version of it.  

Results of the two approaches are summarized in Table 4. It should be noted that for additional 

players e.g., in Nash Cournot/ Stackelberg scenarios, computational time for SHERPA/metaheu-

ristics-based approach will increase exponentially but for metamodel-based approach, it will stay 

practically the same. 
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Figure 9: Evolution of Objective Function (veh.-hr.) for Metamodel-based Optimi-

zation 

 
 

Figure 10: Evolution of Tolls with Metamodel-based Optimization 
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Table 4:  Comparison of two approaches 

Optimisation type SHERPA-based Metamodel-based

No. of iterations 25 10

Computation time per iteration 13-25 mins 15-26 mins

Best Tolls (hr.) [3.92, 0.64, 1.4] [3.94, 0.61, 3.43]

Objective function value of best design 128.77 veh. hr. 117.453 veh. hr

Total computation time (both run parallely) 8h 6m 5s 3h 39m 58s   

4. CONCLUSIONS  

This paper discussed a new metamodel-based optimization approach in which a transport eco-

nomics inspired metamodel is used for optimizing the underlying directly interfaced traditional 

transport models. A case study about a joint toll optimization problem of a fictional city munici-

pality and its neighboring rural municipalities is developed and presented as a proof of concept 

of this approach. Preliminary results suggests that the problem can be solved at a much lower 

computational cost and with appreciable accuracy in terms of optimality of tolls. This study serves 

as a motivation for interfacing additional models in the underlying set-up as well as solving Nash 

Cournot and Stackelberg competition scenarios in the metamodel where traditional metaheuris-

tics-based optimization can be prohibitively expensive. 
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SHORT SUMMARY 

Over the past decade, e-bikes have become increasingly popular, sparking interest in their poten-

tial replacement for car use and benefit for the environment. However, studies on e-bike substi-

tution effects have limitations, including a lack of assessments of the effects on mobility on the 

national level, a narrow focus on commuting travelling, and insufficient consideration of future 

expected e-bike use. This study proposes a new approach that combines an intention-based 

method with time-series forecasting to estimate e-bike use and investigate its potential for sus-

tainable mobility in the Netherlands. The results show that e-bike ownership strongly reduces the 

conventional bicycle use and, to a lesser extent, car and public transport use, especially for com-

muting travelling. This study provides insight into how e-bikes substitute for car use and other 

modes of transportation, and how the expected growth in e-bike use in coming years may impact 

national mobility in the Netherlands.  

 

 

Keywords: Matching method, Unified-Richards growth curve, Transport policy, Cycling 

behaviour, Substitution, Dutch national mobility survey   

 

1. INTRODUCTION 

 

Pedal-assisted-bikes, also known as e-bikes or electric bikes, are bicycles equipped with a battery-

powered motor that assists with pedalling, providing support up to a maximum speed or power. 

E-bikes have increased in popularity over the past decade. In Europe, e-bike growth per year has 

an average of 30% between 2010 and 2016. Germany and The Netherlands accounted for over 

50% of e-bike sales in the EU in 2016 (CONEBI 2017). In the Netherlands, since 2018, more new 

e-bikes have been sold each year than conventional bikes (BOVAG, 2023). Moreover, more 

younger aged people are adopting the e-bike which was originally popular among people over the 

age of 65 in the Netherlands. As the e-bike allows travelling at greater speeds with less effort 

compared to a conventional bicycle, it has the potential to replace a substantial part of car trips 

and bring health benefits. It is thus worth investigating the potential contribution of e-bikes in the 

shift towards a more sustainable transport system. 

 

Previous studies have shown that the sustainability effects of e-bikes are complex. It mainly de-

pends on whether the e-bike replaces motorized modes (e.g. car trips) (Wolf and Seebauer, 2014). 

In reality, whether e-bike use will result in a reduction of car use depends on local context. For 

instance, the substitution of public transport by e-bikes happens in cities with a high-quality transit 
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system (Fishman and Cherry, 2016). The substitution of car trips can be observed in a car-domi-

nated countries (Wolf and Seebauer, 2014), whereas in European countries with a bicycle orien-

tation, the e-bike seems to substitute the conventional bicycle in addition to the car (Cherry et al., 

2016; de Haas et al., 2021; Kroesen, 2017). 

 

A limitation of previous studies is that they are not representative for mobility on the national 

mobility level nor focused on the future expected e-bike adoption and use. These studies typically 

focus on individual-level effects with selective survey samples, which may be representative of 

the national population, but not necessarily of national mobility. While evidence on substitution 

effects can be collected from such studies, assessing the effect of e-bikes on mobility on the na-

tional level is difficult. Moreover, previous studies tend to focus specifically on commuting and 

do not consider the use of the e-bike for other trip motives. Due to these limitations, the current 

knowledge on e-bike substitution effects provides an incomplete picture. This limits policymakers 

in making well-informed decisions on how to use e-bikes to promote sustainable travel behaviour. 

This study addresses these shortcomings by assessing the effects of e-bike substitution over the 

long term at a national mobility level in the Netherlands, a leading country in e-bike adoption 

(Fishman and Cherry, 2016; CONEBI 2017). 

 

We aim to provide a new approach to tackle the question of e-bike adoption and usage at the 

national level in the long run, and we provide a robust validation of our findings. For this purpose, 

we employ a combination of an intention-based method and a time-series forecasting method to 

estimate e-bike use and travel behaviour in the future, providing insights into the substitution of 

other transport modes in the Netherlands. These insights can be used by policymakers to decide 

if, and how, the e-bike can be used as a means of promoting more sustainable travel behaviour. 

2. METHODOLOGY 

 

To investigate how e-bikes can replace other modes of transportation, we used a combination of 

an intention-based method and time-series models to estimate e-bike use in the coming years. The 

intention-based method estimates future e-bike ownership, e-bike use and travel behaviour based 

on people’s intention to buy an e-bike and their intended use of the e-bike by using the Nether-

lands Mobility Panel (MPN). Further, we validated this estimation by a time series forecasting 

method based on data from the Dutch national travel survey from 2013 to 2021 (Statistics Neth-

erlands, 2013–2021). 

Intention-based method  

To predict future e-bike ownership and usage, we used a two-step approach. First, we collected 

people’s intention to purchase an e-bike within the next five years and their intended use of the 

e-bike using the annually conducted Netherlands Mobility Panel (MPN) from the year 2021 (KiM, 

2021). Second, we estimated the future national-level e-bike use and other modes of transport by 

assuming that those with a buying intention will purchase e-bikes and their usage will mirror that 

of current e-bike owners with similar demographic profiles. This assumption is based on the find-

ing from the first step that future e-bike owners intend to use the e-bike in a similar manner to 

current owners.  

 

For the first step, the MPN, an annual household panel that represents the Dutch population, was 

used to gather data on future e-bike buying intentions. A total of 1046 e-bike owners and 1461 
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non-owners participated in the questionnaire. For the second step, the Dutch national travel survey 

(ODiN) was used to predict future e-bike usage and travel behaviour. The annually conducted 

ODiN involves approximately 40,000 individuals (0.2% of the Dutch population) and is repre-

sentative of the daily mobility of the Dutch population. 

 

ODiN provides more reliable information on yearly statistics of total Dutch mobility than MPN. 

But MPN is more practical to collect e-bike buying intention. The two datasets were connected 

through a matching process as shown in Figure 1 in order to link the future adoption intention 

gathered from MPN to ODiN. Since ODiN includes more respondents than MPN, the matching 

process involved linking each MPN respondent with buying intention to multiple ODiN respond-

ents with the same sociodemographic profile and do not yet own an e-bike. This allowed us to 

identify individuals in ODiN who do not own an e-bike, but do intend to purchase one in the near 

future.  

 

 

 
 

Figure 1 Schematic representation Calculation potential e-bike 

 

To further estimate the e-bike use of future owners in ODiN and their travel behaviour on the 

national level, we assume that the future e-bike owners will use their e-bikes in a similar manner 

as current owners with similar demographic profiles. This assumption is backed by the MPN 

survey, that showed that future e-bike owners expect to use the e-bike in a similar manner as 

current owners. To do so, we replaced the travel diaries of the future e-bike owners with the travel 

diaries of their matched e-bike owners in ODiN. The new ODiN data is still representative of the 

mobility of the Dutch population in the five years following the reference year 2019. Respondents 

were matched based on personal characteristics available in both MPN and ODiN, such as gender, 

age, urbanity, education level, car ownership, and commute distance, using the Mahalanobis dis-

tance and the R-package MatchIt (Stuart et al., 2010). 

 

The estimate of the e-bike use presented above does not take into account other relevant factors 

that may affect usage, such as demographic and economic developments. Therefore, we do not 

have a complete picture of the expected development of the e-bike use. Furthermore, this estimate 

is based on a number of key assumptions as described above  However, our second method can 

partially address this issue by validating the results using a time series model.  
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Time series forecasting 

The goal of the time series forecasting is to model the e-bike share and extrapolate the share to 

2024, so as to evaluate the e-bike usage results from the above mentioned intention-based method. 

This method only extrapolates the future e-bike share and provides no information about e-bike 

substitution and future usage of other transport modes.  

 

The e-bike share was estimated with a multilevel time series models (MTSM). The combination 

of fixed and random effects of the MTSM allows the sharing of information across all group 

aggregates (5 travel purposes, 9 age groups and 2 genders). This results in more precise estimates 

as compared to modelling each group separately. Assuming that the e-bike share follows an S-

shaped growth process in general, we applied the Unified-Richards growth curve formulation (1) 

of (Vrána et al., 2018) in the MTSM because it covers a wide range of S-shaped growth curves. 

 

 

𝑤 =  𝐴(1 + (𝑑 − 1) ∗ exp (
−𝑘𝑈(𝑡−𝑇𝑖)

𝑑𝑑 (1−𝑑)⁄ ))1 (𝑑−1)⁄ + 𝑏1 ∗ 𝑐𝑣𝑑1 + 𝑏2 ∗ 𝑐𝑣𝑑2              (1)  

 

The Unified Richards growth curve parameters are: 

1. saturation level A (the upper asymptote of the share curve). 

2. (relative) growth rate 𝑘𝑈 at the inflection point of the growth curve.  

3. time-location 𝑇𝑖 of the inflection point. (𝑡 represents time) 

4. form parameter 𝑑 that locates the vertical location of the inflection point. 

 

Additionally, the effect of the COVID-19 pandemic on e-bike share in 2020 and 2021 was mod-

elled by the parameters 𝑏1 and 𝑏2 respectively, with corresponding dummy variables 𝑐𝑣𝑑1 and 

𝑐𝑣𝑑2. 

Each parameter was modelled as follows. The fixed effects of the parameters 𝐴, 𝑘𝑈 and 𝑇𝑖 were 

modelled as a monotonic function of age (Bürkner & Charpentier, 2020), with gender added for 

parameter 𝐴. Additional fixed effects are the interaction of gender and age for parameter 𝑑 and 

the interaction of age and purpose for parameters 𝑏1 and 𝑏2. Random effects varying over all 

combinations of purpose, age and gender were included for parameters 𝐴, 𝑘𝑈, 𝑏1 and 𝑏2 and var-

ying over purpose and gender for parameter 𝑑. The random effects of the parameters 𝐴 and 𝑘𝑈 

were modelled as correlated. 

 

The multilevel model was fitted to ODiN data form 2013 to 2021, using the R-package brms 

(Bürkner 2017). Brms is an interface to the Bayesian Markov Chain Monte Carlo programming 

language Stan (Stan Development Team, 2022). Model checking and model comparison were 

done using goodness of fit values of the waic information criterion and approximate leave-one-

out cross validation using the R-package loo (Vehtari et al., 2017).  
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3. RESULTS AND DISCUSSION 

Over the next 5 years, the MPN survey results suggest that 22% of non-owners intend to adopt an 

e-bike (see Table 2). However, it is likely that not all of these individuals will actually end up 

purchasing an e-bike. To provide a realistic estimate, we assume that all individuals with an in-

tention to buy within the next 6 months will make a purchase, while 90% of those intending to 

buy within the next 2 years, and 85% of those intending to buy within the next 5 years will even-

tually buy an e-bike by 2024. 

 

Table 2 Intention of e-bike adoption among non-owners 

 e-bike adoption Share of the 
non-owners 

Share that actually 
purchases an e-bike 

yes, within 6 months 2% 100% 

yes, between 6 months – 2 
years 

8% 90% 

yes, between 2-5 years 12% 85% 

yes, but after 5 years 17% - 

No 61% - 

 

If we take into consideration the increase in e-bike ownership and the travel habits of the new 

owners, the distance covered by e-bike is expected to rise to 69% between 2019 and 2024, from 

0.65 km per person per day to 1.1 km per person per day. The distance covered by regular bicycles 

will then drop by 10%. The total distance covered by e-bike will rise more than the distance 

covered by regular bicycle will decrease, causing the total distance covered by bicycle to increase 

by about 8%. This will cause the e-bike's share of the total distance covered by bicycle to increase 

from 23% to 35%. This e-bike share estimation is in line with our time series forecasting result, 

as shown in Figure 2.   

 
 

Figure 2 The forecasting of the e-bike's share of the total distance covered 

by bicycle based on time series forecasting 
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E-bikes also substitute other means of transport than the regular bicycle. Figure 3 shows the 

changes in the share of trips for a number of transport means classified by distance. It shows the 

regular bicycle being substituted by the e-bike for distances under 7 km, while the use of the car 

(as driver) also slightly declines for longer distances above 7 km. Additionally, short-distance 

BTM trips and long-distance train trips have both decreased, but due to the small sample sizes of 

these types of public transportation trips in ODiN, it is difficult to draw strong conclusions from 

these findings. Moreover, car passenger trips above 25 km show a slight increase, but more other 

evidence, such as longitudinal analysis, is needed to make definitive conclusions on the effects of 

the e-bike car passenger use and public transport use. 

 

 

 
 

Figure 3 Effect of expected development of e-bike ownership on the modal 

split classified per distance by intention-based method 

 

  

The development of e-bike ownership does not lead to an equally large increase in e-bike use for 

all purposes (see Figure 4). A relatively high number of working people intend to buy an e-bike. 

Therefore, we expect that the e-bike will have the largest impact on commuter traffic. E-bike use 

could rise by 122% for this purpose. The e-bike's share of the distance that commuters cover by 

bicycle would then rise from 23% to 44% and the total distance cycled for this purpose would rise 

by about 17%. The e-bike currently accounts for a quarter (26%) of all bicycle trips made for 

leisure or for shopping, this share will increase to 40% and 36% respectively. For both purposes, 

the total distance covered by bicycle would increase by about 5%. The use of the e-bike for going 

to school would increase by 110%, which would increase the e-bike's share in the total distance 

covered by bicycle from 7% to 14%. The total distance covered by e-bike would also increase by 

about 5% for this purpose. 
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Figure 4 Changes in distances covered per purpose per means of transport 

by intention-based method 

 

4. CONCLUSIONS 

We estimate the role of e-bikes in the five-year period from 2019 to 2024, taking into account the 

growth in e-bike ownership and travel behaviour of new e-bike owners. To validate our findings, 

we also used time series forecasting to cross-check the e-bike share estimation. 

 

We find the distance covered by e-bikes is expected to increase significantly between 2019 and 

2024, while the distance covered by regular bicycles is expected to decrease, with e-bikes primar-

ily substituting regular bicycles on shorter distances. We expect that the use of e-bikes for com-

muting will increase significantly and that there may be a reduction in car use for longer distances. 

Furthermore, there is a possibility that e-bike use will lead to a decrease in public transport use, 

including bus/trams/metros and train, in the future.  

 

The expected substitution of car use by e-bikes represents a positive contribution to sustainable 

mobility. This indicates that, to a certain extent, promoting e-bike use results in a shift towards 

more sustainable travel behaviour. At the same time, promoting e-bike use may also result in a 

reduction of the normal bicycle and public transport. If policymakers want to promote e-bike use, 

our previous study(de Haas & Huang, 2022) identified a number of key action points that policy-

makers could use to develop policies aimed at encouraging use of the e-bike. These include im-

proving facilities and infrastructure such as guarded bicycle parking facilities and broader cycle 

paths with safer crossing points, increasing the cost of other modes of transport like cars and 

addressing barriers to commuting such as improving facilities at the work place (e.g., showers, 

changing areas, and providing secure bicycle parking). 
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Short summary

We present a method of efficiently incorporating attitudinal indicators in the specification of La-
tent Class Choice Models (LCCM), extensions of Discrete Choice Models (DCMs) that segment
populations based on the assumption of preference similarities. We introduce Artificial Neural
Networks (ANN) to formulate the latent variables constructs. This formulation overcomes struc-
tural equations in its ability to explore the relationship between the attitudinal indicators and
the decision choice, given the machine learning (ML) flexibility and power to capture unobserved
and complex behavioural features, such as attitudes and beliefs. All of this, while maintaining
the consistency of the theoretical assumptions presented in the Generalized Random Utility model
and the interpretability of the estimated parameters. We test our proposed framework for estimat-
ing a car-sharing service subscription choice with stated preference data. The results show that
our proposed approach provides a complete and realistic segmentation, which helps design better
policies.
Keywords: Car-sharing, Discrete choice modelling, Machine learning, Psychometric Indicators.

1 Introduction

This study explores a new method of efficiently incorporating attitudinal indicators in the speci-
fication of LCCM by relying on ML techniques while preserving the benefits of the economic and
behavioural interpretability of DCMs.
Walker & Ben-Akiva (2002) presented a practical generalized random utility model with exten-
sions for latent variables and classes. They extended the Random Utility Model (RUM) to relax
its assumptions and enrich the model’s capabilities. They refer to latent classes as unobserved
population groups, in which each individual has an associated probability of belonging to each
group/class on the assumption of preference similarities. On the other hand, psychometric indi-
cators measure the effect of unobserved attributes on individuals’ preferences on topics related to
the choice and they are additional information that helps specify and estimate latent classes.
Atasoy & Bierlaire (2011) estimated an LCCM where psychometric indicators are included in the
maximum likelihood estimation to improve the model’s accuracy. The psychometric indicators
were modelled, conditional on the latent class, as parameters jointly estimated with the choice and
the class membership model. The model showed that the psychometric indicators allow for richer
analysis and generate significantly different class membership estimates. In another approach,
Hurtubia et al. (2014) introduced psychometric indicators by computing the probability of giving
an agreement level to an attitudinal statement as an ordinal logit, also dependent on the individual
class. However, complex interactions between attitudinal variables and the decision-making pro-
cess should be expected Bahamonde-Birke et al. (2017). We hypothesise that ML could be a good
starting point to explore such interactions, given its flexibility and power in capturing unobserved
and complex interactions.
In recent years, the use of ML techniques has increased, mainly due to their power to improve pre-
diction accuracy. However, one of the main critiques of ML techniques in contrast to econometric
models, is that they tend to generate less interpretable results. Thus, transportation researchers
have focused on providing meaningful estimates from ML applications, that can be useful for travel
analysis and policy decisions. For example, Arkoudi et al. (2021) proposed an embedding encod-
ing for the socio-characteristic variables that provided a latent representation of these variables
in concordance with individuals’ choices. Han (2019) included a nonlinear LCCM using a neural
network to specify the class membership model. Their model outperformed the traditional ones
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in prediction accuracy with the trade-off of losing some interpretability. Sfeir et al. (2021, 2022)
presented two model formulations for the construct of latent class choice models using Gaussian
process and Mixture models. All these works employed ML in DCMs to allow for more flexibility
in the definition of the latent constructs. However, there is still a lack of effective use of these
techniques for incorporating attitudinal information into the model formulation.

2 Methodology

We follow the generalized RUM structure presented by Walker & Ben-Akiva (2002) for inter-
pretability purposes and we include the information on the attitudinal indicators by employing
an ANN to formulate with greater flexibility the latent variables. Figure 1 shows the graphical
representation of the proposed formulation.

Figure 1: Graphical representation of the model formulation

LCCMs are composed of two sub-models: a class membership model and a class-specific choice
model. The former computes the probability of an individual n belonging to a certain class, while
the latter assigns the probability of choosing each alternative, given that individual n belongs to a
certain class k.
The utility of the class membership model can be written as:

Unk = Vnk + υnk (1)

where Vnk is the representative utility of individual n belonging to class k and υnk is the error
term that is assumed to be independent and identically distributed (iid) Extreme Value Type I
over individuals and classes. In this case, we define Vnk as:

Vnk = ASCk +Qnγk + rnδk + ωnbk (2)

where ASCk is the alternative-specific value for class k, Qn is the vector containing socio-characteristics
of individual n, and γk the vector of unknown parameters that need to be estimated for each class
k. In addition, rn is a vector of length Z containing the latent variables for individual n and δk
the corresponding vector of unknown parameters specific to class k. Finally, ωn is an individual-
specific constant with its corresponding coefficient bk for each class k. It represents the individual
variation of all the latent variables caused by the variance of their underlying distributions. It is
formulated as a one-layer ANN that gets activated by the ID of each individual in the train set
(Idn is one for individual n and 0 otherwise),

ωn =

N∑
1

w
(1)
1n Idn (3)
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where w
(1)
1n are the weights of the layer.

Given the distribution of the error term (υnk), the probability P (qnk|Qn, γk, rn, bk) can be expressed
as:

P (qnk|Qn, γk, rn, bk) =
eVnk∑K

k′=1 e
Vnk′

(4)

The novelty of this work is the employment of ANN for the construction of latent variables. We
propose a non-linear relationship between the socio-characteristics of the individuals and the latent
constructs by employing two densely connected layers:

rzn = a2(

H∑
h=0

w
(2)
zh a1(

M∑
m=0

w
(1)
hmQmn)) (5)

where M is the number of socio-characteristic variables used to predict the answer to the indica-
tors, and H is the number of hidden units in the hidden layer. w

(1)
hm are the weights of the first

layer, and a1 represents the first activation function defined as a Rectified Linear Unit (ReLU)
(a1(x) = max(0, x)); for the second layer, a linear activation function is applied a2(x) = x, and the
weights are represented by w

(2)
zh . By adding an extra input Q0n, which is set to one and extending

the sum to go from zero, we avoid writing the intercept term.
The number of latent variables Z, the number of hidden neurons in the hidden layer H, and the
number of densely connected layers should be tuned since they are not observed in the data.
The formulation presented is based on the hypothesis that the socio-characteristics of the individ-
uals define the latent variables. Moreover, these latent constructs influence the response to specific
attitudinal indicators. We focus on the case where indicators take the form of statements that
receive an ordered response, in Likert (1932) scale. Thus, we define the utility of individual n for
indicator p, as a measurement of the level of agreement with the statement, and we formulated it
as:

Upn = Vpn + νpn = rnαp + cpωn + νpn (6)

where Vpn is the representative utility of individual n to indicator p and νpn is the error term that
is assumed to be iid Extreme Value Type I over individuals and indicators. rn is a vector of length
Z containing the latent variables of individual n, αp is the vector of corresponding parameters
to be estimated. ωn is the individual-specific parameter estimated together with the latent class
model, and cp is its corresponding coefficient for each indicator p .
Therefore, the probability that individual n answers with a certain level of agreement l to indicator
p is expressed as:

P (Ipln = 1|rn, αp, cp, ωn) = P (τpl−1 < Upn < τpl ) (7)

where we define Ipln as 1 if individual n answers with a level of agreement l to indicator p and 0
otherwise. τpl are strictly increasing class-specific thresholds that define an ordinal relation between
the utility Upn and the level of agreement to indicator p.
The probability of individual n providing an answer l to indicator p can be computed as an ordinal
softmax:

P (Ipln = 1|rn, αp, cp, ωn) = P (τpl−1 < Upn < τpl ) =P (τpl−1 < Vpn + νvp < τpl ) =

= Prob(νvp < τpl − Vpn)− P (νvp < τpl−1 − Vpn) = =
eτ

p
l −Vpn

1 + eτ
p
l −Vpn

− eτ
p
l−1−Vpn

1 + eτ
p
l−1−Vpn

(8)

where one threshold per indicator is set to zero, as only the difference between them matters.
We estimate all components of the proposed model simultaneously by employing the EM Demp-
ster et al. (1977) algorithm, which combines an expectation step with a maximization one until
convergence is reached. The final model architecture is presented in Figure 2.

3 Results and discussion

We test the model on a dataset from a 2020 tailor-made online survey in Copenhagen (CPH).
Respondents needed to be at least 18 years old and have a valid driver’s license. The sample
consists of 542 complete answers from which 80% are used for training and 20% for testing. The
relevant parts employed in the estimation include:

1. A survey on the respondent’s socio-characteristic characteristics

3



Figure 2: Model arquitecture

2. A survey addressing questions regarding respondents’ attitudes toward private and car-
sharing (CS) using a 5-point Likert (1932) scale

3. A Stated Preference (SP) experiment with different options for CS plans

For further details on the data, the reader is referred to Frenkel et al. (2021).

Baseline Results

To benchmark the proposed model, we tried to follow the formulation from Walker & Ben-Akiva
(2002) which can be shown as a graphical representation (Figure 2), with the difference that the
relation between the indicators’ utility and the individuals socio-characteristic characteristics is
linear. However, the class membership formulation’s simplicity made the model unable to converge,
resulting in a non-invertible Hessian matrix. Therefore, to get a comparable magnitude for the
likelihood, we estimated the model with a traditional LCCM as a baseline, where the representative
part of the class membership utility is just a linear combination of the socio-characteristic variables.
Results are presented in Table 1.

Table 1: LCCM results without attitudinal variables
Model Nº Classes Nº parameters Null LL LL AIC BIC R-squared Test null LL Test LL
LCCM 2 30 -2047.21 -1599.41 3258.81 3413 0.22 -515.02 -400.52
LCCM 3 43 -2047.21 -1568.14 3234.29 3487 0.23 -515.02 -398.73

We employ the same socio-characteristics for constructing the class membership as in our proposed
formulation. More specifically, we include age, binary variables that indicate if the individual has
a bike, a car or kids at home and if they are students, retired or CS members. However, we found
that having a car at home, being retired or being a student, were not statistically significant under
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the LCCM formulation. Instead, our proposed formulation allows us to significantly include this
information in the model, improving our characterization of the latent variables.
Given the probability of each individual in the sample and its corresponding socio-characteristics,
we have represented the classes from the baseline model in Figure 3, by using the Bayes Theorem
to compute:

Pn(socio− characteristic|K = k) (9)

Figure 3 is compared in the next subsection with the proposed model results.

Figure 3: Representation of the class membership of the LCCM model

Proposed Model Results

We have employed the same train/test split as for the baseline model. The EM process has been
estimated multiple times with random initializations. We have computed the likelihood variance
between the different model estimates to check for stability. The results are summarized in Table
2.

Table 2: Model results

Nº Classes Nº latent
variables Iterations Null LL LL Variance

LL R-squared Test null
LL Test LL Variance

Test LL
2 2 15 -2047.21 -1575.32 14.62 0.23 -515.02 -404.72 0.28
3 2 30 -2047.21 -1539.56 22.01 0.25 -515.02 402.72 9.8
3 3 25 -2047.21 -1531.41 26.36 0.25 -515.02 -400.73 9.36

The model with three latent classes and two latent variables is selected as the best model. The
one with three classes and three latent classes has a slightly better fit, however, its corresponding
latent variables parameter estimates were not statistically significant.
Comparing the results from tables 1 and 2, we observed an increase in the training likelihood for
our formulation. We do not provide better results for the test data, but just comparable ones.
This could be due to the small size of the test sample and/or to the fact that we don’t have access
to attitudinal information or wn values in the test stage, which affect prediction accuracy.
Table 3 shows the estimated parameters of the class-specific choice model with their corresponding
standard deviations, where all the data has been used for the estimation. The utility for not
choosing any of the CS services is set to zero due to parameters’ identification.
Based on the values and signs of the estimated beta parameters, we observe that class 1 and class
2 are more negatively affected by the subscription cost, while class 3 is less influenced by this cost,
but more negatively affected by the usage cost. Moreover, individuals with a high probability of
belonging to class 3 are the most concerned if the type of engine is combustion. Thus, CS could
be seen as an electric alternative for them. Given the beta values for displaying the cost in hours
(βUsage cost per hour) or days (βUsage cost per day), there is a bias towards displaying the price per
minute (baseline), related to the fact that CS users tend to drive for short time periods. Regarding
the probability of finding a car, it is a more important feature for classes 2 and 3, which make
them more dependent on the availability of the service. Overall, class 2 seems to be less prone to
use any CS (including P2P), given all its estimated parameters.
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Table 3: Estimate and standard deviation of the parameters of the class-specific choice
model

Variable Class specific choice model
Class 1 Class 2 Class 3

ASCCS free−floating 3.50(0.46) -2.71(1.34) -1.68(0.89)
ASCCS station−based 3.04(0.48) -2.64(1.34) 0.07(0.80)
ASCCS peer to peer 4.12(0.52) 0.47(1.45) 1.50(0.83)

ASCroundtrip 2.97(0.48) -3.50(0.40) 0.15(0.80)
βOne time subscription cost -1.00(0.17) -1.12(0.51) -0.35(0.22)

βUsage cost(OWFF,OWST,RT ) 0.05(0.04) -0.16(0.09) -0.34(0.08)
βUsage cost(P2P ) -1.30(0.39) -5.57(1.31) -3.86(0.80)
βUsage cost per day -0.35(0.24) -2.40(0.74) -1.09(0.39)
βUsage cost per hour -0.10(0.21) -0.99(0.50) -0.43(0.34)
βOnly combustion cars -0.23(0.12) 0.09(0.33) -0.66(0.20)

βProbability of finding a shared car 0.13(0.44) 1.38(1.35) 2.70(0.75)
βWalking time from parking to destination -0.05(0.01) 0.02(0.04) 0.03(0.02)

Table 4: Parameters of the class membership model

Variable Parameter St error P-value
ASCclass1 0.97 0.45 0.031
ASCclass2 -1.40 0.51 0.0057

γkidsathome,class1 0.56 0.29 0.050
γkidsathome,class2 -0.45 0.37 0.22

δr1,class1 0.18 0.13 0.17
δr1,class2 -0.48 0.14 0.0009
δr2,class1 0.12 0.10 0.27
δr2,class2 -0.44 0.11 0.00
bclass1 0.61 0.44 0.17
bclass2 -4.014 0.54 0.00

The parameters of the class membership model are summarised in Table 4. Given the probability
of each individual in the sample, we have characterised the classes in Figure 4. Individuals with a
higher probability of belonging to class 1 have around 20% probability of being a CS member, a
bit above the sample average (17.5%). They also tend to have more kids at home, as well as bikes
than other classes. Studies like Uteng et al. (2019) have shown that when there are significant
life changes (e.g., birth of a child), people become more inclined to use CS. In opposition, class 2
presents the lowest probability of being a CS member and having kids or bikes at home. Retired
people tend to have more predisposition for this class, while students have less. This is aligned
with Prieto et al. (2017) which suggested that young people are more prone to use this service.
Finally, class 3 has the same probability of being a CS member as class 1, but it also has a lower
probability of owning a car, making people more reliant on the service’s availability. Comparison
between Figures 3 and 4, shows that the configuration of the classes changes when we include
attitudinal information, as it is expected.
By analysing the parameters for the latent variables in Table 4 and looking at their distributions

over individuals in Figure 5, we notice that the values of the first latent variable (r1) are always
negative. The more negative value of r1, the more probable is to belong to class 2, and therefore,
the less inclined people are to use CS services. A negative value of r2 seems to have the same
effect. Thus, individuals with a more negative combination of r1 and r2 tend to be less inclined
about CS and the other way around. Figure 5 suggests that students are more prone to use the
service while retired people are the least predisposed. Moreover, having or not having a car seems
to determine the clusters in which the rs values are structured. Finally, Figures 6 and 5 show that
people with a car at home agree more with the statement that the car is a status symbol. For
indicator 15, people with a more positive value of r2 seem to agree more with the statement that
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Figure 4: Representation of the class membership of our proposed model

Figure 5: Latent variables representation

they wouldn’t need a car if they have CS, as we would expect given the r2 coefficients of Table 4.

Figure 6: Latent variables representation characterized by the answers to indicators 6 and
15
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4 Conclusions

Our results suggest that the inclusion of attitudinal variables provides a DCM that is more behav-
iorally realistic. For example, individuals who are more inclined towards the concept of CS tend
to be grouped together in clusters with higher parameter estimates of the utility of choosing CS
plans. This indicates that beliefs and attitudes play a key role in decision-making, and including
this information allows for more accurate estimation and a better understanding of the classes that
help design better policies.
Within the limitations, convergence is defined empirically by setting the number of iterations due to
small fluctuations in the convergence of the EM algorithm. In addition, given the small sample size,
we could not divide the dataset in training, validation, and testing; therefore, the hyperparameters
of the ANN were not tuned according to the validation samples. This could be solved by employing
a bigger dataset. Moreover, to improve the prediction performance, other types of explainable AI
(e.g., SHAP) could be explored.
Although the limitations, we are optimistic that this analysis has opened the door to future research
on integrating attitudinal variables in DCMs through ML techniques.
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SHORT SUMMARY 

In Germany, 13% of all residents are disabled and 9.3% are even classified as severely disabled, 

which includes elderly people with limited mobility as well as physically disabled and mentally 

disabled people. Persons with mobility restrictions often report on barriers to meet daily needs, 

which is usually reflected on fewer days to perform out-of-home activities. The objective of this 

research is to evaluate whether persons with mobility restrictions are less mobile using one-week 

activity schedules. The results of the models confirm that persons with mobility restrictions are 

generally less mobile; being statistically significant for work, shop and recreation activities. It 

was found a significant interaction between occupation status and mobility restriction on the num-

ber of mobile days of most activity types, as well as an impact of the number of mobile days for 

mandatory activities on the number of mobile days for discretionary activities.  

 

Keywords: Activity-generation, Mobile, Activity-based models, Disability, Week travel 

diary, Household travel survey 

1. INTRODUCTION 

Transportation is an important component of reaching amenities such as care facilities, social 
and family contacts, education, or work, and generally contributes to quality of life (Best et al. 
2022). Due to physical, psychological, social, or socio-economic factors, individuals with im-
peded mobility often face difficulties while travelling. In view of the United Nations’ Convention 
on the Rights of Persons with Disabilities transport research must focus in more detail on barriers 
and solutions. The convention does not only aim “to promote, protect and ensure the full and 
equal enjoyment of all human rights and fundamental freedoms by all persons with disabilities” 
but in its article nine focusses in detail on travel accessibility (United Nations 2006). Pursuing 
these goals can lead to inclusivity and social justice as parts of transport equity (Litman 2022). 
The objective of this research is to evaluate whether the persons with mobility restrictions are less 
mobile than persons without mobility restrictions, in terms of number of days that they perform 
out-of-home activities, by activity type. 

The meaning of disabilities 

Disabilities are complex, dynamic, multidimensional, and controversial conditions that involve 
health conditions following to activity limitations and societal participation restrictions (World 
Health Organization 2011). They are as diverse as the people who suffer from them and can be 
short or long term, painful or painless, or even be visible or invisible. By understanding disability 
as an interaction, not as a characteristic of a person, it is recognized that affected people, are 
differentiated by factors such as gender, socio-economic status, or origin, which bring with them 
varying social disadvantages (World Health Organization 2011). In Germany, 13% of all residents 
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are disabled and 9.3% are even classified as severely disabled, which includes elderly people with 
limited mobility as well as physically disabled and mentally disabled (Statistisches Bundesamt, 
Wirtschaft und Statistik 2012). 

Speaking of the diversity of disabilities, Frye (2019) lists physical, vision, hearing, and cogni-
tive impairments, as well es mental health issues leading to limitations and restrictions in trans-
portation. It is important to understand that both the type of impairment and surrounding environ-
mental factors influence the consequences for affected individuals.  

Daily mobility for mobility-impaired individuals 

Studies of travel behavior on cognitively impaired persons (Rosenkvist et al. 2009) and those 
with mobility-impaired persons (Best et al. 2022), studies in different global regions (Frye 2019), 
in urban or rural areas, or even in differently developed neighbourhoods may differ substantially. 

Many countries have laws that guarantee daily accessibility for people with disabilities 
(Bekiaris et al. 2018). Nevertheless, impaired individuals often report on barriers to meet daily 
needs. Measures to improve accessibility include information and driver training, pedestrian 
walkways and street crossings, public transit stops and station infrastructure, public transit vehi-
cles, and appropriate private transportation (World Bank 2013). Best et al. (2022) summarize 
those as Availability, Accessibility, Accommodation, Affordability, Acceptability, and Aware-
ness. Opposing this are several obstacles impeding the daily commute. 

In order to live a qualitative life, people with reduced mobility adapt to the mentioned 

circumstances. A number of studies have looked at their resulting travel behavior. Schmöcker et 

al. (2008) focus on shopping trips of elderly and disabled people, stressing the heterogeneity of 

these individuals and their behavior. As such, Rosenkvist et al. (2009) conduct interviews with 

cognitively impaired people who they believe are rarely studied. Using data from the UK National 

Travel Survey, Lucas et al. (2016) found that disabled people travel fewer and shorter distances 

on average. This can be attributed primarily to the lower number of leisure trips (Jansuwan et al. 

2013), which could be a result of  lacking accessible social activities (Lucas et al. 2016). 

Schmöcker et al. (2008) add that the trips also differ in their complexity and that trips are primarily 

made with a single destination.  

 Park et al. (2022) conducted a systematic literature review, analysing 115 per-reviewed papers 

on travel behavior for persons with reduced mobility. They found that people with disabilities 

take up to 30% fewer trips than people without disabilities. Likewise, a lower amount of non-

work trips, increased use of public transportation, cabs, and ridesharing, and in turn, decreased 

walking distances and car trips were identified. The revirew highlighted that “environmental, so-

cial, and system barriers make specific modes unavailable to travelers with disabilities, increase 

travel time, and eventually decrease their trip frequency” (Park et al. 2022). They concluded that 

the sum of negative travel experiences “can ultimately lower social inclusion and the quality of 

life” (Park et al. 2022). 

2. METHODOLOGY 

Data source 

To the authors' knowledge, travel behavior in Germany has not previously been studied in relation 

to persons with mobility restrictions in particular. The 2017 National Travel Survey included one 

chapter on “Health-related limitations – influence on mobility in an aging society”, which primar-

ily focused on the elderly (Nobis and Kuhnimhof 2018). It is mentioned that 13 percent of the 

population is affected by health limitations, half of them suffer from mobility restrictions, which 
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is in line with official statistics. They also report that more than 1.5 million people in Germany 

do not own a car solely for health reasons, affecting travel behavior. 

For this study, another important data source for understanding the mobility behavior of the 

German population, the German Mobility Panel, was used. This large-scale, nationwide survey 

by the German Federal Ministry of Transport and Digital Infrastructure is conducted every two 

years and collects information on travel behavior, costs, satisfaction and individual participants. 

To do this, participants fill out a travel diary on seven consecutive days and provide information 

on their choice of transportation, reason for travel, travel time and distance. In addition, a 

household survey is answered about the place of residence and public transport connections, as 

well as personal questions about age, gender, employment and also mobility restrictions (Vallée 

et al. 2022). Mobility restrictions were self-reported, without distinguishing by type or degree. 

Panel data from 2010 to 2019 was analyzed, with a total of 18,700 individual records. 

Model estimation 

The main dependent variable is the number of days on which an individual perform a given 

activity (mobile days model). Person was selected as unit of analysis, in line with activity-based 

models (Hilgert et al., 2018). 

The dependent variables are the number of days with a given activity, by activity type and the 

number of tours per day, by activity type. Therefore, their values could only be non-negative 

integers (e.g. 0, 1, 2, 3 etc.) and the responses are ordered. Previous approaches using linear 

regression (Vickerman 1974; Cervero and Kockelman 1997; Seo et al. 2013), multinomial logit 

models (Hilgert et al. 2018) or nested logit models (Yun and O'Kelly 1997) fail to account for the 

nature of the dependent variable. Count regression models or ordered logit models could be used 

instead. Typical distributions for count variables are Poisson or Negative Binomial distributions. 

The Poisson distribution requires the mean of the count process to be equal to its variance 

(Washington et al. 2020). If the requirement does not hold, Negative Binomial distributions could 

be used instead. An excessive number of zeros in the data could mean that it reflects both a normal 

count and a zero-count process. Models that can handle both states are denominated zero-inflated 

(Washington et al. 2020). 

Preliminary analysis of the data showed overdispersion and a preponderance of zeros for some 

activity types, such as accompany or education, so zero-inflated negative binomial regression 

models were initially selected. However, these models could not capture a higher concentration 

of responses around 5, which reflects the 5-day commute pattern of the majority of full-time 

employees. To overcome this issue, we selected a two step model: a binomial logit model to model 

the zero-count state and a ordered logit model to model the count process state. 

For each dependent variable, one model per activity type was estimated: work, education, 

accompany, shop, recreation and other discretionary activities. The models were executed in the 

R statistical software tool using the pscl package (Zeileis et al. 2008) and the MASS package 

(Ripley et al. 2023) . Akaike Information Criteria (AIC), correlation between fitted values and 

simulation values, p-value of the variables and number of parameters were then used to determine 

the best model by activity type. Furthermore, we compared the observed and estimated number 

of individuals with zero mobile days to seven mobile days. 

In line with most of activity generation models, independent variables included household size, 

gender, age, occupation status, economic status, car ownership or area type. Individual mobility 

restrictions were included, as well as their interaction with occupation status. For example, an 

employed person with mobility restrictions will perform more work activities than an unemployed 

person with mobility restrictions, but he/she may perform less work activities than an employed 

person without mobility restrictions. 

On one hand, the number of mobile days for mandatory activities could impact the number of 

mobile days for discretionary activities. Likewise, not all discretionary activities may have the 
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same priority. In this sense, we established a hierarchy among activities: work, education, 

accompany, shop, recreation and other. The models were estimated in sequence following the 

hierarchy, and the number of mobile days of higher rank activities were added as explanatory 

variables to the model. 

Independent variables were checked for correlation. Variables with correlation higher than 

50% were not considered in the same set of independent variables. Alternative models were 

estimated with each set of independent variables, and the final model was selected based on 

goodness of fit. 

3. NUMBER OF MOBILE DAYS 

Preliminary analysis 

The preliminary analysis on the number of mobile days by activity type is summarized in 

Figure 1. Each one of the subfigures indicates the distribution of mobile days by activity type, 

where blue highlights the share of individuals that did not perform that activity across the whole 

week, and the darker greens highlight individuals that are highly mobile. Each row and column 

represent the distribution by occupation status and mobility restriction (MR), respectively. 

The top left subfigure we can observe that most of full-time workers without MR do go to 

work 5 days per week (52 %), compared to 19% that go to work 4 days per week. It is observed 

that, on an average week, 7% of full time workers do not go to work, either due to vacation or 

sickness. On the other hand, 98% of full-time worker do not travel for education any day of the 

week, and 64% do not travel for accompany or other discretionary purposes. There is a higher 

distribution among how many days do they perform shopping and recreation activities. It is ob-

served than more than half only go for shopping or recreation 2 or fewer times per week, and that 

only 10% do shop 5 or more time per week. Most individuals distribute such activities either one, 

two or three days per week (17 - 26 %). 

Not surprisingly, part-time employed individuals without MR commute less days than full-

time employed, with only 24% of them being mobile 5 days per week (compared to 52%), and 

between 18 and 22% commuting to work 3 or 4 days per week. Regarding their discretionary 

activities, part-time employed allocate more days to accompany acts but they show similar distri-

bution of days allocated to shop, recreation and other as full-time employed. 

Students present a similar activity pattern as full-time employed to commute for education. 

However, their distribution of other discretionary activities is different, with fewer days for shop-

ping and accompany. Last but not least, unemployed individuals hardly commute to work or ed-

ucation, and have similar distribution of accompany acts as full-time employed. They allocate 

more days to shop (only 4% do not shop in the entire week, and more than half shop at least 3 

days per week), 

The comparison between persons without and with MR shows that, generally, persons with 

MR do travel fewer days that persons without MR. A notable exception are shop days for students 

with MR, however the sample size was limited and may lead to non-representative results. 
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Model estimation 

The next step is model estimation. As the preliminary analysis showed patterns by occupation 

status and MR, their interaction term was added for model estimation. Model estimates for the 

zero-state and count-state are summarized in Tables 1 and 2, respectively. Observed vs. predicted 

frequencies are shown in Figure 2. As seen in the Figure, the models reproduce the aggregate 

Figure 1: Number of mobile days per activity type by occupation and mobility status 
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distribution of number of mobile days by activity type. The distributions show different patterns: 

from a preponderance of zeros and five mobile days for mandatory activities (work, education), 

to preponderance of zeros with low mean mobile days (accompany, other discretionary) to skewed 

distribution with mode equal to two mobile days (shop, recreation). 

 

  

  

  

Figure 2: Number of mobile days per activity type. Observed vs. Predicted  

 

Table 1 shows the estimates of the zero-state model. This binomial model estimated the like-

lihood of an individual to perform or not some activity along the week (non-mobile vs. mobile). 

Positive coefficients indicate higher likelihood of performing the activity compared to the base-

line. 

Regarding occupation status, the individuals with higher likelihood of not being mobile across 

the week for commute are students and unemployed; and among unemployed persons, persons 

with MR. Part-time employed also presented higher likelihood of not being mobile, compared to 

employed persons. Not surprisingly, students and part-time workers had higher likelihood of con-

ducting at least one education activity along the week. Part-time employees were the most likely 
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to conduct any accompany, shop or recreation activity. We found a distinction based on mobility 

restriction: unemployed without MR are more likely to be mobile for shop and work activities, 

while unemployed with MR are less likely to be mobile for the same activities. 

Being more mobile for mandatory activities increased the likelihood of not being mobile for 

discretionary activities, especially for accompany, shop and other. On the other hand, being mo-

bile for accompany increased the likelihood of being mobile for shop, recreation and other; show-

ing a complementary effect. All other variables show intuitive results, as larger households with 

more children have higher likelihood of doing accompany activities; and individuals aged 60 or 

older are less mobile than middle-age individuals. 

 

Table 1: Zero-state model estimation 

 
Variable  Work Education Accompany Shop Recreation Other 

(Intercept) 1.716 -3.706 -2.322 2.753 0.861 -1.091 

Highly agglomerated areas  -0.219  -0.193 -0.427 2.713 

Urbanized areas    -0.522 -0.465 2.691 

Lower density urban/higher density rural    -0.383 -0.517 2.686 

Household economic status: very low   -0.184 -0.217 -0.658  

Household economic status: low     -0.224  

Household economic status: very high       

Household size 2 -0.281  0.141 -0.707   

Household size 3 -0.185  0.476 -1.1   

Household size 4 -0.185  0.476 -1.1   

Household size 5 or more -0.185  0.476 -1.1   

Children per household: 1   1.135    

Children per household: 2 -0.415  1.576   -0.253 

Children per household: 3 or more -0.853  2.035   -0.293 

Adults per household: 1     0.495  

Adults per household: 2     0.502 -0.124 

Adults per household: 3     0.424 -0.227 

Adults per household: 4     0.46 -0.227 

Between 10 und 17 years old   -1.67 -1.424 0.773  

Between 18 und 25 years old  -1.165 -0.363 -0.786 0.773 0.207 

Between 36 und 50 years old  -1.169 -0.169  -0.251 0.104 

Between 51 und 60 years old -0.837 -1.401 -0.132   0.088 

Over 61 years old -0.837 -1.37 -0.132    

Occupation: Student -3.705 5.81  -0.455 0.255 -0.286 

Occupation: Part-time employed -0.503 0.526 0.479 0.317 0.29  

Occupation: Unemployed  1.215     

Mobility Restriction: yes       

Employed with mobility restriction -0.908   -0.447 -0.442  

Unemployed without mobility restriction -4.916   0.49 0.509  

Unemployed with mobility restriction -5.34   -0.286 -0.168  

Student (18 - 60 years old)       

Unemployed (18 - 60 years old)       

Part-time employed (18 - 60 years old)       

Gender: Female    0.397  0.068 

Driver license holder 1.24  0.969 0.341  0.379 

Bicycle ownership  0.416  0.214 0.512 -0.483 

Cars per household: 1   0.801    

Cars per household: 2   0.732   0.11 

Cars per household: 3 or more   0.771   0.283 

Number of mobile days for work   -0.092 -0.111  -0.152 

Number of mobile days for education       

Number of mobile days for accompany    0.29 0.072 0.068 

Number of mobile days for shop     0.165 -0.064 
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Table 2: Count-state model estimation 

 
Variable  Work Education Accompany Shop Recreation Other 

Highly agglomerated areas   0.186 -0.284 -0.428 0.432 

Urbanized areas   -0.211 -0.532 -0.455 0.329 

Lower density urban/higher density rural    -0.484 -0.39 0.554 

Household economic status: very low    -0.108 -0.518  

Household economic status: low     -0.231  

Household economic status: very high      0.233 

Household size 2   0.382 -0.256 -0.143  

Household size 3 -0.237 0.499 0.692 -0.47 -0.212  

Household size 4 -0.366 0.585 0.692 -0.464 -0.112  

Household size 5 or more -0.692 0.443 0.692 -0.394 -0.112  

Children per household: 1 0.243  0.888    

Children per household: 2 0.566  1.234    

Children per household: 3 or more 0.935  1.643   -0.645 

Adults per household: 1 -0.763      

Adults per household: 2 -0.88 -0.302     

Adults per household: 3 -0.567 -0.547     

Adults per household: 4 -0.418 -0.547     

Between 10 und 17 years old -2.532 3.849 -0.757 -1.372 0.419 -0.526 

Between 18 und 25 years old   -0.757 -0.356 0.519 -0.411 

Between 36 und 50 years old   -0.602    

Between 51 und 60 years old -0.201 -2.325 -0.816   0.147 

Over 61 years old -2.092 -1.896 -0.816 -0.265  0.178 

Occupation: Student   -0.265 -0.243 0.344 -0.321 

Occupation: Part-time employed   0.507 0.551 0.347 0.136 

Occupation: Unemployed   0.417  0.516  

Mobility Restriction -0.189      

Employed with mobility restriction     -0.291  

Unemployed without mobility restriction -1.39   0.767   

Unemployed with mobility restriction -1.864   0.561   

Occupation: Unemployed   0.417  0.516  

Student (18 - 60 years old) -2.253 2.49     

Unemployed (18 - 60 years old) -0.912 1.413     

Part-time employed (18 - 60 years old) -1.028      

Gender: Female -0.116  0.205 0.071   

Driver license holder   0.956 0.199  0.242 

Bicycle ownership -0.225  -0.172 0.181 0.453  

Cars per household: 1       

Cars per household: 2       

Cars per household: 3 or more       

Number of mobile days for work   -0.047 -0.133 -0.057 -0.172 

Number of mobile days for education       

Number of mobile days for accompany    0.103  0.068 

Number of mobile days for shop     0.069 0.058 

Number of mobile days for recreation      -0.037 

1|2 -4.463 0.168 1.235 -1.591 -1.098 -0.07 

2|3 -3.451 1.197 2.259 -0.325 0.003 1.176 

3|4 -2.582 1.926 2.951 0.69 0.839 2.188 

4|5 -1.574 3.06 3.599 1.728 1.695 3.119 

5|6 1.371 7.981 5.263 2.924 2.588 4.324 

6|7 3.331 10.609 7.686 4.954 3.734 5.789 

 

Table 2 shows the estimates of the count-state model. The ordered logit model provides the 

probability of an individual to have between one and seven mobile days. Similarly, occupation 

status and mobility restriction play a role on how many days are mobile. Half-time employed 

allocate more days for all discretionary activities. Specifically, students tend to travel fewer days 

for shop, accompany and other, but they do travel more days for recreation activities. As expected, 

unemployed persons do shop more days per week than full-time employed and commute fewer 

days per week. Having MR does accentuate the differences even more, with fewer commute days 

per week and fewer shop days per week than persons without MR. 
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As for the likelihood of being mobile, an increased number of mobile days for mandatory 

activities decreased the number of mobile days for discretionary activities. Therefore, increasing 

the number of mobile days for mandatory activities detracts time from discretionary activities. 

Regarding number of mobile days for shop, it could be observed that higher mobility for accom-

pany activities do increase the number of mobile days for shop, as well as being female, have 

driver license or own a bicycle. On the other hand, persons younger than 25 years old or over 70 

do travel fewer days for shop. 

4. CONCLUSIONS 

This study presented an analysis on how mobile individuals are, being defined as the number 

of days per week that they perform activities out-of-home. The analysis has been focused on 

individuals with mobility restrictions, as they are usually reported as being less mobile. Two main 

methodological contributions included the analysis of a week-long travel diary as well as the 

statistical modeling of number of mobile days using a combination of a binomial logit model for 

the zero-state and an ordered logit model to model the count process state. 

 

The results of this paper provide a better understanding of the individuals who are not mobile 

across a complete week for a certain purpose. Occupation status and mobility restrictions were 

key factors to determine how mobile individuals are, as well as the number of mobile days for 

higher hierarchy activities. Part-time employed individuals allocate more days to accompany acts, 

as well as shop, recreation and other, compared to full-time employed; and have lower likelihood 

of not being mobile. Unemployed individuals with mobility restriction do have higher likelihood 

of not being mobile for work, shop and recreation, and, if they are mobile, they tend to perform 

the activities in fewer days. On the other hand, unemployed individuals without mobility re-

striction have higher likelihood of being mobile and also conduct activities in more days per week 

than employed persons. 

 

This research only scratches the surface on travel behavior of individuals with mobility re-

strictions. Future research will include the analysis of weekly variability, number of tours per day, 

distance per tour or mode choice. Furthermore, the data did not allow for distinctions among types 

of mobility restriction. It would be interesting to evaluate whether the type of disability (visual, 

cognitive, etc.) does play a role on their activity generation pattern. This may shed more light to 

uncover the motivations of performing fewer out-of-home activities and whether being less mo-

bile does affect the overall individual well-being. In a broader future research, a survey would be 

carried out to identify the needs of individuals with mobility restrictions, by type of restriction, 

and whether their needs are met with their travel behavior. 
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Short summary

The customized bus system is an innovative demand-responsive public transit service with the
potential to significantly alleviate congestion and environmental footprint. To fully exploit the
flexibility of this approach, it is pivotal to forecast the demand for the service, in order to optimize
the use of vehicles and resources. In this paper, with the aim for supporting the use of customized
bus systems, we formalize the predictive task and assess the performance of a range of machine
learning techniques. We introduce a two-step predictive task aiming at (i) identifying the presence
of demand and, if there is actual demand, (ii) estimating the number of passengers to be served.
The experimental analysis, based on realistic data from the Beijing area, shed some light into the
performance of different classes of approaches.
Keywords: Customized Bus System, Machine Learning, Artificial Intelligence.

1 Introduction

The customized Bus (CB) system is an innovative and extremely flexible public transit (PT) service
with the benefits of congestion alleviation and environmental friendliness (Shu & Li, 2022), that is
emerging as an alternative to conventional buses and private cars. CB is a class of demand-oriented
transit that holds the promise to provide "door-to-door" service to passengers with similar travel
requirements in both space and time (Liu & Ceder, 2015).
The vast majority of existing work on CB systems assumes that travel demands are collected in
advance from dedicated online booking platforms. The CB system can then produce plans including
routes and schedules to satisfy the time- and space-restricted requests accordingly (Huang et al.,
2020). In literature, a class of approaches allows to generate optimal solutions for these static
demands, but at the cost of reduced flexibility for the service, as dynamic travel requests are
ignored and not handled during operation. To tackle this pivotal issue, that reduces the usability
of the service, a growing number of approaches are exploring the idea of a two-stage optimization
procedure for on-demand CB service, as shown in Fig. 1. The first stage is similar to the traditional
CB service design and generates the initial plans (including routes, timetables and schedules) for
static requests. Each request contains a paired origin-destination (OD) and preferred departure
time. The second stage responds to dynamic requests received by adjusting the initial plans during
operation (Wang et al., 2020). However, even this class of approaches is not fully exploiting the
flexibility of the CB system. It may be impractical to satisfy all the dynamic requests, that also
provide strict constraints on preferred time windows for pickup and drop off, starting from the
generated static plan.
During the operation, the dynamic stage is triggered once new requests pop up. The re-planning
process activities are implemented to insert each emerging request into the current network. If
existing CB routes are able to fully satisfy the spatial-temporal constraints of the request, the
service is updated and followed by drivers via real-time communication; otherwise, the request is
ignored by the system and defined as unserved. The main reason behind this is that the short
response time makes it impossible to rapidly input new requests into the current network while
fulfilling travel restrictions of both already assigned and new requests. Therefore, the prediction
of the dynamic requests is essential for planning to prevent the unserved requests and minimize
uncertainty in operation of the dynamic stage, which can improve the operational efficiency of
CBs.
To fully reap the benefits of CB systems, it is crucial to have in advance an estimate of the dynamic
requests, to generate plans that are robust with regards to dynamic changes and adjustments.
Having approaches that can accurately estimate future passenger demands would help ensuring
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Figure 1: The planning process of the on-demand customized bus service.

Table 1: Data structure of collected SCD information.

Field Name Description
CardID Card identification number
LineID Bus line number
BusID Vehicle identification number
UpTradeStation Boarding station number
UpTradeTime Boarding time
DownTradeStation Alighting station number
DownTradeTime Alighting time

a higher level of optimization in CB systems, as well as better service and higher environmental
benefits. To this end, in this paper we formalize the predicting task, we describe best practice, and
investigate the use of a range of machine learning algorithms. Our analysis is performed considering
real-world smartcard data collected by the Automatic Fare Collection system in Beijing over 2
months, and the results demonstrate that machine learning is a promising approach to be used
to support CB systems in improving their effectiveness. Further, the proposed analysis provides
useful insights into how to preprocess data and to represent complex variables, that can help in
fostering the use of machine learning techniques in similar applications.

2 Methodology

A quantitative case-study approach has been adopted to define the predictive task and determine
the machine learning technique that best predicts passenger demands for a CB system.

Data Source

In this study we use real-world data extracted from the SCD collected by the Automatic Fare
Collection (AFC) system in Beijing, China, which can provide a complete overview of the trips.
The SCD contains more than 12 million transactions per day. Each transaction records details of
the get on and get off location, and time for the trip information (see Table 1).
For this experimental analysis, we consider passenger spatial-temporal dynamics collected from
December 1, 2018 to January 31, 2019. The considered period of time is before the start of the
COVID-19 pandemic, so no restrictions were in place at the time. We focus only on working days,
as travel requests of CB are expected to be mainly from commuters. For the same reason, we
select records from typical residential and working areas during the morning peak hours (7:30-
9:00). This is the time when the CB system is expected to be most under stress from dynamic
travel demands. Starting from the raw SCD data, we follow the approach proposed by Guo et
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al. (2019) to generate corresponding demands for a CB system. In particular, the implemented
approach relies on three major stages, namely trip chain generation for non-transfer and transfer
trips, station identification, and OD matrix generation. After that, travel demands for each OD
and corresponding boarding and alighting timestamps for passenger groups are collected, and used
as the input for the prediction system. The distribution of extracted travel demands is given in
Fig. 2.
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Figure 2: Distribution of extracted travel demands.

The data set includes 5 features, all alphanumeric, referred to as original features in Table 2.

Data Preprocessing and Transformation

To support the predictive task, the limited initial set of available features has been extended as
shown in Table 2. From the original date, we extracted two additional features referring to the
specific day of the week (Monday, Tuesday, etc.) and the indication of whether the day is a Monday,
Friday, or any other day of the week. This is because this 3 classes of days can show different travel
patterns. From the original time stamp, 5 time categories have been identified, namely 0700-0730,
0730-0800, 0800-0815, 0815-0830, 0830-0845 and converted to ordinal categorical values. The
categorization of starting demand time decreases the complexity of the predicting element, while
preserving the usefulness of the information.
The 2 features reporting the IDs of the origin and destination bus stops have been combined into
a single variable by concatenating the corresponding values. In order to do that, all the possible
combinations have been generated. This lead to some empty demands, that augmented the size
of the data set, with a ratio of datapoints showing demand vs without demand to be in the
imbalanced ratio of 8/23. Finally, the original numeric demand feature has been divided into 2
different features, namely the size of the passenger group for the demand, and a Boolean feature
indicating the presence of the demand for a specific set of features (Origin-Destination pair, Date
and Time). In the considered data set, the size of demands ranges between 0 (where there is no
demand) and 30.

Table 2: Extended Features

Original features Extracted features Type

Date
Date datetime format

Week Day Categorical
DayType Categorical

Time Stamp Time period Categorical
Origin Origin-Destination CategoricalDestination

Demand Size Integer
Presence Boolean

We performed a correlation analysis of the extended variables, that confirmed that there is no
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Figure 3: Demand size distribution.

correlation among them, hence the set is suitable to be used for training purposes.
Fig. 3 shows the distribution of the passenger groups sizes in the considered data set. Notably,
smaller groups are very common, while larger groups – here the largest considered is of 30 passengers
– are much less usual.

Predictive Task

Given the complexity of the predictive task at hand, we decided to define it as two different
predicting tasks. First, a classification step that allows to identify the presence of demand (last
row, Table 2), then there is a subsequent regression step that aims at predicting the size of the
corresponding passengers group. This separation gives also us the opportunity to assess the abilities
of a range of well-known machine learning approaches on two different yet crucial tasks.
The following approaches have been considered for this analysis: K-Nearest Neighbors (KNN)(Wu
et al., 2008), Decision Tree, Random Forest (Breiman, 2001), AdaBoost (Schapire, 2013), Light-
GBM (Ogunleye & Wang, 2019), and Multi Layer Perceptron (MLP) (Haykin, 1994). The ap-
proaches have been selected based on the range of implemented techniques, and on their perfor-
mance on well-known benchmarks.
As a baseline algorithm, to better contextualize the achieved results, we use a traditional Linear
Regression approach, declined in its Logistic Regression form for the classification task.

Evaluation Metrics

For the binary classification problem of predicting the presence of demand, we relied on the well-
known notions of true positive (negative), false positive (negative). We then consider as metrics
for assessing the abilities of systems, accuracy, F1 score, and Area Under the Curve (AUC).
When it comes to the metrics to assess the capabilities of the regression models, those selected are
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE).
MAE measures the average of the absolute residuals (the difference between the actual value and
the predicted value) in the dataset. MSE measures the variance of the residuals and the RMSE
measures the standard deviation of those residuals. For those metrics, the lower the value, the
better the performance of the regression model.

Training Settings

For training, testing, and validating purposes we used sklearn (Pedregosa et al., 2011). sklearn
is a robust and well-known Python library for performing ML tasks. It natively supports hyper-
parameter optimization (Feurer & Hutter, 2019). In the following, we shortly summarize the
parameters considered for the optimization of the learning algorithms.

• KNN: The value of K, i.e. the number of nearest neighbors to be considered.

• AdaBoost: we optimized 3 aspects: the base estimators, the number of estimators in the
ensemble, and the learning rate. The base estimators were given three choices between
Support Vector Machine, Logistic Regression, and Decision Trees.

• LightGBM: the 4 parameters to be optimized include the boosting type (GBDT or DART),
the number of maximum leaves in each learner, the boosting learning rate, and the number
of boosted trees.

• MLP: we optimized 5 parameters, namely the set of hidden layer sizes, activation functions,
solvers, alphas, and learning rates.
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Table 3: Classification Results Summary

Classifiers Accuracy F1 AUC
Logistic Regression 73.81 2.42 58.75

KNN 82.65 49.15 80.52
MLPClassifier 79.49 45.95 79.88
Decision Tree 78.14 39.50 75.98

AdaBoost 75.88 15.89 76.00
Random Forest 72.59 71.81 82.67

LightGBM - DART 87.17 77.85 94.65

Figure 4: Confusion matrices of Random Forest and LightGBM - DART.

The learning rate ranges for all the aforementioned hyper-parameter optimizations, have been kept
as floating values ranging between 0.05 to 1.
Finally, we also optimized the best Logistic Regression algorithm, selecting among those imple-
mented by the sklearn library.
To reduce noise, random seeds have been fixed.
For the classification task, the hyper-parameters optimization aims at improving two metrics,
namely F1 and ROC-AUC. Ties are broken in favor of AUC. For regression, the focus is on
minimizing the Mean Absolute Error (MAE).

3 Results

In this section we present the results of our extensive experimental analysis. Some preliminary
tests, not shown in this paper, performed by considering the single straightforward regression task
of predicting at the same time both presence and size of demand lead to models not usable in
practice, due to the extreme error. Therefore, in this section we consider the two steps predictions
discussed in Methodology. First, we focus on the classification step that aims at predicting the
likeliness of travel demand between two stops, and second we consider the regression task of
predicting how many passengers will be part of the travel group.
Table 3 shows the performance of the considered algorithms on the binary classification task.
The results indicate that, unsurprisingly, Random Forest is the algorithm that shows the worst
accuracy; it has been outperformed even by Logistic Regression and Decision Tree. This is due to
the limited number of available features, even in the extended set, that is a known element that
can reduce the performance of this class of approaches. On the other hand, Random f=Forest
should be the second best choices when evaluating on F1 score and AUC, demonstrating that
the unbalanced nature of the data is not strongly negatively affecting the generated models. The
optimized LightGBM using DART is delivering outstanding performance according to all metrics;
however, we observed that with almost all other hyper-parameter configurations of LightGBM
showed significantly worse results (not shown in the table). Finally, it is worth noticing the very
low F1 score and AUC of the Logistic Regression approach, suggesting that the approach does not
cope well with the unbalanced data set.
To shed some light into the relative performance of Random Forest and LightGBM, Figure 4 shows
the corresponding confusion matrices. Random Forest (RF) is better in predicting positive cases,
but shows low performance when predicting cases for which no demand is expected.
We now turn our attention to the regression task. Results are presented in Table 4. As a first
remark, we do not include KNN results because, due to the way KNN models are generated, it
quickly runs out of memory for large data sets – hence providing predictions of very low quality.
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Table 4: Regression Results Summary

Regressors MAE MSE RMSE
Linear Regression 1.87 13.49 3.67

MLPRegressor 1.92 13.69 3.70
Decision Tree 1.10 9.30 3.04

AdaBoost 3.62 23.54 4.85
Random Forest 0.82 4.05 2.01

LightGBM - DART 0.88 3.62 1.90

Figure 5: Mean absolute error (y-axis) for each actual demand value (x-axis) when LightGBM is
used for the regression task.

With regards to the other considered algorithms, LightGBM is again providing extremely good
performance, but in terms of MAE Random Forest is, surprisingly, the approach that shows best
results. AdaBoost is instead the worst one, that produces predictions that are not usable in practice
for optimizing the routes of CB systems.
Figure 5 shows how the MAE varies according to the actual demand to be predicted, when the
best predictor is used. As expected, for ranges of demand that are extremely well represented in
the data set, the error is very limited. When demands get larger and less common, the predictions
show a higher degree of variability. Pragmatically, this means that the predictions will be more
precise for common demands – and the graph shown already provides some information about the
reliability of predictions made for different demand sizes.
Finally, a general result can be derived by comparing Random Forest and AdaBoost results on both
classification and regression tasks that using Bagging ensembles over Boosting ensembles lead to
better results in regression, but the contrary is true in terms of classification. While this behavior
may not generalize on different data sets, it can provide an interesting take-home message for this
class of applications.

4 Conclusion

With the aim of fostering the use and efficiency of customized bus systems, in this paper we tackled
the task of forecasting travel demands to be served. Our analysis provided insights into how data
can be processed to provide high quality input for machine learning algorithms, and we showed
how a challenging task can be divided into more amenable tasks that are easier to be be dealt
with. On this regards, we demonstrated the abilities of a range of predictive techniques on both
classification and regression tasks, using realistic data from the Beijing area. Our results indicate
that machine learning provides suitable approaches to tackle the challenges of CB systems due to
the limited ability to forecast ongoing demand.
Future work will focus on extending the analysis to different metropolitan areas, and to increase
the considered features to include aspects such as weather, traffic, etc.
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Short summary

The German Highway Capacity Manual (HBS) and the German Guideline for Integrated Network
Planning (RIN) rely on travel time distributions to assess the Level-of-Service (LOS) of roads and
road networks. Usually, these values are generated by tra�c measurements or with the help of
tra�c �ow simulations. In recent years Floating Car Data (FCD) has become an essential data
source for analyzing tra�c quality because of its easy accessibility and growing coverage. This
paper proposes a method to perform a city-wide analysis on the Open Street Map (OSM) road
network using raw FCD. Therefore, OSM road segments of a city are aggregated to longer network
sections on which travel times are estimated. Performance indicators can be calculated using these
travel time distributions. Examples are shown for the cities of Karlsruhe and Hannover.
Keywords: �oating car data, incident analysis, open data, key performance indicators, big data
analytics

1 Introduction

The German Highway Capacity Manual (HBS) is the primary tool used to evaluate the quality of
tra�c �ow. However, the calculation methods of the HBS are not generally applicable, e.g., for
roads with a speed limit of 30 km/h or if cyclists are guided in mixed tra�c (HBS (2015)). Since
the required conditions are often not met in reality, especially in inner-city areas, it is necessary to
use di�erent means for the evaluation. This paper will present such an alternative by evaluating
FCD.

FCD o�ers the advantage of mapping historically long periods of data obtained from vehicles
moving in tra�c. It can add to classical stationary detectors by providing information about
driven trajectories. Other than stationary detectors, only a subset of the total tra�c volume is
represented. However, preceding research shows that even low-frequency FCD (around four data
transmissions per minute) has adequate statistical power to calculate travel time distributions
(Schäfer et al. (2003), Jenelius & Koutsopoulos (2013)). Furthermore, FCD can be used to analyze
tra�c �ow regarding incident recognition. Altintasi et al. (2017) showed that FCD could recognize
tra�c patterns de�ned by LOS and detect congestions and bottleneck locations.

For an intuitive analysis of a city-wide road network, travel time indices are helpful. The TomTom
tra�c index, for example, uses FCD to generate several indicators, e.g., an average travel time per
10 km and o�ers thus the possibility to compare di�erent cities (TomTom Tra�c Index (2023)).
Further studies developed and evaluated several indices for motorways (see, for example, Peter et
al. (2021), and Radde et al. (2016)) and for urban road networks (Ulm et al. (2015)).

Similar to the study conducted by Axer & Friedrich (2014), we use historical FCD, transformed to
trajectories, to calculate average travel times on all road network links resulting in tra�c quality
indices using the traveled distance and the elapsed time between two data transmissions. In Axer &
Friedrich (2014), FCD was mapped to the OSM road network via the TMC (tra�c message chan-
nel) system, used as an intermediary georeferencing tool. We use a more straightforward approach
and map the FCD directly to the OSM road network. This o�ers an analysis method using FCD
for a whole city road network. The determination of decision values (travel time distributions and

1



percentiles) within the framework of the German guidelines of the HBS and the RIN is possible.
The aim is to provide practitioners with a time and cost-e�cient method to evaluate the quality
of every single link in an urban network and anchor this method in the mentioned guidelines.

2 Methodology

In order to perform a city-wide analysis, the following method is proposed. First, a suitable road
network needs to be constructed. Our work is based on the OSM road network, as it is publicly
available. Roads in the OSM network consist of so-called OSM ways, each of which is a list of
nodes representing a small road segment of some meters. Inspired by the functional road classes
de�ned in the German Guideline for Integrated Network Planning (RIN (2008)), these OSM ways
are grouped into longer road segments representing, for example, main roads, which we refer to
as network sections in the following. The FCD can be used to estimate a travel time or speed
distribution for each network section. Finally, performance indicators are calculated to evaluate
the tra�c conditions on each network section. Network sections with low performance measures
can be analyzed in greater detail in further steps.

The OSM import is done via the Python OSM API packages osmapi (2023) and overpass (2019).
As they are decisive for travel planning, only higher road classes are considered. Therefore, e.g.,
residential roads are not taken into account. The road classes are de�ned by the OSM attribute
"highway". Besides that, OSM o�ers many other attributes for the OSM ways. For this ap-
plication, we use the id of the OSM way ("id"), the allowed maximal speed on the OSM way
("maxspeed"), whether the OSM way is a oneway road ("oneway"), and the coordinates of the
nodes ("geometry.coordinates"). The information is then augmented by node ids, start and end
nodes of the OSM ways, and a doubling of non-oneway OSM ways to separate the two driving
directions.

After this preparation, the automatic identi�cation of network sections is made. The general
idea is to add an OSM way to a network section as long as it belongs to the same road category
and does not cross an OSM way of the same or higher-order road category. In the end, each direc-
tion of an OSM way is part of precisely one network section. The algorithm works as follows: at
the beginning, there are no network sections, and no links of the network are assigned to a network
section. Each algorithm step randomly selects a link that must still be assigned to a network
section. This link establishes a new network section from which the section is extended in and
against the direction of travel until a node is reached where routes of the same or higher category
cross. This determines and delimits the network section, and the procedure continues with the
next unassigned link. Directions of travel are considered separately, so OSM ways representing two
directions of travel must be duplicated and used as two separate links. After all links are assigned,
the procedure is �nished. For the choice of the next link to be attached to a network section,
the start and end nodes and angles are considered, i.e., OSM ways are not attached to a network
section if a steep curve occurs at the current node. This re�ects typical situations in the network
structure and avoids, e.g., U-turns. Particular attention should be paid to avoid round trips; thus,
it has to be checked whether the following link is already part of the considered network section.

This method provides plausible and intuitive results in the OSM road networks of the consid-
ered cities. The algorithm depends on a correct assignment of coordinates and attributes in OSM,
which is mostly the case. The following �gures provide some insights into the algorithm's results.
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Figure 1: Recognition of the network sec-

tion Kriegsstraÿe in the city center of

Karlsruhe

Figure 2: Recognition of a complex

roundabout with separation of driving

directions

Figure 3: Continuation of the driving di-

rections on roads with structural separa-

tion of the driving directions

Figure 4: Faulty detection of two driv-

ing directions due to a wrongly assigned

oneway attribute in OSM

The following step uses FCD to calculate travel times on the network sections. To obtain a reliable
evaluation, the FCD must be processed. First, we use only the weekdays Tuesday, Wednesday, and
Thursday to compare similar demand situations that represent typical working days. The data
quality is ensured by excluding implausible high speed values and cutting trajectories at stops
longer than 60 seconds.

For each network section, each direction's start and end nodes are used to de�ne a catch ra-
dius to �lter �oating cars traversing the entire section. This imitates the principle of an ANPR
measurement. Travel times were calculated from the di�erence between the time stamps. A travel
speed distribution can be determined using the haversine function to calculate road lengths. The
percentiles of these distributions are used to calculate incident indices. For this step, raw FCD
compared to aggregated FCD information is essential. Calculating travel time (or travel speed)
distributions of a network section from shorter road segments is impossible. Mathematically, the
random variables representing travel times on di�erent road segments are not independently dis-
tributed. Therefore, a convolution of travel time distributions to obtain overall distributions is
incorrect.

Next, several indicators are used to evaluate tra�c �ow on the network sections. The reliabil-
ity index, as proposed in Peter et al. (2021), is calculated as the quotient of the 90% and 50%
percentile of travel time denoted by t90 and t50 accordingly:
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Reliability Index =
t90

t50
. (1)

If the travel times vary little, there are hardly any disturbances (t90 and t50 are low) or permanent
disturbances (t90 and t50 are high) and the reliability index is close to one. The higher the reliabil-
ity index, the more the travel times �uctuate on the network section. In particular, the reliability
index does not indicate whether there are disruptions but whether the same tra�c condition oc-
curs reliably. The reliability index has the same signi�cance as the bu�er time index (BTI) used
in Radde et al. (2016) normalized with the 50% percentile. It can be interpreted as additional
time to the median travel time to be considered in planning to arrive on time. The index is calcu-
lated by the di�erence between the 90% and 50% percentiles and a normalization for comparability:

BTI =
t90 − t50

t50
=

t90

t50
− 1 = Reliability Index− 1. (2)

Another index proposed by Peter et al. (2021) is the travel time index which evaluates the ratio
between the 50% percentile of the travel time and a target travel time ttarget. We use the travel
time when driving at the maximum permitted speed to approximate ttarget. This is a plausible
assumption for a city road network of higher-order road categories.

Travel time index =
t50

ttarget
(3)

The above indices refer to travel time percentiles, which are robust quantities. However, an ag-
gregation of travel time distributions over all daytimes only gives a rough overview and does not
account for peak hours. On the other hand, indices with higher temporal or spacial resolutions can
only be used if a su�ciently large amount of data is available. This would apply when evaluating
the indices above for daytime hours. Another index of that category is the Cumulated Di�erences
Index (CDI) from Radde et al. (2016):

CDI = (n− 1)
−1

n−1∑
t=1

| (vt+1 − vt)|, (4)

where n denotes a considered number of days and vt denotes the mean speed at the considered
hour on day t. This index re�ects user expectations based on the fact that travel speeds do not
vary from day to day. A high CDI indicates the low reliability of the route segment. The index
provides good results in the situation considered by Radde et al. (2016) on highways with high
tra�c volumes. In contrast, it may be considered unsuitable for urban roads with few vehicles per
hour at low FCD penetration rates. Indicators that require many data sets due to high temporal
or spatial resolution may be of limited suitability for FCD evaluation.

3 Results and discussion

The method explained above is used for the cities of Karlsruhe and Hannover in Germany. For
Karlsruhe, we used FCD from September 2021, whereas for Hannover, data were available for the
entire year 2021. As mentioned above, only Tuesdays, Wednesdays, and Thursdays were consid-
ered. The transmission interval of the FCD is mostly around �ve seconds.

The following pictures show the results for the reliability index (formula 1) and the travel time
index (formula 3) for the city of Karlsruhe. It can be seen that the two indices make di�erent
statements but lead to plausible results. They allow the identi�cation of network sections with
poor tra�c conditions, which can be subjected to further, more detailed analyses. For example,
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one can take the Kriegsstraÿe, the east-west axis in the center of Karlsruhe, which performs poorly
in both indices as expected. It was the subject of extensive reconstruction measures until 2022.

Figure 5: Reliability index Karlsruhe (green: value range 1 - 1.5, yellow: 1.5 - 2, red: > 2)

Figure 6: Travel time index Karlsruhe (green: value range 0 - 1, yellow: 1 - 2, red: > 2)

As we had enough data for Hannover, the CDI (formula 4) could be evaluated. The �gures 7 and 8
show the results for 7 a.m. and 11 a.m. The results do not show a considerable variation between
di�erent evaluated hours.
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Figure 7: CDI Hannover 2021, 7 a.m. Figure 8: CDI Hannover 2021, 11 a.m.

These indices were chosen as examples from the literature. When interpreting the indices, it is
important to ensure that they re�ect the di�erent calculation methods. The performance index
must be chosen according to the intended application.

The indices rely on FCD's high penetration rates, transmission frequencies, and coverage of all
road segments. For the reliability index and the travel time index, an average of 640 vehicles per
network section were evaluated in the example of Karlsruhe. For the CDI, around 128 days with
an average of 5.6 vehicles per hour were available as a data basis for each network section. Thus,
the travel time distribution's representativeness for calculating the CDI is signi�cantly less robust
than the distribution used for the other indices. The evaluation also depends on the chosen color
scale, which is di�erent for every index and might be shifted to one or another direction based on
the knowledge of the local situations or the intention of the statement. A particular artifact of the
simple travel time calculation with catch radii is the misevaluation of short segments, roundabouts,
or motorway links, where start and end nodes lie too close together. This problem could be tackled
using more re�ned techniques to process the FCD, notably a map-matching algorithm.

4 Conclusions

The presented method o�ers an e�cient and valuable procedure to gain a quick overview of a
city's tra�c conditions. It uses raw FCD and evaluates performance indices based on travel time
distributions on network sections. The road network is constructed using open-source data, namely
OSM ways. The presented method can provide an extension to the existing methods of the Ger-
man Highway Capacity Manual (HBS) or the German Guideline for Integrated Network Planning
(RIN) to evaluate tra�c quality.

The method could further be used to identify problematic road segments, which can be ana-
lyzed in more detail to �nd the reasons for disruptions and bottlenecks. A similar analysis is also
conceivable for other transport modes, e.g., using �oating bike data.
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Short summary

Most leisure travel has social motivations, one of them is to be in contact with people from their
social network, this means that the decision does not only depends on individual preferences and
restrictions but also on the other person (or persons) involved in the activity. This means that
the places an individual visits for leisure are strongly correlated with the geographic location of
their social network. This hypothesis is tested with a structural equation model that includes social
needs and mobility demand as latent variables. The model shows a strong correlation between these
two variables, showing a positive impact on the geographic distribution of social networks and the
number of contacts with the area of leisure activity space, and the number of frequently visited
locations. This model shows the social network’s importance in individual mobility decisions and
patterns.
Keywords: Social Networks, Activity Space, Leisure Travel.

1 Introduction

In travel demand, leisure travel plays an important and often overlooked role, which can negatively
impact the functioning of the overall transport system. Also, leisure travel is primarily social travel
as a small share of leisure is solitary (Axhausen, 2005) leading to an increasing interest in under-
standing leisure travel demand and the influence of social needs and activities on travel decisions.
Studying social network geographies can help understand how the geographic distribution of social
networks impacts daily mobility patterns, opening new perspectives to transport modeling.
Social and leisure travel is more complex than work-related travel as it has many variables that
influence it while being flexible in time and space (Ruiz et al., 2016). Therefore, the individual’s
social network geography is an essential determinant of the social travel decision process (Ax-
hausen, 2006). For this reason, there has been a growing amount of literature on the impact of
social networks on individual mobility behavior, as between 10 and 30% of all human travel can be
explained by social relations and spatial characteristics of social networks (Cho et al., 2011; Ax-
hausen, 2008). For this reason, transport modelers have started to include social networks in their
models (see Axhausen (2005)). One of the essential findings is the negative correlation between
the probability of being friends and the geographical distance between two people (Liben-Nowell
et al., 2005; Kowald, 2013), as the opportunity cost of the meeting is lower (Arentze et al., 2013).
Thus, individuals’ social networks are essential to urban mobility and access to the opportunities
the city generates (Guidon et al., 2017).
One of the main differences between social travel and other types of travel is the motivation to
maintain individual social connections. This motivation directly impacts the process of choosing a
leisure activity and destination, as it involves not only personal preferences for the characteristics
of the location but the preference and geographical location of the alters. Therefore, people with
more extensive social networks tend to have higher heterogeneity in the type of locations visited
and to perform more socially motivated travel (Baburajan, 2019). Moore et al. (2013) has studied
the link between "longer-term" (social networks) and "shorter-term" (social activities) decisions,
showing that the social ties and network density of an individual explain the activity duration and
distance.
This paper looks to contribute to understanding how social networks impact individual mobility
patterns by analyzing the impact of the geography and structure of social networks on the number
of regular leisure locations and the size of the activity space of the ego. This question is relevant
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as the alters’ home locations can be considered as anchor points of mobility in the city, acting
as pivotal places in the ego’s activity space and the selection of leisure activities. To analyze
this hypothesis, we use a structural equation model that includes three latent variables, social
needs, relationship strength, and mobility demand. This model shows the relation between the
unobservable variables described above by analyzing the covariances of observable variables that
are associated with the unobservable variables.
The paper continues as follows: section 2 describes the methodology used in more detail. Section
3 describes the results of the models estimated. Finally, section 4 finishes with some conclusions
of the paper.

2 Methodology

The data was collected through a survey conducted in Zurich, Switzerland, that included an
egocentric social network and questions on regularly visited leisure venues or locations through a
place generator and place interpreter Gramsch Calvo & Axhausen (n.d.). This information creates
the link between the geographic distribution of social networks and the geographic distribution
of leisure activities in the city. A structural regression model with three endogenous variables is
used to analyze this relationship, following the work by Washington et al. (2003). To estimate the
model, we define the latent variables as follows:

• Social needs (exogenous): This variable represents the individual’s sociability. It explains
the number of contacts in the individual’s social network, the size of the social network
geography, and how often the individual meets with its alters.

• Relationship strength (endogenous): This variable shows the individual’s proximity to their
social network. It is measured by the average trust they have in their social network and
the average capacity to ask for favors to them.

• Mobility demand (endogenous): This variable shows how much the individual moves and
uses the city. It explains the number of leisure locations frequently visited and the size of
the leisure activity space.

All these latent variables are constructed with observed variables from the social network structure
and distribution of leisure activities. The model solves four equations simultaneously:

Xi = Λxξ + δi (1)

Yji = Λyjηj + εij (2)

η1 = Γ1ξ + ζ1 (3)

η2 = Bη1 + Γ2ξ + ζ2 (4)

Equation 1 corresponds to the estimation of the dependent variables by the latent dependent vari-
able, and equation 2 is the estimation of the observed dependent variables by the latent dependent
variables. Λi is the coefficient of X and Yi or matrix of loadings corresponding to the latent depen-
dent variables, η is the vector of latent dependent variables, and ξ is the vector of latent dependent
variables. Finally, equations 3 and 4 are the structural equations, where B and Γi are the weights
predicted between the independent and dependent variables.
The model used in this paper uses the social network geography as the independent latent variable,
which explains the observable variables number of contacts and area of geographical distribution.
The two dependent latent variables are relationship quality and mobility patterns. The first variable
explains the observable variables social capital, meeting frequency, and trust level. The second
explains number of places regularly visited and area of activity space. Table 1 explains the type of
variables used and their description.
To better explain the relationship between variables in the model, figure 1 shows a path diagram
with the variables of interest and their relationship, adapted from the diagrams presented in Lin
(2021). The circles represent latent variables, and squares are observable variables; vectors rep-
resent the direction of the correlation, single-pointed arrows represent the direction of the effect,
and double-pointed arrows represent residuals of the covariance.
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Table 1: Description of variables considered in the model
Name of Variable Mean SD Type Description
# of contacts 11.94 6.13 Ordinal Number of contacts specified in the name generator.
Area of social
network 6.30 3.37 Continuous Logarithm of the area in km2 of the convex hull generated

by the geographical distribution of the social networks’ house locations.

Trust level 82.62 19.21 Continuous Percentage of the ego’s alters with whom they discuss important
problems or can ask for help.

Social capital 16.61 16.61 Continuous Average social capital levels on the ego’s social network, measured by the
number of contacts that the ego would ask for help in different situations.

Meeting frequency 18.03 10.31 Continuous Total number of time the ego meets with their alters in an average week.
Area of activity
space 3.07 2.29 Continuous Logarithm of the area in km2 of the convex hull generated by the

leisure locations visited by the ego.
# places visited 7.21 4.03 Ordinal Number of places mentioned by the ego in the place generator

Figure 1: Specification of variables of the model and their effects

3 Results and discussion

To measure the impact of the social needs of an individual on their mobility demand, we have
estimated two models following the framework explained in section 2. The first one includes all the
variables except the latent variable relationship strength and its endogenous variables trust level
and social capital. The second model includes all the variables of the model. Table 2 presents the
estimate of the loadings. The latent variable social needs influences the three measured variables
compared to the number of contacts. The social network area is explained approximately two times
more by social needs, while the frequency of contact is explained by a factor of approximately three
and a half. Analyzing the relationship strength, we can see that both social capital and average
trust is explained similarly by mobility demand. Mobility demand also has a positive impact on
leisure activity space, and number of places visited, with the former variable explained twice as
much as the latter. Both models show similar loading factors with a difference of 0.315 in the
impact of social needs on social network area and 0.228 on frequency of contact. The covariances
of the model have the expected direction. There is a negative correlation between the social network
area and the frequency of contact, as the farther away the ego’s social connections live, the costlier
it is to visit them. Therefore there is a lower number of face-to-face meetings. Conversely, the
more contacts the ego has, the more frequently they meet with people.
Regarding the model’s goodness-of-fit, models 1 and 2 have similar indices. The Comparative Fit
Index and the Tucker-Lewis Index are one or higher, and the Root Mean Square Error is close to
zero. The only noticeable difference is in the Chi-square, in which model two has a robust value
of 8.939 against 1.079.
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Table 3: Estimates of the structural model
A. Regression weights

Model 1 Model 2
Endogenous
variables

Explanatory
variables Estimate Standardized

estimates p-value Estimate Standarized
estimates p-value

Mobility demand Social needs 0.589 0.302 <0.001 0.526 0.313 <0.001
Relationship strength - - - 0.012 0.068 0.362

Relationship
strength Social needs - - - -4.131 9.502 <0.001

Table 3 shows the results of the regression of the latent variables. The difference between the
estimations of model 1 and model 2 is non-significant. The latter model standardized estimate
shows an increase of 0.09. There is a significant impact of social needs in mobility demand, but
relationship strength shows a small non-significant impact. Individuals with more alters tend to
visit more places for leisure and to have a higher leisure activity space. However, this mobility
demand does not depend on the strength of the relationship with those alters. Finally, the more
social needs a person has, the lower the ego’s average relationship strength; this is explained because
individuals with more contacts tend to have proportionally more peripheral alters, reducing the
average social capital and trust level of the network.

4 Conclusions

Leisure travel is highly influenced by the individual’s friends, family, and acquaintances. As most
leisure travel has a social motivation associated, the places a person regularly visits are directly
affected by where the individual’s social network lives. This paper tries to understand that corre-
lation by comparing the geographic size of the social network with the leisure activity space. The
results show a correlation between these two variables. The latent variable social needs explains
the number of contacts in the ego’s social network and their distribution in space. At the same
time, it also significantly impacts mobility demand. Also, we can see that relationship strength
does not impact mobility demand.
The results of this paper contribute to the literature on social networks and mobility, as it links the
number of friends and their geographic distribution with the number of leisure locations a person
visits and their leisure activity space. These two variables of mobility demand can help explain
many other travel decisions, such as mode choice and mobility tool ownership. These variables will
be included in future work related to social networks and leisure activity spaces.
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Short summary

In intermodal transport, Service Network Design (SND) problems cover most tactical decisions of
a carrier. Nevertheless, among the literature on SND, very few works include pricing decisions and
the preferences of the shippers. In this study, we contribute to the existing body of knowledge by
proposing a choice-driven and cycle-based formulation of the Service Network Design and Pricing
(SNDP) problem which considers different aspects of the mode choice decisions of shippers. This
formulation aims at finding the itineraries, frequencies and prices of the services that will maximize
the profit of an intermodal carrier. Moreover, the mode choice preferences of shippers are modeled
as a utility maximization accounting not only for the logistics costs, but also the frequency of
the offered services and the accessibility of the transport mode. This bi-level formulation can be
reformulated into a single level linear problem. The proposed model is compared to two other
models (one cycled-based and one path-based) where shippers are assumed to be purely cost
minimizers. While the latter generate higher profits, they also result in unrealistic mode shares,
with road transport being negligible. On the other hand, the proposed formulation leads to mode
shares that are considerably closer to reality. In addition, higher revenues can be generated with a
cycle-based formulation compared to a path-based as it allows for more consolidation opportunities
for the carrier.
Keywords: Choice-driven Optimization, Intermodal Transport, Mode Choice, Pricing, Service
Network Design

1 Introduction

In intermodal freight transport, planning at the tactical level is of key importance to make the
best use of existing infrastructure and available assets and to ensure reliable transport plans. In
particular, Service Network Design (SND) problems cover, among other things, the decisions of
transport operators about the itineraries to be served, the offered frequencies and how demand
should be assigned to these services. The majority of existing studies on SND are formulated as a
cost minimization of the transport operator and, therefore, do not include the revenues of fulfilling
the transport orders, as highlighted by Elbert et al. (2020).
For the works actually applying a profit maximization, they mostly assume fixed tariffs that are
included as parameters into the model, as in Bilegan et al. (2022). Only a handful of works include
pricing as a decision of the problem. Some are using game theory paradigms to solve the SND, see
for example Qiu et al. (2021), while others come up with a Mixed Integer Problem formulation, as
for Martin et al. (2021).
In their work, Tawfik & Limbourg (2019) propose a bi-level SND and pricing model, with the upper
level representing the profit maximization of an intermodal transport operator and the lower level
being the costs minimization of shippers. The shippers can choose between the services proposed
by the operator or a competition alternative. The latter is represented as direct trucking and a
fixed cost is assumed for it. The authors then reformulate this bi-level model into a single-level
problem and apply linearization procedures to come up with a Mixed Integer Linear Problem.
Yet the representation of shippers here is limited as they look for the minimum cost and other
attributes are not being evaluated.
The body of literature on choice-driven optimization has advanced in other domains such as as-
sortment optimization, e.g., Davis et al. (2014), on-demand mobility solutions, e.g., Atasoy et al.
(2015) and Sharif Azadeh et al. (2022) etc. Nevertheless, due the complexity of the decision-making
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process, it has not been yet sufficiently addressed in intermodal transport. The inputs from the
demand side are typically considered as exogenous to the optimization problem or introduced with
simplistic assumptions. In this paper, we represent the preferences of shippers more realistically
rather than cost minimization and integrate this behavioral response within the service network
design problem.

2 Methodology

In our study, we use the work by Tawfik & Limbourg (2019) as benchmark and expand it by
introducing several new elements. Firstly, the path-based formulation is replaced by a cycle-based
formulation. The latter is deemed more accurate to represent realistic decision-making. Indeed,
most intermodal transport services go back and forth on an itinerary with a defined schedule.
The cycle-based representation also enables a more elaborate representation of services as multiple
intermediary stops can be added in both directions. In addition, it simplifies the asset management
of the operators. In a path-based formulation, they may need to re-balance the vehicles at the
end of the planning horizon; whereas a cycle-based representation ensures that each vehicle ends
up at its starting point. It is noteworthy that we keep an arc-based pricing representation, as
shippers will not be charged for a journey whose distance is longer than between the origin and
the destination of their cargo.
Secondly, shippers’ mode choice behavior is represented as the maximization of a utility function
including not only logistics costs, but also non-monetary attributes. It is indeed known that there
exist other influential factors, such as time and reliability, see for example Li et al. (2020). In
our work, besides the price charged by the carrier, the utility function also consists of the offered
frequency and the accessibility to the transport mode. The estimation of the model coefficients can
be found in Nicolet et al. (2022). Compared to the benchmark formulation, where the frequency
appeared only in the upper level, it now also appears in the lower level problem. In particular, it
has a positive influence on the shippers’ utility. Indeed, with the rise of just-in-time logistics and
the observed trend of companies to reduce their inventories, it is desirable for shippers to have
frequent transport services. We therefore develop a choice-driven and cycle-based service network
design model (CD-SNDP) which is formulated next.

Mathematical formulation for the proposed CD-SNDP

The transport network is represented as a directed graph G = (N ,A), where N is the set of
terminals and A = {(i, j) : i, j ∈ N , i ̸= j} the set of links between these terminals.

Upper level

The operator’s fleet is heterogeneous and the different vehicle types are denoted by set K. The
number of available vehicles for type k is Vk and the corresponding capacity is Qk.
Set S includes all the transport services that can be run by the operator. Unlike the benchmark,
where each service corresponds to a single arc of A, a service is composed of a sequence of arcs.
Each arc in this sequence is called a leg and the whole sequence of legs for a given service s is
noted Ls. The cycle-based formulation of the problem implies that the sequence starts and ends
at the same node.
The maximum number of cycles of service s that can be performed by vehicle type k is named
Wsk: it typically consists of the maximum operating time divided by the cycle time (sum of travel
time and time at terminals). Each service s has a fixed cost cFIXsk of operating it with vehicle type
k and a variable cost cVAR

ijsk per container transported between terminals i and j. Moreover, we
introduce the parameter δijls , which equals one if a container traveling from i to j uses the service
leg ls and zero otherwise.
The transport operator has three decision variables in the upper level problem:

• vsk is the number of vehicles of type k that the operator allocates to each service s;

• fsk is the frequency of service s per vessel type k;

• pij is the price per container charged to shippers wanting to transport goods from i to j.
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Lower level

The shippers are represented as a whole: therefore, their demand is aggregated. The container
transport demand between terminals i and j is denoted by Dij . Shippers decide to assign demand
to the transport operator or their competitors by the maximization of their utility. The utility
function of using the services proposed by the transport operator between i and j is noted Uij

and is dependent on pij and fsk, whereas the utility of using a competing alternative h is written
Uh
ij . Finally, the decision variables of the lower level consist in the number of containers that are

assigned to the operator’s services (xijsk) and to every competing alternative (zhij).
All the aforementioned sets, parameters and decision variables are listed in Table 1.

Table 1: Notation

Sets:
N Terminals (indices: i, j)
A Arcs (i, j)
K Vehicle types (index: k)
S Potential services (index: s)
Ls Legs of service s ∈ S (index: ls)
H Competing alternatives (index: h)
Parameters:
Vk Number of vehicles of type k in the operator’s fleet
Qk Capacity of vehicle type k [TEUs]
Wsk Maximum number of cycles of service s that can be performed by vehicle type k
cFIXsk Fixed cost of operating service s with vehicle type k [e]
cVAR
ijsk Variable cost of transport between i and j with service s and vehicle type k [e/TEU]
δijls Dummy param. equal to 1 if container traveling from i to j uses service leg ls, 0 otherwise
Dij Aggregated transport demand of shippers between i and j [TEUs]
Uij Utility of using the operator’s services between i and j
Uh
ij Utility of using competing alternative h between i and j

Variables:
vsk Number of vehicles of type k assigned to service s by the operator
fsk Frequency of service s operated with vehicle type k
pij Price charged by the operator to shippers wanting to transport goods from i to j

[e/TEU]
xijsk Cargo volume using service s operated with vehicle type k between i and j [TEUs]
zhij Cargo volume using competing alternative h between i and j [TEUs]

The proposed CD-SNDP is expressed as a bi-level Mixed Integer Problem as follows:

max
v,f,p,x,z

∑
(i,j)∈A

∑
s∈S

∑
k∈K

pijxijsk −
∑
s∈S

∑
k∈K

cFIXsk fsk −
∑

(i,j)∈A

∑
s∈S

∑
k∈K

cVAR
ijsk xijsk (1)

s.t.
∑
s∈S

vsk ≤ Vk ∀k ∈ K (2)

fsk ≤ Wskvsk ∀s ∈ S, ∀k ∈ K (3)∑
(i,j)∈A

δijlsxijsk ≤ Qkfsk ∀ls ∈ Ls, ∀s ∈ S, ∀k ∈ K (4)

xijsk ≤
∑
ls∈Ls

δijlsDij ∀(i, j) ∈ A, ∀s ∈ S, ∀k ∈ K (5)

pij ≥ 0 ∀(i, j) ∈ A (6)
vsk ∈ N ∀s ∈ S, ∀k ∈ K (7)
fsk ∈ N ∀s ∈ S, ∀k ∈ K (8)

where x and z solve:

max
x,z

∑
(i,j)∈A

(∑
s∈S

∑
k∈K

Uijxijsk +
∑
h∈H

Uh
ijz

h
ij

)
(9)
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s.t.
∑
s∈S

∑
k∈K

xijsk +
∑
h∈H

zhij = Dij ∀(i, j) ∈ A (10)

xijsk ≥ 0 ∀(i, j) ∈ A, ∀s ∈ S, ∀k ∈ K (11)

zhij ≥ 0 ∀(i, j) ∈ A, ∀h ∈ H (12)

At the upper level, the objective function of the transport operator (1) is to maximize their profit.
It is computed as the revenues from the transported containers minus the fixed and variable costs of
the offered services. Constraint (2) is the fleet size constraint for each vehicle type. Constraint (3)
ensures that the service’s frequency is inferior to the maximum number of cycles that can be
performed by the assigned vehicles. Constraint (4) assures that the total number of containers
transported on each leg of every service does not exceed the available capacity of the service,
whereas constraint (5) ensures that no container can be assigned to a service that does not go
through the origin or destination terminal of the container. The domains of the operator’s decision
variables are defined by constraints (6)-(8).
Regarding the lower level, shippers seek to maximize their utility (9) by assigning their containers
either to the operator’s services or to the competition. Moreover, constraint (10) enforces the
total transport demand to be met. Finally, constraints (11)-(12) define the domain of the decision
variables of the shippers.
The presented model is transformed to a single level problem inspired by Tawfik & Limbourg
(2019). In doing that, our formulation has multiple nonlinearities to deal with in order to reach a
mixed integer linear program. These are due to the pricing decision as well as the utility function
involving price and frequency which are both decision variables of the model. We make use of the
strong duality theorem, the transformation of frequencies into binaries and the big M method in
order to deal with the embedded nonlinearities.

3 Results and Discussion

To assess the performance of our method, it is applied to Inland Waterway Transport (IWT) of
containers on a small network of three nodes (Rotterdam, Duisburg and Bonn) and compared with
the results of the benchmark. We consider an IWT operator competing with two other modes
(Road and Rail). The operator’s fleet is homogeneous and composed of 30 vessels with a maximal
capacity of 250 Twenty-Foot Equivalent Units (TEUs) and maximal operation time is assumed to
be 120 hours per week. The sailing times and the time spent in ports as well as the costs for IWT
and the two competing modes are estimated using the model of Shobayo et al. (2021); whereas the
transport demand inputs come from the NOVIMOVE project, see Majoor et al. (2021).
Three different models are compared with each other:

• The Benchmark from Tawfik & Limbourg (2019) in which fleet constraints are added;

• The cycle-based version of the benchmark, SNDP, with Cost minimization of shippers, which
is equivalent to the benchmark but with cycles allowed;

• The proposed Choice-Driven SNDP (CD-SNDP), with shippers’ utility functions replacing
costs.

Table 2 displays the main results of the three models applied to the three-node network. The
cycle-based formulation offers more flexibility for the transport operator, who can propose services
with intermediary stops and take advantage of consolidation opportunities, instead of offering only
direct connections between two terminals. This translates into a 22% increase of the revenue with
the SNDP compared to the benchmark. In the SNDP, almost all proposed services are between
Rotterdam and Bonn with an intermediary stop in Duisburg; whereas this option is not available
in the benchmark. As a result, the operator can serve higher shares of the demand between
Rotterdam and Duisburg, where volumes are much greater than between Rotterdam and Bonn.
Nevertheless, both the benchmark and the SNDP rely on the assumption that shippers are only
interested in minimizing the costs when choosing the transport mode. This results in unrealistic
modal shares, where only a tiny fraction of the total demand is assigned to Road. When the
cost minimization is replaced by the utility maximization to get the CD-SNDP, the modal shares
become much closer to the reality. Indeed, the data collected in Majoor et al. (2021) shows that
the shares of container transport between the three considered terminals are 43% for IWT, 48%
for Road and 8% for Rail. The integration of utility in the model implies that not all flows can be
served by the operator. In particular, no demand is served between Duisburg and Bonn because
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Table 2: Results on a 3-nodes network, with served demand without parentheses for import
flows → and in parentheses for export (←).

Benchmark SNDP CD - SNDP
Total revenue [mio e] 3.43 4.17 2.03

Weekly
service
frequencies

RTM ↔ DUI 15 0 0
RTM ↔ BON 6 4 0
DUI ↔ BON 27 0 0
RTM ↔ DUI ↔ BON - 26 30

Served
demand
by IWT

RTM ↔ DUI 58% (45%) 100% (77%) 100% (89%)
RTM ↔ BON 79% (100%) 53% (67%) 53% (0%)
DUI ↔ BON 100% (100%) 97% (100%) 0% (0%)

Modal
shares

IWT 75% 89% 48%
Road 0% 1% 50%
Rail 25% 10% 3%

IWT is not competitive enough compared to Road. Undoubtedly, the revenue is lower in the
CD-SNDP compared to the two other formulations. Yet it embeds a more realistic response of
the demand to the decisions of the IWT operator. Moreover, it still emphasizes the benefits of
our cycle-based formulation as the optimal solution includes no direct links at all, but only cycle
services that stop at every terminal.

4 Conclusions

The results support that including a more detailed modeling of the mode choice behavior of shippers
allows our service network design model to more accurately represent the situation. Moreover, the
benefits of a cycle-based formulation in terms of flexibility and profitability are highlighted. The
analysis needs to be carried out for bigger transportation networks in order to see the potential
of the proposed methodology. Furthermore, our immediate future research relates to the inclusion
of shippers’ heterogeneity in the mode choice behavior for further improving the representation of
the real situation. When the decision-making process of both the transport operators and shippers
are represented more realistically, the transport systems as such can be improved further towards
sustainability goals as the resources can be allocated to the right entities at the right time and
place.
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SHORT SUMMARY 

Although long-distance cross-border travel contributes significantly to global emissions from the 

transport sector, transport models for this type of travel are scarce. In this study, a disaggregated 

travel demand forecasting model is estimated using Swedish national travel survey data 2011-

2016 along with detailed supply data from European road, train, and ferry networks and a World-

wide air network, aiming at forecasting Swede’s long-distance travel abroad. Mode choice, des-

tination choice and trip generation are modelled by traditional Nested Logit models and Multino-

mial Logit models. Results show that values of time of long-distance cross-border travel derived 

from the model estimation are in general higher than values of time of long-distance domestic 

travel. Furthermore, elasticity estimates of level-of-service attributes for train suggest that infra-

structure investments in high-speed rail network may have a profound effect on demand for long-

distance cross-border travel, especially for business trips.  

 

Keywords: Discrete choice modelling; Transportation network modelling; Long-distance cross-

border travel; Mode choice; Destination choice; Trip generation  

1. INTRODUCTION 

Long-distance cross-border travel differs from regional and national travel in many respects, such 

as what determines traveller trip generation, mode, and destination choice. Due to the long dis-

tances of these trips, they usually contribute significantly to a country’s total passenger-kilometres 

travelled, even though the number of long-distance cross-border trips is in general lower than the 

number of regional and national trips. Passenger-kilometres travelled by mode is important, es-

pecially since it is related to CO2 emissions from transport, for which ambitious reduction targets 

have been set both at the EU and national levels. Travel demand forecast models are an important 

part of large-scale modelling to provide accurate input to cost-benefit analyses of large infrastruc-

ture investments or policy measures. The major advantage of these forecast models is that planned 

but not implemented investments and policies can be tested in the models and effects analysed. 

 

One of the few existing demand models of long-distance cross-border travel is Trans-tools, which 

is a transport model for both passenger and freight transport in 42 European countries. The de-

mand model for passenger transport is described in Rich and Mabit (2012). The networks (car, 

train, and air) and their level of service attributes are described in Rich et al. (2009). A model 

called Trust (TRT Trasporti e Territorio, 2018) was developed as a follow-up to the Trans-tools 

model, however in Trust there is no demand model, instead demand is treated as fixed origin-

destination (OD) matrices. Pieters et al. (2012) describe an effort to develop sub-models for bor-

der crossing traffic in the Dutch national model. Somewhat more common are so called direct-

demand models, especially concerning tourist travel. These models typically calculate the total 

number of tourists travelling to/from a destination zone as a function of e.g., GDP and population. 

Due to the aggregate nature of these models, it is not possible to calculate e.g., cross-elasticities 
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between modes. Examples of direct demand models include Divisekera (2010) for Australia, San-

tana-Jiménez and Hernández (2011) for Canary Islands and Li et al. (2017) for China. There are 

also some direct-demand models that focus on a certain mode, especially air travel, and predict 

e.g., number of air trips to certain airports (Gelhausen et al., 2018; Kim & Shin, 2016; Suh & 

Ryerson, 2019). 

 

The lack of disaggregated travel demand models for long-distance cross-border travel can be a 

problem in practice when certain investments or policy measures might have a substantial impact 

on cross-border travel demand and cross-elasticities are of interest. One such example is high-

speed train that connects large cities across countries. Witlox et al. (2022) determine a number of 

existing bottlenecks for European rail, such as the train travel time not being fast enough and too 

many interchanges. An analysis of the ability of policy measures and investments to remove these 

bottlenecks would benefit from travel demand models for long-distance cross-border travel. 

2. METHODOLOGY 

The travel demand models are formulated using classic discrete choice theory and logit formula-

tions (McFadden, 1974). There are two sub-models per trip purpose (private/business): one nested 

logit model for mode and destination choice and one multinomial logit model for trip generation.  

 

For the mode and destination choice model, the utility equation for an alternative (mode i and 

destination j) are formulated as: 

 

𝑈𝑖,𝑗 = 𝐴𝑆𝐶𝑖 + 𝛾𝑖𝐼 + 𝛽𝑖𝐿𝑖,𝑗 + 𝛿𝑖𝐷𝑗 + 𝜙𝑙𝑜𝑔(𝐴𝑗) + 𝜑𝑖 + 휀𝑖,𝑗 (1) 

 

In Equation (1), 𝐴𝑆𝐶𝑖 is the alternative specific constant for mode i. I is the vector of individual 

socio-economic attributes. 𝐿𝑖,𝑗 refers to the vector of level-of-service attributes for mode i to des-

tination j. 𝐷𝑗 is the vector of destination variables per capita, e.g., GDP and number of hotel beds 

per resident. 𝐴𝑗 is a destination attraction variable (size variable) that represents the attractiveness 

in terms of size and quantity of each destination zone, for which a non-linear log formulation is 

used, see (Daly, 1982), and 𝜑𝑖 refers to the error term at the mode level. Thus, the alternatives 

with the same mode i will share the same error term 𝜑𝑖 and therefore those alternatives are not 

independent of each other. 휀𝑖,𝑗 refers to the error term that is unique and independent for each 

alternative. The mode and destination choice model with the utility function described in Equation 

(1) then is a nested Logit model where mode is on the upper level. The choice of model structure 

with mode above destination or the other way around is an empirical question which is determined 

by the data. The model structure that in estimation yields a logsum parameter which is within the 

range of 0 and 1 is the preferred structure.  

 

For the trip generation model, the utility function for an alternative k is formulated as follows, 

where k belongs to {no long-distance cross-border trip; daytrip; 1-5 nights, and 6+ nights} for 

private travel, and {no trip and trip} for business travel. 

 

𝑈𝑘 = 𝐴𝑆𝐶𝑘 + 𝜃𝑘𝐼 + 𝜇𝑘𝑇 + 𝜑𝑘𝑙𝑜𝑔𝑠𝑢𝑚𝑚𝑜𝑑𝑒𝐷𝑒𝑠𝑡𝑀𝑜𝑑𝑒𝑙 + 𝜃𝑘 (2) 

 

In Equation (2), 𝐼 is again a vector of socio-economic variables,  𝑇 is a vector of time period 

variables such as Christmas, and 𝑙𝑜𝑔𝑠𝑢𝑚𝑚𝑜𝑑𝑒𝐷𝑒𝑠𝑡𝑀𝑜𝑑𝑒𝑙 is the logsum variable calculated from 

the estimated mode and destination choice model. 𝜃𝑘, 𝜇𝑘 and 𝜑𝑘 are associated parameter vectors. 

The trip generation model is then a Multinomial Logit model.  
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3. RESULTS AND DISCUSSION 

The travel demand data consists observations of long-distance (one-way distance 100 km or 

longer) cross-border trips from the Swedish national travel survey for the years 2011-2016 (Traf-

ikanalys, 2017). The respondents in the Swedish national travel survey were asked which trips 

longer than 100 km they have made during the last month and which trips longer than 300 km 

they have made during the last three months. There has been one more national travel survey 

conducted after this, in 2019, but in the 2019 survey only trips from the measurement day were 

asked for, which resulted in very few long-distance international trips. Therefore, the 2019 survey 

could not be used in this study. After the data cleaning process, the trip data consists of 3561 

(83%) private trips and 717 (17%) business trips. Out of the private trips, 324 (9%) are daytrips, 

1348 (38%) are trips with 1-5 nights away, and 1889 (53%) are trips with 6 or more nights away. 

The modal shares for private trips differ a lot depending on number of nights away, which is a 

motivation for testing model segmentation across this variable. Car trips dominate for private 

daytrips, car and air trips are of about equal size for private trips 1-5 nights away, and air is the 

dominating mode for private trips 6+ nights away and for business trips. 

 

One of the major tasks of this work was to develop digital European-wide/worldwide networks 

for major travel modes so that level-of-service data can be generated from these networks. Level-

of-service data is generated at zone level using the transport modelling software TransCad 

(https://www.caliper.com/tcovu.htm). The zonal system in the long-distance model component of 

the Swedish national travel demand model is used for zones within Sweden, while NUTS zone 

system is used to represent Europe. Outside Europe, nations are represented as zones. In total, 

four networks are developed for car/bus, train, air, and ferry. Networks for car/bus, train, and ferry 

are European-wide while network for air is worldwide. As an example, the network for train is 

shown in Figure 1.  

 

 

Figure 1: The European train network developed in TransCad.  

 

Table 1 presents the estimation results for the mode and destination choice model for business 

trips. Note that there are four mode-destination choice models estimated: private daytrip, private 

1-5 nights, private 6+ nights, and business, but there is only space to show results of one of these 

https://www.caliper.com/tcovu.htm
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in this short paper. The table shows the final model specification for business trips. The initial 

model specifications were set to include all variables that are relevant and then insignificant var-

iables have been removed gradually. A large number of model specifications were tested before 

selecting the final version. The t-values in the table show the statistical significance of the param-

eters in the model. A t-value (absolute value) larger than 1.96 means that there is a 95% proba-

bility that the parameter is different from zero, i.e., it has an effect in the model. A few parameters 

with a lower significance level are kept in the model (shown in red in Table 1). These are either 

alternative specific constants that would be used as calibration constant in an implementation of 

the model or important level of service variables.     

 

Table 1: Estimated parameter values of the mode and destination choice model for long-distance 

cross-border business trips 

Parameter name Explanation Mode Parameter value t-value 

𝜙  Log-size all 0.717 23.70 

𝛽𝐵𝑒𝑑𝑃𝑒𝑟𝐴𝑟𝑒𝑎.𝑛𝑜𝐴𝑖𝑟  Hotel beds per area car, bus, train 0.059 3.65 

𝛽𝐺𝐷𝑃.𝑛𝑜𝐴𝑖𝑟  GDP per capita car, bus, train 3.810 8.59 

𝛽𝐺𝐷𝑃.𝑎𝑖𝑟  GDP per capita air 3.196 18.65 

𝛽𝑇𝑇.𝑐𝑎𝑟  Travel time car -0.0080 -11.97 

𝛽𝑇𝑇.𝑃𝑇  In-vehicle time bus, train, air -0.0039 6.61 

𝛽𝐴𝐶.𝑡𝑟𝑎𝑖𝑛  Access/egress time train -0.0783 -3.76 

𝛽𝐴𝐶.𝑎𝑖𝑟  Access/egress time air -0.0093 -6.75 

𝛽𝐶𝑜𝑠𝑡 Travel cost all -0.0038 -4.67 

𝛽𝐿𝑜𝑔𝐶𝑜𝑠𝑡𝐿𝑜𝑤𝑀𝑒𝑑𝐼𝑛𝑐  
Log(Travel cost) for 

low/medium income 

segment 

all -0.6302 -1.70 

𝛽𝐶𝑎𝑟𝐻𝐻.𝑐𝑎𝑟  
Availability of car in 

household 
car 0.372 3.26 

ASCbus 
Alternative specific 

constant 
bus -1.767 -5.74 

ASCtrain 
Alternative specific 

constant 
train 0.341 0.98 

ASCair 
Alternative specific 

constant 
air -0.007 -0.02 

Logsumdestination 
Accessibility to des-

tination 
all 0.786 1.71 

Number of observations 717 

Number of parameters 15 

Log-likelihood  -3454.2 

Log-likelihood all parameters=0 -4969.4 

McFadden rho 0.305 

 

Parameters of destination attraction variables are positive, showing that the quantity in terms of 

number of hotel beds/population/employment has a positive effect in attracting travellers to given 

destination zones. When it comes to level-of-service variables, all travel time and travel cost 
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parameters are negative as expected. The disutility of travel time for car is in general higher than 

that for public transport which is expected since travel time on PT can be used for work activities. 

Furthermore, those with individual income lower than 30 TEUR have a higher cost sensitivity. 

Looking into the effects of socio-economic variables, number of cars in household is, as expected, 

a strong factor for choosing car. The logsum parameter is within the range of 0 and 1, indicating 

that the nested-Logit structure with mode at the upper level is valid. Value of time (VOT) esti-

mates are derived from the estimated parameters of in-vehicle time and travel cost. Results are 

then compared to the VOT derived from the existing domestic long-distance model. In the busi-

ness trip segment, VOT for car for long-distance cross-border trips is higher than VOT derived 

from the domestic long-distance trip model, while a reversed trend is found for public transport 

modes.   

 

Table 2 shows the estimation results of the trip generation model for business trips. The available 

alternatives are taking no trip or conducting a business trip. Note that trip generation model esti-

mation results for private trips (conducting no trip, private daytrip, private trip 1-5 nights, or pri-

vate trip 6+ nights) exist but had to be left out due to space limitation.   

 

Table 2: Estimated parameter values of the trip generation model for long-distance cross-border 

business trips 

Parameter name Explanation Alternative Parameter value t-value 

𝛽𝐿𝑜𝑤𝑀𝑒𝑑𝐼𝑛𝑐.0 
Low/medium in-

come segment 
No trip 1.207 5.34 

𝛽𝐶𝑎𝑟𝐻𝐻  
Availability of car in 

household 
Business trip 0.181 4.53 

𝛽𝐹𝑒𝑚𝑎𝑙𝑒  Traveller is female Business trip -1.019 -11.21 

𝛽𝐴𝑔𝑒31_64  Traveller age 31-64 Business trip 0.729 4.64 

𝛽𝐴𝑔𝑒>64  Traveller age >64 Business trip -1.127 -4.67 

𝛽𝐻𝑖𝑔ℎ𝐼𝑛𝑐  
High income seg-

ment 
Business trip 1.156 8.01 

𝛽𝑆𝑢𝑚𝑚𝑒𝑟  Summer time Business trip -0.837 -5.68 

𝛽𝐶ℎ𝑟𝑖𝑠𝑡𝑚𝑎𝑠  Christmas time Business trip -0.945 -4.01 

ASC 
Alternative specific 

constant 
Business trip -4.740 -23.81 

Number of observations 39996 

Number of parameters 9 

Log-likelihood  -3066.4 

Log-likelihood all parameters=0 -27723.1 

McFadden rho 0.889 

 

It is found that low income is an important explanatory factor that contributes to not conducting 

any long-distance cross-border trips, which is expected. High income is a positive factor for con-

ducting business trips. Pensioners (age >64) and female travellers are less likely to conduct busi-

ness trips. Number of cars in the household is positively correlated with the likelihood of con-

ducting business trips. It is as expected that there are fewer business trips in summer and Christ-

mas.  
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Elasticities for the level-of-service attributes for train are derived to provide a first look into mag-

nitudes of the impacts. Elasticities are calculated using sample enumeration. The elasticity shows 

the unit percentage change of the likelihood given a unit percentage change of a level-of-service 

attribute. The following scenarios are adopted for the elasticity calculations: 10% increase in 

travel cost by train and 10% decrease in train in-vehicle time. The results are presented in Table 

3. 

 

Table 3: Elasticity results of changes in level-of-service attributes for train for business trips.  

  Car Bus Train Air Total 

Baseline Likelihood 0.468% 0.076% 0.068% 1.210% 1.823% 

10% increase travel cost 

by train 

Likelihood 0.469% 0.076% 0.065% 1.213% 1.823% 

Elasticity 0.021 0.020 -0.475 0.017 0.000 

10% decrease in train in-

vehicle time 

Likelihood 0.466% 0.076% 0.075% 1.205% 1.823% 

Elasticity -0.038 -0.041 1.069 -0.043 0.000 

 

The elasticity of increased train travel cost is -0.475, which is similar to that of private trips. The 

business elasticity of decreased train in-vehicle time is much higher than that of private trips, 

1.069, suggesting that business travellers are more inclined to take high-speed trains due to the 

travel time saving. Since the logsum variable is not significant and not included in the trip gener-

ation model for business trips, changes in level-of-service variables will not result in a change in 

the overall likelihood of business trip generation. 

4. CONCLUSIONS 

Long-distance international travel, although low in number of trips compared to regional travel, 

contributes significantly to total distance travelled and thus externalities from the transport sector. 

Despite the abundant literature on analysing tourist demand and long-distance travel, most devel-

oped models are direct demand models that focus on a specific mode or specific origin-destination 

pair. The absence of such disaggregated models indicates a lack of ability to calculate modal shift 

for long-distance international travel for large infrastructure investments such as high-speed rail. 

 

In this study trip generation, mode and destination choice are modelled in Multinomial Logit 

models and Nested Logit models respectively. Swedish national travel survey data is used as ob-

servations of long-distance cross-border travel. European networks for road, train, and ferry and 

a world-wide network for air are developed at a reasonable level of detail. Models for private and 

business trips are developed where the ones for private trips are further segmented by number of 

nights away. The estimation results reveal the effects of individual socio-economic variables, 

level-of-service attributes, and destination variables. Income and access to car in household are 

found important explanatory factors in trip generation models for business trips. The derived VOT 

suggest that VOT for long-distance cross-border travel may differ significantly from VOT for 

domestic long-distance travel.  

 

Elasticities of level-of-service attributes for trains are also derived to provide a first impression 

of high-speed rail scenarios. The most elastic attribute for private long-distance cross-border trips 

is travel cost, while for business long-distance cross-border trips it is in-vehicle time. The induced 

demand, i.e., those who previously did not conduct a long-distance cross-border trip and now 

travel by train due to the improved train service is however found to be neglectable. 
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SHORT SUMMARY

Ride-hailing vehicles contribute to traffic congestion in urban areas, where spatial con-
straints and uneven multi-modal distribution of infrastructure are a constant problem. In
fact, roaming empty vehicles cause additional delays to other concurrent network users
without delivering passengers to their destinations. Ride-splitting is one potential solu-
tion to counteract the negative impact of ride-hailing on traffic. In this work, we provide a
dynamic non-equilibrium modelling framework for ride-splitting, where pool passengers
are allowed to use dedicated bus lanes and can potentially travel faster than solo users.
The objective is to develop a ride-splitting pricing policy between solo and pool options
to encourage trip sharing with the goal of minimizing overall delays in multi-modal net-
works with bus lanes. Therefore, a Model Predictive Control (MPC) framework is set
forward to investigate the price difference between the two ride-hailing alternatives with
the objective of reconsidering the space allocation between the available modes. The re-
sults show that the proposed strategy is able to adjust the time-dependent fare changes
based on the multi-modal demand and speeds in different parts of the network.

Keywords: Model predictive control, multi-modal networks, network delays, public transporta-
tion, regulations, ride-splitting services, space allocation.

1. INTRODUCTION

Ride-hailing has quickly established itself as a transportation alternative in its own because of the
myriad of benefits it brings. It is a flexible and affordable door-to-door service with relatively low
wait times compared to public transit. Despite its advantages, the impact of ride-hailing services
on multi-modal demand distribution and traffic congestion is significant at multiple levels. Ride-
splitting has the potential to mitigate these impacts by reducing the number of drivers required to
achieve the same level of service (Ma, Zheng, & Wolfson, 2015), and cutting down the number
of Vehicle Kilometer Travelled (VKT) to serve the same level of demand (Ke, Zheng, Yang, &
Ye, 2021). However, the critical mass for pooling is rarely fulfilled, and this is due to the longer
travel time that this option entails. The need to regulate ride-hailing services is therefore becoming
more substantiated, and much work in this area has examined the efficiency of setting a cap on
the fleet size or the maximum empty VKT allowed to be travelled by ride-hailing drivers (Yu,
Tang, Max Shen, & Chen, 2020; Schaller, 2018). Other lines of research address the gains from
sending empty ride-hailing vehicles to available parking spaces in urban areas in dynamic non-
equilibrium settings (Beojone & Geroliminis, 2021), or in static equilibrium frameworks (Li, Qin,
Yang, Poolla, & Varaiya, 2020; Xu, Yin, & Zha, 2017). The commonality among these proposed
solutions is that they all fall into an enforcement-based regulatory approach. In a previous paper,
Fayed, Nilsson, and Geroliminis (2023) demonstrated the potential of an incentive-based policy to
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reduce the impact of ride-hailing on traffic congestion. By proposing an occupancy-based spatial
assignment policy in a multi-modal network with dedicated bus lanes, we showed that it is possible
to mitigate the impact of ride-hailing by encouraging users to share their trips. By giving pool
drivers the right to utilize the bus lanes, the number of vehicles in the mixed traffic portion of
the network is reduced. A similar modal-dependent allocation strategy is used for Autonomous
Vehicles (AV) in Lamotte, de Palma, and Geroliminis (2017), or for buses in Geroliminis and
Daganzo (2008); Geroliminis, Zheng, and Ampountolas (2014). Nevertheless, a very high number
of pool vehicles in bus lanes deteriorates network conditions by causing significant delays for bus
users. A pricing strategy is hence needed to encourage pooling when bus lane capacity allows it,
and to deter pooling when bus delays are significant. Therefore, the main contribution of this work
is to develop an aggregate multi-modal dynamic model that incorporates the proposed allocation
policy. This model serves as a basis for establishing a control pricing scheme between the two
ride-hailing alternatives in an attempt to contain overall network delays.

2. METHODOLOGY

The following section deals with the dynamic macroscopic modelling of multi-modal networks
with bus lanes. Within this scope, we assume that private vehicles and solo ride-hailing users
travel in the vehicle network, while buses and pool ride-hailing users travel in the bus network.
We begin first by characterizing the aggregate traffic model that we use to determine speeds in
both networks. We then use this model to describe the dynamics of private and ride-splitting
vehicles, and bus passengers. Finally, we introduce the MPC scheme with the goal of determining
the pricing gap between the solo and pool alternatives that minimizes multi-modal user delays.
The full list of notations used in this paper is displayed in Table 1.

Network model

In the network under consideration, travellers perform their trips by one of the set of available
modes M: private vehicles pv, ride-splitting rs, or buses b, so that M := {pv,b,rs}. Therefore,
the exogenous and time-dependent hourly demand for each mode is given by Q j(k) for j ∈ M
where k is the time-step such that k ∈ K := {0, ...,kmax}. Moreover, we assume that the time
interval between two consecutive time-steps is equal to ∆. Ride-hailing users choose either a solo
trip s in the vehicle network V or a pool trip p in the bus network B. The fraction of infrastructure
allocated to the vehicle network V is denoted by α where α ∈ [0,1]. It can be inferred that buses
and pool users are allocated a space equal to 1−α of the total available network infrastructure. The
ride-splitting fleet N is constant, and drivers belong exclusively to one of the following categories
at each time-step:

i) idling or dispatching with no passengers inside the vehicle that we denote by ne,

ii) performing a solo trip in the vehicle network V which we denote by ns, and

iii) performing a pool trip in the bus network B which we denote by np.

In addition to the ride-splitting fleet, we denote the number of private vehicles in network V at
time-step k ∈ K by npv(k), and the number of buses in the bus network B by nb. Note that
the number of buses is assumed to be constant, but the bus occupancy ob is time-dependent.
Accordingly, the total accumulation in the vehicle network nV at time-step k ∈ K is nV(k) =
npv(k)+ ne(k)+ ns(k) where the idle ride-hailing vehicles travel exclusively in the vehicle net-
work. Similarly, the accumulation in the bus network nB at time-step k ∈K is nB(k) = np(k)+nb.
The fleet size N of ride-hailing vehicles is constant and provided by the platform operator such
that N = ne(k)+ns(k)+np(k) for all k ∈ K.
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Table 1: Notations

Variable name Description
M Set of transportation modes where M= {pv,rs,b}
n(k) Total vehicle accumulation at time-step k
P(n(k)) Total production in the network at time-step k
v(k) Network speed at time-step k
α Fraction of space allocated to V
nV(k), nB(k) Accumulation in V and B respectively at time-step k
N Ride-hailing fleet size
npv, ne(k), ns(k), np(k) Number of private, idle, solo and pool ride-hailing vehicles respectively at time-step k
nb Number of buses in the bus network
PV(nV(k)), PB(nB(k)) Production in V and B respectively at time-step k
Pp
(
np(k),nb

)
Production of pool vehicles in B at time-step k

Pb
(
np(k),nb

)
Production of buses in B at time-step k

vV
(
nV(k)

)
, vB
(
nB(k)

)
Speed in V and B respectively at time-step k

vp
(
np(k),nb

)
Speed of pool vehicles at time-step k

vb
(
np(k),nb

)
Speed of buses at time-step k

Qi(k) Demand for mode i ∈M at time-step k
c(k) Number of ride-hailing customers waiting to be assigned at time-step k
β (k) Fraction of ride-hailing requests opting for solo trips at time-step k
cs(k), cp(k) Number of ride-hailing customers opting for a solo and a pooled trip respectively at time-step k
us(k), up(k) Travel time cost for solo and pooled respectively expressed in monetary terms at time-step k
Us(k), Up(k) Total cost for a solo and pooled respectively at time-step k
F̃s(k), F̃p(k) Dynamic fare for pooled and solo trips at time-step k
Fs, Fp Ride-hailing basic fare for solo and pooled trips at time-step k
N Ride-hailing fleet size
ob(k) Actual occupancy per bus at time-step k
ōpv, ōp Average private and pool vehicles occupancy respectively
v̄b Target speed for buses
l̄pv, l̄s, l̄b Average private vehicle, solo, and bus trip lengths respectively
∆ld , ∆lp Driver and passenger pooled trip detour distance
∆ Length of simulation time-step
M(k) Matching rate at time-step k
µ Mode choice scale parameter
κ Value of time
a0, αe, αc Meeting function parameters
t̄d Bus dwell time at stops
s̄ Average spacing between bus stops
wmax Maximum passenger waiting time
ξ (k) Control variable integrated in discrete mode choice at time-step k
φ(k) Additional controlled fee or discount that pooled vehicle incur at time-step k
A(k) Ride-splitting request abandonment at time-step k
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Traffic dynamics

In the following section, we address the macroscopic traffic dynamics that allow us to specify the
relationships between demand and accumulation for each mode. Thus, let P :R≥0 →R≥0 be the
total network production, n its accumulation, and v its speed, then we know that for all time-steps,
the relation P(n(k)) = n(k)v(n(k)) holds, where ∂v

∂n ≤ 0. If the entire network space is partitioned
into a vehicle and bus network according to the fractional split α , then the production functions
in the vehicle network PV and bus network PB satisfy the conditions αP(n(k)) = PV(αn(k)) and
ᾱP(n(k)) = PB(ᾱn(k)) respectively where ᾱ = 1−α (Ni & Cassidy, 2019; Sirmatel, Tsitsokas,
Kouvelas, & Geroliminis, 2021). Similarly, the speed in the vehicle network vV and in the bus
network vB are given by v

(
n(k)

)
= vV

(
αn(k)

)
and v

(
n(k)

)
= vB

(
ᾱn(k)

)
respectively. Rewriting

the production functions in terms of speeds, we obtain that PV(nV(k)) = nV(k)vV
(
nV(k)

)
and

PB(nB(k)) = nB(k)vB
(
nB(k)

)
.

To account for the fact that the marginal effects on the speed of buses and pool vehicles are not
equivalent, we divide the bus network production into pool vehicle production Pb and a bus produc-
tion Pb. This is because buses, unlike pool vehicles, frequently stop at stations to allow passengers
to board and disembark. We capture this recurrent action by reducing the speed in the bus network
vB by a factor r(nb) where r : R≥0 → (0,1] and dr

dnb
< 0. Consequently, the running speed of the

pool vehicles in the bus network is vp
(
np(k),nb

)
= vB

(
nB(k)

)
r(nb). Taking into account the time

that buses spend boarding and alighting passengers, the operational bus speed is

vb
(
np(k),nb

)
=

(
1

1+ vp
(
np(k),nb

) td
s̄

)
vp
(
np(k),nb

)
, (1)

where t̄d and s̄ are the average time of buses and the spacing between stops, respectively. There-
fore, after defining the individual pool vehicles and bus speeds, the production functions become
Pp
(
np(k),nb

)
= np(k)vp

(
np(k),nb

)
and Pb

(
np(k),nb

)
= nb(k)vb

(
np(k),nb

)
respectively for all

k ∈ K.

Private vehicles dynamics

According to the modal-dependent spatial allocation policy proposed in this framework, private
vehicles utilize the vehicle network V . The change in the accumulation of private vehicles between
any two successive time-steps is given by the difference between the exogenous arrival of private
vehicle users Qpv and the completion rate of private vehicle trips Opv. The latter is derived based
on the accumulation nV and the network production function PV such that npv at time-step k is
equal to

npv(k) = npv(k−1)+∆
[

Qpv(k)
ōpv

−Opv(k−1)
]

= npv(k−1)+∆

[
Qpv(k)

ōpv
− npv(k−1)

nV(k−1)
PV
(
nV(k−1)

)

l̄pv

]
, ∀k ∈ K\{0} ,

(2)

where l̄pv is the average trip length of private vehicles and ōpv is their average occupancy. Note that
the accumulation nV itself depends on the number of private vehicles npv, but also on the number
of solo ride-hailing drivers ns.

Ride-splitting dynamics

As highlighted earlier, the total ride-splitting demand in this work is exogenous, but the demand
split between solo and pool trips is the result of user choice, and is determined endogenously using
the total travel cost for each alternative. This cost is the sum of two elements: the alternative-
dependent travel fare and the travel time in each network. Accordingly, if Us(k) and Up(k) are the
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disutilities for a solo or pool trip at time-step k ∈ K respectively, then their expressions are given
by

Us(k) = F̃s(k)+κ
l̄s

vV
(
nV(k)

) , (3)

Up(k) = F̃p(k)+κ
l̄s +∆lp

vp
(
np(k),nb

) , (4)

where κ is the value of time, l̄s is the average trip length for a solo trip, and ∆lp is the additional
travel distance that pool users incur to pick up and/or drop off another passenger. The variable
F̃s(k) represents the fare collected from a solo user and F̃p(k) represents the fare collected from a
pool user at time-step k. For simplicity, we assume that the solo fare is static such that F̃s(k) = Fs

for all k ∈ K where Fs is the fare set by the platform operator. The pool fare is defined by the
expression F̃p = Fp +φ(k) where Fp is the static pool charges collected by the platform, and φ(k)
is the control fare set by the network regulator to steer the system toward its optimum.

If the choice of ride-hailing users is the outcome of a binary logit choice model, then the fraction
of solo trips that we denote by β is

β (k) =
exp
(
−µUs(k)

)

exp
(
−µUs(k)

)
+ exp

(
−µUp(k)

) , (5)

where µ > 0 is the binary logit scale parameter. Rewriting the disutilities for solo and pool that
we denote by us and up respectively in terms of static fare only, we obtain the following

us(k) = Fs +κ
l̄s

vV
(
nV(k)

) , (6)

up(k) = Fp +κ
l̄s +∆lp

vp
(
np(k),nb

) . (7)

Therefore, the expression for β as function of us and up is

β (k) =
exp
(
−µus(k)

)

exp
(
−µus(k)

)
+ exp(−µφ(k))

ξ (k)

exp
(
−µup(k)

) , (8)

where ξ (k) ∈ (0,+∞) is an auxiliary variable that paves the way for a more pragmatic implemen-
tation of the MPC framework. From the auxiliary variable ξ (k), it is straightforward to derive the
control price φ(k) by using the expression

φ(k) =
log(ξ (k))

−µ
. (9)

Once the choice of users is determined, it is straightforward to divide the waiting passengers into
two categories. If c(k) is the number of requests waiting to be assigned at time k, then the number
of requests that choose to ride solo is cs(k)= β (k)c(k) and those that choose to pool is cp(k)= (1−
β (k))c(k). These passengers are matched to idling vehicles according to the following bilateral
meeting rate M, so that

M(k) = a0ne(k)αe

(
cs(k)+

1
2

cp(k)
)αc

, (10)

where a0 > 0, αe > 0, and αc > 0 are tthe parameters of the Cobb-Douglas meeting function
in (10). Note that a factor 1

2 is added to cp to indicate that pool waiting passengers are assigned to
a single unoccupied vehicle.
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Once all these elements are defined, it becomes possible to determine the dynamics of the ride-
splitting market. We first start with idle vehicles, so that the value of ne at time-step k is given
by

ne(k) = ne(k−1)+∆[Os(k−1)+Op(k−1)−M(k−1)]

= ne(k−1)+∆

[
ns(k−1)
nV(k−1)

PV
(
nV(k−1)

)

l̄s
+

Pp
(
np(k−1),nb

)

l̄s +∆ld
−M(k−1)

]
,∀k ∈ K\{0} ,

(11)

where Os and Op are the completion rates for a solo and a pool trip respectively, l̄s is the average
solo trip length, and ∆ld is the driver detour, i.e., the extra distance that a driver travels to deliver a
pool trip. Note that all drivers who complete their trips become idling again, and thus represent the
inflow for the idling vehicle category. In contrast, the outflow for this specific category consists of
every vehicle that has been matched, which is derived from M(k).

Moving to the solo vehicle category, the number of solo vehicles at every time-step is

ns(k) = ns(k−1)+∆

[
β (k−1)M(k−1)− ns(k−1)

nV(k−1)
PV
(
nV(k−1)

)

l̄s

]
, ∀k ∈ K\{0} . (12)

Since only a fraction β of the total ride-hailing requests choose a solo trip, the inflow for the
solo vehicle category is determined by a portion β of the total matching rate, and the outflow is
computed using vehicle network production PV .

In a similar manner, we calculate the change in the number of pooling vehicles np by taking the
difference between the number of drivers matched to a pool trip and the number of pool drivers
that completed their trips. Thus, the expression of np is given by

np(k) = np(k−1)+∆

[
(
1−β (k−1)

)
M(k−1)− Pp

(
np(k−1),nb

)

l̄s +∆ld

]
, ∀k ∈ K\{0} . (13)

The trip completion rate for the pool vehicle category in computed using the pool vehicle produc-
tion Pp, which itself is a function of the time-dependent number of pool vehicles np and the static
number of buses nb.

Finally, the dynamics of waiting passengers remain to be defined. Knowing that the demand for
ride-splitting at time-step k is given by Qrs(k), the number of waiting passengers c(k) is

c(k) = c(k−1)+∆[Qrs(k)+
(
β (k−1)−2

)
M(k−1)]−A(k) , ∀k ∈ K\{0} . (14)

where A(k) is the number of abandoning requests that are not served within reasonable waiting
times. We point out here that the calculation of the passenger outflow takes into account that
each pool trips results in two passengers leaving the queue of waiting requests. The number of
abandonments A(k) is computed as follows

A(k) = max

(
c(k−1)− 1

k−1

k−1

∑̃
k=1

M(k̃−1)wmax,0

)
, (15)

where wmax is a measure of the maximum wait tolerance of ride-hailing requests. This equation
is an approximation of the number of waiting requests when the wait tolerance is set to wmax. It
computes the number of requests that leave the platform due to a poor level of service.
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Requests - c(k)
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β (k)M(k)
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Os(k) Op(k)

(
1−β (k)
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Us(k) Up(k)

α

Fleet N

Bus network
vB
(
nB(k)

)Vehicle network
vV
(
nV(k)

)

Figure 1: Modelling framework of the proposed dynamic and modal-dependent
space allocation policy

Bus dynamics

Moving to the bus dynamics, we assume in this framework that the number of buses circulating in
the bus network B is constant. This number is computed using

nb =
Q̄b l̄b
ōbv̄b

, (16)

such that Q̄b is the average expected bus demand per hour, l̄b is the average bus trip length, ōb is the
target bus occupancy, and v̄b is the expected bus operating speed. Assuming that nb remains con-
stant in time, we track the bus dynamics by following the variation of the average bus occupancy
ob, which at time k, is given by

ob(k) = ob(k−1)+∆
1
nb

[
Qb(k)−

Pb
(
np(k−1),nb

)

l̄b
ob(k−1)

]
, ∀k ∈ K\{0} . (17)

We assume in (17) that bus demand Qb(k) is uniformly distributed over the available bus fleet.
The trip completion rate is computed using the bus production function Pb, and is converted to
passenger trips by multiplying the completion rate by the average bus occupancy.

Figure 1 summarizes the full network model including the dynamics that we previously described.

Model predictive control

The modelling framework proposed captures the full impact on the multi-modal commuters when
pool users are allowed to use the bus lanes. In Fayed et al. (2023), it was shown that the overall
network situation deteriorates when the number of pool vehicles in the bus lanes is relatively
high, causing additional delays for buses. Therefore, a pricing scheme is needed to encourage
or discourage ride-hailing users to utilize the bus lanes depending on the speeds in the vehicle
network V and in the bus network B. To provide such a pricing scheme, we integrate the network
dynamics into a MPC framework, and use the latter to determine the fare control variable φ(k)
that minimizes the total Passenger Hour Travelled (PHT) such that PHT at time k is equal to the
sum of the individual PHT of each commuter category in the network

PHT(k) = ∆[npv(k)ōpv +nb(k)ob(k)+ns(k)+np(k)ōp] .
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System outputs

Optimizer
minimize ∑k+Np

i=k PHT(i)

s.t.

{
φ(k) = φ(k−1) ∀k ∈ {1, . . . ,kmax}\{n ·Nu | n ∈N}
φmin ≤ φ ≤ φmax

Model dynamics
with abandonment

Plant

Demand
Qpv,Qrs,Qb

Model dynamics
without abandonment

MPC

φk, ...φk+T

np(k+T ),ns(k+T ),npv(k+T )
ob(k+T ),c(k+T )

Figure 2: MPC framework with distinct plant and MPC dynamics

The variable ōp is the average occupancy of the pool vehicles, where ōp ∈ [1,2]. The objective of
MPC is to solve the following minimization problem

minimize
{φ(k)}k∈K

∑
k∈K

PHT(k)

subject to (1)− (17)

φ(k) = φ(k−1) , ∀k ∈ {1, . . . ,kmax}\{n ·Nu | n ∈N}
φmin < φ(k)< φmax , ∀k ∈ {1, . . . ,kmax}

(18)

where the second constraint in (18) ensures that the control variable is updated only every Nu ∈N
time-steps. The third constraint sets a minimum and maximum range for the control variable.

The minimization framework presented in (18) is straightforward if we disregard abandonment
from (14). Nevertheless, including abandonment in our framework introduces an additional com-
putational complexity since A(k) is calculated based on prior matching rates. To circumvent this,
we adapt the MPC framework according to the approach displayed in Figure 5. In this scope, we
neglect the abandonment in the MPC dynamics and solve the optimization problem to obtain the
values of the control fare for a prediction horizon Np ∈N. However, we extract only the control
variables up to an update horizon, such that T ∈ N and T < Np, and incorporate them into the
actual plant dynamics with abandonment to estimate the new state variables. The state variables
are then fed as inputs to the MPC dynamics and the optimizer is relaunched.

3. RESULTS AND DISCUSSION

In this section, we will numerically show the performance of the proposed control strategy and
quantify the influence of abandonment on the model dynamics. To do so, we consider a network
which production function is given by P(n) = A0n3+B0n2+C0n, such that A0 = 5.74 ·10−9, B0 =
−1.02 ·10−3, and C0 = 36 for n ∈ [0,58536]. Assuming the fraction of the total space allocated to
the vehicle network α is equal to 0.8, it becomes straightforward to derive the production functions
PV and PB. The function capturing the marginal effect of buses on traffic is given by r(nb) such that
r(nb) = e−6.5·10−4nb . This function, in addition to s̄ = 0.8 km and t̄d = 30 s, are used to compute
the bus speed vb.

Next, we list the different constant values used in the modelling framework. The average private
vehicle and solo trip lengths are set to be equal such that l̄pv = l̄s = 3.86 km. The trip length by
bus is generally larger, and therefore l̄b is set to be equal to 1.4l̄pv. The values of the driver and
passenger detour are ∆ld = 0.7l̄s and ∆lp = 0.15l̄s, and the average occupancies for private vehicles
ōpv, pool vehicles ōp, and bus ōb are equal to 1.2, 1.5, and 20 respectively. The average design bus
speed v̄b used to compute the number of buses nb is 18 km/hr The a0, αe, and αc parameters for

8



Table 2: PHT for different simulation frameworks with no abandonment

Scenario βββ NNN ppp TTT PHT [pax.km/hr]
Benchmark logit - - 171300
Pool trips only 0 - - 182037
Solo trips only 1 - - 175798
MPC logit 3600 3600 168437
MPC logit 900 450 168729

Table 3: PHT for different simulation frameworks with abandonment

Scenario βββ NNN ppp TTT PHT [pax.km/hr] Abandonment
Benchmark logit - - 170007 8590
Pool trips only 0 - - 177376 20463
Solo trips only 1 - - 174952 21626
MPC logit 3600 3600 167635 10271
MPC logit 900 450 167938 13961

the Cobb-Douglas matching function are 0.025, 0.93, and 0.98 respectively. With respect to the
computation of the mode choice between solo and pool, we set the scale parameter µ = 1 and the
value of time κ = 30 CHF/hr. The constant solo and pool trip fare Fs and Fp are equal to 5 and 4
CHF respectively. The ride-hailing fleet size N is equal to 3500 and the discretized time interval ∆
is equal to 6 s.

The aggregate simulation that we advance spans over a 6-hour period covering the afternoon on-
peak in-between two off-peak periods. The demand profiles for private vehicles, ride-splitting
services, and buses are shown in Figure 3. To start with, we test our controller for a scenario
where abandonment is always set to 0, and we show the results in Table 2. We compare different
simulation settings, including a benchmark scenario with no external intervention and an MPC
framework with different prediction and update horizon settings, with Nu = 180. The same sim-
ulations are then repeated when the plant (but not the dynamics in the MPC) has abandonment
rates as given by (15), and the results are displayed in Table 3. Logically, the values of PHT are
lower for scenarios with abandonment mainly because the travel time of abandoning requests is
not accounted for in the computation of PHT. Moreover, irrespective of the abandonment settings,
the MPC with a full prediction horizon returns the lowest PHT, and decreasing the prediction hori-
zon slightly deteriorates the results. Finally, for instances with abandonment, even if the MPC
framework reduces delays, the increase in abandonment relative to the benchmark scenario does
not allow a fair comparison basis. Therefore, designing an MPC that accommodates abandonment
in its dynamic framework is a research area that we plan to investigate in the future.

Lastly, we plot the variations of the main model variables for the benchmark scenario with no
abandonment in Figure 4, and for the MPC framework with abandonment and a prediction horizon
of 900 in Figure 5. Compared to a scenario with no control, i.e.,φ(k) = 0 for all k ∈ K, the MPC
imposes high charges for pooling to prevent the deterioration of the conditions in bus lanes, and
to improve the overall network situation. During on-peak periods however, we observe that the
charges decrease, and the control variable φ assumes negative values to further encourage pooling
as the speed in the vehicle network vV drops significantly. The aim in these particular time spots
is to alleviate congestion in the vehicle network.
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Figure 3: Demand profiles for Qpv, Qrs and Qb

4. CONCLUSIONS

In this work, we designed a dynamic space and occupancy-dependent allocation policy for multi-
modal networks with ride-splitting services. We then build upon this model to construct a pricing
control strategy that encourages or discourages pooling in bus lanes according to the overall user
delays. Using an MPC framework, we solve the minimization problem, and determine what is
the additional fare or discount that ride-splitting users should incur to improve the total network
situation. By comparing many different scenarios, we demonstrate that our control scheme is in-
deed capable of reducing total Passenger Hour Travelled in scenarios with or without ride-hailing
request abandonment. Future research direction however will focus on a more reasonable integra-
tion of abandoning requests within the MPC framework through reintroducing them to the system
as bus or private vehicle users.
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SHORT SUMMARY 

The excess use of private cars for transportation has multiple negative effects on our society, and 
therefore, determining the underlying factors driving car usage among different groups of travel-
lers could contribute to a more sustainable future. In this paper, we aim to identify and characterise 
traveller groups in terms of their car-related attitudes and how different sociodemographic attrib-
utes, behavioural characteristics (such as using cars as the primary mode of transportation), and 
their residential location accessibility vary amongst different population groups. Through Con-
firmatory Factor Analysis and Latent Profile Analysis we identify five different classes, namely 
car detractors, hesitants, positives, friends, and lovers. Overall, . We also see that the farther away 
households tend to be located from urban areas and public transportation facilities, the closer the 
relationship with cars. The results of this analysis will provide valuable insights into how to dis-
courage the use of cars and promote more sustainable mobility. 
 
Keywords: Car independence, car ownership, multi-modal transportation, latent profile 
analysis, sustainability 

1. INTRODUCTION 

Car usage, ranging from day-to-day commuting to weekend gateways, is playing a negative role 
in terms of traffic and climate change mitigation. This problematic situation is expected to con-
tinue increasing as road motor vehicles possession has been steadily growing in the last decade 
in OECD countries (OECD, 2022), in contrast to the hypothesis that car usage had reached a 
saturation point one decade ago (Goodwin & Van Dender, 2013). To address this problem, 
transport authorities improve and promote existing transportation alternatives such as public and 
active transportation options considering car drivers’ perceptions (Abenoza et al., 2017; de Oña, 
2022; Van Exel & Rietveld, 2010). The inherent idea behind this approach is that promoting better 
alternatives might make car users shift to more sustainable ways of mobility.  

However, taking The Netherlands as an example, a country with excellent public transport infra-
structure and plenty of safe and well-connected bike paths, private cars account for the majority 
(~40%) of the modal share in terms of the primary transport mode. Moreover, ~23% of those trips 
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are shorter than 2.5 km, and 40% are shorter than 5 km. In addition, there are several psycholog-
ical aspects associated with the different dimensions related to travelling by car that influence the 
travel mode choice decision.  

In this work, we aim to identify and characterise traveller groups in terms of their car-related 
attitudes and how different socio-demographic attributes, behavioural characteristics (such as us-
ing cars as the primary mode of transportation), and their residential location accessibility vary 
amongst different population groups. 

2. METHODOLOGY 

Our analysis is based on the Netherlands Mobility Panel (MPN) data, a representative sample of 
the adult Dutch population panel which every year gathers information at a personal, household, 
and a three-day travel diary (Hoogendoorn-Lanser et al., 2015). Given the Corona pandemic, we 
focused on the last even year before the start of the pandemic, 2018. In terms of the attitudinal 
questions, for each of the five modes analysed - car, train, bus/tram/metro (referred to as BTM, 
representing all urban public transport), bike, and walk - participants are asked about their overall 
opinion and about how they evaluate them in terms of being comfortable, relaxing, saving time, 
safe, flexible, pleasurable, and prestige. In addition, a set of 26 related to car usage and ownership 
experience were included in this specific wave in 2018. The final set of gathers 73 different atti-
tudinal statements and 6,502 respondents answered all these questions in the sample. To handle 
the large number of attitudinal questions present in our dataset, we first carry out an exploratory 
factor analysis (EFA) to determine potential factors structures which we then use as a first step in 
composing a confirmatory factor analysis (CFA).  

The Confirmatory Factor analysis resulted in a structure consisting of ten factors. These factors 
are related to the (i) convenience of cars, (ii) experience of driving, (iii) social status of car owners, 
(iv) own-car ideas, (v-ix) opinions on each of the five modes and (x) attitude to modal prestige. 
In general, car convenience is associated with ideas such as freedom, safety and how cars facilitate 
daily and personal activities, while driving experience is associated with the sense of control and 
adrenaline during driving. The social status factors are related to how people feel about having a 
car and the image it conveys to others, and the own-car ideas factor bundles those statements that 
pertain specifically to the possession of a car. Finally, there are five factors with similar charac-
teristics, in which each respondent evaluates a series of seven attributes for the five different 
modes included in this study, while the prestige attributes are collected in the final factor.  

Based now on these ten factors, we aim at estimating models for different numbers of subpopu-
lations in order to study how these different groups differ in their relationship with cars, their 
sociodemographic characteristics, and the urban environment where they live. Since these factors 
are continuous variables (and not ordinal as the initial set of 73 statements), we estimate these 
groups through Latent Profile Analysis (Spurk et al., 2020). In the following, we use the term 
"classes" to refer to the different groups identified in the analysis. Afterwards, we characterize 
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each class based on its sociodemographic composition, and we explore if there are differences 
regarding their residential location choice and the corresponding accessibility.  

3. RESULTS AND DISCUSSION 

Since the constructed factors are continuous variables (and not ordinal as the initial set of 73 
statements), we estimate these groups through Latent Profile Analysis (Spurk et al., 2020). In the 
following, we use the term "classes" to refer to the different groups identified in the analysis. As 
a result, all of the analyses presented in this study are based on probabilistic calculations. We 
select a five classes model because the marginal decrease in BIC goes under 2%, the smallest 
class is big enough to study, and also the class membership is stable.  

Overall, the five different classes vary in the way they relate to cars. We arrange them so that their 
attitudes towards cars become increasingly positive from left to right. We name these five classes 
“car detractors”, “car hesitants”, “car positives”, “car friends”, and “car lovers”, respectively. 
These names are based on the distribution of the ten different factors, which are described next. 
When we calculate the expected share of these five groups, we see a bell-shaped distribution 
cantered around the third class, “the positives”, as presented in Figure 1.  

 
Figure 1. Classes’ shares of sample respondents 

In Figure 2, we present the 10th to 90th quantile range (grey line), the 25th and 75th quantile 
range (blue line), and the average (bullet) for each attribute and each class. The ten different 
factors obtained through the Confirmatory Factor analysis have the property that their respective 
average over the entire sample is fixed and equal to zero, denoted through a red dotted line in the 
figure. This property eases the comparison and allows us to identify differences among the latent 
groups. We also calculate and display the z-value for each attribute and class, assuming the null 
hypothesis of the mean being zero. We highlight in bold the z-values which imply significant 
differences from the sample average at the 95% confidence level.  
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Figure 2. Factors distribution and share for each class 

In general, we find that car convenience and attitudes towards both private cars and cars in general 
become more positive as we move from the detractors to lovers. Detractors, in comparison to 
other groups and the sample as a whole, report particularly low levels of convenience and positive 
opinions about cars. However, there are no significant differences between detractors and the 
overall sample with respect to driving experience and social status. Although not significantly 
different from the sample average, we observe that this group exhibits the highest appreciation 
for both trains and BTM among the different classes. Hesitants exhibit negative attitudes toward 
cars, but to a lesser degree than detractors. However, they have more negative attitudes towards 
the driving experience, social status, and the relevance of prestige factors. Together, these two 
groups make up 35% of the sample. 

In addition, the distribution of these five classes is centred around what we denoted as car posi-
tives, as these individuals hold slightly positive attitudes towards driving experience, car-owning 
social status, and also towards modal prestige. This fact suggests that this class of users have a 
positive impression of what owning and using a car means. Interestingly, we found no significant 
differences between this class and the sample for any of the attributes. 

The car friends group exhibits significantly more positive attitudes towards car convenience and 
car opinions compared to the other three groups already described and the sample as a whole. 
However, they do not share this positive attitude towards driving and social status, suggesting a 
potential willingness to consider alternative modes if they are similarly convenient. Conversely, 
car lovers display very positive attitudes towards cars across all variables and report more nega-
tive impressions of other modes, particularly trains and buses. These two groups together make 
up for just over 36% of the sample, and when including the more neutral but still pro-car car 
positives class, they account for 65% of the sample. 

Afterwards, we are interested in the analysis of the socio-demographic composition of each iden-
tified latent class. This way, we can identify particular differences which might help us understand 
better who is represented by each of these attitudinal groups. To aid our analysis, we use Figure 
3 to present the distribution of 13 attributes for each class, with a color code indicating the per-
centage-wise difference from the sample average. This visualization facilitates the identification 
of those attributes’ levels that are either under- or over-represented in each class. Looking at 
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Figures 3a and 3b, which show detractors and hesitants, respectively, we see that there are no 
gender differences for detractors, but women are overrepresented amongst hesitants. The share of 
people older than 60 years old in both classes and younger people in the case of detractors is 
higher than in the sample as a whole. Both classes have a higher proportion of people who own a 
public transport card and fewer who never use bike as a means of transportation. Most car detrac-
tors do not own a car, whereas households who have only one car are overrepresented in the 
hesitants class. In terms of car access, detractors tend not to have a driving license, while house-
holds who have a car available but not freely accessible are overrepresented amongst hesitants. 
Both detractors and hesitants are characterized by a higher proportion of smaller households: 
with one and two persons per household, respectively. Regarding the central class, car positives, 
there is no evident difference between their socio-demographical distribution and the sample’s 
average (Figure 3c).  

 

Figure 3. Socio-demographic characterisation of a) car detractors, b) car hesitants, c) car posi-
tives, d) car friends, and e) car lovers. 
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Figures 3d and 3e present the socio-demographic characteristics of car friends and lovers, respec-
tively. Car lovers are predominantly male, while there is no gender difference for car friends. 
Both groups have a higher proportion of working-age people and households with at least two 
cars, and they also have greater car access than the overall sample. They are also less likely to 
own a personal public transport card and have a higher percentage of individuals who never bike. 
Car lovers also have a higher share of people who never use the train. There are no significant 
differences between these classes and the overall sample in terms of their travel distance and 
travel frequency. 

The previous analysis does not take into account where each respondent lives. Therefore, we will 
examine the geographic distribution of the five latent classes across the Netherlands and how 
various urban environment variables are distributed within each class. This analysis is important 
as we expect that the factors that influence car usage affinity will vary depending on the built 
environment conditions. We calculate the distance between all households and the nearest urban 
area, train station, metro or express tram stop, tram stop, and bus stop (based on different fre-
quency thresholds) and then average those based on class membership rates. The results of this 
analysis are presented in Table 1. 

Table 1: Average and 10th to 90th quantile range of the distance to different loca-
tions for each the classes 

 

 

The proximity of households to urban areas and public transportation facilities varies depending 
on the degree of affinity with cars: detractors and hesitants tend to be closest to urban areas, 
followed by positives and friends, while lovers tend to reside farther away. In terms of distance 
to the closest train station, car lovers are, on average, one kilometre (+33%) farther away than 
detractors. The situation is different for metro and tram stops, as car lovers are significantly 
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farther away from these facilities, while the other classes are comparatively closer to each other. 
Regarding bus stops, the frequency threshold is an important factor. Although there are no major 
differences between the classes for any bus stop, car detractors are significantly closer to high-
frequency bus stops. This distance increases, as expected, for the other classes, particularly for 
car lovers.  

Finally, we are also interested in the distribution of household location urbanization level and also 
the respondents' perceptions about parking and accessibility in their neighbourhoods. These re-
sults are presented in Table 2. The urbanization level varies from non-urbanized to very highly 
urbanized, while the scale used by respondents to indicate their opinions varies from strongly 
disagree to strongly agree.  

Table 2: Responses distribution for different urban variables for each of the classes 

 

Based on these results, car detractors and hesitants are more likely to live in highly- and very 
highly-urbanized areas, while friends and lovers are more likely to live in non- or low-
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urbanization areas. In the case of parking facilities, respondents' answers are generally similar, 
except for friends and lovers who strongly agree more frequently with the statement that there are 
enough parking spaces in their neighbourhoods. When asked about accessibility by car, a consid-
erable gap can be observed between car lovers and other classes. About 75% of car lovers or 
friends strongly agree that their neighbourhood is easily accessible by car, while this figure drops 
to under 40% for car detractors. A similar trend is observed for bike accessibility, where approx-
imately 80% of car friends and lovers strongly agree that their neighbourhood has good bike 
accessibility, whereas only 53% of detractors do.  

4. CONCLUSIONS 

Based on the analysis of the distribution of ten latent attitudinal factors, we identify five different 
sub-population groups which vary in terms of car ownership and usage ideas. In addition, we can 
also observe differences in their sociodemographic characteristics. As expected, more positive 
car attitudes are associated with higher car ownership and access and reduced use of public trans-
portation modes. Noticeably, there are no significant differences in terms of travel frequency and 
trip length distribution, which suggests the differences come mostly from modal preference and 
not from the associated activities.  

The place where people live and their personal circumstances are also relevant variables when 
studying car ownership and usage. In summary, we observe that the farther away households tend 
to be located from urban areas and public transportation facilities, the closer the relationship with 
cars, and vice-versa. Thus, policies that either aim to restrict or reduce car use need to 
acknowledge that not every car user behaves the same: reactions will vary depending on their 
attitudinal characteristics.  

We aim to continue this research by now analysing how these different groups of the population 
may differ in terms of relative access to opportunities. For example, we intend to identify groups 
of people who hold negative attitudes towards cars but don't have sufficient access to alternative 
modes of transportation. These individuals may feel like they have no choice but to rely on cars, 
even though they would prefer not to. By conducting this analysis, we aim to gain valuable in-
sights into how to identify and address the barriers that prevent people from choosing more sus-
tainable transportation options and ultimately lead to a more environmentally friendly and equi-
table society. 
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Short summary

Coordinated charging of electric vehicles (EVs) has the potential to provide significant benefits to
both electric vehicle owners and the wider community. In fact, intelligent, coordinated charging
of large electric fleets, such as the ones operated by ride-hailing companies, could be essential in
preventing a collapse of the energy market. We study a scenario in which a central body, e.g.,
the power-providing company or the government, wants to influence how the EVs of different
ride-hailing companies spread among different charging stations by offering discounted prices of
charging. Compared to previous works in this domain, we investigate a Stackelberg-based mecha-
nism that takes into account potentially limited discount budgets available to the companies. We
propose an iterative method to compute the local Stackelberg equilibrium that guarantees fairness
in the sense that we have equal prices of charging for all ride-hailing companies. Finally, we test
the proposed method in a simulated case study based on taxi data from the city of Shenzhen.

Keywords: Stackelberg game, Electric vehicle charging, Ride-hailing operation

1 Introduction

The increased popularity of electric vehicles (EV) and the steep incline in their number Interna-
tiona Energy Agency (2021) opened a significant amount of questions in the domain of electric
energy management and electric mobility. On one hand, this widespread adoption of electric vehi-
cles has led to a growing need for efficient and reliable charging infrastructure. Combining this with
the increasing demand for electricity from EV charging puts the spotlight on the problem of effi-
cient, coordinated charging. On the other hand, combining smart mobility systems and intelligent
charging management could pave the way for gaining an opportunity to trade different services to
achieve societal optimum, e.g., by providing discounted charging in off-peak hours, it could help
improve the stability of the electricity grid by reducing the variability in demand. Moreover, given
that ride-hailing companies now constitute the central part of the services offered within a city, it
is to be expected that they also electrify their fleets. Hence, the impact of coordinated charging
of a large number of vehicles operated by ride-hailing companies can be significant in preventing
the collapse of the energy market. Ride-hailing companies already offer access to different service
facilities to their drivers so it is not unlikely that they would also offer discounted charging in
accordance with the received monetary subsidies aimed at incentivizing the drivers to follow the
management’s desires. That way, the companies, in collaboration with external financiers, could
hope to improve the overall utilization rate of their fleets by increasing the availability of the ve-
hicles or to motivate the drivers to charge in distant areas in an attempt to increase the coverage.

With this in mind, we study a scenario in which a central body, e.g., the power-providing company
or the government, has a desire about how the vehicles should spread out among different charging
stations in a region where the operators of several ride-hailing companies try to minimize their
operational costs, depicted in Figure 1. We assume the charging infrastructure is shared, so the
ride-hailing companies are inherently interested in directing their vehicles to different charging
stations so as to minimize the queuing time at the stations. Moreover, we assume the central
authority has the power to set the prices of charging at different stations and hence, tries to
influence how the companies behave in an attempt to attain a personal objective. Since all the
agents in the system compete for the resources, this opens the door for a game-theoretic analysis.
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There is extensive literature on game theoretic models based on congestion, mean-field, Stackelberg
and Inverse Stackelberg games used to solve different problems in the domain of smart mobility
systems Basar & Srikant (2002); Brown & Marden (2020); Groot et al. (2012); Laha et al. (2019);
Ma et al. (2013); Paccagnan et al. (2016, 2019); Stan̆ková et al. (2011); Tushar et al. (2012);
J. Zhang et al. (2018); L. Zhang et al. (2019). This paper, in particular, is a continuation of our
previous works Maljkovic et al. (2022a,b), where we analyzed a game-theoretic model of a similar
structure as the ones listed in the literature. We did so, however, from the perspective of designing
demand-based, feedback pricing policies that guaranteed the exact minimization of the central
authority’s objective, making our work fall in the category of Inverse Stackleberg games. With
this work, however, we aim to address the problem of potentially unfair prices induced by the
optimal charging policies proposed in Maljkovic et al. (2022a). Namely, we study a Stackelberg
game setup that assumes a game with limited budgets is played between the central authority
and the ride-hailing companies. Based on Maljkovic et al. (2023), we propose an iterative method
to compute a fixed discount for the ride-hailing companies that aligns well with the individual
discount budget constraints. That way, we provide complete fairness in the sense of having the
same prices for every company at the expense of being able to guarantee convergence only to the
local Stackelberg equilibrium of the game. At the end, we test the proposed method in a simulated
case study based on real taxi data from the city of Shenzhen in China.

The paper is outlined as follows: the rest of this section is devoted to introducing some basic
notation. In Section 2, we revise the structure of the model with limited budgets and introduce
the iterative method for computing the local Stackelberg equilibrium. In the following section,
Section 3, we demonstrate the effectiveness of the proposed method in a simulated case study
based on the city of Shenzhen. The final section contains the concluding remarks and some ideas
for future research.

Notation

Let R denote the set of real numbers, R+ the set of non-negative reals, and Z+ the set of non-
negative integers. Let 0m and 1m denote the all zero and all one vectors of length m respectively,
and Im the identity matrix of size m ×m. For a finite set A, we let RA

(+) denote the set of (non-
negative) real vectors indexed by the elements of A and |A| the cardinality of A. Furthermore,
for finite sets A, B and a set of |B| vectors xi ∈ RA

(+), we define x := col
(
(xi)i∈B

)
∈ R|A||B| to be

their concatenation. For A ∈ Rn×n, A ≻ 0(⪰ 0) is equivalent to xTAx > 0(≥ 0) for all x ∈ Rn×n.
We let A⊗B denote the Kronecker product between two matrices and for a vector x ∈ Rn, we let
Diag(x) ∈ Rn×n denote a diagonal matrix whose elements on the diagonal correspond to vector
x. For a differentiable function f(x) : Rn → Rm, we let Dxf ∈ Rm×n denote the Jacobian matrix
of f defined as (Dxf)ij := ∂fi

∂xj
. Finally, for a set-valued mapping F : Rn ⇒ Rm, gph(F) :=

{(y, x) ∈ Rn × Rm | x ∈ F(y)} denotes its graph.

2 Methodology

Model

We begin explaining the proposed methodology by introducing the system model. Let us consider
a region where multiple shared charging stations are available for the EV drivers, i.e., let M be the
set of all charging stations such that |M| = m and Mj > 0 denotes the capacity of the charging
station j ∈ M. Let the set of all ride-hailing companies be denoted as I. Let the cardinality
of the set of companies be |I| = N and for every i ∈ I, let the number Ni > 0 represent the
number of vehicles that want to recharge. For every company i ∈ I, let the vector xi ∈ Xi ⊆ Rm

describe the ride-hailing fleet split among charging stations. Namely, let
∥∥xi

∥∥
1
= Ni and xi

j ≥ 0
denote the number of vehicles to be directed to station j ∈ M. Moreover, if we define the sets
X :=

∏
i∈I Xi and X−i :=

∏
j∈I\i Xj , then the joint strategy of all followers can be denoted as

x := col
(
(xi)i∈I

)
∈ X and for every agent i ∈ I we can define x−i := col

(
(xj)j∈I\i

)
∈ X−i.

Let the nominal prices of charging at different stations be encoded in vector πbase ∈ RM . Further-
more, let us assume that the central authority is interested in determining the optimal discount
∆π ∈ RM , such that for every i ∈ I, the total monetary discount that the company i receives does
not exceed a predefined value Bi ∈ R. Here, Bi represents the limited discount budget of company
i, which corresponds to the level of external subsidies that the company is entitled to.
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Figure 1: Ride-hailing market in a region with 4 charging stations - M =
{M1,M2,M3,M4} and the network topology used in the case study consists of 1858
intersections connected by 2013 road segments, divided in 4 regions based on the Voronoi
partitioning of the city with the centroids located at the charging stations.

Similar to the cost models introduced in Maljkovic et al. (2022a,b), we assume that based on the
announced pricing policy π ∈ P ⊆ RM , such that π := πbase − ∆π, the ride-hailing companies
choose their strategies in an attempt to minimize personal objective functions J i(xi, x−i, π) by
playing the best response to the other agents’ strategies, as illustrated in Figure 2. For every
company i ∈ I, let σ

(
x−i

)
:=

∑
j∈I\i x

j be the aggregate decisions of the other players and let
σ (x) :=

∑
j∈I xj . Then, every company operator is interested in minimizing its operational cost

under the feasibility constraints imposed by the battery status of its vehicles. Inspired by the
objective functions analyzed in Maljkovic et al. (2022a,b); Tushar et al. (2012); Yu et al. (2021);
Zavvos et al. (2022), here, we analyze the operator’s cost that consists of three terms

J i
(
xi, σ

(
x−i

)
, π

)
= J i

1

(
xi, σ

(
x−i

))
+ J i

2

(
xi
)
+ J i

3

(
xi, π

)
,

such that J i
1

(
xi, σ

(
x−i

))
denotes the expected queuing cost, J i

2

(
xi
)

denotes the negative expected
revenue and J i

3

(
xi, π

)
denotes the charging cost.

Expected queuing cost model is governed by the cost term of the form:

J i
1

(
xi, σ(x−i)

)
=

(
xi
)T

Q
(
xi + σ(x−i)−M

)
=

(
xi
)T

Q (σ(x)−M) ,
(1)

where M ∈ RM is the vector of charging station capacities, i.e., M = col((Mj)j∈M), and Q =
Diag (q) ∈ RM×M is a positive definite scaling matrix such that every element qj > 0 depicts how
expensive it is for a vehicle to queue in the region around charging station j ∈ M. The charging
stations located in the city’s more busy areas should experience higher queuing costs and hence
have a higher corresponding diagonal entry in the Q matrix. Moreover, the more the capacity of
the station is exceeded, the higher the cost per vehicle should be, which is directly enabled through
the inner product with the vector σ (x)−M . To take into account the total queuing cost for the
whole fleet, we calculate the inner product between the vector describing the fleet’s distribution,
i.e., xi, and the incurred cost per vehicle for choosing a particular station, i.e., Q (σ(x)−M).

The negative expected revenue is modeled as:

J i
2

(
xi
)
= (earr

i )
T
xi − (epro

i )
T
xi , (2)

where earr
i ∈ RM is the average cost of a vehicle being unoccupied while traveling to a station

and the vector epro
i ∈ RM is the expected profit per vehicle, should the vehicle choose to stay in a

region around a particular charging station, estimated from historical data.

The charging cost is modeled as:

J i
3

(
xi, π

)
= πTSix

i , (3)
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Figure 2: Schematic overview of the interaction between the ride-hailing market and the
central authority, i.e., the power-providing company or the government.

where, the matrix Si ∈ RM×M is diagonal, i.e., Si = Diag
(
di
)
⪰ 0, and every element dik ∈ R+ of

the vector di ∈ RM
+ can be interpreted as the expected average charging demand per vehicle when

choosing the station k. Therefore, the total operational cost of the company can be written in a
general form given by:

J i
(
xi, σ

(
x−i

)
, π

)
=

1

2

(
xi
)T

Pix
i +

(
xi
)T

Qiσ
(
x−i

)
+ rTi x

i + πTSix
i , (4)

where Pi := 2Q, Qi := Q and ri := earr
i − epro

i . Regarding the constraint sets of the ride-hailing
companies, it has been shown that for a particularly constructed polytopic constraint, it will always
be possible to match every ride-hailing vehicle with exactly one charging station in an attempt
to respect the optimal allocation given by the optimal split x∗. For every i ∈ I, the matching
constraints in accordance with Maljkovic et al. (2022a) are given by

Xm
i :=

{
xi ∈ RM | Aix

i = bi ∧Gix
i ≤ hi

}
. (5)

Apart from them, in this paper we also focus on budget constraints. As previously mentioned, for
every company i ∈ I, the total discount budget for the electricity prices that the central authority
can provide is Bi. Taking into account that the discount is given by ∆π = πbase−π, for a particular
pricing strategy π ∈ P, the budget constraint can be described by X b

i (π)

X b
i (π) :=

{
xi ∈ RM | (πbase − π)

T
Six

i −Bi ≤ 0
}

, (6)

which is also a polytopic constraint in xi. Hence, for a pricing strategy π ∈ P and for every i ∈ I,
the resulting constraint set is given by Xi = Xm

i ∩X b
i (π). It is worth mentioning that for particular

choices of parameters Si, πbase and Bi the set X b
i (π) could be empty and, hence, the optimization

problem would be infeasible. Therefore, for future analysis, we assume that X b
i (π) ̸= ∅.

On the other hand, we assume the central authority is interested in balancing the vehicles so as to
minimize the personal objective of the form:

min
σ(x)

JG(σ (x)) = min
σ(x)

1

2
σ (x)

T
AGσ (x) + bTGσ (x) , (7)

for some diagonal matrix AG ≻ 0 and bG ∈ RM . In particular, in this paper, we focus on minimizing
a special case of (7) that corresponds to balancing the vehicles so as to match a predefined vehicle
distribution given by vector Z ∈ [0, 1]

M with 1TZ = 1, i.e., to minimize

JG(σ (x)) =
1

2
∥σ(x)− 1TnZ∥22 , (8)

where n = col
(
(Ni)i∈I

)
is the vector containing the number of vehicles per company that need to be

recharged. Having defined the system model, we continue to present the theoretical preliminaries.
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Theoretical preliminaries

The central authority and the ride-hailing companies admit a single-leader, multiple-follower Stack-
elberg game with the leader being the central authority. Upon the announcement of the leader’s
strategy, the aggregative game between the ride-hailing companies is described by

G0 (π) :=

{
min
xi∈Xi

J i
(
xi, σ

(
x−i

)
, π

)
,∀i ∈ I

}
, (9)

whose Nash equilibrium x∗ is given in the definition below:

Definition 1 (Nash equilibrium) For any pricing strategy π ∈ P of the central authority, a
joint strategy x∗ ∈ X is a Nash equilibrium of the game G0, if for all i ∈ I and all xi ∈ Xi holds

J i
(
xi∗, x−i∗, π

)
≤ J i

(
xi, x−i∗, π

)
.

We focus our attention on the subset of general Nash equilibria given by Definition 1, called
the Variational Nash equilibria (v-NE), because different methods in the literature facilitate their
decentralized computation Grammatico et al. (2016). Based on the theory of variational inequali-
ties Harker & Pang (1990), if we define a map F : X × P → RNM as

F (x, π) := col
((

∇xiJ i
(
xi, x−i, π

))
i∈I

)
,

then the set of v-NE of the game G0 (π) is given by V0 (π):

V0 (π) :=
{
x ∈ X | (y − x)

T
F (x, π) ≥ 0, ∀y ∈ X

}
.

With this in mind, we now proceed to state the existence and uniqueness result for G0 (π).

Proposition 1 For any π ∈ P, let the game G0 (π) between the ride-hailing companies be defined
as in (9). Moreover, for every company i ∈ I, let the constraint sets Xi be defined as Xi =
Xm

i ∩X b
i (π), with Xm

i defined in (5) and X b
i (π) defined in (6). If the company operator’s objective

is defined by (1), (2), (3) and (4), then the game G0 (π) admits a unique v-NE joint strategy x∗ ∈ X .

Proof Since Pi ≻ 0 for every i ∈ I, the agents’ cost functions are convex in xi. For Xi defined
as Xi = Xm

i ∩ X b
i (π), with Xm

i as in (5) and X b
i (π) as in (6), based on (Rosen, 1965, T.1), there

exists a Nash equilibrium of the game G0 (π). A sufficient condition for the uniqueness of the Nash
equilibrium is that the operator F (x, π) be strictly monotone in x (Facchinei & Pang, 2007, Ch.2).
The pseudo gradient can be written as F (x, π) = F1x+ F2, such that F1 = IN ⊗Q+ 1N1T

N ⊗Q
and F2 = col

(
(ri + Siπ)i∈I

)
. To show that F (x, π) is strictly monotone, it suffices to prove that

F1 ≻ 0 Bauschke & Combettes (2017). This is true as for any x ∈ X , it holds that xTF1x =∑
i∈I

(
xi
)T

Qxi +
(∑

i∈I xi
)T

Q
(∑

i∈I xi
)
> 0.

Since the unique v-NE can be computed using the Picard-Banach fixed point iteration Berinde
(2004), we can now formally define the Stackelberg game played between the central authority and
the ride-hailing market. Moreover, we can introduce the notion of the local Stackelerg equilibrium
(l-SE) that we wish to compute for this hierarchical game structure.

Definition 2 (Stackelberg game) Let the game between the ride-hailing companies be defined
as in Proposition 1 and the central authority’s objective be defined as (8). Then the Stackelberg
game is defined by a bi-level optimization problem

GL :=

{
min
π∈P

JL (x∗, π) =
1

2

∥∥σ (x∗)− 1TnZ
∥∥2
2

s.t. x∗ ∈ V0 (π)

}
. (10)

In general, there could exist multiple Srtackelberg equilibria that solve the game given by (10).
Therefore, we shift our focus towards computing the local Stackleberg equilibria given by the
following definition and previously analyzed in Fabiani et al. (2022).

Definition 3 (Local Stackelberg equilibrium) Let GL be a game as in Definition 2. A pair
(x̂∗, π̂) ∈ gph (V0)∩(X × P) is a local Stackelberg equilibrium of GL if there exist open neighborhoods
Ωx̂∗ , Ωπ̂ of x̂∗ and π̂ respectively, such that

JL (x̂∗, π̂) ≤ inf
(x∗,π)∈gph(V0)∩Ω

JL (x∗, π) ,

where Ω := Ωx̂∗ × (P ∩ Ωπ̂).

In the following section, we will present a bi-level, iterative method for computing the local Stack-
elberg equilibria.
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Figure 3: Overview of the three-step iterative procedure used for calculating the local
Stackelberg equilibrium.

Computing the l-SE

To compute the local Stackelberg equilibria, we build on top of the standard iterative structure
used for finding the v-NE of the aggregative game played between the ride-hailing companies. As
previously mentioned, based on Proposition 1, we can utilize the Picard-Banach iteration to find
the v-NE of G0(π) for a particular π ∈ P. Based on the aggregative structure of the operator’s cost,
standard methods leverage the entity typically referred to as the ’central aggregator’ to transmit
the information about σ(x) to all the agents in the game during the procedure.

To compute the l-SE, we will perform a gradient-based, iterative procedure that requires communi-
cation just between the ’central aggreagator’ and the central authority. Namely, we aim to update
the central authority’s pricing strategy according to

πt+1 (πt, s) := ΠP

[
πt − s

dJL (x∗ (π) , π)

dπ

∣∣∣∣
π=πt

]
, (11)

where Π denotes the projection operator, πt is the current value of the central authority’s pricing
policy and s is the step size carefully determined according to the Armijo step-size rule Bertsekas
(1999). If we restrict ourselves to compact and convex pricing spaces P ⊆ RM , then the complexity
of each update step defined by (11) boils down to estimating how the Nash equilibrium of G0(π)
reacts to any change in π, i.e., calculating the gradient

dJL (·)
dπ

=
∂JL (·)
∂π

+
∑
i∈I

DT
πx

i∗ ∂J
L (·)

∂xi∗ . (12)

Here, it is of paramount importance to show that the Jacobians DT
πx

i∗ are well defined. To do so,
we take into account that the unique v-NE, x∗ ∈ X , pre-computed for the current value of πt, has
to satisfy the KKT optimality conditions of the best-response optimization problem given by (9)
for each ride-hailing company. For every i ∈ I, let us describe the constraint set Xi := Xi(π) as

Xi(π) =

{
xi ∈ RM |

[
Gi

(πbase − π)Si

]
xi ≤

[
hi

Bi

]}
=

{
xi ∈ RM | Γix

i ≤ δi
}
. (13)

Moreover, let us partition Γi and δi into active and inactive inequality constraints described by Γi,
Γi, δi and δi such that

Γix
i∗ = δi and Γix

i∗ < δi . (14)

Then, applying the Implict Function theorem Dontchev & Rockafellar (2009) to the KKT mapping
of an equivalent best-response optimization problem with partitioned constraints described by (14),
directly yields

Dπx
i∗ = −

 ∂2

∂xi∂xi
J i Γi

T Āi
T

0 Diag
(
Γix

i∗ − δi
)

0
Āi 0 0

−1  Si

0
0

 , (15)

where Ai is full row-rank and obtained by removing redundant constraints from AT
total =

[
AT

i ,Γ
T

i

]
.

The schematic representation of the three-step procedure is presented in Figure 3. Finally, we can
summarize the convergence results in the following proposition.
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Proposition 2 Let the Stackelberg game between the central authority and the ride-hailing compa-
nies be defined as (10). Moreover, let the update step of the central authority’s pricing strategy be
defined by equations (11), (12), (13) and (15) and the step size s > 0 in (11) be chosen according
to Armijo step-size rule. Then, for P compact and convex, the following convergence result holds:

lim
t→+∞

[
JL (·, πt+1)− JL (·, πt)

]
= 0 ,

Proof The proof follows directly from applying the Implicit function theorem Dontchev &
Rockafellar (2009) and applying the properties of the Armijo step-size rule Bertsekas (1999).

In the following section we illustrate the performance of our algorithm in a simulated case study
based on taxi data from the city of Shenzhen.

3 Results and discussion

Case study

We begin this section by introducing the case study that was previously analyzed in Maljkovic
et al. (2022a). We consider 3 ride-hailing companies I = {I1, I2, I3} with fleet sizes given
by Nfleet = [450, 400, 350]

T that operate in the Shenzhen region with 4 public charging sta-
tions M = {M1,M2,M3,M4}. The stations are described by the vector of their capacities
M = [15, 60, 35, 50]

T and are located in parts of Shenzhen with different demands for ride-hailing
services as shown in the color-coded map depicted in Figure 1. We consider a 3 hour long simula-
tion that represents one of the two peak-hour periods during the day. New passengers constantly
arrive in the system and either increase the number of private vehicles in the system or request a
ride-hailing vehicle to be assigned to them. The demand profile represents the real taxi demand
that we assume is now served by the ride-hailing companies Beojone & Geroliminis (2021). The
congested conditions in the city are represented by modeling the space mean speed of the vehicles
as a decreasing function of the total vehicle accumulation nv in the region and according to the
network Macroscopic Fundamental Diagram (MFD) Geroliminis & Daganzo (2008) obtained from
Ji et al. (2014). Under the assumption of homogeneous congestion in the city, the MFD of the
region is given by:

vspace(nv) =


36 exp

(
− 29nv

60000

)
, if nv

1000 ≤ 36

6.31− 0.28
(

nv
1000 − 36

)
, if 36 < nv

1000 ≤ 60

0, if nv
1000 > 60

.

To prevent the ride-hailing vehicles from flocking in the busiest parts of the city, the desired
distribution of the ride-hailing vehicles Z is formed so as to match the spatial distribution of the
ride-hailing service requests. To approximate this distribution, the city region is divided into 4 cells
according to the Voronoi Kang (2008) partitioning of the map. The charging stations are chosen
as the centroids of the Voronoi cells, the number of vehicles per company that want to recharge
after a 3 hour simulation is given by n = [194, 181, 157], and Z is chosen to correspond to the total
number of requests in each cell. For the analyzed case study, this results in obtaining Z such that
1TnZ = [198, 103, 144, 87] and we set P := [pmin, pmax]

4, such that pmin = 0.0 and pmax = 5.0. All
the remaining parameters in the simulation are kept identical as in Maljkovic et al. (2022a).

System performance

For the Picard-Banach fixed point iteration procedure used to compute the v-NE before each update
step of the central authority’s pricing strategy, we used kv-NE = 5000 iterations whereas for the
iterative procedure between the central authority and the ’central aggregator’ we used kl-SE = 350
iterations. The evolution of the achieved total vehicle accumulations and the central authority’s
objective are shown in Figure 4. For the given number of iterations, the system manages to achieve
perfect matching with respect to desired vehicle distribution.

This is further supported by the plot on the right-hand side of Figure 4, which shows that the
objective function converges to the global minimum value of 0. Finally, we can investigate the trend
in the evolution of the actual discount budget used for each of the ride-hailing companies by looking
at Figure 5. The evolution of the discount budget used is presented for the base price of πbase =
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Figure 4: The left plot shows the evolution of the total vehicle accumulation σ(x), whereas
the right plot shows the evolution of the central authority’s objective during the procedure.
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Figure 5: The three plots show the evolution of the value of the used discount budget.
The black lines represent the achieved values whereas the red line represents the maximum
possible value of the discount budget.

[5.0, 3.0, 5.0, 3.0] and the attained charging discount is given by ∆π = [1.560, 0.809, 2.179, 1.440].
Note that in this case, the system was able to recover a solution that matches the global minimum
of the central authority’s objective. However, achieving such a local Stackelberg equilibrium is not
always necessarily possible. In fact, for some cases, it could be that the chosen initial value of the
pricing policy πinit largely determines which discount policy the algorithm converges to. Therefore,
we plan to investigate in the future how different initial values of the pricing policy influence the
result of the iterative procedure.

4 Conclusions

In this paper, we presented an iterative framework for computing a pricing strategy corresponding
to a local Stackelberg equilibrium in a pricing game with one leader, i.e., the central authority and
multiple followers, i.e., the ride-hailing companies, where the ride-hailing companies are constrained
by fixed, a priori defined, discount budgets. We provided theoretical convergence guarantees and
demonstrated the performance of the system in a simulated case study based on taxi data from
the city of Shenzhen. However, what remains a promising research direction for the future is the
question of how to choose the initial conditions in order to converge to a global optimum of the
central authority’s objective whenever such an optimum exists. Moreover, we aim to increase the
complexity of the model in an attempt to better describe the reality.
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Short summary

Camawa. Can, may and want. These are the constituents of the home office frequency decision.
Not every job can be done from home nor is it a matter of all or nothing. Every job profile can
be positioned on a continuum reflecting its home office feasibility. Further, those who can, might
not may: Firms call back employees to the office or set constraints such as a home office budget.
Last but not least cama does not mean anything without wa - the preference dimension. This
work tries to account for all three dimensions simultaneously by means of a structural equation
model (SEM). We find that the may dimension is of most substance and an employee’s perception
of her employer’s point of view plays a crucial role in it. Meanwhile, preferences are governed by
several suitability considerations. Personal suitability, residential suitability and the suitability of
the home office workstation play into the decision, perceived personal suitability being the most
important of the three.
Keywords: Home office, Preferences, Structural equation modeling.

1 Introduction

The ability to shift work from the office to home varies greatly across industries, cities and countries
(Dingel & Neiman, 2020). While the question of how many jobs can be done from home has been
widely discussed, it should be acknowledged that a job’s home office feasibility is not binary. Sener
& Bhat (2011) argue that when modeling the home office frequency, one should first estimate
whether or not a job can be done from home. But even if the characteristics of work would allow
for home office it is not guaranteed that the employee may shift to remote nor is it given that
the employee wants to do so. After all, observed home office frequencies reflect a labor market
equilibrium and should therefore account for both home office supply and demand.
This work tries to quantify the contributions of can, may and want to the home office frequency
decision with a structural equation modeling (SEM) approach. Is it a supply-driven (home office
supply of the employer) market or is it demand-driven? Is a job’s home office feasibility accounted
for in the current market or is there an inefficiency arising from too much home office (as the pan-
demic and current full employment shifted the momentum and bargaining power to the workforce,
asking for unreasonable high levels of remote work)?
It can be argued, that before the pandemic, home office was the exception rather than the rule.
"Shirking from home" was stigmatized and perceived to be bad for career advancements and
therefore workers were afraid to postulate their desire (Brewer & Hensher, 2000). However, this
perception has drastically changed in recent years, but might still play a role. This work tries to
elicit whether or not the perceived viewpoint of the employer matters in the employee’s decision-
making process.
Further, modeling a person’s preference for home office as a latent construct, allows us to elicit
the constituents of that preference by differentiating perceived personal suitability, the suitability
of the residential environment as well as the home office workstation.

2 Methodology

The data was collected as part of a pre-test fielded in February 2023 in the German-speaking part
of Switzerland. 886 respondents were invited by mail. The response rate was 24%, however, after
the exclusion criteria, a sample of 148 participants remained. For the modeling part, only people
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Figure 1: SEM path diagram with two latent variables and one explanatory endogenous
variable

currently working from home were included. This was necessary because the questions related to
home office were only asked the respondents currently working from home.
Table 1 describes the 12 variables which were derived from the survey answers for modeling pur-
poses. The five-point Likert questions were simplified to binary indicators where the median value
was chosen for the cutoff. For example, the variable personal suitability discriminates people into
the following two classes: Higher or equal personal suitability (for home office) than the median
person’s perceived suitability or below. This ensures sufficient variation in the indicators.
We employ a structural equation model with two latent exogenous variables (may and want) and
one endogenous observed variable (can). The final regression of interest is concerned with how
these three dimensions impact the home office frequency decision. Figure 1 shows the envisioned
path diagram.
The SEM equations are depicted below and consist of measurement equations eq. (1), an equation
capturing the explanatory endogenous variable eq. (2) as well as linking the two in a structural
equation eq. (3). SEM allows the modeler to simultaneously estimate these equations and account
for complex correlation patterns. The model reads

xi = Λξi + δi (1)

yi = zt
iγ + ϵi (2)

ηi = βyyi + βξ1ξi1 + βξ2ξi2 + ζi (3)

where xi is the vector of measurement indicators, Λ the corresponding matrix of factor loadings
(with 0 for some elements), ξi the vector of latent exogenous variables (may and want), zi the vector
of (observed) exogenous variables, γ the corresponding coefficients, explaining yi, an explanatory
endogenous variable (can) and ηi the endogenous target of interest (do: the home office frequency
choice). The vector β captures the main effects of interest, i.e., the impact of can, may and want
on the observed home office frequency choice (ηi). δi, ϵi and ζi are random errors.
At this point, it should be noted that ordinal scaled variables (e.g., budget : maximum number of
days allowed to work from home {1, . . . , 5+}) were treated as continuous. While we tested ordered
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Table 2: Cross tables.

May Budget Want
Can No Yes COVID-19 1 2 3 4 5+ 0 1 2 3 4 5+

0% 16.22 2.03 2.7 0 0 0 0 0 0 0 0 0 0 0
1− 25% 1.35 13.51 1.35 3.7 3.7 0.93 0 9.26 1.71 11.97 5.98 0.85 0 0
26− 50% 1.35 25 0.68 4.63 15.74 0 0 12.96 5.98 4.27 17.09 6.84 0 0
51− 75% 0 10.81 0 0 5.56 1.85 0 7.41 2.56 0.85 2.56 5.13 2.56 0
76− 99% 0 18.92 0 3.7 3.7 5.56 0.93 12.04 0 1.71 1.71 7.69 10.26 2.56
100% 0 6.08 0 0.93 1.85 2.78 0 2.78 1.71 0.85 2.56 0.85 0.85 0.85

May Budget Do
Want No Yes COVID-19 1 2 3 4 5+ 0 1 2 3 4 5+

0 0.85 11.11 0 0.93 5.56 1.85 0 3.7 11.82 7.27 4.55 0 0 0
1 0.85 16.24 2.56 3.7 5.56 0.93 0 7.41 0 8.18 13.64 3.64 1.82 0
2 0.85 29.06 0 5.56 10.19 0.93 0 12.96 0 1.82 10 6.36 0 0
3 0.85 20.51 0 1.85 6.48 1.85 0 12.04 0 0 2.73 7.27 5.45 0
4 0 13.68 0 0.93 2.78 4.63 0.93 5.56 0 0 0 2.73 2.73 0.91
5+ 0 3.42 0 0 0 0.93 0 2.78 0 0 0 1.82 4.55 2.73

logit models (e.g, for the before-mentioned measurement equation as well as all the others), we
chose not to, as the additional cutoff parameters to be estimated in an ordered logit would yield
very few observations per parameter. However, the specifications were tested and did not lead to
alternative conclusions.
The model was estimated with the lavaan package (Rosseel, 2012) in R using the maximum like-
lihood approach.

3 Results and discussion

In what follows, the cross tables in table 2 are abbreviated: For example cama stands for can x
may and the reported values reflect percentage numbers. As a side note, the dimensions may and
want should not be mistaken for the latent variables. May indicates whether or not an individual
is currently allowed to do home office and want is approximated by the variable free choice from
table 1.
Cama clearly shows that those who can at least partially do some work from home, also may. Cabu
indicates that roughly half of the home office population have agreements, fixing the maximum
number of home office days (5+ means no constraints). The budget seems not correlated with a
job’s ability to be performed remotely. A budget of 2 days is the most common constraint. In the
wa of cawa, the respondents were asked to realistically factor in their job characteristics. Therefore
the two dimensions are correlated. In each row, the modulus shifts to the right and matches the
job’s ability to be performed remotely. This hints that people generally would like to shift all the
work that can be productively completed in the home office to remote.
Shifting attention to the second row of table 2: Those who want, may. Only very few people
are not allowed to do home office. Wabu hints that the employer decides on the budget more or
less unilaterally. This leads to 33% of the employees being constrained in their frequency choice.
However, most of the workforce still can shift their desired number of days to the home office:
cado shows a strong correlation with most of the mass clustering around the diagonal. Still, the
upper triangle has slightly more mass (which makes sense given the previously discussed "budget"
constraint).
We now discuss the modeling results presented in table 3. It should be noted, that there are
relatively few observations per estimated parameter (roughly 5 per parameter). Nevertheless,
standard errors are small. The goodness of fit statistics indicates mediocre fit (for a nice discussion
of how to interpret these measures, see Lin (2021)). This is not surprising given the very simplified
model (in terms of model specification, binary feature engineering and linear approximation of
ordered scales).
With this in mind, the factor loadings and regression coefficients all have the expected signs and
most of them are significant. May shows the most substantial contribution to the home office
frequency choice followed by want and can.
We tested to include the allowed home office budget directly as an exogenous explanatory vari-
able (now solely reflecting the may dimension), the effect of want becomes dominant. However,
modeling may as a latent variable (as we did here), including measurements of whether or not the
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Table 3: Model coefficients and goodness of fit indicators.

Parameter Estimates:
Latent Variable Indicator Loading Std.Err

Latent Variables: may budget 1.000
employer pov 0.197∗ 0.082
fully shift 0.234∗ 0.101

want free choice 1.000
personal suitability 1.256∗∗∗ 0.235
residential suitability 0.803∗∗∗ 0.182
homeoffice workstation 0.787∗∗∗ 0.176

Dependent Variable Predictor Estimate Std.Err

Regressions: can physical interaction −0.378 0.237
work context −0.344 0.244
job suitability 1.007∗∗∗ 0.223

do can 0.402∗∗∗ 0.092
may 2.439∗ 1.333
want 1.628 1.120

Goodness of Fit:
Comparative Fit Index (CFI) 0.702
Tucker-Lewis Index (TLI) 0.616
RMSEA 0.122

Model Characteristics:
Number of model parameters: 23
Number of observations: 108

Note: ∗∗∗p < 0.001; ∗∗p < 0.01; ∗p < 0.05

5



person feels pressured to return to the office more frequently, as well as the employer’s point of view
about home office, the substance changes in favor of may. This could indicate that contractual
agreements play a minor role whereas an individual’s perception of her employer’s viewpoint still
plays an important role.
The regression on can could suffer from endogeneity (with job suitability accounting for both work
context as well as physical interaction). Therefore it is unsurprising that only the job suitability
was found to be significant. In future versions of the model (when more data is available), can
should be treated as latent too, including the proposed predictors as measurements.
We now discuss the latent variables and their factor loadings. The variable budget shows the
highest loading for may which reflects the previously discussed fact, that 33% of the employees are
constrained in their free choice. On the other hand and as already noted, the employees’ perception
of the employer’s standpoint is important too.
Interestingly, the preference dimension (want) reveals that the personal suitability loads most
heavily. In future research, we will include (latent) personality traits as predictors. Meanwhile,
residential suitability, as well as the suitability of the homeoffice workstation, load with similar
magnitudes. The questions of what makes a residence or workstation suitable is left to future
planned research.

4 Conclusions

We used a SEM model with two exogenous latent variables and one endogenous predictor to
understand the home office frequency decision. The center of attention was placed on disentangling
the contributions of can, may, and want.
We find that the may dimension is most decisive and an employee’s perception of her employer’s
point of view plays a crucial role in it. On individuals’ preferences, we can note, that all three
suitability dimensions, personal suitability, residential suitability and the suitability of the home
office workstation, are equally important (with a slightly higher loading of personal suitability).
To our best awareness, this is the first model, that accounts for can, may and want simultaneously.
The model should be extended, once more data is available: Can should be modeled as a latent
variable, ordered logit models should be used where appropriate and the latent variables should be
treated as endogenous rather than exogenous (allowing us to delve more deeply into the questions
of why a person has certain home office preferences or what industries and employer characteristics
explain the may or can dimension). We showed that all three dimensions camawa matter and
should be accounted for when modeling observed home office frequencies.
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SHORT SUMMARY 

The goal to limit global warming requires a shift to electric vehicles and a reduction of vehicles 

in total. To achieve this transition, governments could design price regulations effectively. The 

potential effect of different price regulations has been assessed by surveying 466 respondents. 

After providing detailed information on all mobility tools in the household, respondents were 

faced with four scenarios with varying price regulations concerning prices for fuel, CO2, electric-

ity, and public transport. Given the reported mobility tools and supported by live calculation of 

resulting cost changes, respondents were asked to adapt their household fleet while being allowed 

to choose the mobility tools at a high level of detail. Results of a multinomial logit model show 

that increasing fuel prices, very low electricity prices, high EV subsidies and low public transport 

prices have the potential to decarbonize household fleets (remove conventional vehicles and/or 

replace by an electric vehicle). 

 

Keywords: sustainable mobility, electric vehicle, political incentives, multinomial logit 

model, stated adaptation 

 

1. INTRODUCTION 

To reduce greenhouse gas emissions in the transport sector a shift from vehicles with internal 

combustion engine (ICE) to electric vehicles (EV) is required. For this purpose, governments are 

implementing policies to promote EVs. However, several studies investigate either isolated eco-

nomic interventions such as fuel prices (see e.g. Erath and Axhausen, 2010; Jäggi et al., 2012; 

Liao et al., 2017). They show that only a great increase of fuel prices have the potential to increase 

the market share of alternative fuel vehicles (Jäggi, 2015; Lebeau et al., 2012). However, not only 

fuel price is of relevance to promote the shift from ICEs to EVs. Research has shown that higher 

operating costs have a negative effect on the preference of a vehicle (Beck et al., 2017; Helveston 

et al., 2015; Higgins et al., 2017; Jensen et al., 2020; Li et al., 2020). Free charging has a positive 

effect on adoption of EV and is after free parking the incentive with the highest willingness-to-

pay for a vehicle (Langbroek et al., 2016). Further, persons intending to buy a new vehicle prefer 

lower purchase costs (Helveston et al., 2015). Studies show that price subsidies have a positive 

effect on the choice of EVs (Bjerkan et al., 2016; Higgins et al., 2017; Lebeau et al., 2012) and 

on the diffusion of EVs in general (Buchmann et al., 2021; Melton, 2020). Therefore, not only 

effects of fuel prices, but also EV purchase subsidies and electricity prices need to be investigated. 



2 

 

However, large majority of research either conduct stated preference studies to show, which prices 

have an effect on the choice of a vehicle type (Beck et al., 2017; Bjerkan et al., 2016; Helveston 

et al., 2015; Higgins et al., 2017; Jäggi, 2015; Jensen et al., 2020; Langbroek et al., 2016; Lebeau 

et al., 2012; Li et al., 2020) or simulation studies on market diffusion potentials (Buchmann et al., 

2021; Melton, 2020). Revealed preferences studies mostly investigate the effect of socio-de-

mographics (Brückmann et al., 2021; Jakobsson et al., 2016). However, to our best knowledge, 

there are no studies, which would model the effects of price regulations on fostering households’ 

adaption of their household fleet. Therefore, this study is aiming to analyze the effectiveness of 

fuel prices, CO2 surcharge on fuel prices, electricity prices, and EV purchase subsidies on house-

hold’s stated decisions to either adopt an EV, replace an ICE by an EV, and to remove an ICE. 

Besides that, the effect of reduced prices for public transport will be considered, since the decar-

bonization of the transport sector requires not only the adoption of EVs but a general reduction in 

vehicle usage. 

METHODOLOGY 

Data and sample 

Adults of 18 years and older were recruited via an introduction letter and a follow-up recruitment 

phone call from a sample of 6,107 addresses in the South-West of Germany. Computer-assisted 

personal interviews were conducted from January to December 2020. In total, 466 individuals 

completed the survey providing information on the household (for details on fieldwork see Gutjar 

et al. (2021); Gutjar and Kowald (2021a)). After data cleaning and exclusion of households with-

out persons owning a driver license, data from 444 respondents will be considered for analyses. 

Survey design 

Firstly, the respondents provided information on the household (e.g. household income, housing 

type), the sociodemographic characteristics, and mobility behavior of every household member 

(e.g. age, gender, car availability). Further, to answer the research question a two-stage process 

was created: 

In the first stage, revealed preferences (RP) for mobility tools in the household fleet were col-

lected. Respondents provided detailed information on all vehicles (e.g. vehicle type, engine type, 

annual vehicle kilometers traveled (VKM)), motorcycles, and public transport subscriptions avail-

able.  

Next, a stated adaptation experiment (Lee-Gosselin, 1996) was designed to assess the effect of 

price regulations, which are presented in Table 1 together with their variation. Based on these 

price attributes and variation levels, an efficient experiment design (Rose and Bliemer, 2014) was 

created in Ngene (Rose et al., 2018) resulting in 20 scenarios divided into five blocks, so that 

every respondent was faced with four different tasks. Each task was designed as an iterative ad-

aptation of the household fleet under a given scenario: Employing the RP data on mobility tools 

in the household, the survey program initially calculated the actual household fleet costs and ad-

ditionally presented changes in monthly and annual costs for the actual household fleet as a con-

sequence of the hypothetical price regulations given in the scenario. Respondents were asked to 

react to the scenario by adapting the household fleet under consideration of the financial re-

strictions and the mobility needs of the household. They could e.g. remove present and/or add 

new vehicle(s), motorcycle(s), and public transport subscriptions and adjust the annual VKM. For 

every adopted vehicle, a vehicle type and an engine type (gasoline, diesel, BEV, PHEV) had to 

be specified. Respondents were supported by a real-time calculation of the monthly and annually 
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household fleet costs to allow a comparison of the resulting and current costs after every adapta-

tion. Thus, they were able to adjust the mobility tools until they found the optimal household fleet 

under given price regulations (for details on the study design see Gutjar and Kowald (2021b) and 

Reckermann et al. (2021)). Finally, n=1,737 observations (stated adaptations) from 466 individ-

uals will be analyzed.   

 

Table 1. Stated adaptation experiment: price attributes and variation levels (Gutjar 

and Kowald, 2021b) 

price attribute variation levels model changes 

fuel price (€/l) 1.50* / 3.00 / 4.50 sum (continuous):  0 / 0.20 / 0.60 

/ 1.50 / 1.70 / 2.10 / 3.00 / 3.20 / 

3.60 
CO2 surcharge (€/liter fuel) 0.00* / 0.20 / 0.60 

electricity price (€/100km) 0.00 / 3.50* / 7.00 -3.50 / 0 (reference) / +3.50 

purchase bonus for EVs (€) 2,000 / 6,000* / 10,000 -4,000 / 0 (reference) / +4,000 

public transport prices rela-

tive to today 

free / 50% of today’s price / as 

today* 

-100 / -50 / 0 (reference) 

Note: * = value at the time of fieldwork  

Estimation 

Since the aim of this study is to model adaptation (changes) of the household fleet, changes in 

price regulations in comparison to the reference values at the time of fieldwork will be modelled. 

For this purpose, fuel prices and CO2 surcharge were summed to one continuous variable, while 

dummy variables were created for the remaining price regulations with no change in prices incor-

porated as reference category. The created variables to model changes in correspondence to the 

variation of the price regulations are presented in Table 1. 

The changes between RP vehicle ownership and the final adapted household fleet as reaction to 

price scenarios will be modelled as the outcome with reference to no change (no adaptation to 

vehicle ownership):  

- add an EV (if an EV was added as an additional vehicle to the household fleet; the alter-

native is always available) 

- remove ICE (if at least one existing ICE was removed from the household fleet; the 

alternative is available to households with min. one ICE) 

- replace ICE by EV (if at least one existing ICE was removed but an EV was included 

instead; the alternative is available to households with min. one ICE) 

- remove and replace ICE (if at least two existing ICEs were removed and an EV included 

instead; the alternative is available to households with min. two ICEs) 

The frequencies (absolute and relative) of alternative availability and actual choices (n=1,737 

observations) are presented in Table 2. 

 

Table 2. Description of choices (adaptations) 
choice n available n chosen % chosen 

overall 

% chosen 

when availa-

ble 

no change 1,737 1,191 68.57 68.57 

add an EV 1,737 74 4.26 4.26 

remove ICE(s) 1,605 123 7.08 7.66 

replace ICE(s) by EV 1,605 306 17.62 19.07 

remove & replace ICE(s) by EV 701 43 2.48 6.13 
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Total  1,737 100  
Note: changes not modeled due to a small number of observations (n≤10): add ICE, remove EV, replace ICE by EV 

& add EV 

 

Since the presented adaptation alternatives are discrete choices, they will be analyzed by applying 

the random utility maximization theory, which assumes respondents rationally choose the alter-

native with the highest associated utility (Adamowicz et al., 1994; Louviere et al., 2010). An 

individual n confronted with j alternatives in t choice tasks associates an indirect utility Unjt for 

an alternative and chooses the alternative with the highest utility. The indirect utility Unjt of an 

alternative j is decomposed as  

 𝑈𝑛𝑗𝑡  =  𝑉𝑛𝑗𝑡  +  𝜀𝑛𝑗𝑡  =  𝑥′
𝑛𝑗𝑡𝛽 +  𝜀𝑛𝑗𝑡  (1) 

where Unjt is not observed, Vnjt is the deterministic utility of alternative j, and 𝜀njt is a random 

component not included in Vnjt; Vnjt can be specified by 𝑥′
njt𝛽, where 𝑥 is a vector of explanatory 

variables (e.g. attribute levels, socio-demographics), and 𝛽 are the coefficients to be estimated. 

Further, alternative-specific constants (ASC) (Train, 2009) were estimated.  

2. RESULTS AND DISCUSSION 

Data analyses were performed with R using the package apollo (Hess and Palma, 2019; R Core 

Team, 2020) for the step-wise estimation of a multinomial logit model (MNL) (Louviere et al., 

2000; Train, 2009). The results of the current MNL model are presented in Table 3 (previous 

steps and sample descriptions are available upon request). 

As expected, increasing fuel price (including CO2 surcharge) has a positive effect on the decision 

to remove an ICE, replace an ICE with EV, and do both. A drastic reduction in electricity prices 

(for free) increases the utility to replace an ICE with an EV and to do both, remove and replace 

an ICE. However, it has also a positive effect on the adoption of an EV as an additional vehicle, 

which needs to be considered (rebound effect). Correspondingly, increased electricity prices de-

crease the utility to add an EV but also to adopt one as a replacement for an ICE. Interestingly, 

for the purchase bonus, no strong effects have been found. However, the reduction of the EV 

subsidy by 4,000€ reduces the utility to add an EV and to choose both remove and replace an ICE, 

while an increase by 4,000€ has a positive utility on the replacement of an ICE with an EV. Free 

public transport (-100%) has a positive impact on the removal of an ICE and to do both remove 

and replace existing ICEs.  

In comparison to no change, the utility of adding an EV and doing both removing and replacing 

an ICE is decreasing with age, while it is firstly positive but becomes negative with higher age 

for the alternatives to remove an ICE or to replace an ICE. Interestingly, while highly educated 

respondents (in comparison to low-middle education) prefer to remove an ICE, replace an ICE 

and do both, low-educated persons prefer to adopt an EV as an additional vehicle (e.g. BEV might 

serve as a status symbol). Higher equivalized household income (considering the number and age 

of household members) decreases the utility of removing an ICE and to do both replacing and 

removing an ICE, but no remarkable effect was shown for the replacement of an ICE with an EV. 

Further, with increasing income, the utility to add an EV increases. To sum up, with greater in-

come households associate disutility with alternatives required for transport decarbonization, be-

cause they can afford to keep their status quo. Intuitively, households with an equal or greater 

number of vehicles than persons with driver's license associate greater utility with removing and 

replacing an ICE, while they show a lower preference for adding an EV than persons in a house-

hold with fewer vehicles than drivers. Similarly, households with greater VKM associate increas-

ing utility with removing, replacing, and doing both removing and replacing an ICE by EV. 
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Table 3. Results of the MNL 

 add EV remove ICE replace ICE 
remove & replace 

ICE 

 
𝜷 r. se. 

r. t-

val. 
𝜷 r. se. 

r. t-

val. 
𝜷 r. se. 

r. t-

val. 
𝜷 r. se. 

r. t-

val. 

fuel price  - 
  

0.61 0.10 5.94 0.50 0.06 8.78 0.68 0.14 4.96 

electricity price (Ref. no change) 

minus 3.50€ 0.64 0.29 2.23  - 
  

0.85 0.17 5.04 1.29 0.31 4.14 

plus 3.50€ -0.68 0.39 -1.74  - 
  

-0.40 0.22 -1.78 fixed 
  

purchase bonus (Ref: no change) 

minus 4,000€  -0.50 0.23 -2.16 
   

fixed 
  

-0.48 0.31 -1.56 

plus 4,000€ fixed 
     

0.21 0.14 1.47 fixed 
  

public transport (Ref: no change) 

minus 100%  - 
  

0.21 0.19 1.10  - 
     

plus 100%  - 
  

0.45 0.20 2.30  - 
  

0.47 0.35 1.35 

ASC -1.72 0.79 
 

-7.41 2.44 -3.04 -4.19 1.13 -3.72 -2.46 1.07 -2.30 

age -0.03 0.01 -2.18 0.15 0.09 1.68 0.08 0.05 1.68 -0.03 0.02 -1.43 

age2 fixed  -1.99 -0.00 0.00 -1.78 -0.00 0.00 -2.06 fixed 
  

education  
            

low Ref. 
  

Ref. 

  

Ref. 

  

Ref. 

  

middle 

-0.66 0.42 -1.56 

     

high 0.54 0.30 1.78 0.32 0.221 1.44 0.80 0.57 1.41 

equivalised house-
hold income 

0.48 0.16 2.92 -0.25 0.14 -1.76 fixed 
  

-0.61 0.30 -
2.03 

n vehicles ≥ n driv-

ers (Ref: less) 

-0.76 0.35 -2.19 0.45 0.31 1.44 0.23 0.206 1.09 fixed 
  

VKM fixed     0.01 0.01 1.19 0.01 0.008 1.74 0.03 0.01 2.52 

Number of individuals 444 

LL (final) -1452.59     

Adj.Rho-square 0.3976   
   

AIC 2979       
BIC 3181              

Note: r. se. = robust standard error; r. t-val. = robust t-value; - = not estimated (e.g. no previous hypotheses); fixed = parameter fixed 
to zero during the step-wise estimation procedure (e.g. small and insignificant parameter, small number of observations (n<20)), 

Ref.= Reference category 

3. CONCLUSIONS 

Given study contributes to previous research by modeling potential adaptations of vehicle own-

ership as a consequence of political incentives and other price regulations relevant to transport 

decarbonization. Preliminary results have been presented. Next, this model will be extended by 

interactions of price attributes with socio-demographic characteristics to explain taste heteroge-

neity (e.g. are households with greater household income less sensitive towards price increases?). 

Further, an integrated choice latent variable (ICLV) (Abou-Zeid and Ben-Akiva, 2014) model 

will implement the effect of the latent factor intention to buy an EV as a direct predictor of be-

havior (Ajzen, 1991). All results along with policy implications will be presented at the confer-

ence if accepted. 
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SHORT SUMMARY 

Space-time prism (STP) delimits the space-time opportunities reachable by a moving object and is 

widely applied to measure the ability of individuals to travel and participate in activities. The majority 

STPs are binary measures in that all locations are considered equally accessible if within the prisms. A 

few probabilistic STP models discussed heterogeneous interiors, but they focus on the trip level and 

have not addressed daily activity programs with flexible activity sequences. This study proposes a 

model framework to construct and estimate the state-dependent probabilistic STP of daily activity-travel 

patterns based on the multi-state supernetwork representation. Utilizing GPS trajectories, the estimation 

and simulation results of visit probabilities in the STPs demonstrate the validity of the model framework.  

 

Keywords: activity-travel patterns; multi-state supernetwork; space-time prism; visit probability 

1. INTRODUCTION 

Individuals’ travel and activity participation are subject to space-time constraints. As a central time 

geographic concept, space-time prism (STP) delimits the space-time opportunities that can be reached 

by a moving object (Miller, 2017), and provides a measurement of potential mobility. The classic STP 

is determined by the known anchor points, time budget, the maximum attainable travel speed, and the 

time available for a flexible activity that can be conducted at one of multiple locations (Hägcrstrand, 

1970). By constructing the STP over a transportation network, the network-time prism delimits the 

accessible locations with respect to the spatial network (Miller, 1991). The boundary of an STP has 

been widely used as a space-time accessibility measurement, indicated by a spatial location set at instant 

times within time intervals.  

 

The majority STPs are deterministic binary measures such that all locations are considered equally 

accessible if within the prisms, otherwise not accessible. In reality, a prism does not have homogeneous 

interiors. To capture the variations within a prism, Winter and co-workers (Winter, 2009; Winter and 

Yin, 2010a, 2010b) introduced probabilistic time geography and modeled probability distributions of 

an individual’s potential visit locations at a time moment from a stochastic perspective. Song and Miller 

(2013) formulated discrete and continuous stochastic models for the movement of an individual within 

the potential path area (PPA). In Song et al. (2016, 2017) , the visit probability within a directed STP is 

modeled using the approach of continuous-time semi-Markov process, describing the likelihood of 

visiting different locations within the prism.  

 

In previous studies, STP is predominantly modeled at the trip level with single activities rather than for 

daily activity programs (APs). To capture the dependencies in an activity chain and improve realism, 

Chen and Kwan (2012) identified the location choice set based on STPs in the presence of all possible 
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activity-travel chains. Kang and Chen (2016) constructed the feasible space-time region for a daily AP 

by intersecting a set of feasible space-time regions for single activities. Liao (2021) applied bidirectional 

searches of full activity-travel patterns (ATPs) in multi-state supernetworks (SNK) (Liao, Arentze, and 

Timmermans, 2010, 2013) for delineating the exact STP for an AP. However, the probabilistic 

characteristics of accessibility within a prism have not been investigated for an AP with multiple 

activities and flexible activity sequences.  

 

The aim of this study is, therefore, to propose a model framework to construct and estimate the 

probabilistic STP of an AP. The model framework  includes three steps. First, based on the multi-state 

supernetwork, we construct the activity-based STP for a daily AP with flexible activity sequences (Liao, 

2021). Second, we model the visit probability within the activity-based STP using semi-Markov 

techniques (Howard, 1971). Third, we estimate a visit probability model using extracted GPS 

trajectories and simulate a typical AP to demonstrate the validity of the model framework. The visit 

probabilities of an AP provide quantitative descriptions of the activity-based STP interiors and 

evaluations of the accessibility for an individual participating in multiple activities with flexible 

sequences.    

2. METHODOLOGY 

Multi-state supernetwork (SNK) representation and STP 

Multi-state supernetworks are capable of representing ATPs of conducting an individual’s AP.  A daily 

AP’s implementation is a path choice through networks of different states, including activity states 

specifying which activities have been conducted, and vehicle states specifying where the private 

vehicles are (in use or parked somewhere).  

 

Denote a multi-state supernetwork as 𝑆𝑁𝐾(𝑁, 𝐸). The set of nodes 𝑁  indicates locations in SNK, 

including road intersections, activity locations, and parking locations. A set of links 𝐸 includes travel 

links of road segments, transaction links for conducting activities at activity locations, transition links 

for parking and picking up PVs, and boarding and alighting. 

 

Given origin H0 and destination H1 as two anchors and the corresponding time budget [𝑡H0 , 𝑡H1], the 

STP is constructed by deriving the potential path area (PPA) of an AP. The temporal feasibility of STP 

in SNK is formulated as follows (Liao, 2021): 

 

min{𝑔H0(𝑛|𝑠) + 𝑔H1(𝑛|𝑠)} ≤ 𝑡H1 − 𝑡H0 (1) 

 

where 𝑛|𝑠  denote node 𝑛  at activity-vehicle state 𝑠 , 𝑔H0(𝑛|𝑠) and 𝑔H1(𝑛|𝑠) are the actual activity-

travel times from H0 to 𝑛|𝑠 and 𝑛|𝑠 to H1 respectively.  

Visit probability within the STP 

We define a status as a movement starting from node 𝑖|𝑠 to node 𝑗|𝑠′  along link 𝑙𝑖𝑗|𝑠𝑠′  in SNK that has 

not arrived at 𝑗|𝑠′  yet, 𝑙𝑖𝑗|𝑠𝑠′ = (𝑖|𝑠, 𝑗|𝑠′) for ∀𝑠, 𝑠′. The status space includes the movements on all 

possible links within the STP. We formulate the holding time density functions of SNK links and the 

visit probability of each status at a moment in time. 

 

(1) Holding time density functions  

A holding time density function describes the probability that a transition from 𝑖|𝑠 to 𝑗|𝑠′ , corresponding 

to the movement on link 𝑙𝑖𝑗|𝑠𝑠′ , will take extra time 𝜏 over the minimum time on 𝑙𝑖𝑗|𝑠𝑠′ , denoted as 

𝑓𝑖𝑗|𝑠𝑠′(𝜏) when 𝜏 ≥ 0, otherwise 𝑓𝑖𝑗|𝑠𝑠′(𝜏) = 0 . The extra time 𝜏 on 𝑙𝑖𝑗|𝑠𝑠′  can be calculated using  
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𝜏 = 𝜏′ − 𝑡𝑖𝑗|𝑠𝑠′ , where 𝜏′ is the total time one traverse 𝑙𝑖𝑗|𝑠𝑠′  and 𝑡𝑖𝑗|𝑠𝑠′  is the minimum time expense 

from 𝑖|𝑠  to 𝑗|𝑠′ . For travel link 𝑙𝑖𝑗|𝑠𝑠′  that 𝑖 ≠ 𝑗  when 𝑠 = 𝑠′ , 𝑡𝑖𝑗|𝑠𝑠′  is the minimum travel time. If 

conducting activity 𝛼 ∈ 𝐴 at location 𝑖 (𝑖 = 𝑗) at state 𝑠 results in a new state 𝑠′, that is 𝑠 ≠ 𝑠′, 𝑙𝑖𝑗|𝑠𝑠′  is 

an activity link and 𝑡𝑖𝑗|𝑠𝑠′  corresponding to the minimum activity duration 𝑑𝛼. 

 

Considering parameters of 𝑓𝑖𝑗|𝑠𝑠′(𝜏) are heterogeneous for travel and transaction links, we use the 

latent class models to capture the latent heterogeneity of holding times. Suppose there exist 𝐾 different 

homogeneous latent classes in the heterogeneous population of extra travel times and activity durations. 

Let 𝑃𝑞𝑘 denote the class membership probability that an individual 𝑞 belongs to latent class 𝑘: 

 

𝑃𝑞𝑘 =
exp(𝜷𝑘𝒙𝑞)

∑ exp(𝜷𝑘𝒙𝑞)
𝐾
𝑘=1

, 𝑘 = 1,… , 𝐾, 𝜷𝐾 = 0 (2) 

 

where 𝒙𝑞 is the vector of sociodemographic variables of individual 𝑞, 𝜷𝑘 is the parameter vector of 𝒙𝑞 

of latent class 𝑘. The latent class holding time density function for extra time is formulated as 

 

𝑓𝑞(𝜏) = ∑𝑃𝑞𝑘 ∙ 𝑓
𝑞(𝜏|𝑘)

𝐾

𝑘=1

(3) 

 

where 𝑓𝑞(𝜏|𝑘) denotes the probability of individual 𝑞 that belongs to class 𝑘 spending extra time 𝜏 on 

a specific link in SNK, and 𝑓𝑞(𝜏) is the probability of unconditional holding time density. 

 

(2) Visit probability formulation 

For each link 𝑙𝑖𝑗|𝑠𝑠′  in SNK, we can calculate a feasible time range as  (𝑡𝑖|𝑠
− , 𝑡𝑗|

𝑠′

+ ), where 𝑡𝑖|𝑠
−  is the 

earliest arrival time and 𝑡𝑗|
𝑠′

+  is the latest departure time at 𝑖|𝑠 and 𝑗|𝑠′  in SNK, respectively. The visit 

probability in SNK as an extension over Song et al. (2016) is defined as follows. 

 

Denote 𝑃H0→𝑖|𝑠(𝑡) as the probability 𝑙𝑖𝑗|𝑠𝑠′  can be reached from 𝑖|𝑠 at 𝑡 given origin H0, formulated as 

 

𝑃H0→𝑖|𝑠(𝑡) =

{
  
 

  
 

0                                                 𝑡 ∈ [𝑡H0 , 𝑡𝑖|𝑠
− )                              

∫ 𝑓𝑖𝑗|𝑠𝑠′(𝜏)𝑑𝜏
𝑡−𝑡H0

𝑡𝑖|𝑠
− −𝑡H0

                       𝑡 ∈ [𝑡𝑖|𝑠
− , 𝑡𝑗|

𝑠′

+ − 𝑡𝑖𝑗|𝑠𝑠′)             

∫ 𝑓𝑖𝑗|𝑠𝑠′(𝜏)𝑑𝜏
𝑡𝑗|
𝑠′

+ −𝑡
𝑖𝑗|𝑠𝑠′

−𝑡H0

𝑡𝑖|𝑠
− −𝑡H0

        𝑡 ∈ [𝑡𝑗|
𝑠′

+ − 𝑡𝑖𝑗|𝑠𝑠′ , 𝑡H1]              

(4) 

 

Denote 𝑃𝑗|
𝑠′
→H1

(𝑡) as the probability of reaching H1  from 𝑗|𝑠′  based on available departure times,  

formulated as 

 

𝑃𝑗|
𝑠′
→H1

(𝑡) =

{
 
 
 

 
 
 0                                                         𝑡 ∈ [𝑡𝑗|

𝑠′

+ , 𝑡H1]                           

∫ 𝑓𝑖𝑗|𝑠𝑠′(𝜏)𝑑𝜏
𝑡H1−𝑡

𝑡H1−𝑡𝑗|𝑠′
+

                       𝑡 ∈ [𝑡𝑖|𝑠
− + 𝑡𝑖𝑗|𝑠𝑠′ , 𝑡𝑗|

𝑠′

+ )           

∫ 𝑓𝑖𝑗|𝑠𝑠′(𝜏)𝑑𝜏
𝑡H1−𝑡𝑖|𝑠

− −𝑡
𝑖𝑗|𝑠𝑠′

𝑡H1−𝑡𝑗|𝑠′
+

               𝑡 ∈ [𝑡H0 , 𝑡𝑖|𝑠
− + 𝑡𝑖𝑗|𝑠𝑠′)            

(5) 

    

The probability for visiting 𝑙𝑖𝑗|𝑠𝑠′  at 𝑡 ∈ [𝑡H0 , 𝑡H1], denoted as 𝑃(𝑙𝑖𝑗|𝑠𝑠′ , 𝑡), is formulated as the joint 

probability of 𝑙𝑖𝑗|𝑠𝑠′  being reached from 𝑖|𝑠  and arriving at H1  within (𝑡H1 − 𝑡) . We normalize 
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probabilities among all accessible links at time 𝑡 within the STP in SNK, for which all probabilities are 

added up to 1. 

 

𝑃(𝑙𝑖𝑗|𝑠𝑠′ , 𝑡) =
𝑃H0→𝑖|𝑠(𝑡) × 𝑃𝑗|𝑠′→H1

(𝑡)

∑ 𝑃(𝑙, 𝑡)𝑙∈𝐸
, 𝑡𝑖|𝑠
− + 𝑡𝑖𝑗|𝑠𝑠′ ≤ 𝑡𝑗|

𝑠′

+ (6) 

 

Eq. (6) can be used to derive the visit probability of each link and the discrete distribution of the status 

space at a time moment in SNK. 

Model estimation 

We extract a transportation network and collect individuals’ ATPs from GPS trajectories to estimate 

the holding time density functions for visit probability in the following steps. 

 

Step 1: Calculate the extra available times for road segments and different types of activities. For travel 

links (road segments), the extra time of a sampled ATP is calculated as: 

 

𝜏 = 𝑟𝑒𝑐(𝑡𝐴𝑇𝑃) − min(𝑡𝐴𝑇𝑃) (7) 

 

where 𝑟𝑒𝑐(𝑡𝐴𝑇𝑃) is the recorded ATP time from GPS data, min(𝑡𝐴𝑇𝑃) is the shortest ATP time with the 

same activity durations calculated using a path searching algorithm. Suppose 𝑓𝑖𝑗|𝑠𝑠′(𝜏) of travel link 

𝑙𝑖𝑗|𝑠𝑠′  follows an exponential distribution, i.e., 

 

𝑓𝑖𝑗|𝑠𝑠′(𝜏) = {
𝜆𝑒−𝜆𝜏,      𝜏 ≥ 0
0,              𝜏 < 0

(8) 

 

𝑓𝑞(𝜏|𝑘) in Eq. (3) is substituted by Eq. (8) as 𝑓
𝑖𝑗|𝑠𝑠′
𝑞 (𝜏|𝜆𝑘), with parameter 𝜆𝑘 (𝑘 = 1,2,… , 𝐾) to be 

estimated. 

 

For transaction links of different types of activities, the extra activity duration of a sampled ATP is 
calculated as: 

 

𝜏𝛼 = 𝑟𝑒𝑐(𝜏𝛼) − min(𝜏𝛼) (9) 
 

where 𝑟𝑒𝑐(𝜏𝛼)  is the recorded ATP’s activity duration for conducting activity 𝛼 , min(𝜏𝛼)  is the 

minimum duration of 𝛼 among all the extracted ATPs. We suppose 𝑓𝑖𝑗|𝑠𝑠′(𝜏) (denoted as 𝑓𝛼(𝜏)) of 

conducting 𝛼 follows the lognormal distribution, i.e., 

 

𝑓𝛼(𝜏) =
1

𝜏𝜎√2𝜋
exp (−

(ln(𝜏) − 𝜇)2

2𝜎2
) , 𝜏 > 0 (10) 

 

𝑓𝑞(𝜏|𝑘) in Eq. (3) is substituted by Eq. (10) as 𝑓𝛼
𝑞
(𝜏|𝜇𝑘 , 𝜎𝑘

2), with parameter 𝜇𝑘, 𝜎𝑘
2(𝑘 = 1,2, … , 𝐾) to 

be estimated. 

 

Step 2: Estimate the parameters using maximum likelihood estimation (MLE). Given 𝑁  the total 

number of extracted individuals’ ATP, the likelihood for all individuals is: 

 

𝐿 =∏[∑𝑃𝑞𝑘 ∙ 𝑓
𝑞(𝜏|𝑘)

𝐾

𝑘=1

]

𝑁

𝑞=1

=∏[∑
exp(𝜷𝑘𝒙𝑞)

∑ exp(𝜷𝑘𝒙𝑞)
𝐾
𝑘=1

∙ 𝑓𝑞(𝜏|𝜽𝑘)

𝐾

𝑘=1

]

𝑁

𝑞=1

(11) 
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where 𝜽𝑘 are the parameters in Eq. (8) or Eq. (10) for travel and transaction links. The log-likelihood 

for the sampled ATPs is: 

 

ln 𝐿 = ∑(ln∑𝑃𝑞𝑘 ∙ 𝑓
𝑞(𝜏|𝜽𝑘)

𝐾

𝑘=1

)

𝑁

𝑞=1

(12) 

 

We apply the gradient-descent method as a solution to solve the MLE for latent class models. The 

estimated parameters are used in simulating the visit probabilities in Eqs. (4-6). 

3. RESULTS  

The suggested model framework is implemented for an AP in a transportation network. STPs and visit 

probabilities are simulated for each activity state in SNK every 5 min in peak hours and 30 min in non-

peak hours for travel links and activity locations.  

Estimation results 

In the numerical experiment, 2714 individuals’ ATPs with one fixed workplace and one flexible activity 

(non-daily shopping) are extracted from GPS data. We select an AP in the Eindhoven area (the 

Netherlands) to simulate the STP construction and the visit probabilities within the STP (Figure 1). 

The settings are as follows: 

 

(1) The time budget is 742 min, 10% extra over the recorded ATP time. Given the recorded ATP 

departure time 𝑡H0 = 6: 20, the time window is [6:20, 18:42]. 816 flexible activity locations are selected 

as alternatives for non-daily shopping. The recorded minimum duration of working and flexible activity 

are 558 min and 36 min respectively.  

(2) The road network includes 47,901 nodes and 10,0581 directed road segments. The car speeds for 

non-peak hours [7:00, 9:00] and peak hours [16:30, 19:00] on 3 types of roads are <100, 80, 50> and 

<70, 50, 30> km/h.  

 

 
Figure 1. Selected ATP (anchors: red: home; yellow: workplace; blue line: GPS trajectory). 
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(3) The parameters of 𝑓𝑞(𝜏) for the traveling and non-daily shopping are estimated. Individual 𝑞’s 

gender and age are selected as the sociodemographic variables as 𝑥𝑞1 and 𝑥𝑞2. Let 𝑥𝑞1 = 0 if individual 

𝑞 is male, 𝑥𝑞1 = 1 when 𝑞 is female; 𝑥𝑞2 = 0 if individual 𝑞’s age is between 20 to 59, 𝑥𝑞2 = 1 when 

age ≥ 60. The estimation outcomes of the latent class models are shown in Tables 1-6 (See Tables in 

the Appendix).  

(4) For travel links, 4 activity states are simulated based on whether work and non-daily shopping are 

conducted in different sequences. For transaction links, 2 states are simulated, i.e, the flexible activity 

is conducted before and after work. 

Illustration of visit probabilities 

Travel links 

The visit probabilities of travel links within the STPs reflect the heterogeneous interior for traveling 

with purpose, which is non-uniform and changing over activity states and time moments.  

 

At activity state 0, the individual departs at 6:20 traveling to conduct the fixed and flexible activities. 

The number of travel links within STPs increases given available time during [6:20, 7:30], and decreases 

during [7:40, 8:30] since 558 min work has to be done (Figure 2). At activity state 2 where the 36-min 

non-daily shopping is conducted within [6:20, 7:00], the individual has more time for visiting more 

travel links at the same time point during [8:00, 8:55] at state 2 compared to the situation at state 0 (see 

in Figure 3 (a) and (b) at 8:20). 

 

There are no travel links within STP between (8:55, 16:00) since the individual is working. After 16:00 

at activity state 1, the individual searches locations of non-daily shopping after work is conducted 

(Figure 4). At activity state 3 that all activities are done, around 30 to 40 min are available for the 

individual traveling to home during [16:40, 18:40], and thus more links can be accessed compared to 

the situation at state 1 (see Figure 5 (c) and (d) at 18:00).  

 

As shown in the results, the distribution of locations, activity sequences, available time, and the shortest 

path direction, together result in the changes of “higher visit probability travel links” (darker red).  

 

 

 
(a) 6:25, none is conducted 

 
(b) 6:30, none is conducted 

 
(c) 6:40, none is conducted 

 
(d) 7:30, none is conducted 

 
(e) 8:20, none is conducted 

 
(f) 8:30, none is conducted 

Figure 2. STPs interior of travel links at activity state 0. 
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Figure 3. STPs interior of travel links at activity state 2. 

 

 

 

  

 
(a) 16:00, work is conducted 

 
(b) 16:30, work is conducted 

 
(c) 17:40, work is conducted 

 
(d) 18:00, work is conducted 

Figure 4. STPs interior of travel links at activity state 1. 
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(a) 16:40, all are conducted 

 
(b) 18:30, all are conducted 

 
(c) 18:00, only work is conducted 

 
(d) 18:00, all are conducted 

Figure 5. STPs interior of travel links at activity state 3. 
 

Flexible activity locations 

The level of accessibilities of the flexible activity locations within the STPs are reflected by the visit 

probabilities, which changes over activity sequence and time moments.  

 

 

 
(a) 6:25, before work  

 
(b) 6:40, before work  

 
(c) 8:10, before work  

 
(d) 8:50, before work  

Figure 6. STPs interior of flexible activity locations before work. 
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(a) 16:00, after work  

 
(b) 16:30, after work  

 
(c) 17:30, after work  

 
(d) 18:20, after work  

Figure 7. STPs interior of flexible activity locations after work. 
 

The number of flexible activity locations within the STP increases during [6:20, 7:40] and the locations 

near home have relatively higher visit probabilities. After 8:00, the closer to the workplace, the higher 

visit probabilities of the locations are compared to the ones near home due to the available time (Figure 

6). After work is conducted (Figure 7), the accessible locations first expand from the center of the 

workplace with higher probabilities and finally shrink to home at 18:20, given 𝑡H1 =18:42 and the 36-

min flexible activity duration.  

4. CONCLUSIONS  

The state-dependent STPs of an AP delimit the potential mobility of an individual to access locations 

with limited time, but the deterministic characteristic of STP lacks the evaluation of how likely a 

location within the STP can be visited. This study proposes a model framework to construct and estimate 

the probabilistic STP of an AP based on the multi-state supernetwork representation. By assuming the 

distributions of holding time density functions of travel and transaction links in SNK, latent class models 

are further applied to capture and estimate the individuals’ latent heterogeneity on extra time for 

traveling and conducting activities. The results illustrate that the visit probabilities of travel links and 

activity locations over different activity states and time points can describe the interior of the STPs. In 

the next step, we will develop proper accessibility measurements based on the quantifications of visit 

probabilities.  
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APPENDIX 

Tables 1-3 report the estimated parameters of 𝑓𝑞(𝜏) and the percentages that the sample belongs to each 

class with the highest membership probability for non-daily shopping, working, and traveling, 

respectively. To reflect the fit of the latent class models, Tables 4-6 shows the test results of Bayesian 

Information Criteria (BIC) and likelihood ratio (LR) given various numbers of classes, based on the 

assumptions of distributions and the hypotheses of the parameters.  

 

The estimated parameters of latent class models: 

a. Flexible activity: non-daily shopping 

 

Table 1. Parameters and highest 𝑃𝑞𝑘 percentages of selected class number 

Class 𝜷𝑘 𝝁𝑘 , 𝝈𝑘 Sample 𝑁𝑘 / Highest 𝑃𝑞𝑘  % 

 const 0 𝜇1 2.7109 

365 100% 1 gender 0 𝜎1 1.9683 
 age 0   
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b. Fixed activity: working 

 

Table 2. Parameters and highest 𝑃𝑞𝑘 percentages of selected class number 

Class 𝜷𝑘 𝝁𝑘 , 𝝈𝑘 Sample 𝑁𝑘 / Highest 𝑃𝑞𝑘  % 

1 

const 0.536 𝜇1 6.2672 

1234  45.47% gender -0.6813 𝜎1 0.0941 

age -0.4178   

2 

const 0 𝜇2 5.2213 

1480 54.53% gender 0 𝜎2 0.9410 

age 0   

 

c. Travel links 

 

Table 3. Parameters and highest 𝑃𝑞𝑘 percentages of selected class number 

Class 𝜷𝑘 𝝀𝑘 Sample 𝑁𝑘 / Highest 𝑃𝑞𝑘  % 

1 

const 1.7586 

𝜆1 0.0271 380 24.58% gender -2.9839 

age -2.7812 

2 

const -0.8908 

𝜆2 0.0346  842 54.46% gender 2.963 

age 0.2311 

3 

const 0 

𝜆3 0.0310 423 20.96% gender 0 

age 0 

 

 

The results of the fit of the latent class models:  

 

a. Flexible activity: non-daily shopping 

 

Table 4. BIC and LR with latent classes number 

Number 

of classes 

Number of 

Parameters 
Log-likelihood ln(𝐿) BIC 

LR  

(LR-val / p-val (df)) 

1 5 -1754.5719 3520.9438 0.5649 / 0.7539 (2) 

2 10 -1697.8948 3454.7885 113.9192 / 8.6267e-20 (10) 

3 15 -1681.2356 3450.9697 147.2378 / 8.5223e-24 (15) 

4 20 -1675.6434 3469.2848 158.6689 / 1.3564e-23 (20) 

5 25 -1665.4855 3478.4684 173.3506/ 3.6977e-24 (25) 

10 50 -1650.1866 3595.3681 202.0330/ 3.6134e-20 (50) 

𝐵𝐼𝐶 = 𝑃 ln(𝑁) − 2 ln(𝐿) ; 𝑃: number of 𝜷𝑘 + number of 𝜇𝑘, 𝜎𝑘
2 

LR test: The null hypothesis:  𝜇𝑘 =
1

𝑁
∑ ln 𝜏𝑞
𝑁
𝑞=1 , 𝜎𝑘

2 =
1

𝑁
∑ (ln 𝜏𝑞 −

1

𝑁
∑ ln 𝜏𝑞
𝑁
𝑞=1 )

2
𝑁
𝑞=1 , 𝜷𝑘 = 0 

 

b. Fixed activity: working 
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Table 5. BIC and LR with latent classes number 
Number 

of classes 

Number of 

Parameters 
Log-likelihood ln(𝐿) BIC 

LR  

(LR-val / p-val (df)) 

1 5 -18973.5117 37962.8319 4046.5781/ 0 (2) 

2 10 -17586.0957 35251.2531 6797.3008 / 0 (10) 

3 15 -17469.0371 35056.6669 6919.1914 / 0 (15) 

4 20 -17285.6230 34729.3696 7024.5898 / 0 (20) 

5 25 -17259.5254 34716.7052 7470.7734 / 0 (25) 

6 30 -17284.9824 34807.1502 7423.2188 / 0 (30) 

8 40 -17287.2480 34890.7433 7415.6523 / 0 (40) 

10 50 -17285.5410 34966.3909 7414.4844 / 0 (50) 

 

c. Travel links 

 

Table 6. BIC and LR with latent classes number  
Number 

of classes 

Number of 

Parameters 
Log-likelihood ln(𝐿) BIC 

LR  

(LR-val / p-val (df)) 

1 3 -6882.1519 13771.6471 0. / 1.0 (1) 

2 6 -6877.2329 13813.2132 9.7520 / 0.2828 (6) 

3 9 -6875.3398 13838.8008 13.7549 / 0.3166 (9) 

4 12 -6875.2188 13867.9323 13.6055 /  0.6281 (12) 

5 15 -6875.0942 13897.0570 14.3369 / 0.8130 (15) 

8 24 -6874.9126 13984.8148 14.4785 / 0.9966 (24) 

10 30 -6874.9165 14043.5701 14.6758 / 0.9999 (30) 
𝑃: number of 𝜷𝑘 + number of 𝜆𝑘 

LR test: The null hypothesis:  𝜆𝑘 =
𝑁

∑ 𝜏𝑞
𝑁
𝑞=1

, 𝜷𝑘 = 0 
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SHORT SUMMARY 
Assessing to what extent new modes will change modal split is difficult, since revealed preference 
data is not available yet to estimate models. To address this, an unlabelled multimodal 
supernetwork is developed in which mode and route choice are simultaneously modelled. The 
model has been estimated based on data of existing modes and can be used to assess the impact 
of any new mode. We applied the model to analyse the effects of shared e-bicycles on one Origin-
Destination pair between Delft and Rotterdam. The main scientific contribution of this paper is 
that it successfully demonstrates how an unlabelled multimodal supernetwork can be used to 
analyse the effects of shared e-bicycles on the modal split between Delft and Rotterdam. The 
results show that the modal share of shared e-bicycles is 35.3-40.5% for unimodal trips and occur 
in 36.2-46.3% of multimodal trips, indicating that shared e-bicycles can significantly change the 
modal split. 

Keywords: agent-based modelling; multimodal; shared e-bicycles; supernetwork; unlabelled 
mode choice 

Word count: 2496 
 

1. INTRODUCTION 

Several mobility systems, ranging from shared electric bicycles to autonomous vehicles, have 
been developed. These new mobility systems could change the way our societies function in terms 
of sustainability, equity, accessibility, and safety (Fagnant & Kockelman, 2015; Milakis et al., 
2017; Shaheen et al., 2019). 
 
Researching how new modes affect mode choice is difficult since revealed data of the potential 
users using these new mobility systems are not available yet, so mode specific parameters cannot 
be estimated. In our previous research, this challenge has been addressed by developing an 
abstract, or unlabelled, mode modelling approach to assess the modal share of any new mode and 
unimodal trips (De Clercq et al., 2022). The unlabelled mode modelling approach was first 
introduced by Quandt & Baumal and describes a method to formulate a discrete choice model by 
describing the utility of each mode with the same mode attributes for each mode and by leaving 
out mode-specific constants and parameters (Quandt & Baumal, 1966). In our previous research 
(De Clercq et al., 2022), it was shown that any new mode can be modelled using the unlabelled 
mode modelling approach as long as the new mode can be described as a (new) combination of 
existing attributes of which the relative importance can be estimated based on revealed preference 



 
2 

data. In those cases, the utility function of the new mode can be defined and thus the new mode 
can be added as an option in the choice set of a discrete choice model. However, a shortfall of this 
approach is that it does not yet cover multimodal trips. 
 
New modes, such in our case shared electric bicycles, will be often used for the the first- and/or 
last-mile parts of a trip and will only available at certain locations (e.g., mobility hubs) (Van Eck 
et al., 2014). Therefore, to analyse new transport modes, it will be often necessary to analyse their 
use in a multimodal setting. This can be done by developing a multimodal supernetwork which 
can model multimodal trips without the need to predefine the combinations of mobility systems 
and where mode and route choice happens simultaneously (Liao, 2016; Van Eck et al., 2014; Vo 
et al., 2021). These models only need to know where people are allowed to switch modes (e.g., 
where the mobility hubs are located).  
 
In our study (De Clercq et al., 2023), we developed such a supernetwork approach to assess the 
impact of new mobility systems. Following the same logic as with the previously mentioned 
unlabelled discrete choice model (De Clercq et al., 2022), in our supernetwork, one can define 
the new mobility system by describing it in terms of a broad set of mode attributes but without 
any mode-specific constants, and add that mode as a new ‘layer’ in the supernetwork. So far, the 
model has only been applied to theoretical simple networks and a fictive multimodal version of 
the Sioux Falls network to demonstrate and verify the method. In this paper, we applied the model 
in a more realistic case situation. We focus on the introduction of shared electric bicycles on one 
example Origin-Destination (OD)-pair between Delft and Rotterdam because cycling is a 
dominant mode of transport in the Netherlands and electric bicycles are becoming increasingly 
popular (Sun et al., 2020). 
 
This paper contributes to the existing literature by demonstrating how an agent-based multimodal 
supernetwork-based traffic assignment model with unlabelled modes that takes into account mode 
and route choice simultaneously can be applied in a real use-case to gain insight into the influence 
of shared electric bicycles on a specific OD-pair between Delft and Rotterdam, including the use 
in the first and last-mile parts of a trip. Knowledge gaps and possible future research directions to 
research the effects of new modes on the modal split of urban areas are identified and discussed 
as well. 
 

2. METHODOLOGY 

Figure 1 summarizes the supernetwork approach that has been applied in this paper. Trip 
generation and distribution are considered exogenous. Mode and route choice are calculated 
simultaneously based on the resistance per edge. Subsequently, per timestep, trips are assigned to 
the supernetwork using a mesoscopic dynamic traffic assignment approach. The assignment 
model with the supernetwork is set up using Python 3.10.2 and the NetworkX package (Hagberg 
et al., 2008). Below, the main elements of the assignment model are described. For an extensive 
description of the network definition, the combined mode and route choice model and the network 
loading model, refer to (De Clercq et al., 2023). 
 
The supernetwork consists of one layer for each mode. Edges represent aggregated road segments 
with generalized resistance (i.e., disutility), transit segments (representing aggregated transit 
lines) and dummy transition edges from and to a neutral layer (representing transfer resistance). 
The transport mode edges have a length and a number of attributes (representing the mode and 
link attributes), where for modes using the road network the ‘time’ attribute can change with the 
use of the edge (i.e., the flow).  
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Figure 1: General layout of multimodal supernetwork (De Clercq et al., 2023) 

Twelve mode attribute assumptions (times mode attribute parameters, see Table 3) have been 
used to define the resistance in the edges for all modes: Initial cost (€); Cost/trip (€); Time (min); 
Driving task (-); Skills (-) (i.e., driver’s license); Weather protection (-); Luggage (-); Shared (-); 
Availability (-); Reservation (-); Active (-); Accessible (-). The mode attribute assumptions per 
mode are shown in Table 1.  

Table 1: Mode attribute assumptions 
Mode attribute Addable* Source and determination 
Initial cost (€) Yes Car, transit, cycle, walk = 0 
Cost/trip (€) Yes Car = €0.19 per km; transit = 0.20 per km; walk = 0; 

bicycle = €100 purchase costs, with 4 trips per day for 5 
years 

Time (min) Yes Car, transit, bicycle and walk from Google Maps (Travel 
times Google Maps, n.d.) 

Driving task (-) No Car, bicycle = 1; transit, walk = 0 
Skills (-) (i.e., 
driver’s license) 

No Car = 1; transit, bicycle, walk = 0 

Weather protection 
(-) 

No Car, transit = 1; bicycle, walk = 0 

Luggage (-) No Car = 1; transit = 0.5; bicycle, walk = 0 
Shared (-) No Car, bicycle, walk = 0; transit = 1 
Availability (-) No Car = 1; transit = 0.5; bicycle = 1, walk = 1 
Reservation (-) No Car, bicycle, walk = 1; transit = 0 
Active (-) No Car, transit = 0; bicycle, walk = 1 
Accessible (-) No Transit = 1; Car, bicycle, walk = 0 

*Addable and non-addable attributes are implemented differently in the edge/route resistance 
calculations (see Eq. 1 and Eq. 2). 
 
When agents want to switch modes, the resistance in the considered route also contains the time 
it takes to disembark from the mode, and embark to the mode (see Table 2) and the ‘initial cost’ 
of a mode (see Table 1). The times in these edges are multiplied by 3 to represent the extra mental 
effort it takes for users to switch modes and wait for the next mode (Wardman, 2004). 
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Table 2: Assumed time to switch modes, multiplied by 3 to model extra mental 
effort for switching mode, based on (Wardman, 2004) 

Mode Neutral to mode Mode to neutral 
Car 5 min (get in car) 2 min (parking) 
Transit 
(BTM) 

7.5 min (average waiting time, ass. 
freq.: 15 min) 

5 min 

Bicycle 1 min (get on bike) 1 min (parking) 
Walk 0 min 0 min 

 
The total resistance per route is defined as the sum of the edge resistances. Edge resistances are 
the sum of a series of products of mode attributes and the valuations of these attributes by users. 
For the modelling approach, homogenous groups of users are combined in clusters. There are two 
categories of mode attributes; one category which is addable over the route regardless of the 
length of each edge and the length of the route (e.g., travel time, costs) (see Eq. 1) and one 
category which is not addable over the route. The attributes within this last category need to be 
weighted with the length of each edge within the route to come to a weighted average value for 
those attributes (e.g., weather protection on 70% of the total length of the route) (see Eq. 2). These 
two edge resistance calculations are combined in Eq. 3, where the resistances of all edges in one 
route are summed up and divided by the length of that route to get the ratio of the mode attributes 
of each edge respective to their share in the total route. A multinomial logit model (MNL) (Ortuzar 
& Willumsen, 2011) with en-route route choice is used to determine the mode/route choice based 
on the route resistance. IIA (Independence of Irrelevant Alternatives) is assumed for all modes in 
this study. 
 
 𝐸!""!#$%,',(,) = ∑ 𝛽)𝜒*,',( ,				∀𝑘 ∈ 𝐾*

+      Eq. 1 

 𝐸),)-!""!#$%,',(,) = 𝑙𝑒𝑛' ∗ ∑ 𝛽)𝜒.,',( ,				∀𝑚 ∈ 𝑀.
+    Eq. 2 

 𝑈/,(,) = ∑ 𝐸!""!#$%,',(,)'∈1 + ∑ 3!"!#$%%$&'(,*,+,!*∈-
4

    Eq. 3 
 
where;  

𝑈 = route resistance [-]; 
𝐸!""!#$% = edge resistance addable component [-]; 
𝐸),)-!""!#$% = edge resistance non-addable component [-]; 
𝛽 = cluster valuation of mode attribute [-];  
𝜒 = value of mode attribute [-];  
𝑙𝑒𝑛 = length of edge [km];  
𝐿 = length of route [km]; 

𝑛 = cluster index [-]; 
𝑖 = edge index of edges within route [-]; 
𝑘 = addable mode attribute index [-];  
𝑚 = non-addable mode attribute index [-];  
𝑡 = time index [-]; 
𝑟 = route index [-]; 

𝐼 = set of edges within mode layers in route 𝑟; 
K = set of addable mode attributes (e.g., travel time); and 
M = set of non-addable mode attributes (e.g., weather protection). 

 
The valuation (i.e., observed preferences for travellers for attributes) of the attributes have been 
estimated using a large-scale trip survey in the Netherlands (CBS, 2017) for the year 2017. The 
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dataset contains personal, trip, and mode information. It contains five main transport modes: car, 
carpool, transit (BTM), bicycle, and walk. This dataset is further enriched with the mode attributes 
(see Table 1). Further more, clusters of travelers with similar characteristics have been identified, 
using k-means clustering and the elbow method to define the optimal number of clusters for the 
trips. The estimated valuations for the six clusters are shown in Table 3. Note that some 
parameters have different signs per cluster. This can be explained by considering that some 
clusters value certain traits positively (e.g., higher costs are a status symbol) and other clusters 
value certain traits negatively (e.g., higher costs make a mode less affordable). Because these 
attributes capture almost all aspects that determine mode and route choice, mode specific 
constants are no longer needed. The valuations of the attributes (i.e., betas) are also no longer 
mode-specific and therewith transferable to new modes.  
 
Table 3: Mode attribute valuations per cluster (De Clercq et al., 2022) 

Cluster 1 2 3 4 5 6 
(Initial) Cost 0.0193 -0.0267 -0.0343 0.0229 -0.0123 -0.0806 
Time -0.0208 -0.0439 -0.0207 -0.0243 -0.036 -0.0218 
Driving task -0.571 -0.0884 -0.855 -1.21 -0.129 -1.2 
Skills -0.16 2.17 1.44 2.22 -2.81 1.52 
Weather protection -1.07 -0.402 -0.284 -0.781 -1.22 -0.0638 
Luggage -1.08 -1.39 -0.0653 -0.719 -0.952 -0.248 
Shared -0.611 -2.01 -1.25 -3.8 1.3 -1.43 
Availability -1.87 -3.96 -1.44 -8.28 -0.24 -2.46 
Reservation -0.733 -1.74 -0.292 0.313 1.79 0.672 
Active 0.74 -0.00596 0.314 0.58 1.22 0.314 
Accessible -0.671 -2.58 -1.25 -3.49 1.41 -1.94 

 
Case-study: Delft to Rotterdam 
Figure 2 visualizes the network with first-mile, main, and last-mile edges for an example OD-
relation between Delft and Rotterdam. Nodes depict centroids and mobility hubs (the network 
definition does not contain centroid feeders). First- and last-mile edges have multiple modes. The 
origin and the destinations are indicated using O and D respectively. Figure 3 gives a 
supernetwork representation of this network with five modes for which the model has been 
estimated (the reference case) and an added sixth mode shared e-bicycles (for the ‘new mode’ 
alternative). The network contains transition links between modes through a neutral layer. Note 
that when switching mode, an agent always needs to leave the mode, enter the neutral layer, and 
enter the new mode. The possible transfers on certain locations (circles) between modes are 
depicted with the vertical dashed lines. One example multimodal route is visualized in yellow, 
where the bicycle is used to cycle from the centroid (O, Delft) to the station, transit is used as 
main mode and walking is used for the last-mile to the destination (D, Rotterdam).  
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Figure 2: OD relation between Delft and 
Rotterdam. 

 
Figure 3: Supernetwork of the route 
between Delft and Rotterdam 

 
The implementation of shared electric bicycles can come with different variants for initial costs, 
speed, generalized transit times from the neutral layer to shared e-bicycles and vice versa. These 
variants are described in Table 4. The possible combinations (81) of these attribute values form 
scenarios. These scenarios are simulated to analyse the effects of a different level of service of 
shared electric bikes on the modal split and travel times. 
 
Table 4: Attribute values 

Nr. Attribute Pricing policy 
1 Initial cost shared electric step [€] 3.2 – 4.0 – 4.8 
2 Speed [km/h] 20 – 25 - 30 
3 Neutral to e-bike [min] 2.4 – 3.0 – 3.6 
4 E-bike to neutral [min] 1.6 – 2.0 – 2.4 
5 Network [-] With/without e-bicycles 

 
Simulation 
For the simulation, the earlier identified six clusters of travelers are used; 166 trips for each cluster 
are simulated. A timestep of 1/100 hours (=36 sec) is used. This time step is chosen such that an 
agent will spend at least two timesteps on the shortest link (1.8 km) considering the highest free 
flow speed in this model (90 km/h). The simulated time period in the model is 4 hours representing 
a morning peak hour from 6 am to 10 am. The same seed number is used in all simulations to be 
able to compare different scenarios. The number of transfers between modes in the multimodal 
networks is limited to 2 (first-mile à main à and last-mile). Since transit is modelled in one 
layer and contains all bus, tram, metro (BTM) transit, this is assumed to be realistic. 
 
 

3. RESULTS AND DISCUSSION 

The results of the simulations, including sensitivity analysis results between brackets, are shown 
in Table 5-7. It can be observed that the modal share of shared e-bicycles ranges between 35.3 
and 40.5% in unimodal trips and occurs in 36.2-46.3% of the multimodal trips, indicating that 
shared e-bicycles can significantly change the modal split between Delft and Rotterdam, reducing 
mainly the modal share of cars, cycling, and, to a lesser extent, transit and walking. When looking 
at the total distance travelled per mode for all scenarios, it is interesting to point out that walking 
is used at least in 41.7% of the multimodal trips but amounts to only a maximum of 0.6% of all 
distance travelled. This indicates that walking occurs for first- and last-mile as would be expected. 
The average travel time changes depending on the configuration of shared e-bicycles, indicating 

Nodes
Train
(e-)bicycle + bus
Car
(e-)bicycle + bus 
+ walkO

D

Delft (O) 

Rotterdam (D) 

12 km 
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that travel time can be improved by introducing shared e-bicycles but depend on the level of 
service that shared e-bicycles have when they are introduced on the roads. 
 
 
Table 5: Modal split (trips) with and without shared e-bicycle, including sensitivity 
analysis results between brackets 

  Modal split [%] 
Car Transit Bicycle Walk E-bicycle Multimodal 

No e-
bicycles 45,4 0,8 45,8 0,0 - 8,0 

E-bicycles 28,2 0,5 25,3 0,0 40,5 5,5 
[25,5 - 30,4] [0,2 - 0,5] [23,4 - 25,9] [0,0 - 0,0] [35,3 - 40,5] [5,1 - 5,8] 

  Modal split of multimodal trips [%]* 
Car Transit Bicycle Walk E-bicycle   

No e-
bicycles 0,0 60,6 89,0 60,2 -   

E-bicycles 
0,0 37,6 75,8 51,7 44,0   

[0,0 - 0,0] [28,6 - 37,6] [67,9 - 75,8] [41,7 - 51,7] [36,2 - 46,3]   
*The modal split of mixed trips amounts to more than 100% since multiple modes can occur in 
one single trip. The numbers can be interpreted as the percentage of the mixed trips that contain 
a certain mode. 

Table 6: Modal split (distance) with and without shared e-bicycles, including 
sensitivity results between brackets 

  
Modal split [% of distance] 

Car Transit Bicycle Walk E-bicycle Multimodal 
No e-

bicycles 43,6 0,9 46,6 0,0 - 8,8 

E-bicycles 
26,9 0,6 25,6 0,0 41,0 6,0 

[24,2 - 28,9] [0,3 - 0,7] [23,6 - 29,6] [0,0 - 0,0] [35,7 - 45,2] [5,5 - 7,7] 

  
Modal split of multimodal trips [% of distance] 

Car Transit Bicycle Walk E-bicycle   
No e-

bicycles 0,0 3,1 5,1 0,6 -   

E-bicycles 0,0 1,3 2,5 0,4 1,8   
[0,0 - 0,0] [0,7 - 1,6] [2,1 - 3,8] [0,3 - 0,5] [1,5 - 2,4]   

 
Table 7: Average speed, distance, and duration with and without shared e-bicycles, 
including sensitivity analysis results between brackets 

  Average speed 
[km/hr] 

Average distance 
[km] 

Average duration 
[min]  

No e-bicycles 23,64 15,40 43  

E-bicycles 24,01 15,56 41  
[22,09 - 25,99] [15,52 - 15,61] [38 - 45]  

 
The results in this study are plausible in the sense that the e-bicycle mainly replaces car and bike 
trips. This is in line with the findings in Sun et al. (2020). They used a longitudinal dataset from 
the Netherlands Mobility Panel to analyze the modal shift effects of people who bought an e-
bicycle. However, the potential modal share of shared e-bicycles is slightly higher than the study 
of Sun et al (2020) shows. For trips of about 15 kilometres, they found a modal share of 33-36%. 
This might be explained by the relatively high share of normal bicycles in the reference situation 
for this specific origin-destination pair and the fact that a multinomial logit model is used to 
determine the next node for each agent, which does not account for overlap (‘red/blue-bus 
paradox’). 
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4. CONCLUSIONS AND RECOMMENDATIONS 
 
This study successfully demonstrated how an agent-based unlabelled multimodal supernetwork-
based traffic assignment model can be used to assess the effects of new modes such as shared 
electric bicycles on the modal split for an example origin-destination pair Delft- Rotterdam. This 
is done by using a supernetwork framework, where each available mode is modelled as a specific 
layer within this supernetwork with nodes and edges, where the edges’ resistances are described 
by a set of attributes without an alternative-specific constant. The mode-specific layers are 
interconnected to a neutral layer with edges representing transfer resistances, also described with 
a set of attributes. The unlabelled approach, i.e., without mode specific parameters and constants, 
makes it possible to add any new mode. 
 
The results show plausible modal-shift effects from cars and bicycles to shared electric bicycles. 
However, the absolute modal share seems slightly overestimated because overlap is not 
considered. To account for overlap in routes (and similar modes), it is recommended to explore 
grouping layers of similar modes and overlapping routes into one ‘nest’ by using a path-overlap 
factor. A path size correction logit model (PSCL) in combination with a multiplicative MNL is 
expected to work well on real networks (Bovy et al., 2008; Smits et al., 2018). PSCL models exist, 
for transit only, based on the shared number of transfer nodes, edges and travel times, which have 
higher accuracy for transit, but these models cannot be applied on car transport (Dixit et al., 2021). 
Since both transit and car modes are used, this method is not trivial to implement on a multimodal 
supernetwork.  
 
The modular approach of this supernetwork allows for further explorations of other new modes, 
more scenarios, and other network configurations. Recommended options to explore further are 
to include other new modes, pricing policies, adding a time-based transit schedule, and changing 
the availabilities and stops of transit or other modes. Further, no disruptions (e.g., weather 
conditions, accidents) are analyzed in this study yet. Disruptions could be implemented by 
temporarily increasing the edge resistance in some places. This could be an approach to give 
insight into how a new mode changes the travel time reliability of a system. Finally, it is 
recommended to integrate this multimodal supernetwork in a land-use-transport interaction model 
to see how higher-order aspects, such as activity patterns, change over the years as a result of the 
introduction of new transport modes. 
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Short summary

MobilityCoins are a tradable mobility credit (TMC) scheme, where all modes can have link-specific
and origin-and-destination-specific charges and incentives. These schemes are alternatives to con-
gestion pricing and fuel excise taxes. Their design as a cap-and-trade scheme means that a fixed
market volume is defined based on a to-be-regulated quantity. MobilityCoins are distributed to
all travelers, who use them to pay for mobility or sell them on a market. However, the question
of how to select policy parameters of such schemes in real-world contexts remains unanswered. In
this paper, we develop a multimodal Wardropian transport model with integrated MobilityCoins
scheme for transport policy analysis. Travelers have the choice between cars, public transport, and
bicycles, where only cars experiences congestion effects. Using a simple model, we illustrate how a
MobilityCoins scheme impacts transport outcomes under different system designs, e.g., declining
overall market volume of MobilityCoins.
Keywords: Transport policy; transportation network modeling; tradable mobility credits; road
user charges

1 Introduction

It has been argued that “economists have had limited success in promoting economically efficient
transportation and environmental externality policies” (Lindsey & Santos, 2020). The state-of-
the-art policies, if one may called it, are fuel excise taxes. However, when considering the advent
of electric vehicles that are not paying any fuel excise taxes at all, one realizes that not only the
tax revenue will decline with the obvious consequences for the transportation system funding, but
also does the ability to use this policy to manage demand and congestion vanishes. Thus, new
policies and mixes of them are required for “for deep CO2 mitigation in road transport” (Axsen et
al., 2020).
In economics, a long discussion on “price vs. quantities” exists for the regulation of an economic
system, i.e., setting standards or limits or charging taxes (Weitzman, 1974). Here, Dales was
one of the first proposing such a a quantitative instrument to manage external costs using a cap-
and-trade scheme (Dales, 1968). In transport, such policy instrument based on tradable mobility
credits (TMC) has been put forward by Verhoef et al. to regulate externalities (Verhoef et al.,
1997), but so far did not see any real-world implementation. Nevertheless, such a policy instrument
did see already see implementation in energy in order to, e.g., manage carbon emissions (Perroni
& Rutherford, 1993) and to promote green energy deployment (Frei et al., 2018). The general idea
of taxation is to impose a tax on the market price which in case of elastic demand reduces demand.
Contrary, in the cap-and-trade scheme, a regulator defines an upper limit to the to-be-regulated
quantity, e.g., emissions or congestion delays, and issues credits or permits to use parts of this
overall quantity. As market participants can negotiate and allocate the credits among themselves,
greater market efficiency is aimed for.
TMC research already developed among others the fundamental mathematical mechanism (Yang &
Wang, 2011) also in a multimodal context (Balzer & Leclercq, 2022), compared its effectiveness to
common road pricing (de Palma et al., 2018), and studied user perceptions, the system’s acceptance
and its feasibility (Krabbenborg et al., 2020, 2021; Kockelman & Kalmanje, 2005). Recently, it
has been proposed to use TMCs not only as a charge, but to use them as an incentives too and
integrate TMCs into the entire transportation system, hence using the term “MobilityCoins” to
describe this integrated nature (Bogenberger et al., 2021; Blum et al., 2022). In the following, we
build on this particular implementation of a TMC scheme.
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Variables Explanation

P Tradable mobility credit market price
Xodm Share of travelers using the car on origin-destination pair (o, d)
Tij Travel time on link (i, j)
Cij Travel cost on link (i, j)
Qij Flow on link (i, j)
Yijk Partial flow on link (i, j) towards k
Wodm Minimum travel costs from origin-destination (o, d) using mode m
Mij Minimum travel costs between i and j

µ Mode choice scale parameter
γ Initially issued credits per traveler

λodm Origin-destination-specific MobilityCoins charges
κij Link-specific MobilityCoins charges
τodm Free-flow travel time between origin o and destination d using mode m
t0ij Free-flow travel time on link i-j
cij Capacity on link i-j
β BPR function parameter
n BPR function parameter

Table 1: Variables and parameters in the model

In this paper, we present an integrated multimodal Wardropian model for the MobilityCoin system.
The model solves for the user equilibrium of car, public transport and bicycle travelers. Travel
times for public transport and bicycles are fixed, while car travel times incorporate congestion
effects. The overall travel demand is distributed to modes usinga a logit-based mode choice based
on the origin-destination travel times. The MobilityCoin system has two kinds of charges: origin-
destination-based charges for all modes and link-specific charges for cars to influence route choice
and manage congestion. We illustrate the model using a simple network configuration and explore
how the different design parameters impact transport outcomes.

2 Model

Consider a transport network with N nodes, A arcs, and M modes of transport. Nodes are
referenced by i ∈ N (and j or k), arcs are a distinct pair of nodes and are referenced by the
link star-end pair (i, j) ∈ A, modes are referenced by m ∈ M. In this model, three modes are
considered: M ∈ {car, public transport, bicycle}. Travelers are distinguished by their origin-
destination pair (o, d) ∈ OD. The set of origins and destinations is a subset of the set of nodes,
i.e., OD ⊆ N .
In this macroscopic model, travelers make up to two choices. First, they choose their mode m.
Second, all users choosing the car also choose their route. The equilibrium condition follows the
Wardropian user equilibrium (Wardrop, 1952). The presented multimodal extension is a general-
ization of the seminal mathematical formulation presented by Yang & Wang (2011). The model
defined in the following is formulated as a mixed-complementarity problem (MCP) (Ferris et al.,
1999) and is implemented in GAMS (GAMS Development Corporation, 2018). The model’s vari-
ables and parameters are summarized in Table 1.
The overall demand dod between origin o and destination d is fixed and exogenous. This demand is
distributed across modes using a logit based assignment. As shown in Eqn. 1, the choice of modes
depends on the minimum travel costs Wodm between o and d using mode m and a scale parameter
µ.

Xodm =
exp (−µWodm)∑

m′∈M exp (−µWodm′)
(1)

In the proposed model, cars experience congestion effects as a function of the flow of vehicles, while
public transport and bicycles have fixed travel times. Thus, the minimum travel cost depends on
the chosen mode as defined in Eqn. 2. The minimum travel cost for cars results from the network

2



assignment of all cars, where Mod is the resulting minimum origin-destination travel cost which
includes all MobilityCoins link charges. For public transport and bicycles, the minimum travel
costs comprises the fixed origin-destination travel times τodm and the origin-destination specific
MobilityCoins charges λodm valued at the MobilityCoins market price P .

Wodm =

{
Mod, m = car
τodm + P · λodm, otherwise

(2)

The car travel costs Cij on link i-j comprises two elements. First, the travel time Tij and second
the MobilityCoins link charges κij valued at the MobilityCoins market price P . The link travel
time is defined in Eqn. 3 and follows the Bureau-of-Public-Roads (BPR) function (Bureau of
Public Roads, 1964) with the usual parameters and is a function of link flow Qij .

Tij = t0ij

(
1 + β

(
Qij

cij

)n)
(3)

This then leads to the link car travel costs Cij being computed as defined in Eqn. 4.

Cij = Tij + P · κij (4)

The arbitrage condition for car drivers to use link (i, j) follows the Wardropian user equilibrium
(Wardrop, 1952). It is formulated in the model as shown in Eqn. 5, where Yijk are the partial
flows on that link towards k. Only when the minimum travel costs from node i to k over j equal
the minimum travel costs from node i to k, the link is used for car drivers towards k.

Cij +Mjk ≥ Mik ⊥ Yijk ≥ 0 (5)

The partial link flows Yijk can then be aggregated to link flows Qij as the sum over all partial
flows along that links as defined in Eqn. 6.

Qij =
∑
k

Yijk (6)

In the model, it must be ensured that the inflows and outflows at each node in the network are
balanced. This is ensured by Eqn. 7.

dodXodcar =
∑

(o,j)∈A

Yojd −
∑

(j,o)∈A

Yjod (7)

Last, as the MobilityCoins scheme is a market-based system, Eqn. 8 resembles the market clearing
condition. Here γ is amount of credits initially issued per traveler. In other words, the left-hand
side of Eqn. 8 results into the total market volume of MobilityCoins. κij is the MobilityCoins link
charge for car travelers and λodm is a origin-destination mode-specific charge for all other travelers.
The complementarity conditions ensures that the MobilityCoins market price P is only non-zero
when supply and demand are balanced. If the market is over-supplied, the market price would be
consequently zero.

γ ·
∑

(o,d)∈OD

dod ≥
∑

(i,j)∈A

κijQij +
∑

(o,d,m)∈OD

λodm ∗ dod ∗Xodm ⊥ P ≥ 0 (8)

3 A case study

To illustrative the primary transport and economic mechanisms of a MobilityCoins scheme, we
apply the model developed in Section 2 to the simple network shown in Figure 1. The network has
17 nodes of which 13 are origin and destination nodes and four are through nodes, i.e., the demand
entering or exiting the network at these nodes is 0. The network has directed arcs as shown in
Figure 1.
This network is centered around node “9”, while having symmetry with the line from nodes “2”,
“10”, “9”, “11”, “7”. The full list of network and demand parameters will be provided in the full
paper, but network parameters and origin-destination matrix are similar to the values present in
the familiar Sioux Falls network. We set the scale parameter in the mode choice to µ = 0.01
and the origin-destination travel times τodm for public transport and bicycles as follows. First, we
calculate the car free-flow travel times in the network shown in Figure 1. Second, we set the public
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Figure 1: Case study network

transport travel times τod,pt on each origin-destination pair and the bicycle travel times τod,bicycle
to a multiple of the car free-flow travel times. Third, we sample this multiplier for the public
transport travel times from the uniform distribution in 1.35 to 1.45 and the bicycle travel times
from the uniform distribution in 1.40 to 1.50.
In the case study, we define four scenarios. These are defined as follows.

S1 Computes the status-quo scenario without any pricing, i.e., γ = 0 and P ≡ 0.

S2 Imposes link charges for car travelers, i.e., κij ≥ 0, but no origin-destination specific charges
for other modes of transport, i.e., λodm = 0. The charges κij are set to 1.0 for (i, j) ∈ N \{9}
and 3.0 for i ∈ {9}∨j ∈ {9} to incentivize avoiding car travel in the inner zone of the network.
The per-capita initial issue of MobilityCoins is evaluated at γ ∈ {1; 0.9; 0.8; 0.7; 0.6; 0.5} to
investigate transport outcomes when the overall budget of MobilityCoins is reduced. In
other words, at the highest individual issue of MobilityCoins car travelers can travel one link
outside the inner zone without acquiring additional MobilityCoins from the market.

S3 Impose link charges for car travelers, i.e., κij ≥ 0, and allow as an incentive negative origin-
destination specific charges for other modes of transport, i.e., λodm ≤ 0. The values for κij

and γ are taken from S2. λodm is set for bicycles to −0.25 on all origin-destination pairs
and to 0 for all public transport origin-destination pairs.

S4 as a comparison we implement a congestion tax on all links from and to node “9”, i.e., fixing
the product of P · κij . Considering the free-flow travel times o of around 100 time units,
we set P · κij ∈ {100; 200; 300; 400} as these values increase the travel costs on these links
considerably. All other links receive a charge one third of charges on the links from and to
node “9”.

The results are of the scenario analysis is presented in Section 4 along with their discussion.
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Mode of transport Trips Travel time
Total Share Total (10e6) Share

Car 84,409.6 27.5% 3.461 52.2%
Public transport 111,548.2 36.4% 1.624 24.0%
Bicycle 110,879.2 36.1% 1.676 24.8%

Total 306,837.0 100.0% 6.760 100.0%

Table 2: Trips and travel time in the status-quo scenario
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Figure 2: Changes of travel time, car share and credit price in a tradable credit scheme
when the initial issue of credits is reduced.

4 Findings

Scenario 1

The transport outcomes of status-quo scenario is summarized in Table 2. It can be seen that cars
have the lowest modal share in terms of trips, but the highest in terms of travel time. This results
from the congestion effects considered for this mode of transport. However, it is important to note
here that the mode choice is only based on the origin-destination path costs, but does not consider
trip length, number of transfers or any unobserved preferences that are usually impacting mode
choice substantially (c.f. Ortúzar & Willumsen (2011); Train (2009)).

Scenario 2

In the second scenario, a conventional tradable credit scheme is implemented as described in Section
3. Figure 2 shows the results when the per-traveler issue of credits is gradually reduced from 1
credit to 0.5 credits. It can be clearly seen that when the overall market of credits is reduced by
cutting down the initial issue, while leaving the parameter of the charging scheme κij unaltered,
car use declines. In this particular example with slower alternative modes, the total travel time in
the system increases. This modal shift is achieved by an increasing credit market price resulting
from a limited supply. In the particular example, the market price increases the travel costs on
the arcs considerably when compared to the free-flow travel time.

Scenario 3

In the third scenario, a MobilityCoin system is implemented as described in Section 3. Note that
the difference to the tradable credit scheme in the second scenario is that MobilityCoins are also
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Figure 3: Changes of travel time, car share and the MobilityCoin (MoCo) market price in
a MobilityCoins scheme when the initial issue of MobilityCoins is reduced.

used to incentive some mode choies, here the use of the bicycle. Figure 3 shows the results when the
per-traveler issue of MobilityCoins is gradually reduced from 1 MobilityCoin to 0.5 MobilityCoins.
A similar pattern is observed as for the common tradable credit scheme in Figure 2, but the changes
to the transport outcomes compared to the status quo are not that strong. Arguably, using the
bicycle generates additional MobilityCoins that are sold on the market; thus, the market volume
is increased, leading to a lower market price compared to the second scenario and ultimately car
use is not that strongly discouraged.

Scenario 4

In the fourth scenario, a conventional road user charging scheme with fixed charges is implemented
as described in Section 3. Figure 4 shows the resulting impacts on the transportation system.
Overall, a similar pattern as for the second (conventional TMC) and third scenario (MobilityCoins)
is observed.

Comparison and discussion

The three different charging schemes presented in Scenario 2, 3 and 4 can be compared regarding
their ability to reduce car trips (approximately related to the reduction in negative externalities)
and the impact on travel times as a measure of impact on private costs. Figure 5 shows this
comparison. First, it can be seen that the TMC scheme and conventional road user charging
scheme (CC) with fixed charges perform similarly. This is perhaps surprising, but as shown in
(de Palma et al., 2018) both schemes are equivalent when demand is fully adaptive as in this case
study. Note that demand can fully adopt just based on travel costs and no multi-period constraints
are considered. However, interestingly, we find that the MobilityCoin system achieves a similar
reduction in car use (negative external costs) at lower travel time increases (private costs). This
can be explained by the incentives provided to cyclists which adds more attractiveness to this
mode in the mode choice. Nevertheless, this finding must be further corrobated with other system
design parameter configurations and better behavioral parameters before making any generalization
efforts.

5 Discussion

The presented results underline the impacts a tradable mobility credit scheme, here MobilityCoins ,
has on transport outcomes. In particular, the scheme’s benefit of reducing a desired quantity to
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a target level, while providing direct financial incentives for travelers by direct transfers among
themselves rather than redistributing tax revenue through a central organization. In addition, the
provision of credits as an incentive, does not only increase trading activity and thus supports the
market-based mechanism in general, but it seems to improve the economic allocation of resources
by having more attractive alternatives.
Nevertheless, it is also apparent that a MobilityCoins or TMC scheme is not a simple system;
it requires a careful policy design. Thus, for the identification of suitable policy designs future
research has to start building models for real-world urban-scale cases for which appropriate choice
parameters including unobserved preferences must be included (Train, 2009). In addition, the com-
plex interactions of the key design parameters γ, κij , λodm require the development of methods to
identify those combinations - especially when considering the system’s temporal evolution (Mirali-
naghi & Peeta, 2016) - that successfully and at little social costs lead to the desired targets. In
addition, as will be an economic force in the decision making of individuals and firms, their impact
on related fields like parking, housing and agglomeration should be focused on (Van Nieuwkoop et
al., 2016; Loder et al., 2021; Venables, 2007).

Acknowledgements

Allister Loder acknowledges funding by the Bavarian State Ministry of Science and the Arts in the
framework of the bidt Graduate Center for Postdocs. Further, both authors acknowledge support
by the Free State of Bavaria funded research project “MobilityCoins – Anreiz statt Gebühr” and
by the Federal Ministry of Education and Research (BMBF) funded project “MCube-SASIM”
(Grant-no. 03ZU1105GA).

References

Axsen, J., Plötz, P., & Wolinetz, M. (2020). Crafting strong, integrated policy mixes for deep CO2
mitigation in road transport. Nature Climate Change, 10 , 809–818. Retrieved from http://
dx.doi.org/10.1038/s41558-020-0877-y (Publisher: Springer US) doi: 10.1038/s41558-020
-0877-y

Balzer, L., & Leclercq, L. (2022, June). Modal equilibrium of a tradable credit scheme with a
trip-based MFD and logit-based decision-making. Transportation Research Part C: Emerging
Technologies, 139 , 103642. Retrieved 2022-08-01, from https://linkinghub.elsevier.com/
retrieve/pii/S0968090X22000857 doi: 10.1016/j.trc.2022.103642

Blum, P., Hamm, L., Loder, A., & Bogenberger, K. (2022, August). Conceptualizing an in-
dividual full-trip tradable credit scheme for multi-modal demand and supply management:
The MobilityCoin System. Frontiers in Future Transportation, 3 , 914496. Retrieved 2022-08-
10, from https://www.frontiersin.org/articles/10.3389/ffutr.2022.914496/full doi:
10.3389/ffutr.2022.914496

Bogenberger, K., Blum, P., Dandl, F., Hamm, L.-S., Loder, A., Malcolm, P., . . . Sautter, N. (2021,
July). MobilityCoins – A new currency for the multimodal urban transportation system. arXiv.
Retrieved 2022-06-24, from http://arxiv.org/abs/2107.13441 (Number: arXiv:2107.13441
arXiv:2107.13441 [econ, q-fin])

Bureau of Public Roads. (1964). Traffic Assignment Manual (Tech. Rep.). Washington D.C.: US
Department of Commerce, Urban Planning Division.

Dales, J. H. (1968). Land , Water, and Ownership. The Canadian Journal of Economics, 1 (4),
791–804.

de Palma, A., Proost, S., Seshadri, R., & Ben-Akiva, M. (2018). Congestion tolling - dollars versus
tokens: A comparative analysis. Transportation Research Part B: Methodological , 108 (July
2015), 261–280. doi: 10.1016/j.trb.2017.12.005

Ferris, M. C., Meeraus, A., & Rutherford, T. F. (1999). Computing Wardropian equilibria in a
complementarity framework. Optimization Methods and Software, 10 (5), 669–685. doi: 10.1080/
10556789908805733

8

http://dx.doi.org/10.1038/s41558-020-0877-y
http://dx.doi.org/10.1038/s41558-020-0877-y
https://linkinghub.elsevier.com/retrieve/pii/S0968090X22000857
https://linkinghub.elsevier.com/retrieve/pii/S0968090X22000857
https://www.frontiersin.org/articles/10.3389/ffutr.2022.914496/full
http://arxiv.org/abs/2107.13441


Frei, F., Loder, A., & Bening, C. R. (2018, October). Liquidity in green power markets – An inter-
national review. Renewable and Sustainable Energy Reviews, 93 , 674–690. Retrieved 2018-11-
24, from https://www.sciencedirect.com/science/article/pii/S1364032118303691 doi:
10.1016/J.RSER.2018.05.034

GAMS Development Corporation. (2018). General Algebraic Modeling System (GAMS) Release
25.1. (Place: Washington, DC, USA)

Kockelman, K. M., & Kalmanje, S. (2005, August). Credit-based congestion pricing: A policy
proposal and the public’s response. Transportation Research Part A: Policy and Practice, 39 (7-
9), 671–690. doi: 10.1016/j.tra.2005.02.014

Krabbenborg, L., Molin, E., Annema, J. A., Wee, B. V., Annema, J. A., & Wee, B. V. (2021).
Exploring the feasibility of tradable credits for congestion management. Transportation Planning
and Technology , 44 (3), 246–261. Retrieved from https://doi.org/10.1080/03081060.2021
.1883226 doi: 10.1080/03081060.2021.1883226

Krabbenborg, L., Mouter, N., Molin, E., Annema, J. A., & van Wee, B. (2020, December).
Exploring public perceptions of tradable credits for congestion management in urban areas.
Cities, 107 , 102877. doi: 10.1016/j.cities.2020.102877

Lindsey, R., & Santos, G. (2020, October). Addressing transportation and environmental exter-
nalities with economics: Are policy makers listening? Research in Transportation Economics,
82 , 100872. doi: 10.1016/j.retrec.2020.100872

Loder, A., Schreiber, A., Rutherford, T. F., & Axhausen, K. W. (2021). Design of a multi-modal
transportation system to support the urban agglomeration process. Arbeitsberichte Verkehrs-
und Raumplanung , 1604 . Retrieved 2022-02-17, from https://www.research-collection
.ethz.ch:443/handle/20.500.11850/474590 (Publisher: IVT, ETH Zurich) doi: 10.3929/
ETHZ-B-000474590

Miralinaghi, M., & Peeta, S. (2016). Multi-period equilibrium modeling planning framework
for tradable credit schemes. Transportation Research Part E , 93 , 177–198. Retrieved from
http://dx.doi.org/10.1016/j.tre.2016.05.013 doi: 10.1016/j.tre.2016.05.013

Ortúzar, J. d. D., & Willumsen, L. G. (2011). Modelling transport. Chichester: Wiley-Blackwell.

Perroni, C., & Rutherford, T. F. (1993, September). International Trade in Carbon Emission Rights
and Basic Materials: General Equilibrium Calculations for 2020. The Scandinavian Journal of
Economics, 95 (3), 257. Retrieved 2023-01-27, from https://www.jstor.org/stable/3440355
?origin=crossref doi: 10.2307/3440355

Train, K. E. (2009). Discrete choice methods with simulation. Cambridge: Cambridge University
Press.

Van Nieuwkoop, R., Axhausen, K. W., & Rutherford, T. F. (2016). A Traffic Equilibrium
Model with Paid-Parking Search. Journal of Transport Economics and Policy , 50 (3), 262–
286. Retrieved 2022-08-05, from http://www.ssrn.com/abstract=2748539 doi: 10.2139/
ssrn.2748539

Venables, A. J. (2007). Evaluating urban transport improvements. Journal of Transport Economics
and Policy , 41 , 173–188.

Verhoef, E., Nijkamp, P., & Rietveld, P. (1997, August). Tradeable Permits: Their Potential in the
Regulation of Road Transport Externalities. Environment and Planning B: Planning and Design,
24 (4), 527–548. Retrieved from https://journals.sagepub.com/doi/abs/10.1068/b240527
doi: 10.1068/b240527

Wardrop, J. G. (1952). Some Theoretical Aspects of Road Traffic Research. Proceedings of the
Institution of Civil Engineers, Part II , 325–378.

Weitzman, M. L. (1974). Prices vs. Quantities. The Review of Economic Studies, 41 (4), 477–491.

Yang, H., & Wang, X. (2011). Managing network mobility with tradable credits. Transporta-
tion Research Part B: Methodological , 45 (3), 580–594. Retrieved from http://dx.doi.org/
10.1016/j.trb.2010.10.002 doi: 10.1016/j.trb.2010.10.002

9

https://www.sciencedirect.com/science/article/pii/S1364032118303691
https://doi.org/10.1080/03081060.2021.1883226
https://doi.org/10.1080/03081060.2021.1883226
https://www.research-collection.ethz.ch:443/handle/20.500.11850/474590
https://www.research-collection.ethz.ch:443/handle/20.500.11850/474590
http://dx.doi.org/10.1016/j.tre.2016.05.013
https://www.jstor.org/stable/3440355?origin=crossref
https://www.jstor.org/stable/3440355?origin=crossref
http://www.ssrn.com/abstract=2748539
https://journals.sagepub.com/doi/abs/10.1068/b240527
http://dx.doi.org/10.1016/j.trb.2010.10.002
http://dx.doi.org/10.1016/j.trb.2010.10.002


1 

 

Random Utility Maximization model considering the information search process 
Nova, G. *1, Guevara, C.A.1,2, Hess, S.3,4 and Hancock T.O.3,4 

 
1 Department of Civil Engineering, University of Chile, Chile. 

2 Institute for Complex Engineering Systems (ISCI), Chile. 

 3 Choice Modelling Centre, University of Leeds, UK. 

 4 Institute for Transport Studies, University of Leeds, UK. 

SHORT SUMMARY 

Choice modelling has been dominated by static representations preferences due to their ease of 

implementation, transparent economic interpretability, and statistical coherency. Unlike, the 

Decision Field Theory (DFT) model explicitly includes the attribute scrutiny process within the 

choice decision, making it more closely related to the behavior that is observed in practice. 

However, the DFT model lacks the RUM model's microeconomic interpretability and has 

statistical limitations regarding the identification of the model parameters. This research 

introduces the "RUM-DFT" model, encompassing ideas from both approaches. Using Monte 

Carlo simulations and applying the proposed model to a database of real choices, it is first shown 

that the proposed approach can properly identify the parameters of the deliberation process, 

replicate the dynamic behavior of the utilities during the deliberation process; and retains full 

economic interpretability, since the estimated coefficients correspond to marginal indirect utilities 

when there is perfect knowledge of the information search process. 

 

Keywords: RUM-DFT, Information Search Process, DFT, Cognitive Processing 

 

 

1.  INTRODUCTION 

Discrete choice models have been widely proposed, used, and promoted in the literature for 

several decades. These correspond to a mathematical approach that allows estimations and 

predictions of the behaviors carried out by economic agents in different areas such as economics, 

health, marketing, and transportation, among others. Therefore, making a proper representation 

of the decision-making process, accurately accounting for the true behavioral mechanisms that 

are behind the choice dynamics, is crucial for making correct inference on the causal relations 

that are behind choices and for performing accurate forecasting to support informed public policy 

design. Neglecting the true dynamics that is behind the choice process will result in inconsistent 

estimators of the model parameters due to endogeneity, because of a model misspecification 

(Guevara, 2015). 

 

Busemeyer and Townsend (1993) classify choice models according to whether utilities or 

preferences are dynamically or statically constructed. On the one hand, the static probabilistic 

models are discrete choice models that ignore the fact that choice probabilities are correlated with 

decision time and that deliberation time influences choice probability.  

 

Although the different specifications of static choice models are extensive, simple to implement, 

have low computational cost and a high degree of economic interpretability of the parameters, 

they are conceptually unrealistic as they do not consider the cognitive process that individuals go 
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through when making a decision; for example, they do not include loss of information, filtration 

o information search cost. Under classical microeconomic and consumer behavior theory, most 

models assume that decision-makers evaluate and process information from alternatives in a 

perfect sense (Swait et al., 2001). However, it has been demonstrated that decision-makers may 

only focus on specific attributes, acquiring knowledge sequentially to make a final decision in 

simple and complex public transport route choice tasks (Nova, 2022). Likewise, Noguchi et 

al.,(2014), Stewart et al.,(2016), Stewart et al.,(2016), Sui et al.,(2020) evidenced, through eye 

tracking, that this behavior also occurs in simple, risky, and multi-attribute choices. 

 

In contrast, dynamic models define choice probabilities are explicitly affected by the deliberation 

process, as the amount of time spent making a decision influences the final choice. Probabilities 

vary over time, as there is a constant acquisition and processing of information (attributes) that 

are incorporated to update the value of preferences or utilities before the choice is performed. 

Models that include a cognitive cost in the information search process, such as the Directed 

Cognition Model (Gabaix 2006) and the Adaptive Path Choice model have been shown to perform 

better than compensatory models in complex decision contexts (Gao 2011). 

 

The dynamic processing of attributes has been represented by Decision Field Theory (DFT). It 

was initially designed as a cognitive model to capture the deliberation process in choice making 

(Busemeyer 1992, Busemeyer 1993). Then, DFT was then extended to a probabilistic-dynamic 

model that allowed for multiple attributes (Diederich, 1997) and was also generalized to multiple-

alternative decision making (Roe et al.,2001). Recent contributions on DFT theory are from 

Hancock et al.,(2018) who improve the mechanisms that support the DFT model to make it more 

competitive with traditional discrete choice models. These advances allow for incorporating 

heterogeneity among and within decision-makers. Furthermore, Hancock et al.,(2021) introduce 

scale parameters in the basic mechanism of the DFT model, to avoid the requirement of 

conceptualizing a priori parameter values that may affect model estimation and identification. 

Finally, Hancock et al.,(2022) extend the model to include data from eye-tracking processes, to 

capture attribute attention weights more realistically during the deliberation process. All these 

recent studies show that the DFT model fits the data well and better than conventional static 

models. However, the DFT model has limitations, such as being based on ad-hoc matrix 

implementations of the model, identification problems, lack of a robust statistical theoretical 

framework and an approach compatible with the principle of random utility maximization that 

makes it impossible to interpret the parameters in a traditional way. 

 

The combined limitations of current static and dynamic models motivate the need to create a new 

theoretical framework. This model should aim to keep the desirable properties of RUM model, 

whilst also overcoming its limitations with regards to its representation of the choice deliberation 

process. This could be achieved through the development of a RUM model that reflects cognitive 

dynamics, including the significant findings regarding the information search process, such as the 

process typically being breadth-first, that decision-makers revisit attributes more than once and 

that information is filtered. In this regard, this work introduces a new model `RUM-DFT'. This 

new model also aims to rectify the DFT model's identification, inference, and parameter 

interpretation limitations. Likewise, the new model will include parameters that allow the 

deliberation process to be adequately modelled. 
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2.  FORMULATION RUM-DFT 

The RUM-DFT model proposes that, before choosing between alternatives, choice-makers 

perform a breadth-first information search process to update initially preconceived utilities. This 

means that individuals make comparisons of alternatives under a particular attribute at each 

preference updating step of the deliberation process until they make their choice. Specifically, the 

individual at each step t must choose whether to choose some alternative with the current 

information (𝑦𝑡 = 1) or whether to perform a new information search to update the utilities (𝑦𝑡 =
0). Suppose the individual decides on the option of choosing with the present utilities. In that 

case, the process of updating the underlying utilities is finished, and the one that provides the 

highest utility [𝑖|𝑦𝑡] is chosen. By contrast, if the individual decides to continue with the 

information search process, the individual must determine which attribute will be attended to at 

step t+1 to update future utilities [𝑘(𝑡 + 1)|𝑦𝑡]. 
 

Hence, in this approach, we define a sequence of attributes attended to prior to the choice that 

ends with a choice. That is, ℎ𝑇 = {𝑘(1), . . . 𝑘(𝑇)} is defined as the attributes attended at each step 

t of the deliberation process up to the choice at T. Since, in traditional surveys, information such 

as eye-tracking data is not recorded, thus the sequence of attended attributes is not known, the set 

𝐻𝑇 is defined as all possible sequences that the individual can consider until the decision is made. 

Therefore, the probability of choosing an alternative i given the sequence of attended attributes 

and the probability of paying attention to an attribute k at step t; given the decision to continue 

searching for information, can be represented by Eq. (1) and Eq. (2), respectively. 

 

 
 

Where 𝑃(𝑖|𝑦𝑇)is the probability of choosing alternative i conditional on the decision maker 

deciding to choose at step T, 𝑃(𝑘(𝑡)|ℎ𝑇−1  ) is the probability of attending attribute k at 

deliberation step t conditional on the attributes attended up to step t-1, Ω( 𝑦𝑇|ℎ𝑇) is the 

probability that the individual has decided to choose at step T and Ω( 1 − 𝑦𝑇−1|ℎ𝑇−1) is that 

he/she decides to search for information. 

 

The iterative process of searching for information and updating the utilities can be stopped for 

two main reasons. The first may be due to an external limitation that forces the person to choose 

an alternative in a maximum deliberation time. The second reason corresponds to the individual 

reaching their internal limit of preference. Thus, without an external limitation, the individual 

performs this process until future utilities (𝑈𝑆
𝑇) do not present a significant change compared to 

current utilities (𝑈𝑐
𝑇), modelled through an internal tolerance. Therefore, the probability that the 

individual has decided to choose, as shown mathematically in Eq. (3), allows the model to capture 

the difference between the expected value of choosing one of the alternatives at step T and the 

expected value of continuing to observe an attribute at step T+1.  

 

[3] 

 

So far, no assumptions have been made about the functional form of utilities. The following 

section details the dynamics of the utilities and how the information search process is incorporated 

in breadth-first during the choice deliberation process up to the point at which a decision is made.  
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Utility Functions 

 

The functional form of the utilities in the RUM-DFT model are proposed to capture the evolution 

of the individuals' preferences in accordance with the information search process. Therefore, the 

utilities explicitly represent the dynamic aspect, which depends on the attribute k(t) attended to 

in step $t$ of the deliberation process and on past information already considered, that is the 

utility of the previous instant 𝑈𝑗𝑛
𝑡−1, given by: 

                         

[4] 

 

where α is the memory parameter representing the influence of time on past utilities (i.e., 

forgetting), 𝛽𝑘(𝑡)  is the parameter of the attribute k attended in t, 𝑋𝑛𝑖𝑘(𝑡) corresponds to the value 

of attribute k of alternative i for individual n observed in step t, and 𝜀𝑛𝑖
𝑡  is the error that distributes 

extreme value I. It is necessary to point out that the random utility 𝑈𝑗𝑛
𝑡  decomposes into two parts. 

The systematic part containing the information search process of each step t and the random part 

of the current step.  

Calculating probabilities 

The conditional probability Ω( 𝑦𝑇|ℎ𝑇) that the person decides to choose in step T, given the 

sequence of attributes attended ℎ𝑇, will depend on the difference between the current and future 

utilities. 

 

                                         [5] 

 

Where δ is the threshold and in this dynamic, it is assumed that individuals become more 

intolerant over time, requiring more considerable expected changes to decide to continue 

searching for information. 

 

Now, the probability of choosing an alternative i conditional on what the individual has decided 

to choose is like the one from the MNL model, but only considering the attributes attended up to 

step T: 

 

                               [6] 

 

 

Finally, the probability of attending to an attribute k is defined. Two possible formulations were 

considered for the analysis. On the one hand, a Logit model of constants indicating the weight of 

attention on each attribute in the deliberation process was considered (Φ𝑘), as shown in Eq. (7). 

On the other hand, a Logit model was constructed that considers the expected value of the change 

in overall utilities if the 𝑘𝑡ℎ attribute is observed in the next step. This aligns with the assumption 

that people perform breadth-first information search, as shown in Eq. (8). 

 

    [7] 

 

 

        [8] 
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Thus, Eq. (5) and Eq.(6) allow for the construction of the probability of choosing an alternative i 

if the choice-maker decided to choose at step T under a particular sequence of attended attributes 

(ℎ𝑇), as shown in Eq.(9). Similarly, Eqs.(7) and (8) construct the probability that he/she decides 

to search for information or attend to the 𝑘𝑡ℎ  attribute at step t, given the sequence of attributes 

up to that step (ℎ𝑇), as shown in Eq.(10). However, they only model a particular sequence of 

attended attributes within which the individual could have decided. In general, without knowing 

the deliberation process, a modeler must integrate or consider all possible sequences of attended 

attributes 𝐻𝑇, which results in the probability of choosing alternative i being as shown in Eq.(11). 

 

This specification, which we name RUM-DFT-SC (A RUM-DFT model explicitly for stated 

choice scenarios) considers all possible sequences of attended attributes without some maximum 

deliberation time. Therefore, to estimate this model specification, the maximum deliberation time 

𝑇max  must be fixed. However, if there is some knowledge about the information search process 

or decision-makers deliberation, the estimation process can be reduced. 

 

 

  [10] 

 

 

 

  [11] 

 

 

 

  [12] 

 

First, it is possible to have information on the time or the number of steps that individuals perform 

in the choice process since they can be considered valid proxies on cognitive processes 

(Horstmann, 2009). From this approach, the likelihood is reduced to the possible sequences of 

attributes attended up to the maximum time of deliberation found in the database, obtaining the 

specification RUM-DFT-DT (with deliberation time): 

 

               [13] 

 

Secondly, the actual sequence of the attributes attended by the respondents can be uncovered 

using instruments of process data tracking, such as a mouse-tracker, click-tracker or eye-tracker 

(for example Nova and Guevara (2022)). This data reduces the probability of choice to only one 

sequence of attributes, resulting in the specification RUM-DFT-IS (with information search 

process): 

 

                [14] 

 

Where ℎ̃𝑇𝑛 is the sequence of attended attributes specified for decision maker n with a deliberation 

time 𝑇𝑛. 

3. RESULTS AND DISCUSSION 

We analyze the performance of the new model when compared to conventional models in three 

simulated case studies and one stated preference study. The aim is to test the explanatory power 
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of the RUM-DFT model and to verify whether the parameters are recovered correctly compared 

to other conventional models. 

 

RUM-DFT-IS 

 

First, 20 simulations and estimates of database A were generated considering the RUM-DFT-IS 

model, in which the sequence of attributes attended is known. Given this knowledge regarding 

attribute attendance, it is not necessary to calculate the probabilities of deciding to choose or 

continue with the information search process at each step t.  

 

Table 1: Average of RUM-DFT model estimates considering the attributes at-

tended. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 shows the average of these estimates and from these results it is possible to see that 

statistically significant parameters are obtained in most of the cases. Moreover, in all the iterations 

𝛽𝑡 , 𝛽𝑐 and α are statistically significant, the latter being the estimate with the highest efficiency. 

Therefore, the RUM-DFT-IS model can be applied to process data independent of the generated 

attributes that define the route choice situation in each iteration. It should be highlighted that this 

approach makes it possible to incorporate the attended attributes explicitly at each step of the 

deliberation process into the modelling. It will also be able to deliver estimates of the coefficients 

of the attributes plus the deliberation process correctly in magnitude, with expected signs and 

relative importance, allowing the decision-makers to represent the information search process 

adequately. 

 

RUM-DFT-DT 

 

The second specification considers that the deliberation time of the respondents is known, but not 

the sequence of attributes attended. This analysis compares the proposed model with a DFT model 

that includes the total number of fixations in the attention weights. At this level, it is reasonable 

to compare these approaches as they both use fixations in an aggregated form to represent 

deliberation time. To estimate these models, we simulated a number of fixations for each choice 

task for all decision-makers. 

 

Table 2 shows the estimation results of the RUM-DFT-DT model. It is worth mentioning that, 

like the previous specification, it is not feasible to estimate the parameters of the deliberation 

process, but the memory factor can be known. Based on the results, the estimated parameters are 
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close to the real value with which they were generated, being the memory factor (α) and the 

coefficient associated to the travel time (𝛽𝑡) the most efficient ones. 

 

Table 2: Estimation results of RUM-DFT and scaled DFT model including the ag-

gregate fixations of the deliberation process. 

 
  

 

RUM-DFT-SC 

 

The third application corresponds to a case in which neither the sequence of attributes attended, 

nor the deliberation time, is known by the researcher. This is the case with most SP and RP data 

sources.  

 

Table 3 shows the estimation results of the RUM-DFT-SC, DFT-scaled-1, DFT-scaled-2 (not 

including fixations) and MNL model. It is observed that the proposed model presents the best log-

likelihood and lower values in the AIC and BIC information criteria than the rest of the 

approaches. The cost and travel time parameters (attention weights in DFT) differ significantly 

from zero in all models. However, only the RUM-DFT-SC model delivers close values, in 

magnitude and sign, to the true ones. The alternative-specific constants cannot be recovered 

correctly in most cases. Therefore, testing the proposed model with the methodological 

improvement mentioned in the previous section is necessary. 
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Table 3: Estimation results of RUM-DFT-SC and scaled DFT model. 

 
  

Empirical application to SwissMetro Data 

 

This section compares the RUM-DFT-SC against the DFT-Scaled, RUM, C RRM, mu RRM and 

P RRM using the SwissMetro database (Bierlaire et al.,2001). The DFT model shown corresponds 

to the one that estimates the attention weights (Hancock et al.,2018). However, the memory value 

is fixed to 0, the sensitivity to 0, and the error term to 1 since these values are generally 

insignificant when there is no information on the deliberation of the respondents. The RUM 

approach corresponds to a Multinomial Logit, and the last three are variants of the RRM model 

in which the depth of regret is incorporated (van cranenburgh et al., 2015). 

 

The results shown in Table 4 demonstrate that the models that include parameters that model the 

deliberation process, both the RUM-DFT model and the DFT approach, have a better performance 

than the rest, in terms of log-likelihood, AIC and BIC information criteria. However, only from 

the proposed model is it possible to make an economic interpretation of the coefficients of the 

attributes, with the tolerance, memory and attention weight also allowing for interpretation of the 

information search process. 
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Table 4: Model estimates applied to real SwissMetro data. 

 
¹Estimates from (Belgiawan et al., 2017). 

²Estimated using DEoptim. 

³Estimated using OptimParallel setting α. 

4.  CONCLUSIONS 

This work meets the initially stated general objective since it was possible to incorporate the 

characteristics of the deliberation process implicit in the public transport route choices as 

methodological improvements in the development of the Random Utility Maximization model 

considering the information search process (RUM-DFT) 

 

The results of the RUM-DFT model are promising for the first simulated case study, as this 

specification recovers the parameters, and the utilities behave as expected. This is mainly because 

this approach avoids the integration in the space of all possible sequences of attributes, which 

considerably increases its dimension at each additional step (K^t). For the other simulated cases, 

the model provides attribute parameters close to the real values. However, this is not the case for 

the initially preconceived utilities.  

 

On the other hand, the RUM-DFT model was estimated using the SwissMetro database. Signs, 

magnitudes and significance of parameters, goodness-of-fit indicators and estimation time were 

compared with the classical models. In general, the models incorporating the assumptions 

supported in this paper obtain the best fit indicators. Moreover, the RUM-DFT model 

specification, which in this case does not include information about the deliberation process, can 

still significantly estimate the attribute, tolerance and recall coefficients with reasonable values, 

successfully outperforming the DFT and MNL approaches. 
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SHORT SUMMARY 

To reduce CO2 emissions and safeguard our energy security, we need to electrify our car-fleet, 

increase its efficiency, and limit car-dependence. This paper therefore answers the following 

research question: How and to what extent are features of residential neighborhoods and their 

residents currently related to energy relevant car type choice? For this purpose, it analyzes Dutch 

vehicles’ real-world energy consumption with a multilevel discrete choice model of fuel- and 

weight-preferences in one- and multicar households. Small, lower-income, female households in 

non-green (urban) environments tended to own light, efficient vehicles. Households with a private 

parking spot tended to own heavy, electric vehicles. Lastly, households with multiple cars tended 

to live in non-urban areas and to prefer heavier vehicles. These correlations imply that studies that 

omit vehicle energy efficiency underestimate the environmental impact of urban planning 

interventions. However, improving vehicle testing procedures may be a more effective energy-

saving strategy.  

 

Keywords: built environment, car ownership, discrete choice modelling, energy efficiency, 

electric vehicles 

1. INTRODUCTION 

Vehicle gasoline consumption causes climate change and threatens energy security. Electric vehi-

cles can reduce emissions. Yet, these EVs come with energy security concerns of their own due to 

their rare mineral requirements (International Energy Agency, 2022). Moreover, they can cause a 

prohibitive increase in electricity use (Galvin, 2022). Especially heavy EVs consume a lot of elec-

tricity (Galvin, 2022; Weiss et al., 2020). It is thus important to limit the deployment of heavy, 

energy inefficient vehicles as well as of cars in general.  

 

A large body of earlier research has shown that a sustainable urban environment with high densities 

and limited distances to city centers can enable green-minded citizens to live a car-free life (Ban-

ister, 2011; Ewing and Cervero, 2010; Næss, 2012; Newman and Kenworthy, 1989; Silva et al., 

2017; Stevens, 2017). Other studies have shown that residents of dense urban areas are less likely 

to own large (inefficient) vehicle designs like vans, trucks, and SUVs (Bhat et al., 2009; Brown-

stone and Fang, 2014; Cao et al., 2006; Chen et al., 2021; Eluru et al., 2010; Garikapati et al., 2014; 

Li et al., 2015; Liu and Shen, 2011; McCarthy and Tay, 1998; Potoglou, 2008; Prieto and 

Caemmerer, 2013; Song et al., 2016).  



2 

 

Yet, most of these studies ignored efficient compact cars. Most also did not actually compute car 

energy efficiency whereas an SUV does not necessarily consume more energy than a sedan (Li et 

al., 2015; Timmons and Perumal, 2016). Moreover, no articles could be found that directly analyze 

the correlation between the built environment and car weight: the major determinant of both con-

ventional and electric vehicles’ energy efficiency. A clear link between the built environment and 

the (future) energy consumption of cars has thus not been established. 

 

The present paper will help fill this gap by answering the following research question: How and to 

what extent are features of residential neighborhoods and their residents currently related to energy 

relevant car type choice? For this purpose, it made use of real-world specific energy consumption 

data in megajoules per vehicle kilometer (MJ/vkm) of cars in the Netherlands. The energy-relevant 

car type choices were analyzed with a multilevel discrete choice modeling framework of fuel type 

and weight preferences in one- and multicar households. 

2. METHODOLOGY 

Travel, sociodemographic and built environment data 

Travel and sociodemographic data were obtained from the Netherlands Mobility Panel (MPN) 

from KiM Netherlands Institute for Transport Policy Analysis (Hoogendoorn-Lanser, 2019). This 

panel consists of multiple surveys and a three-day travel diary. Household members complete these 

on a predetermined moment in September, October, or November.  

 

This study analyzed data from households who participated in 2019, 2018, or 2017. Preference was 

given to the latest year available. The response rate is likely similar to the 64% in 2013 (Hoogen-

doorn-Lanser et al., 2015). In the end, 4316 households were included who together owned 3498 

cars of which the energy use could be accurately determined. All vehicles were analyzed. The 

sample weight was used to avoid overrepresentation of the multicar households. 

 

KiM provided us with the respondents’ residential addresses on the postcode-6 level (1234 AB, 

representing part of a street). Specifically, we used the postcode-6 addresses to couple the local 

address density and distances to stations and big (transfer) stations from Statistics Netherlands 

(CBS; Statistics Netherlands, 2018, 2019). Moreover, this data was analyzed with Geopy to com-

pute distances to city center proxies: destination-rich postcode-6 areas. We also included the NDVI 

green-space and land-use mix indexes from the Vitality Data Center (VDC) Project (Ren et al., 

2019; Wang, 2020; 202). A number of other built-environment and sociodemographic variables 

were included from the MPN-survey itself. The variables are described in Table 1.  

Car energy data 

The discrete choice model assessed the effect of the above-described variables on direct (consumer) 

energy. This can be easily converted to tailpipe CO2 emissions.  

 

The Netherlands Vehicle Authority (RDW) registers fuel use (Team Open Data RDW, 2021) based 

on the standardized New European Driving Cycle (NEDC). However, the Netherlands Organiza-

tion for Applied Scientific Research (TNO) has shown this data to be biased. The gap with the real-

world fuel use varies systematically with vehicle building year and can be expected to depend on 

other vehicle characteristics as well. It was therefore decided to instead use real-world data from 

fuel-cards from Travelcard Nederland BV. The data were scraped from Praktijkverbruik.nl and 

coupled based on the MPN vehicles’ fuel type, building year, and model.  
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Table 1: The explanatory variables included in the data analysis 

 
 

Travelcard data was available for 60% of the valid MPN vehicles. The energy used by remaining 

gasoline, diesel, and gasoline hybrid vehicles was instead computed using TNO-models calibrated 

with Travelcard-data (de Ruiter et al., 2021). These estimate emissions based on car weight, build-

ing year, and engine power. The precise energy efficiency of plug-in hybrid (PHEV) and battery 

electric (BEV) car-models was taken from TNO Travelcard-based research (van Gijlswijk et al., 

2020; de Ruiter et al., 2021).  

 

Non-electric cars with missing fuel type, building year, or weight data or with a registered weight 

under 500 kilograms were excluded from the analysis. 

Data processing 

Data cleaning and standardization was done using Pandas and Sklearn (pandas development team, 

2020; Wes McKinney, 2010; Pedregosa et al., 2011). Variables that were insignificant at the 20% 

level or that were insignificant at the 10% level for all car ownership classes, fuel types, and weight 

classes were excluded. The sample-weights were scaled to avoid in- or deflated P-values.  

The cars were lastly categorized into types based on fuel type and weight: the main determinants 

of energy consumption. The (hybrid) electric vehicles (HEVs) were given their own category 
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because of their importance for future energy consumption. Diesel vehicles were given their own 

fuel type class too since these efficient vehicles constitute a major fraction of the sample. The 

standard (mostly gasoline) and diesel cars were subdivided into the following weight categories: 

light (<1000 kg), midlight (1000-1250 kg), midheavy (1250-1500 kg), and heavy (>1500 kg).  

Car energy exploration 

The real-world energy consumption of the vehicles per car type category is shown in the boxplots 

of Figure 3. The BEVs are visible as a group of HEVs (green) consuming less than 1 MJ/vkm. 

Diesel vehicles (red) are also efficient, with the exception of heavy diesel vans. The old standard-

fueled cars (blue) consume around 3-4 MJ/vkm, but these often have a low sample-weight. As 

expected, heavy standard cars also use considerably more energy than their lighter counterparts. 

 

The energy consumption quantiles according to the NEDC test cycles are shown in gray for refer-

ence purposes. As expected, this official data consistently underestimates real-world energy con-

sumption. The gap seems somewhat larger for light vehicles.  

 

 

Figure 1: The real-world energy consumption of the eight car type categories fw  

The discrete choice model 

It was decided to analyze cars’ real-world specific energy consumption using a multilevel discrete 

choice modeling framework. Given that decisions on car ownership cannot be disentangled from 

household preferences for fuel- and weight-based car types fw, both choices were modeled jointly, 

taking the multilevel characteristics of the decision-making process into account: the number of 

vehicles available to households influences the types of vehicles being purchased. Both decisions 

are fundamental to understanding households’ travel energy use. Moreover, both decisions depend 

on the household’s sociodemographic characteristics and the built environment.  

 

At a first stage, car ownership classes were considered using a discrete choice model, whereby the 

utility 𝑈𝑐𝑛 of each of the three classes c (no car, one car, or two or more cars) for a household n 

was the sum of the utilities associated with the 𝑣 sociodemographic and built environment variables 

𝑥𝑖𝑛 as determined by the estimated coefficients 𝛽𝑖𝑐, the aspecific constant 𝐴𝑆𝐶𝑐 and the (EV1 iid) 

unobserved utility term 𝜀𝑐𝑛: 

 

𝑈𝑐𝑛 =  𝐴𝑆𝐶𝑐 +  ∑ 𝛽𝑖𝑐𝑥𝑖𝑛
𝑣
𝑖=1 +  𝜀𝑐𝑛                 (1) 

 

Then, a car type model was specified, which considered the number of cars owned as discrete latent 

attributes. This car type model estimated household choices for car fuel types f and weight 



5 

 

categories w explicitly by defining the utility of each of the eight fuel- and weight-based car types 

𝑈𝑓𝑤𝑛|𝑐 as the sum of the utility of the fuel type 𝑈𝑓𝑛|𝑐, the utility of the weight category 𝑈𝑤𝑛|𝑐, an 

aspecific constant 𝐴𝑆𝐶𝑓𝑤, and the (EV1 iid) unobserved utility term 𝜀𝑓𝑤𝑛. The utility of the fuel 

type and weight category were adjusted by a fixed amount 𝛽2𝑐𝑎𝑟 in households that were estimated 

to own two or more vehicles.  

 

𝑈𝑓𝑤𝑛|𝑐 =  𝐴𝑆𝐶𝑓𝑤 +  𝑈𝑓𝑛|𝑐 + 𝑈𝑤𝑛|𝑐 +  𝜀𝑓𝑤𝑛                                                                                           (2) 

𝑈𝑓𝑛|𝑐 =  ∑ 𝛽𝑖𝑓𝑥𝑖𝑛
𝑣
𝑖=1 +  𝛽2𝑐𝑎𝑟,𝑓                  (3) 

𝑈𝑤𝑛|𝑐 =  ∑ 𝛽𝑖𝑤𝑥𝑖𝑛
𝑣
𝑖=1 + 𝛽2𝑐𝑎𝑟,𝑤     (4) 

 

Attempted nested logit and mixed logit models collapsed into the multinomial model. It was thus 

decided to analyze car types using the above-explained Multinomial Logit specification. This al-

lowed us to use the independence of irrelevant alternatives property such that a household’s prob-

ability of choosing a light gasoline over a heavy gasoline vehicle was only determined by the 

weight coefficients 𝛽𝑖𝑤. These weight category coefficients should therefore remain valid in a fu-

ture sample with more electric vehicles. 

 

The joint model was estimated in Biogeme (Bierlaire, 2020) by maximizing the loglikelihood 𝐿𝐿 

function below. 𝑃𝑐𝑛 and 𝑃𝑓𝑤𝑛|𝑐 are the respective probability of belonging to the car ownership 

class and having a car of a certain fuel- and weight-based type as given by the well-known multi-

nomial logit equation. The dummy 𝑞 is 1 if the household owns a valid car and 0 otherwise. 

 

𝐿𝐿(𝛽𝑖𝑐 , 𝛽𝑖𝑓, 𝛽𝑖𝑤) = ln(∏ ∏ 𝑃𝑐𝑛(𝑐|𝑥𝑖; 𝛽𝑖𝑐 , 𝜀 )𝑐𝑛 ∏ ∏  [∑ 𝑃𝑓𝑤𝑛|𝑐(𝑓𝑤|𝑥𝑖 , 𝑐; 𝛽𝑖𝑓 , 𝛽𝑖𝑤 , 𝜀)𝑐 × 𝑃𝑐𝑛(𝑐|𝑥𝑖; 𝛽𝑖𝑐 , 𝜀 )]𝑞
𝑓𝑤𝑛  )        (5) 

3. RESULTS AND DISCUSSION  

The study results are provided in Table 2 and described below.  

 

As expected, large families with many employed individuals, a middle- to high-income, and a non-

urban residential location tended to possess a car. Households owning multiple cars were especially 

likely to have many adult and working members, a high income, and a low-density residential 

environment. They had a preference for heavy, non-diesel vehicles.  

 

Owning heavy rather than light vehicles was directly correlated with a large number of (older) 

family members, a higher household income, and a high fraction of males. Living in a green area 

and having a private parking spot increased (mid)heavy over light vehicle ownership as well, which 

is logical as compact cars are easier to park and maneuver in densely built areas. Yet, electric 

vehicles were also owned by households with a private parking spot. One explanation is that EV 

owners prefer to charge their vehicles at home (Westin et al., 2018).  

 

Interestingly, the local address density, street connectivity, and distances to public transport had no 

significant direct effect on vehicle fuel type or weight. Previously found effects of these variables 

on vehicle choice may be due to correlations with open (green) space and parking possibilities. 

Earlier studies may also have captured indirect effects of the built environment through ownership 

of two or more cars and associated heavy car preferences. 

 

The combined built environment effect was a noticeably higher vehicle energy consumption in 

non-urban areas. Building new residences in existing cities could therefore have a stronger effect 

on future energy consumption and CO2 emissions than indicated by earlier studies that did not take 

vehicle energy efficiency into account. 
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The capturing of this indirect effect was made possible by the multilevel discrete choice modeling 

framework. In addition, this design allowed analysis of households’ car fuel and weight preferences 

separately. This improved the model accuracy and increased its future relevance. The model was 

fed with built environment data from multiple sources on the fine-grained postcode-6 level. This 

helped achieve a high degree of accuracy and allowed testing of a wide variety of built environment 

variables. Moreover, the real-world car energy efficiency could be precisely determined by cou-

pling data from the Netherlands Vehicle Authority, TNO, and Travelcard BV.  

 

This also illuminated the large gap between vehicles’ real world energy consumption and the offi-

cial data based on the NEDC test. Further analysis showed this gap to be greater than the built 

environment effect on vehicle energy use. Potential consequences include undermining of CO2 -

emission standards, flawed estimates of (technologies’) emission reduction potentials, and the mis-

leading of consumers. It is therefore important that a new WLTP test-cycle has recently been in-

troduced, which should reduce - but not eliminate - the real-world gap (Ligterink et al., 2016). 

4. CONCLUSIONS 

This paper investigated how and to what extent features of residential neighborhoods and their 

residents are currently related to energy relevant car type choice by analyzing real-world energy 

use with a multilevel model of fuel- and weight-preferences in one- and multicar households. 

 

Small, female households with few older members, and a lower income in non-green (urban) en-

vironments were most likely to own light, efficient vehicles. Households with a private parking 

spot tended to own both heavy and electric vehicles. Small, lower-income, urban households were 

lastly less likely to own one or multiple cars, whereby the ownership of multiple cars was associ-

ated with the choice of heavier vehicles. 

 

The combined effect was a mild preference for efficient, low-energy vehicles in urban environ-

ments. Earlier studies that focused on vehicle kilometers thus underestimated the environmental 

impact of urban planning interventions. However, the easiest way to reduce vehicles’ energy con-

sumption and CO2 -emissions seems to further improve the testing procedures in order to tighten 

policies, stimulate innovation, and better inform consumers. 
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Table 2: The estimated coefficients for each of the utility functions. Variables with a 

P-value of 5% or less have been made bold. Coefficients give the change in utility 

when increasing the variable by 1 standard deviation (std).  
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Abstract 
This research sheds light into an important and overlooked aspect of urban freight management and 

planning: the impacts of the decisions made by shippers, receivers, transportation and land use 

agencies, the real estate sector and other agents—referred to as non-carrier agents, or NCAs—on the 

generation of freight externalities. The paper is based on the insight that, since freight carriers must 

meet the constraints set by these agents, NCAs’ decisions could force the carriers to create 

externalities above and beyond those that the carriers would generate if they had complete control 

over their operations. As part of the research, the authors: identify a number of NCAs’ decisions that 

could negatively affect the operational performance and the externalities produced by freight carriers; 

and compute the corresponding Shapley Values to allocate the responsibilities for the freight 

externalities among carriers and NCAs using numerical experiments based on real-life supply chains. 

The insights gained are used to identify policy implications related to electrification of the trucking 

sector. 

 

Keywords: Urban Freight Management, Externalities, City Logistics, Shapley Value 

1. Introduction and Background 
The mitigation, or elimination, of the externalities produced by the various forms of transportation 

activity is one of the most important objectives of transportation planning and policy. Central to this 

quest’s success is the correct identification of the root decisions that create externalities, as such an 

understanding provides crucial insight into how to address these effects. This is important because 

NCAs make decisions that directly influence carrier operations and could create externalities. The 

role played by NCAs in the generation of freight transportation externalities is frequently overlooked. 

At first glance, it seems logical to conclude that, since freight vehicles are the ones that physically 

produce the externalities, the carriers are solely responsible for the generation of the externalities. 

However logical this perception may be, it flies on the face of the complex web of decisions that 

influence supply chains and the resulting freight carrier activity. 

To start, it is important to highlight that the agents involved in supply chains do not operate in 

isolation of each other, and freight operations do not take place in a vacuum. Freight carrier operations 

they are the result of the interactions between the economic agents that participate in the numerous 

production and consumption stages in supply chains. At each of these production-consumption links, 

an agent produces and/or sends supplies (the shipper) that are then consumed by a different agent (the 

receiver), after they are transported by the carrier. Because of these tight interconnections, no single 

agent can make unilateral changes without impacting in one way or another the other participants in 

the supply chain. As a result, in cases of conflicting preferences, the agent with more power tends to 

impose its will on the others. This cold logic of power explains why the carriers—frequently the 

weakest agent in supply chains (Holguín-Veras et al. 2015)—have to abide by the decisions and 

preferences of the more powerful NCAs. If the carriers do not follow the NCAs’ instructions, they 

run the risk of being fired or fined.  
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Supply chains do not take place in a vacuum either. They are embedded in the fabric of 

rural/urban/suburban areas and have to abide by the regulations enacted by transportation, 

environmental, and land use agencies. These agencies typically control: (1) where manufacturers, 

distribution centers, truck terminals, retail stores, and other participants in supply chains are located; 

(2) the size and nature of the activities performed at these locations; (3) access to transportation 

networks by time of day and facility type, and to public spaces such as the curbsides and sidewalks; 

and (4) the environmental standards to be met by vehicles; among other impactful constraints. 

Complicating matters, with the advent of ecommerce, households became another active agent in 

supply chains. As a result, untold numbers of deliveries are made to buildings unprepared to receive 

supplies and parcels, forcing carriers to park on local streets aggravating urban congestion. 

Throughout the paper, the term “receivers” denotes both commercial establishments and households. 

The real estate sector establishes constraints—setting delivery time windows and building hours, 

determining whether or not the building design is conducive to efficient freight operations—that 

impact carrier operations. In addition, the markets in which the various segments of the freight 

industry operate determine the profitability of carriers’ operations and, consequently, the ability of 

carriers to purchase environmentally friendly vehicles. 

At first sight, in game theory terms, this situation seems to be similar to a multi-layer, multi-player 

Stackelberg game where the leading players make decisions that maximize their returns, while the 

follower agents are forced to make decisions under the constraints established by the leaders. 

However, close inspection reveals that these interactions are not a Stackelberg game, because the 

agents involved may have the option to cooperate with the others. In a separate publication, (Holguín 

Veras et al. 2023) defined the “Supply Chain Game” as one where the agents are interested in 

participating in the supply chain (if they are not, the supply chains would not exist). However, the 

conditions of their participation depends on the balance of power with the participating agents. For 

each interaction with another agent, they are only three possibilities: submit to the wish of a more 

powerful agent, cooperate with the agent if this outcome is the best for both agents, or impose its will 

on a weaker agent. (Holguín Veras et al. 2023) established that the Supply Chain Game leads to two 

outcomes: a state of natural cooperation, and the “Battle of the Sexes” game. 

These insights have major implications. Most significantly, since the actions by NCAs to influence 

carrier operations could increase the externalities produced by the carrier—above and beyond the 

externalities that would be generated without the NCAs’ interventions—NCAs would be responsible 

for the incremental externalities produced. To eliminate freight externalities, transportation planners 

must target all the agents—carriers and NCAs—involved in the decisions that contribute to the 

creation of the externalities. It is crucial to correctly identify which agents are responsible for the 

externalities in question, to be able to identify the public-sector initiatives needed to induce NCAs to 

modify the behaviors that create the externalities in question. These considerations take an existential 

importance in the era of climate change, where all policy weapons ought to be brought to bear to 

reduce global warming gases. Solely focusing on carriers is bound to be ineffective at best, and 

counterproductive at worst. 

The main objective of this paper is to help fill an important gap in the research literature regarding 

the identification and quantification of the responsibilities of carriers and NCAs in the generation of 

urban freight externalities. In doing so, the paper significantly expands the literature on urban freight 

management and planning by considering the role played by NCAs, and develops a methodology to 

quantify the responsibilities of the NCAs for the externalities they help create. To this effect, the 

authors establish how NCAs influence carrier operations, discuss NCAs’ roles in the generation of 

freight externalities; and conducts numerical experiments based on real-life supply chains to provide 

insight into the relative importance of the roles played by various agents. The paper concludes with a 

summary of the key insights developed during the research.  

2. Contributors of Freight Externalities 
This section seeks to illustrate the NCAs’ decisions that influence carrier operations and  

externalities. As a result, the section does not comprehensively discuss the array of factors these 

agents consider when making other business decisions. Figure 1 shows some key ways in which the 

different agents influence freight activity and create urban freight externalities. As shown, five groups 
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of influencing factors are considered. Hinting at the complexity of the processes that create freight 

externalities, only three of them—freight carriers, shippers, and receivers (both commercial and 

households)—are directly involved in the supply chain. The rest of the agents establish the geographic 

and economic environments where supply chains take place and, in doing so, have a direct effect on 

the externalities produced. 

Figure 1: Contributors to Traffic Related Urban Freight Externalities 

 
Note: FTG refers to “freight trip generation”, and PUD to “pick-up and deliveries”. 

 

Moreover, to exemplify the impacts of NCAs’ decisions, the authors analyzed the impacts of a 

number of decisions that have major impacts on freight externalities: (1) shipment size and frequency; 

(2) time of delivery; (3) allocation of curbside space for loading and unloading of deliveries (both 

off-street and on-street); and (4) location of logistical facilities. Strikingly, Table 1 makes clear that 

these decisions involve tradeoffs between the efficiency of freight activity and the benefits of some 

kind to the private-sector NCAs; and/or to influential stakeholders, such as passenger car drivers, in 

the case of public-sector NCAs. As hinted by Figure 1 and Table 1, using public policy levers to 

remove the most impactful constraints imposed on the carriers by the NCAs is bound to be effective 

in reducing freight externalities. As demonstrated by the Off-Hour-Deliveries (OHD) program, 

inducing receivers to accept deliveries during the 7PM to 6AM period led to emission reductions in 

the range of 50% to 67% (Holguín-Veras et al. 2018b). Inducing other NCAs to change their 

behaviors could be equally impactful. 
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Table 1: Summary of Impacts for Typical Decisions 

Decision Who Pays? Who Benefits?

Carrier: Increased costs / VKT/ parking 

finesCity: Increase infrastructure maintenance

Society: Increased congestion / health 

impactsEnvironment: Increased emissions

Carrier: Increased costs / VKT / parking 

fines

Receiver: Continue following traditional 

practices, convenience

City: Increase traffic control costs

Society: Increased congestion, health 

impactsEnvironment: Increased emissions

Carrier: Increased operational costs / 

parking fines / VKT looking for parking

Real Estate: Increased amounts of space 

to commercialize

City: Have to provide PUD on-street 

parkingSociety: Increased congestion / health 

impactsEnvironment: Increased emissions

Carrier: Increased costs / parking fines / 

VKT looking for parking

City:  Increased curbside space 

available for buses, passenger cars, and 

other usersSociety: Increased congestion, health 

impactsEnvironment: Increased in emissions

Carrier: Increased costs / VKT City:  More land available for other uses

City: Increase infrastructure maintenance

Society: Increased congestion, health 

impactsEnvironment: Increased emissions

Receiver: Reduced inventory costs and 

the size of storage areas

Land use 

agencies: Not to 

provide space for 

urban/near-urban 

logistical facilities

Shippers / 

receivers:          

Reduce shipment 

size, increase 

frequency of PUDs

Receivers:        

Require PUDs at 

the most congested 

times of day

Real Estate:           

Not to provide 

sufficient off-street 

loading docks for 

PUDs

City agencies:        

Not to provide 

sufficient on-street 

parking for PUDs 

 
Note: “City” refers to “city agencies, “health impacts” refer to those associated with emissions; 

VKT denotes “vehicle-kilometers-traveled,” and “PUD” refers to “pick-up and deliveries”. 

3. Quantification of Responsibilities and Experimental Setup 
To quantify the responsibilities among carriers and NCAs, the authors used cooperative game 

theory to allocate the social costs of making deliveries. Cooperative game theory study the formation 

of coalitions to determine the payoffs that should be given to the partners to ensure the coalition is 

stable. Although conceived as a mechanism to optimally distribute earnings in profit making ventures, 

cooperative game theory is well-suited to allocate the responsibilities for freight externalities. Among 

the analytical formulations developed to compute these payoffs—Stable Set (Von Neumann and 

Morgenstern 1944), Core of the Game (Gillies 1959), Aumann-Maschler Value (Aumann and 

Maschler 1961), the Kernel Value (Davis and Maschler 1963), and others—the Shapley Value 

(Shapley 1952) stands out on account of its axioms that, once defined in terms of the economic value 

of externalities (instead of total profits) become: (1) the summation of the individual allocations equal 

to the total economic value of the externalities (efficiency principle); and (2) the individual allocations 

to each agent are proportional to their contributions to the creation of externalities (individual 

rationality principle). Mathematically speaking, the Shapley Value for agent i, i , shown in equation 

(1), is the expected value of the value of the externalities, (Si), produced by the potential coalitions 

where agent i is involved. See equation (1): 

( )
{ : }

( 1)!( )!
( ) ( { })

!
i

S N i S

S n S
v S v S i

n


 

− −
= − −       (1) 

The experiments focus on the impacts of three important decisions made by NCAs: (1) location of 

a distribution center (DC), typically made by shippers under the constraints set by the real estate sector 
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and city agencies; (2) availability of parking at the receivers’ locations, a decision of the real estate 

sector (off-street) and city agencies (on-street); and, (3) the time of delivery, a decision of the 

receivers. In this context, a shipper S operates a distribution center (DC) with two possible locations 

(O1,O2), a carrier C that makes deliveries to four receivers (R1, R2, R3,R4). There is a city government 

and real estate sector, CG-RE, that control the parking allocation to carriers. Thus, the game has four 

players (S,C,R,CG-RE). The carrier chooses the delivery route, under the operational constraints set 

by the NCAs. The shipper decides on the location of the DC, the CG-RE decides on the availability 

of parking, while the receivers (assumed to make the same decision) decide on time of the delivery. 

To ground the numerical experiments in reality, the authors selected a delivery route (conducted in 

both regular and off-hours) from the New York City Off-Hour Delivery project (Holguín-Veras et al. 

2018a). The actual delivery route (pane a in Figure 2) was the base for the idealized delivery routes 

(pane b in Figure 2) used in the experiments. The parameters used in the numerical experiments come 

from the GPS data collected in New York City. 

Figure 2: Idealized Delivery Routes Considered  

 

The marginal social costs—the sum of private and external costs—were estimated as the difference 

between the preferred scenarios for each of the NCAs and the carrier preferred scenario, (i.e., shortest 

travel distance to the delivery area, off-hour deliveries, and ready access to parking). More often than 

not, carriers and NCAs have different definitions of their preferred conditions. In equality of 

conditions: the shipper is interested in low land costs, frequently far from city centers; receivers tend 

to prefer regular hour deliveries; while city governments / real estate sector, for various reasons, do 

not provide the parking needed by carriers, and are not inclined to allow DCs close to urban cores.  

The private costs account for the carrier’s travel time, the distance travelled to make the delivery, 

and the expected value of parking fines. The external costs consider the costs of emission of various 

pollutants (CO2, NOx, PM2.5, PM10). See Tables 2 and 3. An important effect not considered is the 

increase in congestion and emissions produced by freight vehicles on the rest of the traffic stream and 

the blocking effects in urban streets. Thus, the marginal social costs created by receivers, and city 

governments / real estate sector are underestimated. 

Table 2: Private Transportation Costs  

Transportation costs Regular Hours Off Hours

Highway average travel speed (km/h) 53.24 57.75

City street average travel speed (km/h) 11.30 19.38

Cost per unit distance ($/km) $0.61 $0.61

Cost per unit time ($/hour) $45.13 $45.13

Average time between stops (min/stop) 66.83 49.00

Time cruising for parking (minutes/PUD) 5-10 0.00

Parking fine ($/PUD) $68.91 0

Time of Day

 

O1 O2 

R1 

R4 

R2 

R3 

Legend: 
Distribution  

center (DC) 
Receivers (Rs) 

Pane (a): Actual Delivery Route Pane (b): Idealized Delivery Routes 

Location O1 

Location O2 

Delivery Area 

 
(Not at scale) 
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Table 3: Emission Rates and Valuation of Pollutants 

Regular 

Hours
Off Hours

Rate 

(original)

Rate (US$ in 

2020)
Source

CO2 (g/km) 1548.16 694.45 $0.49/kg $0.58/kg Stern Review (UK, 2006)

NOX (g/km) 0.581 0.236 £6,199/ton $5.61/kg Ricardo Energy and Environment (2017)

PM10 (g/km) 0.086346 0.029762 £105,836/ton $95.79/kg Ricardo Energy and Environment (2017)

PM25 (g/km) 0.083 0.028 $12.85/kg $22.16/kg Small and Kazimi (1995)

Economic Valuation of Pollutants

Pollutant

Emission rates

 

4. Discussion of Results and Conclusions  
Table 4 shows the breakdown of the social cost for the carrier preferred scenario—i.e., DC close to 

the delivery area, off-hour deliveries, and parking available—and the Shapley Values quantifying the 

increases in social costs of making deliveries attributed to NCAs’ decisions. The contributions of 

shippers and carriers are reported together because their contributions are interwoven (Friesz and 

Morlok 1980, Friesz et al. 1986). A similar situation is that of city governments / real estate sector 

that jointly determine freight parking availability. The experiments consider two scenarios of cruising 

times for parking. See Table 4.  

Table 4: Social Costs and Shapley Values 

Agent:

Shipper-Carrier $426.42 $367.61 $58.81

Agent:

Shipper-Carrier $309.37 54.32% $212.26 62.13% $97.11 42.62%

Receivers $201.45 35.37% $90.98 26.63% $110.47 48.48%

City Gov. /Real Estate Sector $58.70 10.31% $38.41 11.24% $20.29 8.90%

Total $569.51 100% $341.65 100% $227.86 100%

Increase = B/A 133.56% 92.94% 387.46%

Agent:

Shipper-Carrier $309.37 49.83% $212.26 57.06% $97.11 39.02%

Receivers $200.71 32.33% $89.54 24.07% $111.16 44.67%

City Gov. /Real Estate Sector $110.77 17.84% $70.19 18.87% $40.58 16.31%

Total $620.84 100% $371.99 100% $248.84 100%

Increase = B/A 145.59% 101.19% 423.13%

Social Costs Private Costs Externalities

B) Shapley Values (Expected Values of the Increases in Social Costs)

A) Carrier Preferred Scenario

Social Costs Private Costs Externalities

Case 1: Cruising for Parking = 5 min

Case 2: Cruising for Parking = 10 min

ExternalitiesPrivate CostsSocial Costs

 
 

These results compellingly demonstrate the significant effects of NCAs’ decisions, found to 

increase emission externalities by 387%-423%, while increasing private costs by 92%-101%. As 

shown, the majority of the freight externalities, 57-61% of the total, are the result of the decisions 

made by receivers (45-48%), and city governments / real estate sector (9-16%). The duplet shipper-

carrier contribute the rest (39-43%). It should be noted that the contribution of the city governments 

/ real estate sector to the freight externalities is underestimated as these estimates do not include the 

increase in emissions from the traffic stream resulting from the trucks traveling in congested 

networks, cruising for parking in narrow streets, and double-parked trucks.  

These results, based on real-life data, have major implications on urban freight management on 

account to the practical impossibility of rapidly electrification of trucking (at best a medium-term 

possibility). In the short- and medium-terms, freight demand management—fostering off-hour 

deliveries, staggered deliveries, and the like—remain the best short-term option. Fostering freight-

efficient land-uses (Holguin-Veras et al. 2021) is bound to play a key role in the medium and long-

terms complementing electrification. Without doubt, using all these tools provide the best chance of 

mitigating the worst effects of climate change.  
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SHORT SUMMARY 

This study proposes a flexible and interpretable discrete choice model (DCM) capturing key be-

havioural mechanisms simultaneously: (i) interactions between alternative-specific and individ-

ual-specific attributes (e.g., taste heterogeneity), (ii) interactions between alternative-specific at-

tributes, (iii) inherent non-linear utility of alternative-specific attributes (e.g., diminishing mar-

ginal utility of travel cost). Deep neural networks (DNNs) have been considered as candidates to 

flexibly capture these mechanisms, but they fail to provide trustworthy and explainable economic 

information (i.e., interpretability) obeying domain-specific knowledge (e.g., decrease in utility of 

travel mode due to an increase in its travel cost). We propose a DCM based on a lattice network 

(LN) that efficiently imposes attribute-specific monotonicity constraints in the utility specifica-

tion while ensuring the trustworthy interpretation of DNNs. The proposed LN-based DCM is 

benchmarked against DNN in a Monte Carlo study. The results show that it outperforms even the 

parametric DCM in terms of interpretability while slightly underperforming the DNN in terms of 

predictability. 

 

Keywords: discrete choice model; monotonicity; deep neural network; lattice network; 

interpretability. 

1. INTRODUCTION 

In discrete choice models (DCMs), correctly specifying the systematic utility is critical to achiev-

ing good predictability and interpretability. Interpretability indicates the extent to which it pro-

vides trustworthy and explainable economic information at an individual level. Ensuring the mon-

otonicity of the utility relative to a subset of alternative-specific attributes is crucial to maintain 

interpretability. For instance, the utility should monotonically decrease with the increase in cost 

in most situations.  

Traditional parametric DCMs rely on linear-in-parameter utility specifications, with 

hand-crafted interactions between attributes. Such models are appealing due to the ease of asso-

ciating the meaning with parameter estimates. However, misspecifications of parametric utility 

not only result in poor prediction accuracy, but also biased parameter estimates for interaction 

effects, leading to counterintuitive willingness to pay (WTP) estimates (e.g., negative WTP to 

save travel time). 

To address the issues of parametric DCMs, researchers have adopted deep neural net-

works (DNNs) (Cranenburgh et al., 2022). The DNNs improve the DCM’s predictability by con-

sidering complex non-linear and interaction effects of attributes, and WTP and elasticity estimates 

can also be extracted (Wang, Wang, et al., 2020). While ensuring monotonicity requirements is 

challenging in DCM-DNN, ignoring it might lead to counterintuitive interpretations in certain 

attribute domains (Wang, Wang, et al., 2020).  

mailto:prateekb@nus.edu.sg
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This study contributes with a theory-constrained DCM where the systematic utility is 

specified using a lattice network (DCM-LN henceforth). First, the lattice network (LN) segments 

the input space into grids or cells. The input attribute vector is transformed into a vector of inter-

polation weights (i.e., model parameters to be estimated) over the vertices of the cell that repre-

sents the input space. Second, the function value is obtained as a linear transformation of the first 

step’s interpolation weights (Gupta et al., 2016). While the linear transformation in the second 

step leads to easy-to-implement theoretical conditions for monotonicity, the transformation of the 

input attribute vector into the first step captures non-linear effects and interactions of attributes. 

We also add a calibration layer before and after the lattice network to improve the ability of DCM-

LN to capture non-linearities in attribute-specific effects, obviating the need to create a fine-

grained lattice that requires much more model parameters. DCM-LN can thus simultaneously 

infer underlying non-linear effects of all alternative- and individual-specific attributes and inter-

actions between them while achieving the monotonic effect of a subset of attributes for every 

individual.  

Figure 1 symbolically benchmarks the systematic utility of the DCM-LN against the tra-

ditional DCM with linear utility specification without interactions (DCM-linear) and DCM-DNN 

at a population and an individual level. Figure 1(a) shows that the overly complex DCM-DNN 

model represents abrupt changes in marginal utility and even incorrect signs. Such behavioural 

irrationalities are even worse at an individual level, as indicated by potentially higher heteroge-

neity (see Figure 1b). On the other hand, the overly simplified DCM-linear model causes serious 

bias in the marginal utility estimates. In contrast, the DCM-LN can recover true marginal utilities 

over the domain of input space at an individual level since the monotonicity constraints prevent 

the incorrect sign of the attribute effects at the individual level; thus, the population-level effect 

is naturally corrected. 
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Figure 1. Symbolic benchmarking of the proposed model against existing DCM models  
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2. METHODOLOGY 

Formulation  

The indirect utility for individual 𝑛 ∈ {1, … , 𝑁} for alternative 𝑜 ∈ {1, … , 𝑂} is a sum of system-

atic utility (𝑉𝑜𝑛) and error term (𝜀𝑜𝑛) as denoted in Equation (1), and the 𝑉𝑜𝑛 can be represented 

as a function 𝑿𝑜𝑛, with parameters 𝜽. 

 

𝑈𝑜𝑛 = 𝑉𝑜𝑛 + 𝜀𝑜𝑛 = 𝐹𝑜𝑛(𝑿𝑜𝑛; 𝜽)+ 𝜀𝑜𝑛 (1) 

 

where 𝑿𝑜𝑛 = (𝔁𝑜𝑛 , 𝔃𝑛) is a vector of input attributes, such that 𝔁𝑜𝑛 ∈ 𝑅𝑀−𝑄 is a vector of alter-

native-specific attributes and the 𝔃𝑛 ∈ 𝑅𝑄 is a vector of individual-specific attributes. If the 𝜀𝑜𝑛 

is assumed to be identically and independently Gumbel-distributed, the choice probability for the 

alternative o takes the form of the Softmax function as in Equation (2).   

 

𝑃𝑜𝑛 = 𝑒𝐹𝑜𝑛(𝑿𝑜𝑛;𝜽)

∑ 𝑒𝐹𝑗𝑛(𝑿𝑗𝑛;𝜽)𝑂
𝑗=1

⁄  (2) 

 

Based on the Softmax form of choice probability, the DCMs can be estimated by standard empir-

ical risk minimization as in Equation (3).  

 

𝜽∗ = 𝑎𝑟𝑔 min
𝜽

∑ ℒ(𝒚𝑛, 𝑷𝑜𝑛)
𝑁

𝑛=1
 (3) 

 

where ℒ is the standard cross-entropy loss function and 𝒚𝑛 is the choice made by individual 𝑛. 

The DCM-Linear assume the 𝐹𝑜𝑛 as a linear function 𝐹𝑜𝑛
𝐿𝑖 with 𝜽𝐿𝑖 that is a vector of coefficients 

for 𝑿𝑜𝑛. The 𝜽𝐿𝑖 directly relates to the main effects 𝜷 as in Equation (4).  

 

𝐹𝑜𝑛
𝐿𝑖(𝑿𝑜𝑛; 𝜽𝐿𝑖) = 𝜷𝑇𝑿𝑜𝑛 (4) 

 

The DNN represent the 𝐹𝑜𝑛
𝐷𝑁𝑁 by multiple neurons in the multiple hidden layers (𝒉) as in Equa-

tion (5).  

 

𝐹𝑜𝑛
𝐷𝑁𝑁(𝑿𝑜𝑛; 𝜽𝐷𝑁𝑁) = 𝑨𝒐𝒏

𝑻 (𝒉𝑯 ∘ … ∘ 𝒉𝟐 ∘ 𝒉𝟏)(𝑿𝑜𝑛) (5) 

 

where 𝐻 is the number of layers in the DNN, and 𝑨𝒐𝒏
𝑻  is the last layer before the Softmax function 

to make the alternative-specific utility. 𝜽𝐷𝑁𝑁 are the weights (i.e., parameters) connecting neu-

rons and hidden layers. 

Empirical studies have shown that 𝐹𝑜𝑛
𝐷𝑁𝑁 minimizes the empirical risk with overly com-

plex models (i.e., over-estimated interactions) (Wang, Mo, et al., 2020). To address this issue, this 

study proposes a flexible but constrained form of LN-based utility function as in Equation (6).  
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𝐹𝑜𝑛
𝐿𝑁(𝑿𝑜𝑛; 𝜽𝐿𝑁) = ∑ 𝒈𝒎(𝑿𝑜𝑛[𝑚])

𝑀

𝑚=1

+ ∑ 𝒓𝑚,𝑚′
1 (𝒈𝒎(𝑿𝑜𝑛[𝑚])

 

𝑚′≠𝑚
, 𝒈𝒎′(𝑿𝑜𝑛[𝑚′])) + ⋯ 

+ ∑ 𝒓𝑚,…,𝑚′
𝑀 (𝒈𝒎(𝑿𝑜𝑛[𝑚])

 

𝑚′≠𝑚
, … , 𝒈𝒎′(𝑿𝑜𝑛[𝑚′])) 

(6) 

 

where 𝒈𝒎 denotes an attribute-specific utility function that capture the inherent non-linear effect 

and 𝑿𝑜𝑛[𝑚] is m-th attribute of 𝑿𝑜𝑛. The 𝒓𝑚,𝑚′
1  indicates the first order interaction between the 

non-linear effects of 𝑚-th and 𝑚′-th attributes, and the 𝒓𝑚,…,𝑚′
𝑀  captures the 𝑀-th order interac-

tions. To ensure the trustworthy attribute-specific effect, we need to impose partial monotonicity 

constraints on 𝒈𝒎 and 𝒓𝑚,…,𝑚′
𝑀  at individual level. 

Lattice network  

The key requirement for trustworthy attribute-specific effect is the partial monotonicity of utility 

function relative to a subset of attributes. For example, increase in travel cost never increases the 

utility of travel mode if all other attributes are unchanged, regardless of the level of travel cost 

and the individual attributes. The monotonicity constraints can be implemented by restricting a 

sum of interaction effects , which requires considering several inequality constraints during train-

ing. The LN captures the attribute-specific non-linear effect as segmented effects for each cell 

(i.e., piecewise linear effect) in the lattice and the interactions of these non-linear effects using 

multilinear-interpolation. Such combination of piecewise linear functions and multi-linear inter-

polation enable LN to drastically reduce the number of inequality constraints to be evaluated for 

the monotonicity constraints (Gupta et al., 2016). Figure 2 shows the LN framework consisting 

of the calibrator layer and lattice layer.    

 

 

Figure 2. Lattice network framework 
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The input calibration layers 𝑪𝒊𝒏
  in Figure 2 implements the K attribute-specific transfor-

mation to capture the non-linear effect before the lattice layer, using one-dimensional monotonic 

piecewise linear function. These K transformation functions are estimated jointly with the lattice 

in the training. Figure 3 illustrates the examples of transformation function in the calibration 

layer. The only hyperparameter for k-th attribute in the calibration layer is the number of changing 

points 𝐶𝑃𝑘 if we set the equally distanced cells.  

 
Figure 3. Examples of attribute-wise non-linear transformation through the calibration layer. 

   

For the input attributes, 𝑿𝑜𝑛 ∈ 𝑅𝑀, we define the lattice size 𝑆𝑘 for each attribute dimen-

sion, which is the number of vertices along the k-th attribute dimension. Then, the lattice can be 

represented by 𝑆 = 𝑆1 × 𝑆2 × … × 𝑆𝐾 parameters and spans the (𝑆1 − 1) × (𝑆2 − 2) × … ×

(𝑆𝐾 − 1) hyper-rectangle. The lattice estimates the value of function 𝑳(𝑪𝒊𝒏
 (𝒙)) by S parameters 

that is the value of function at each vertex. The larger lattice size can represent more flexible 

utility function. However, even if the lattice size is two for an attribute, the non-linear effect can 

be captured by an input calibration layer before the lattice. 𝑪𝒐𝒖𝒕
 (𝑳(𝑪𝒊𝒏

 (𝒙𝒐𝒏)) in Figure 2 esti-

mates the 𝐹𝑜𝑛
𝐿𝑁(𝑿𝑜𝑛; 𝜽𝐿𝑁) in Equation (6), and 𝜽𝐿𝑁 consists of (i) the slopes of piecewise linear 

function in the attribute-specific calibration layers 𝜽𝑖𝑛𝐶𝑎𝑙
𝐿𝑁  (ii) 𝑆 parameters representing the value 

of function in the vertices 𝜽𝐿𝑎𝑡
𝐿𝑁 , and (iii) the slope of piecewise linear function in the output cali-

bration layer 𝜽𝑜𝑢𝑡𝐶𝑎𝑙
𝐿𝑁 .  

For the discrete choice datasets consisting of input attributes 𝑿𝑜𝑛 and output choices 

𝒚𝑛, the objective of the training LN is to estimate the 𝜽𝐿𝑎𝑡
𝐿𝑁  while ensuring the monotonicity con-

straints. For the k-th attributes (𝑥𝑜𝑛
𝑚 [k]), the increasing monotonicity is ensured if 𝜃𝐿𝑎𝑡,𝑠

𝐿𝑁  > 𝜃𝐿𝑎𝑡,𝑟
𝐿𝑁  

for all adjacent vertices s and r along the k-th attribute dimension. Similarly, the monotonicity 

constraints are also imposed on the attribute-specific input calibration layer. For the parameters 

of calibration layer for k-th monotonic attributes, 𝜃𝑖𝑛𝐶𝑎𝑙
𝐿𝑁 [𝑘] (i.e., the slopes of piecewise linear 

function in each segment), 𝜃𝑖𝑛𝐶𝑎𝑙,𝑢
𝐿𝑁 [𝑘] > 𝜃𝑖𝑛𝐶𝑎𝑙,𝑣

𝐿𝑁 [𝑘] should be maintained for all adjacent 𝑢 and 

𝑣, to make the 𝐶𝑖𝑛(𝑥𝑜𝑛
𝑚 ) be a piecewise monotonic linear function. With these two levels of ine-

quality constraints, the LN is estimated using a structural risk minimization. Then, the updated 

parameters are projected to ensure their monotonic constraints. The estimation of the 𝜽𝐿𝑁 is for-

mulated as in Equations (7-9). 
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𝐹𝑜𝑛
𝐿𝑁(𝑿𝑜𝑛; 𝜽𝐿𝑁) = 𝑪𝒐𝒖𝒕

 (𝑳(𝑪𝒊𝒏
 (𝒙𝒐𝒏; 𝜽𝑖𝑛𝐶𝑎𝑙

𝐿𝑁 ); 𝜽𝐿𝑎𝑡
𝐿𝑁 ); 𝜽𝑜𝑢𝑡𝐶𝑎𝑙

𝐿𝑁 ) (7) 

𝑃𝑜𝑛
𝐿𝑁 = 𝑒𝐹𝑜𝑛

𝐿𝑁(𝑿𝑜𝑛;𝜽𝐿𝑁)

∑ 𝑒𝐹𝑜𝑛
𝐿𝑁(𝑿𝑜𝑛;𝜽𝐿𝑁)𝑂

𝑜=1
⁄  (8) 

arg min
𝜽𝑳𝑵

∑ ℒ(𝑦𝑛, 𝑃𝑜𝑛
𝐿𝑁) + 𝑅(𝜽𝑖𝑛𝐶𝑎𝑙

𝐿𝑁 )
𝑁

𝑛=1
 

𝑠. 𝑡 𝑨𝜽𝐿𝑎𝑡
𝐿𝑁 ≤ 0, 𝑩𝜽𝑖𝑛𝐶𝑎𝑙

𝐿𝑁 ≤ 0, 𝑎𝑛𝑑 𝑪𝜽𝑜𝑢𝑡𝐶𝑎𝑙
𝐿𝑁 ≤ 0 

(9) 

 

𝑅(𝜽𝑛𝐶𝑎𝑙
𝐿𝑁 ) is the regularization for input calibration layers (i.e., the wrinkle and Hessian regular-

izer). The matrix 𝑨 is represents the inequality constraints for 𝑆(= 2𝐾) parameters, and partial 

monotonicity is considered through the matrix 𝑨. The matrix 𝑩 and 𝑪 play a similar role in im-

plementing the partial monotonicity constraints in the input and output calibration layers, respec-

tively. Details on the efficient optimization strategies for Equation (9) can be referred to Gupta 

et al. (2016).  

This study adopts the individual conditional expectation (ICE)(Goldstein et al., 2015) as 

post-analysis tools for DNN and LN to explain the attribute-specific effect (i.e., utility function) 

at individual level. Readers can refer to more details of ICE and its pros and cons in the Molnar 

(2018). 

3. RESULTS AND DISCUSSION 

Simulation study  

The data generating process (DGP) for binary choice (Han et al., 2022) are defined as follows. 

The three individual attributes – income (IN), full-time job (FUL), and flexible commuting (FLX) 

create systematic taste heterogeneity for the effects of two alternative-specific attributes – travel 

time (TT) and waiting time (WT). The IN is a categorical variable with 10 intervals, while the 

FUL and FLX are dummy variables. We also define the crowding (CR) and its interaction with 

TT, and inherent non-linear utility of TC. Equation (10) denotes the true systematic utility of 

individual 𝑛 for alternative 𝑗.  

 

  𝑉𝑛𝑗 = −0.1 − 𝟖 ∙ √𝑻𝑪𝒏𝒋 − 𝟐. 𝟎 × 𝑪𝑹𝒏𝒋 + 

(
−0.1 − 0.5 × 𝐼𝑁𝑛 − 0.1 × 𝐹𝑈𝐿𝑛 + 0.05 × 𝐹𝐿𝑋𝑛 − 𝟎. 𝟎𝟐 × 𝑪𝑹𝒏𝒋

−0.2 × 𝐼𝑁𝑛 × 𝐹𝑈𝐿𝑛 + 0.05 × 𝐼𝑁𝑛 × 𝐹𝐿𝑋𝑛 + 0.1 × 𝐹𝑈𝐿𝑛 × 𝐹𝐿𝑋𝑛
) × 𝑇𝑇𝑛𝑗 + 

(
−0.2 − 0.8 × 𝐼𝑁𝑛 − 0.3 × 𝐹𝑈𝐿𝑛 + 0.1 × 𝐹𝐿𝑋𝑛

−0.3 × 𝐼𝑁𝑛 × 𝐹𝑈𝐿𝑛 + 0.08 × 𝐼𝑁𝑛 × 𝐹𝐿𝑋𝑛 + 0.3 × 𝐹𝑈𝐿𝑛 × 𝐹𝐿𝑋𝑛
) × 𝑊𝑇𝑛𝑗 

 

(10) 

Benchmark models 

The DCM-DNN and DCM-Linear models are used as benchmark models. The DCM-Linear con-

siders the true first-order interactions between the alternative and individual attributes (e.g., 

𝐹𝐿𝑋𝑛 × 𝑇𝑇𝑛𝑗, 𝐹𝑈𝐿𝑛 × 𝑇𝑇𝑛𝑗) while ignoring second-order interactions (e.g., 𝐹𝑈𝐿𝑛 × 𝐹𝐿𝑋𝑛 ×

𝑇𝑇𝑛𝑗), interactions between alternative attributes (e.g., 𝑇𝑇𝑛𝑗 × 𝐶𝑅𝑛𝑗), and inherent non-linearity 

(e.g., 8√𝑇𝐶𝑛𝑗). For the DCM-DNN and DCM-LN, we do not provide any information for the 
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DGP and input all the alternative and individual attributes. The DCM-LN only uses the prior 

knowledge in which TT, WT, CR, and TC monotonically decrease the utility at individual level.  

Evaluation metrics for interpretability and predictability 

This study evaluates the interpretability by comparing the true and estimated WTP. We compare 

the true and estimated distribution of value-of-time (VOT) and value-of-waiting-time (VOWT) 

to evaluate the capability of capturing individual taste heterogeneity. We define 40 (=10×2×2) 

individual groups by IN, FUL, and FLX. For DCM-DNN and DCM-LN, VOT for each individual 

group is calculated by aggregating ICE along all levels of the attribute value and each individual 

group. We examine the distribution of estimated VOT and VOWT using five quantile values: 1%, 

25%, 50% (median), 75%, and 99%. Then, the accuracy of the estimated VOT and VOWT for 40 

individual groups is evaluated by the root mean squared error (RMSE) and mean absolute per-

centage error (MAPE). The predictability is evaluated by accuracy for binary choice. 

Evaluation results 

Table 1 summarizes the evaluation results for interpretability and predictability. All the estimates 

are obtained from 50 synthetic datasets, and their mean and standard deviations are calculated. 

We examine the VOT and VOWT distributions using five quantiles value. The evaluation results 

provide four interesting findings. First, the predictability of the DCM-Linear is significantly 

worse than the DCM-DNN and DCM-LN, and its interpretability is worse than the DCM-LN. 

These results clearly show how the misspecification of utility function dramatically reduces the 

predictive performance and the trustworthiness of behavioural interpretation. The main cause may 

be the large discrepancy between the linear and non-linear utility functions for TC, which dra-

matically impacts WTP estimates. Second, DCM-DNN shows the best predictability and the 

worst interpretability, indicating that the trade-off relationship still holds for more complex func-

tions. The interpretability of DCM-DNN is even lower than those of DCM-Linear. These results 

imply that the overly complex function fitted by DCM-DNN does not consider trustworthiness 

during training. Third, DCM-LN highly outperforms the DCM-Linear and DCM-DNN in terms 

of interpretability. It shows the best performance for all distribution and individual group values. 

In terms of predictive performance, DCM-LN highly outperforms the DCM-Linear but it is 

slightly outperformed by the DCM-DNN. Considering the balanced interpretability and predicta-

bility performance, the DCM-LN is the best model. Forth, both DCM-Linear and DCM-DNN 

estimate the negative VOT and VOWT for some individual groups, which substantially decreases 

the trustworthiness of the model’s interpretation. In comparison, the DCM-LN that ensures the 

individual-level monotonicity does not suffer such misidentification and provides slightly low but 

consistent WTP estimates.  

Table 1. Interpretability and predictability evaluation. 

Parameter 
True MNL DCM-DNN  DCM-LN  

Mean Std. Mean Std. Mean Std. Mean Std. 

Interpretability: 

recovery of  

distribution 

VOT (Median) 0.284 0.014 0.126 0.019 0.075 0.105 0.188 0.080 

VOT (1%) 0.142 0.010 -0.026 0.029 -0.012 0.281 0.093 0.063 

VOT (25%) 0.216 0.013 0.066 0.021 0.040 0.085 0.135 0.072 
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VOT (75%) 0.404 0.024 0.200 0.013 0.123 0.172 0.257 0.089 

VOT (99%) 0.675 0.027 0.372 0.024 0.222 0.214 0.456 0.105 

VOWT (Median) 0.480 0.019 0.258 0.148 0.146 0.210 0.322 0.134 

VOWT (1%) 0.252 0.011 -0.068 0.124 -0.114 0.797 0.153 0.082 

VOWT (25%) 0.372 0.017 0.118 0.141 0.086 0.159 0.244 0.127 

VOWT (75%) 0.779 0.033 0.414 0.175 0.233 0.273 0.472 0.181 

VOWT (99%) 1.236 0.049 0.719 0.288 0.402 0.560 0.892 0.263 

Interpretability: 

recovery of 

individual 

groups’ value 

VOT (MAPE)     0.630 0.044 0.802 0.329 0.351 0.103 

VOT (RMSE)     0.193 0.012 0.272 0.102 0.129 0.030 

VOWT (MAPE)     0.598 0.195 0.846 0.459 0.359 0.112 

VOWT (RMSE)     0.348 0.092 0.546 0.259 0.243 0.063 

Predictability: Training  

accuracy 
    0.552 0.006 0.775 0.010 0.741 0.018 

Test accuracy     0.546 0.013 0.716 0.014 0.697 0.016 

 

 Figures 4 and 5 support the findings derived from Table 1 and reveal some insightful 

patterns. First, all models underestimate the VOT and VOWT for most individual groups, ex-

cept for some peak points caused by misidentification of the interaction effects, but the extent of 

the underestimation of DCM-LN is smaller than the other models. Second, Figure 5 shows that 

DCM-LN approximates the non-linear effect much better than DCM-DNN at both population 

and individual levels. One major issue of DCM-DNN is that it provides almost zero or positive 

marginal utility of TC for some levels of TC, which may lead to unreasonably high VOT or 

VOWT estimates, as in the peak of red lines in Figure 4. In contrast, DCM-LN could prevent 

such misspecification using its monotonicity constraints, also representing relatively stable 

WTP patterns in Figure 4. Third, the estimated alternative-specific utility functions in DCM-

Linear are far from the true DGP. This result implies that there is a need to go beyond hand-

crafted utility specifications if predictability is of interest.  

 



10 

 

 

Figure 4. VOT and VOWT estimates for 40 individual groups in DGP. 
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Figure 5. Attribute-specific utility functions estimated by (a) DCM-Linear, (b) DCM-DNN, and 

(c) DCM-LN at the individual and (d) population-level distribution (PD) of all three models. 

4. CONCLUSIONS 

In summary, we customize the lattice networks and introduce their first application to the DCMs 

to achieve a flexible utility specification while maintaining interpretability by imposing theory-

driven constraints at an individual level. We benchmark the performance of DCM-LN against 

DCM-DNN and a parametric DCM (i.e., DCM-Linear) in a simulation study in terms of predic-

tive accuracy and recovery of underlying marginal utility and individual-level WTP values across 

input space.  

 The evaluation results show that the DCM-LN highly outperforms the DCM-Linear and 

DCM-DNN in terms of interpretability, which is measured by the capability to recover the true 

utility and WTP of the simulation dataset. In contrast, the predictability of DCM-Linear is only 

slightly outperformed by the DCM-DNN, indicating that its capability to capture the complex 
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interactions in DGP remains intact after imposing monotonicity constraints. This balanced per-

formance of DCM-LN is quite promising because it suggests that the DCM-LN approximates the 

true utility function during the training, rather than arbitrary functions that maximize the predict-

ability as DCM-DNN does.  

The work for evaluating the DCM-LN on real data is ongoing for further verification. 

Also, we are incorporating other behavioral mechanisms (i.e., soft constraints) into the DCM-LN, 

such as the non-compensatory decision rules (e.g., attribute cut-off and attribute non-attendance) 

and asymmetric marginal utility (e.g., prospect theory). 
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Short summary

This research presents a game-theoretic model to analyse market equilibria in the presence of envi-
ronmental policies at national and supranational levels. In a two-stage game, regulators maximise
welfare over their jurisdiction by setting emission charges, whilst airlines compete through fre-
quencies, fares, and fleet choice. Consequently, airlines decide whether to absorb the costs of the
environmental charges, pass them on to consumers, replace part of their fleet with more efficient
aircraft or redistribute the inefficient fleet to less regulated itineraries. The equilibria outcomes
suggest the presence of several distorting forces that can undermine the effectiveness of environ-
mental policies. To assess the robustness of our results, we apply the model to North American
and Western European markets, under different regulatory setting, finding that a reduction in the
emissions produced comes at the expense of the welfare and that the effectiveness of the policy is
limited when regulators interact in their own interests.
Keywords: Decarbonization of transport, Transport economics and policy, Operations research
applications, Discrete choice modelling.

1 Introduction

Within the transportation domain, the aviation industry currently produces 5% of global anthro-
pogenic carbon dioxide (CO2) emissions, and this is expected to continue to increase by 2050 (Lee
et al., 2021; Kwan & Rutherford, 2015). Decision makers at the local, national, and supranational
levels have mandated various environmental policies in an attempt to control aviation emissions
(Larsson et al., 2019). However, the strength and environmental efficiency of these measures vary
widely. Furthermore, since airlines operate globally, policymakers need information on how air-
lines respond to different, often overlapping, policies, to ensure that their interventions balance the
carbon footprint of aviation with its wider economic and connectivity benefits.
Despite increasing understanding in recent years of the negative impacts derived from emissions,
no effective and globally accepted emission control mechanism has yet been implemented. Many
governments have developed unilateral emissions reduction schemes to regulate emissions produc-
tion and to limit climate change. However, the lack of coordination among countries’ policymakers
likely generates suboptimal outcomes. A clear example is given by the presence of multiple, over-
lapping policies to address aviation emissions, such as the EU-ETS applied alongside Member
States’ ticket taxes and CORSIA. Another source of inefficiency that arises from the lack of coor-
dination between countries manifests itself in the form of emissions leakage from heavily regulated
countries to those jurisdictions in which the schemes are less strict (Baylis et al., 2013; Nordhaus,
2015; Perino et al., 2019). In addition, other market failures, such as firms’ market power, will
result in a departure from the standard first-best formulation in which government intervention
addresses negative externalities by imposing a Pigouvian tax (Pigou, 1924) equal to the marginal
external costs (Pels & Verhoef, 2004).
This calls for a game-theoretic framework to analyse how non-cooperative regulators at different
administrative levels will set environmental policies strategically and how firms will subsequently
react to such mechanisms. Given the complexity and numerous market distortions in the aviation
industry, it is necessary to represent a realistic framework capable of including these industry-
specific components. Our focus on the case of airline environmental regulation coincides with
rapidly growing concerns about the impact of aviation emissions, and fragmentation in the avia-
tion environmental regulatory setting offers an appropriate context for an applied game-theoretic
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approach.

The purpose of this paper is to develop a game-theoretic model that assesses the impact of envi-
ronmental policies in the aviation industry, taking into account both airline and regulatory com-
petition. Specifically, our objective is to investigate how airlines respond to policies instigated by
multiple non-cooperative policymakers at different administrative levels that set rules according to
their own objectives. Our model allows to analyse and understand the policy implications deriving
from the competition of multiple regulators and compare them to the implementation of an optimal
global policy. We identify the cases in which a carbon charge may result in effective environmental
policy and those in which the implementation of such a policy would fail due to divergence in
regulator objectives. This style of game represents a novelty in the (air) transportation literature
and may be used to analyse environmental and regulatory issues in other network industries.

2 Methodology

We define our game-theoretic model as a two-stage Nash game with perfect information. The set
of players in the first-stage is characterised by the different regulators of the countries in which air-
lines are based and/or supranational decision-makers. In the first-stage, each regulatory body aims
to maximise the social welfare of the area under its control by setting the level of environmental
taxation to be applied. The regulator may reduce (global) environmental damages by setting a rel-
atively high environmental tax, but this may come at a cost to both (local) consumer and producer
surplus. Consequently, regulators compete on the entire level of emissions produced considering
how much they are susceptible to the environmental damage resulting from these emissions. In the
second-stage, airlines compete with each other by setting airfares and service frequencies through
their best response functions, pursuing profit maximisation. To respond to changes in the climate
policies, airlines may replace inefficient aircraft with more environmentally friendly technologies,
fly their higher-emission aircraft less, reallocate their higher-emission aircraft to routes with less
environmental taxation or reduce frequencies on regulated routes.

We define a hub-and-spoke network, G(N ,K), where the nodes are connected to the spokes through
ordered legs within the set K, allowing indirect connections between the spokes passing through
the hub airport.
Given the network configuration, airlines are subject to different levels of climate policies imposed
by regulators. The sets belonging to the area of influence of a specific regulator are defined as:

N r = {ir, jr|ir, jr ∈ N , ir and jr are nodes in the area regulated by r}

Ar = {ar|ar ∈ A, ar is an airline serving the area regulated by r}

Kr = {kr|kr ∈ K, kr is a network leg served by an airline based in the area regulated by r}

In the first stage, regulators maximise the social welfare of the area under their influence. Welfare
is composed of four main components: passenger surplus, producer profits, government income
from environmental taxation and environmental damages.

Max
θr

SWr =
∑
irjt

dirjt
1

−β2t
ln

(
e
V0+

∑
a

Virjta(f
∗
kva,p

∗
irjta)

)
+

∑
ar∈Ar

πar

(
f∗
krvar , p∗ijtar , x∗

hvar , θr
)

(1)

+
∑
krva

εkrvf
∗
krvaθr − ηr

∑
kva

εkvξf
∗
kva

where

εkv = γkϕhvco2

is the ton of CO2 produced on a flight leg k by a specific version of aircraft v. In 1, the first element
represents the consumer surplus, expressed as the log-sum of the utility of passengers departing
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from the jurisdiction of the regulator (Small & Rosen, 1981). The second element represents the
profit generated by airlines certified within the jurisdiction of the regulator. The third element
is the income from the carbon charge imposed on CO2 generated over the regulated arcs and the
last element expresses the share ηr of the overall social cost of emissions that the regulator takes
into account. The decision variable for the regulatory entity is the charge per ton of carbon (θr)
originating from a flight departing from its jurisdiction, taking into account the behavior of the
other regulatory agencies and the airlines’ responses to carbon charges in the second-stage.

Regulators are encouraging the internalization of environmental externalities, which are public
goods. The aviation industry belonging to each regulator contributes to the total amount of emis-
sions produced while providing connectivity between regions. However, not all regions are affected
in the same way by emissions. Specifically, we allow for different degrees of risk exposure through
the parameter ηr. In this way, regulators have the incentive to free-ride on the emissions reduction
achieved by the actions of competing regulators. All CO2 emissions generated by civil aviation
bear a social cost common to all regulators, namely the (global) social cost of carbon represented
by the parameter ξ. This social cost is homogeneous over the regions given the global impact of
carbon emissions on the environment, however the exposure or distribution of this impact varies
over regions. In our game, regulators can trade off environmental externalities with the surplus of
passengers and carriers (profits) in their region by deciding the level of taxation on CO2 in their
jurisdiction. Consequently, the regulator’s decisions are strictly connected to other regulators’ ac-
tions, creating competition across jurisdictions.

We assume that passengers are utility maximizers when selecting the airline and the itinerary for
their trip. According to McFadden (1974), utility can be decomposed into a systematic component,
Vijsa and a random element, ϵijsa:

Uijta = Vijta + ϵijta, ∀i, j ∈ N , t ∈ T , a ∈ A (2)

The systematic component is defined in the following way:

Vijta =β0tδija + β1tln

(
1 + min

k∗∈K
(fka)

)
+ β2tpijta + β3tτija, (3)

∀i, j ∈ N , t ∈ T , a ∈ A

where δija is the component of the utility associated with a direct connection and the second term
represents the utility of a higher service frequency. When flying indirectly, only the lower frequency
of the two legs is taken into account (Hansen (1990)). The third element represents the disutility
from paying the ticket fare and the last represents the loss of utility generated by the travel time
τija. Consequently, demand is shared between airlines through a multinomial-logit model (MNL)
that determines market shares:

mijta =
eVijta

eV0 +
∑

a′∈A
eVijta′

, ∀i, j ∈ N , t ∈ T , a ∈ A (4)

where the term V0 is the utility associated with the outside-option from not flying.

According to Swan & Adler (2006), the direct operating cost of the airline is defined through a
cost function that differentiates between long- and short-haul flights.

Ckv =

{
(γk + 722)(skv + 104)$0.019 if k ∈ Ks

(γk + 2200)(skv + 211)$0.0115 if k ∈ Kl
(5)

where

Ks = {ks|ks ∈ K are the short-haul legs served}

Kl = {kl|kl ∈ K are the long-haul legs served}
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The monthly cost of owning an aircraft (ohv) is approximated by the equivalent annual capital
costs divided by the number of months per year.

In the second stage, airlines maximize their profits, given the environmental charges imposed by
regulators in the first stage. Each airline strategically sets the service frequency of each version of
aircraft fkva per leg, the fares pijta on the itineraries between an origin and destination and the
optimal number and version of the aircraft xhva to operate given their network.

Max
pijta,fkva,xhva

πa =
∑
i,j,t

i ̸=j

dijtamijtapijta −
∑
k,v

Ckvfkva −
∑
kr,v

εkrvθrfkrva −
∑
h,v

ohvxhva (6)

where mijsa is the market share function specified in 4, representing the share of demand served
by a specific airline a for each city pair and passenger type, Ckv represents the operating costs,
defined in 5, incurred by the airline for serving a specific leg, ohv is the monthly ownership cost
of the type of aircraft h version v and xhva is the number of aircraft of type h and version v that
carrier a operates in its network.

The competition framework for regulators and airlines is structured as an extensive form game
with complete and perfect information (Osborne & Rubinstein, 1994). In this model, players make
strategic decisions sequentially in two stages. This allows second-stage players to decide their
strategy in response to the decisions of first-stage players. The actions of the regulators, in the
first-stage, are represented by the environmental charges imposed on airlines, while, in the second-
stage, airlines react by choosing service frequency, ticket fares and the number of new and old
version aircraft to deploy.
It is possible to solve this two-stage simultaneous game using a Kuhn-Zermelo-type backward
induction algorithm (Schwalbe & Walker, 2001), as described in 1. The algorithm starts by initial-
ising the values for the first and second-stages. Successively, the algorithm solves the first-stage
problem for each regulator in the set R, moving to estimate the sub-game perfect Nash equilibrium
(SPNE) in the second stage for each airline and continuing until no airline changes the values of
their decisions variables. The second stage, non-linear mathematical programs are solved using
IPOPT (Wächter & Biegler (2006)). Following the approach used in Adler et al. (2022), the first-
stage algorithm performs a line search around each regulator’s incumbent solution starting at +
and - 50% and gradually decreasing to the point in which a further reduction would not improve
the integer solution. A cycle is completed once all regulators have chosen their current optimal
carbon tax. The equilibrium of the game is found when two cycles are completed such that no
actor in the game changes the values of their decision variables.
The robustness of the results is tested by selecting different starting points and sequences of players
within each specific set of players.

3 Results and discussion

Figure 1: Selected nodes in North America and Western Europe.
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Algorithm 1 Solve the two-stage game (pseudo-code)
1: Start
2: initialise values of competitors’ decision variables and their network, for regulators and

airlines
3: while first-stage solution > optimal threshold do:
4: while first-stage solution is not a best response for all regulators do:
5: for each regulator do:
6: create point grid around previous first-stage solution
7: for each point in grid do:
8: while second-stage solution not a best response for airlines do:
9: for each airline do:

10: solve mathematical program using IPOPT
11: assess whether second-stage solution is a best response for all airlines

12: return second-stage solution
13: return second-stage solution for each point
14: select the point that maximises welfare
15: return first-stage solution for each regulator
16: shrink grid radius
17: return first and second-stage solutions
18: Stop

In this section, we analyse a game that describes the aviation markets of North America and Eu-
rope. We assume a social cost of carbon of e 200, according to the latest IPCC report (Pörtner et
al., 2022). Our network covers 9% of the monthly traffic within and between Europe and North
America.

The baserun, presented in Table (1) aims to replicate the 2019 transport equilibria outcome taking
into account the European carbon charge in order to replicate the EU-ETS scheme. After account-
ing for free permits, we assume that the cost of carbon in 2019 was approximately e 22 per ton of
CO2 produced. The results from the baserun case show that, despite the higher demand in North
America, the European market generates a higher surplus than that of North American. This
discrepancy between the two regions is due to the disutility faced by North American passengers
who paid a higher fare than their European counterparts in 2019 and have a regional network
characterized by longer distances. Thus, higher fares are the result of operating costs in North
America and the presence of fewer alternative modes of transport, resulting in North American
passengers being more dependent on aviation. Given the higher demand in North America, both
LCCs and legacy carriers operate more flights in this region compared to Europe. As a result
of higher fares and higher demand, North American carriers are more profitable than European
airlines, despite the higher operating costs incurred by North American airlines. Regarding CO2

emissions, we note that European carriers spent around e 8 million in the monthly game covering
9% of the European market (equivalent to e 1 billion for the entire market in 2019) and emission
damages amounted to a total of e 29 billion across the two regional markets (EU and NA) and
Trans-Atlantic (TA) routes.

Table 1: Baserun scenario

Baseline
EU NA

θr (e ) 22
Government surplus (e M) 8
Emissions (eM) -110 -110
Consumer surplus (eM) 942 683
Producer surplus (eM) 102 139
Welfare (eM) 942 712
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Table 2: Validation (real world values in brackets)

CASK (e c) RASK (e c) Demand, two-way (pax. M)
EU legacy 7.2 (7.1) 9.1 (7.7) EU NA TA
NA legacy 6.4 (6.4) 7.9 (8.7)

4.7 (4.7) 5.7 (4.9) 0.5 (0.4)EU LCC 4.2 (4.3) 5.3 (4.8)
NA LCC 5.3 (5.9) 6.2 (6.5)

The second scenario explores the impact of a global regulator who sets a single charge per ton
of CO2 generated in all aviation markets. There is no possibility of free-riding in this scenario
because the single regulator fully bears the costs of all generated emissions (ηr = 1). The results
of the model, presented in Table (3), suggest that the optimal charge set by the regulator is much
lower than the expected Pigouvian tax, which should compensate for the social costs of the carbon
equal to e 200 per tonne of CO2 produced. This is due to the airlines’ market power and the
Mohring effect, both of which induce the regulator to lower the tax. In the case of market power,
the regulator is attempting to counter the output reduction of hubbing carriers that choose to
serve fewer passengers with higher fares, thereby increasing their own profits but decreasing social
welfare. The Mohring effect captures the idea that each additional passenger contributes towards
higher frequency, hence the quality of the air travel services for all other passengers (Mohring,
1972). As these benefits are external to the passengers (i.e. they are positive externalities), too
few passengers choose to travel from a societal perspective, which the regulator can address through
subsidies. Consistent with the economic literature, these two effects lead to a lower carbon charge
compared to the (marginal) social cost of carbon in our game.
It is also important to observe that, in our framework, a regulator is not able to discriminate across
routes, and the charge is the same for all operations. Such a limitation may result in a sub-optimal
tax, because charges cannot be tailored to local conditions (Benoot et al., 2013). As a result of
this global scope policy, we observe a slight departure from the base-run scenario. Specifically,
as a consequence of this marginal global charge, we do not observe significant changes in airline
strategies. With regard to the environment, the imposition of a charge on the North American
market too leads to a small reduction in the emissions generated.

Table 3: Single regulator scenario

Baseline 1REG ∆
EU NA Sum REG

θr (e ) 22 0 22 8
Government surplus (eM) 8 0 8 10
Emissions (eM) -110 -110 -220 -219 1
Consumer surplus (eM) 942 683 1,624 1,623 -2
Producer surplus (eM) 102 139 241 241 0
Welfare (e M) 942 712 1,654 1,655 -1

We now define scenario, 2REG, in which two regulators, based in different regions, compete by
setting emission charges on all flights departing from their jurisdiction. We assume that one
regulator sets charges for all flights departing within and from North America, and similarly,
within and from Europe. The environmental risk is distributed equally between the two regions.
Given the round-trip assumption of each flight, operations within a region are charged twice by the
same regulator. Trans-Atlantic flights are subject to both regulators’ charges, one per direction.
The results of our model for this scenario are reported in Table (4). We observe that competing
regulators decide to free-ride on each other, resulting in charges that are much lower than the social
cost of carbon. In this way, regulators protect the surplus of both passengers and carriers under
their jurisdiction. Indeed, the results of this competing regulator case closely reflect the charges
currently imposed by Europeans (EU-ETS price of e 22) and North Americans (e 0) in the real
world in 2019. In North America, a higher charge would be welfare-damaging given the longer
routes flown and the lower surplus of passengers resulting from higher fares. In Europe, where
airfares and distances are lower and alternative modes compete with aviation, the regulator has a
greater incentive to set a positive charge. As a consequence of the implementation of a small but
positive tax on both continents, the airlines respond by slightly increasing airfares and moderately
reducing service frequency.
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Table 4: Two-regulator scenario

Baseline 2REG ∆
EU NA EU NA EU NA

θr (e ) 22 0 38 4 16 4
Government surplus (eM) 8 0 14 3 6 3
Emissions (eM) -110 -110 -109 -109 1 1
Consumer surplus (eM) 942 683 936 678 -6 -4
Producer surplus (eM) 102 139 101 139 -1 -0
Welfare (eM) 942 712 943 711 0 -1

Finally, we note that the only path to reducing emissions substantially would appear to be an
increase in the social cost of carbon, as demonstrated in Figure (2). Once the cost of carbon is
above e 500, the airfares increase by one sixth, the frequencies drop by one third and the social
welfare accordingly but so too the emissions.
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Figure 2: Sensitivity analysis over the social cost of carbon

4 Conclusions

In this paper, we develop a two-stage model capable of representing competition between regulators
and airlines under different emission charges. By comparing scenarios with a 2019 baserun case,
we assess the impacts of the different regulators’ interactions on welfare and the environment. Our
analysis suggests that imposing an environmentally optimal carbon charge on the aviation industry
can lead to unexpected and welfare-detrimental outcomes. Specifically, we have assessed that the
carbon charge imposed by a single regulator results in a level that is well below the social impact
of emissions. We further show that when regulators are free to set their charges, they enter into
regional surplus protectionism, which undermine the effectiveness of the mechanism. The outcomes
we present in our paper are the result of several distorting forces in the aviation industry and offer
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an explanation behind the reasons for the absence of an international cooperative carbon policy.
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